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Note to students

This book is intended to accompany the Principles of Mathematics and Logic course, given in the Liberal
Arts program at John Abbott College. This course covers virtually all the material in the text; you should
expect to read it cover to cover. Of course, there are also lectures which make up an important part of
the course; you will find that often I emphasise things somewhat differently in class and in the book—the
intention is that each should complement the other, rather than replace it. You should not skip class,
expecting to make it up with the text (instead, attend class regularly), and similarly, you should not rely
solely on your class notes (read the book for the extra examples and explanations). The most important
part of the book is the exercises: it is a (true!) cliché that mathematics is a poor spectator sport, and to
learn mathematics properly, you must do mathematics. Take this seriously: you will find it very hard to
succeed unless you actually practice the ideas learned in class.

Generally, when you read this text, indeed any mathematics, it is important to engage the text actively,
not passively. You should have pencil and paper beside you, and try to follow each statement, doing the
suggested calculations or reasoning yourself. It is not a novel or short story, whose meaning will just flow
over you, but a dialogue, only one side of which is on the page. You must provide the other side yourself!

In particular, you will find lots of examples with explanations; try to do the examples yourself (especially
after the first one, or after seeing some in class). A good idea is to try to do an example without looking at
the explanation, only turning to the text for hints as you go. When you’ve done the example, read through
my explanation to see if you understand it all, and then go onto the next example. And of course, do the
exercises!

There is a course webpage (www.math.mcgill.ca/rags/jac.html); I have put additional material there,

including further readings (some intended to give you further explanation and examples of topics covered in

class, some intended to go further in some topics than covered by the course, and some intended to interest

you, without any intent at “examinable material”), further exercises (particularly practice tests to help you

prepare for the class tests), and any other relevant information (for instance, your marks will be found there

after tests). You should bookmark the webpage, and visit it often to see if I’ve put new material there for

you.
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vi CONTENTS

Major dependencies

The text is intended to be read (and covered in class) in order, but in fact some chapters only
depend lightly on some prior chapters. So, with minor dependencies that can be “ignored”, here is
the essential dependency graph: you really need the chapters above a certain chapter to understand
the latter.

Chp 1

Chp 2

Chp 3

Chp 4 Chp 5

Chp 10.1

Chp 6 Chp 7

Chp 8

Chp 9

Chp 10.2

Note: From Chapter 7 onwards, the language of set theory is used, but little of the “serious”
content of Chapter 6 is needed. So, these later chapters do depend on Chapter 6, but only lightly.
Section 10.2 is a bit unusual: it really does not use previous material in a serious way, but it will
perhaps make more sense to a reader familiar with what’s gone on earlier in the text. I’ve indicated
this with a dependency on Chapter 9, but even that isn’t really true(!).

Section 10.1 depends to some extent on understanding the basic structure of the natural num-
bers, so in a sense also depends on Chapter 8, but could be read without that. For example,
mathematical induction (from Chapter 8) is mentioned, but not used in any essential manner.
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Chapter 1

Introduction to Logic

1.1 Mathematics and Science in A Liberal Arts Education

Historically the liberal arts included arithmetic, geometry, astronomy, fine arts and history, gram-
mar, rhetoric and logic. As broad general education, Liberal Arts programs are alternatives to
training in a trade or craft.

Some students think of Liberal Arts as the history of (Western) culture and the themes, styles
and movements in literature and the fine arts—an encyclopedia of cultural facts; lists of historical
particulars.

General (liberal arts) education has always been more than just particular truths in a narrow
range of fields. It aims to reveal the relevance of these truths, the connections and relations among
the particulars, and the subsumption of particulars under abstract general principles. Students
should understand not just the truths but the search for truth; not just knowledge but the methods
by which we acquire and confirm knowledge. Facts are important, but the interpretation of what
the facts mean is crucial.

Logic is central to this understanding.
Western culture is the result of developments in mathematics and the physical and social sciences

as much as it is a product of “merely historical” accidents or of changes in artistic or literary
directions. Human creativity and awareness are as evident in logic, mathematics, and the sciences
as they are in philosophy and the fine arts. For those who develop the understanding, sensitivity,
and taste, the great logical and mathematical proofs and the deep and subtle theories of the sciences
are as beautiful and as admirable as any product of the human spirit.

