

Instructor: Dr. R.A.G. Seely Assignment $4\frac{1}{2}$

Calculus III (Maths 201-DDB)

We start with a bit of theory: the essence of the "proof" of the second derivative test.

1. $\mathbf{u} = u\,\mathbf{i} + v\,\mathbf{j}$ is a unit vector, f(x,y) a function with continuous second partial derivatives. Show that the second directional derivative of f in the direction \mathbf{u} is

$$f_{\mathbf{u}\mathbf{u}} = u^2 f_{xx} + 2uv f_{xy} + v^2 f_{yy}$$

Hint: $f_{\mathbf{u}} = \nabla(f) \cdot \mathbf{u}$, and so $f_{\mathbf{u}\mathbf{u}} = \nabla(f_{\mathbf{u}}) \cdot \mathbf{u}$ — now you just have to expand this and simplify.

2. If f(x,y) has continuous second partial derivatives, satisfying the inequalities $f_{xx} > 0$, $f_{yy} > 0$, $f_{xx}f_{yy} - f_{xy}^2 > 0$, show that for any unit vector \mathbf{u} , $f_{\mathbf{u}\mathbf{u}} > 0$.

Hint: Let $\mathbf{u} = u\,\mathbf{i} + v\,\mathbf{j}$, and suppose uv > 0: expand the inequality $(u\sqrt{f_{xx}} - v\sqrt{f_{yy}})^2 \ge 0$; notice that $\sqrt{A^2} = |A|$ and $|A| + A \ge 0$ for any A. If uv < 0, then expand $(u\sqrt{f_{xx}} + v\sqrt{f_{yy}})^2 \ge 0$ and this time notice that $|A| - A \ge 0$ for any A.

An alternate variant is to complete the square for the expression you found in question 1 for f_{uu} .

Notice that these two problems prove part of the 2DT: if f has an interior critical point at (x_0, y_0) , and satisfies the conditions above near that point, then since all directional derivatives $f_{\mathbf{u}}(x_0, y_0) = 0$ and all second directional derivatives $f_{\mathbf{u}\mathbf{u}}(x_0, y_0) > 0$, f must have a minimum at (x_0, y_0) (in every direction). The other parts of the 2DT are proven similarly.

- 3. Suppose f(t) is a continuous function, and define $F(x,y) = \int_x^y f(t) dt$. What are $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$?
- 4. If u = f(x, y) and v = g(x, y), we define the Jacobian of u, v as

$$\frac{\partial (u,v)}{\partial (x,y)} = \left| \begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right| = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

- (a) If u = F(v) show that $\frac{\partial(u,v)}{\partial(x,y)} = 0$.

 Hint: Chain rule.
- (b) If u = F(v, x), v = g(x, y), and $\frac{\partial(u, v)}{\partial(x, y)} = 0$, show that $\frac{\partial F}{\partial x} = 0$ and so in effect u = G(v) (for some function G).

Hint: Show first that $\frac{\partial v}{\partial y} du - \frac{\partial u}{\partial y} dv = \frac{\partial (u,v)}{\partial (x,y)} dx$, according to the definition of differentials du, dv. So conclude $\frac{\partial v}{\partial y} du = \frac{\partial u}{\partial y} dv$. Then use the chain rule to calculate $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$. From that conclude that $du = \frac{\partial F}{\partial v} dv$, so arriving at a second equation for $\frac{\partial u}{\partial x}$: compare this with the one you got from the chain rule to conclude $\frac{\partial F}{\partial x} = 0$.