1.1.1 Logic and rationalization

“Logic” has been defined as the science of right reasoning.
Freud and Marxists and the existentialists encourage a common confusion about the relationship

between logic, rationality, and rationalization. Their idea is that people use logic to “explain away”
behaviours and attitudes whose real explanations are non-logical. Freudians claim that one’s beliefs
are not grounded on logical reasons but have their source in the sub-conscious; Marxists blame
ideology; existentialists emphasize “bad faith”.

The science of logic begins with a value-judgment: “what is right reasoning?”. The identification
of logic with rationalization (“explaining away”) is based on a relativistic view of values. The claim
is that there is no one standard of right reasoning, but that “right” (like any value) is a matter of
taste. Standard canons of logic are decided by whatever social group (class, gender, etc.) has the
power to impose its standards of “right reasoning” on the rest of society. So Marxists claim that

1
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logic is a bourgeois requirement. Some feminists claim that it is something that males impose on
the world.

This text rejects such relativism.1

1.1.2 Many logics, not just one logic

May one admit different standards of “right reasoning” if one is considering different contexts? It
seems perfectly reasonable that one might. However, admitting that there are various notions of
“right reasoning” does not mean that one admits that the notion of “right reasoning” is merely a
matter of taste. One thing we insist on is what philosophers of science call “reproducibility”: if two
reasonable observers observe the same phenomenon, they will make the same observation. We shall
insist, then, that “right reasoning”, and the logic that encodes it, must satisfy this requirement of
“reproducibility”; logic is no mere matter of opinion.

This may well make developing a logic suitable for political purposes an impossible task! In
fact, what logic is suitable for a specific purpose may well be a matter of opinion (and often is!).
But that gets us into philosophical disputes that have lasted for centuries, and so takes us way
beyond what we can cover in one semester.

So, it has to be said right at the start of the course that there is no single logic which encompasses
the idea of capturing “right reasoning”; instead there are several candidates which have been studied
in considerable detail in the past century. Each of these logics attempts to capture specific aspects
of right reasoning, usually suitable for specific applications or circumstances. We shall emphasize
(mainly for reasons of simplicity) the traditional “classical” logic, whose origins go back to the
Greek philosophers (such as Aristotle), and which was what was principally meant by the term
“logic” for centuries.

A very important variant of classical logic, which became a serious matter of philosophical and
mathematical scrutiny only around the early 20th century, is “intuitionist logic”, a logic intended
to capture a more “constructive” aspect of logic; we shall discuss this at several junctures as we
study classical logic. With the development of computing science, an increasing need grew for a
logic which was more “resource sensitive”; this need is met by a collection of what are known as
“sub-structural logics”. These were not new to philosophers, as they had already been considering
various “relevance logics”, which were an attempt to address some seemingly paradoxical behaviour
of the classical notion of implication (remarked upon near the end of Section 1.3.2); in Chapter
10 we shall briefly consider how relevance logic can avoid some of this. Related to such logics are
various candidates for a logic of quantum phenomena, a logic suitable for underlying (for example)
quantum computing, and more generally for understanding quantum physics. This is a field of
current active research.

Other distinctions are possible: for instance there is a large family of “modal logics”,2 whose
intention is to study the logical properties of notions like “possibility”, “necessity”, “belief”, etc.
Again, we shall discuss these, but only briefly. Another distinction is made between deductive and
inductive logic (inductive logic is very commonly used in the natural sciences, less so in mathemat-
ics): this is essentially a distinction between a logic aiming at determinate, definite conclusions and
a logic aiming at probabilistic conclusions. Inductive logic is often identified with statistics, but
there is active current research into a suitable formal logic for such matters.

1Perhaps this is as good a time as any to mention that mid-way through the course, you will be asked to read the
essay On Bullshit by Harry Frankfurt.

2In the wide sense, “modal logic” includes many logics such as temporal, deontic, and doxastic logic, for instance.
You may Google these, if you wish, as we shall not go there!
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Furthermore, even traditional logics (such as the classical logic we shall study) may be enhanced
by adding other features, to allow other aspects of “right reasoning” to be captured. For instance,
we may add to classical logic the ability to make sentences of the form “infinitely many objects have
such-and-such a property” (in addition to the sentences of the form “all objects have such-and-such
a property” and “some object has such-and-such a property”, which are already allowed, and which
we shall study). The list of variants seems almost endless (in a sense, it is!).

Many logics for many purposes—each has its own characteristics, its own properties. The study
of most of these logics follows a similar plan, which is simplest in the case of classical logic, so we
shall use that as an illustration of how a formal logic, a logic to capture the elusive notion of “right
reasoning”, may be developed in a scientific, perhaps we should say mathematical, fashion.

1.1.3 Pure mathematics and logic

In this course we mostly study pure (or formal or theoretical) mathematics and logic, more than
applied mathematics and logic. We study maths and logic from a theoretical point of view. Prac-
tical applications (such as using logic to persuade somebody or using mathematics for utilitarian
calculations) are secondary. The aim is to develop some understanding of what these two sciences
are about, of their methods, and of their beauty and interest for their own sakes.

So we study the principles of these two fields of study, not how one applies them. In logic,
the course does not aim to teach rhetoric. In mathematics, this means that our ability to perform
calculations will not be emphasized. Unlike most college mathematics courses, this course does
not emphasize applying the techniques of trigonometry and differential and integral calculus. We
look at the basic assumptions behind the two fields, the way mathematicians and logicians arrive
at their basic assumptions, and the way they arrive at conclusions based on those assumptions.
In particular, we do not regard mathematics as “the science of quantity”, or any such definition
(if this challenges your preconceptions, so much the better!). Rather, we regard the essence of
mathematics (including logic) as the study of pattern. The word “pattern” means many things of
course, but one property that is intended by my usage is “reproducibility”: whether or not a pattern
is (say) beautiful is (probably) not a reproducible property (we may disagree on whether something
is beautiful), but the pattern itself is—by the very nature of what a pattern is. Mathematicians
study pattern in many contexts: among numbers, geometric shapes, and logic, to be sure, but also
in other domains, including (but not limited to) music, natural language, computer programming
languages and computer programs themselves, as well as more “useful” domains, like the movement
of planetary bodies, and the performance of the stock exchange. In this course we’ll see a few
instances of this, at an elementary level: we’ll consider patterns in logic, in numbers and sets, and
(time permitting) in natural language.

In addition, since the early twentieth century, mathematics (especially pure mathematics) has
tended to have a characteristic method or procedure, often referred to as “the axiomatic method”
(we shall study some examples at the end of the course). In studying a subject or discipline,
one begins with a set of undefined elements, properties and relations among these elements, and
fundamental “truths” called postulates or axioms, which establish the basic facts of the subject.
From these all other facts (theorems) should be derived by formal logic, without appeal to any
external knowledge. Some commentators stress that the undefined elements should not be regarded
as concrete entities, but rather as some sort of “variables”, which may be interpreted in any way
consistent with the axioms—in this way, the subject becomes merely the study of what consequences
may be derived from the initial axioms. It might appear that this approach tends to identify
mathematics with “applied logic”, and indeed, there was a serious attempt to reduce mathematics
to logic early in the twentieth century with the mammoth 3-volume set Principia Mathematica
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(Cambridge University Press, 1910) by A.N. Whitehead and B. Russell.
But the reduction of mathematics to logic suffered serious blows, right from its inception as an

idea. Firstly, when Whitehead and Russell tried to implement their idea, they found they needed
a non-logical axiom of infinity in order to even capture simple arithmetic, in spite of many efforts
to avoid such an extra assumption. (They could describe simple “natural numbers” like 1 and 2 in
purely logical terms, and they could even, after several hundred pages, prove that 1 + 1 = 2, but
what they could not do was talk about all natural numbers without the axiom of infinity.)

Then, in the early 1930s, Kurt Gödel proved that in their system (or in any similar system
for mathematics) there were statements (which were “obviously true” in some sense) which could
never be proven nor disproven (unless their system was in fact inconsistent). Gödel explicitly saw
this result of his as showing that mathematics could never be reduced to a merely formal or logical
system, but that some other considerations, mathematical considerations, were an essential part of
the story. Moreover, he believed that mathematics studied real phenomena, not merely intellectual
creations: entities such as numbers, geometric shapes, etc., may not exist as tangible objects like
rocks, cats and dogs, or even MP3 files, but they have a reality nonetheless. This view is often
called “Platonic” (for reasons I need not explain to this audience!). We may discuss these matters
when we consider Gödel’s theorem.

Furthermore, while the axiomatic method certainly describes the modern practice of a consid-
erable body of mathematics, and it does indicate the close relationship between mathematics and
logic (a relationship we shall see throughout the course), nonetheless one must remember to dis-
tinguish between ‘method’ and ‘essence’. The method does describe part of what mathematicians
do (and how they do it), but still it does not entirely address the essence of what mathematics
is, a much more complicated and obscure matter. In particular, it ignores the question of what
makes some collections of axioms more valuable as an object of study than others, for instance.
That usually involves the consideration of what the mathematics is used for, whether for other
parts of mathematics or for “real-life problems”; it may also involve matters of “taste” (and the
less reputable, but equally compelling, notion of “fashion”), and often simply what captures the
imagination and passion of the mathematicians working in a discipline. One key motivation is the
love of beauty (which brings us back to “pattern”).

1.1.4 Patterns in sciences and arts

For a Liberal Arts student, the main relation between the sciences on one hand and the fine arts and
literature on the other is that both study patterns (there’s that word again!). Empirical sciences
study the patterns in nature. Logic studies the patterns of human reasoning. Mathematics studies
the patterns to be found in patterns.

It shares many characteristics with music in this aspect of its nature, an observation made often
by many writers and mathematicians. In a paper on Newton, the mathematician James Joseph
Sylvester (himself a talented amateur musician) wrote

May not Music be described as the Mathematics of sense, Mathematics as the Music of
reason? Thus the musician feels Mathematics, the mathematician thinks Music—Music
the dream, Mathematics the working life—each to receive its consummation from the
other when the human intelligence, elevated to its perfect type, shall shine forth glorified
in some future Mozart-Dirichlet or Beethoven-Gauss.3

3Quoted in Edward Rothstein, Emblems of Mind: The Inner Life of Music and Mathematics, Times Books 1995.
Sylvester (1814-1897) was an English algebraist who spent his professional life in both the US and England. Mozart
and Beethoven need no introduction; Dirichlet (1805-1859) was a German mathematician active in the field of analysis.
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Æsthetics and appreciation of the arts involves feeling and responding to the patterns in nature
and in works of art. Artistic creation is a matter of creating or reproducing or elaborating patterns.
Empirical science is the discovery, description and analysis of patterns in nature. The formal
sciences (logic and mathematics) study, describe, and create patterns of patterns. The beauty
of structure and pattern is as central to the study of logic and mathematics as it is to literature,
music or painting. Some recognition of this centrality is the main thing I hope students will develop
through this course.

1.2 Introduction to Logic

1.2.1 Some history

A very brief, even superficial, history of logic may help put the content of this course into some
context.4

The western scholarly study of logic goes back to Aristotle, who listed the variants of the
syllogism. The law of non-contradiction and the law of the excluded middle are also credited
to Aristotle. Most European students of logic followed the Aristotelian tradition until the mid
nineteenth century.

However, another classical Greek school of logic, which may be loosely identified with the Stoics,
went beyond the syllogistic tradition, and essentially had an understanding of propositional logic,
in almost the modern sense. They formulated five basic “inference schemata”:

• If the first, then the second; but the first; therefore the second.

• If the first, then the second; but not the second; therefore, not the first.

• Not both the first and the second; but the first; therefore, not the second.

• Either the first or the second [and not both]; but the first; therefore, not the second.

• Either the first or the second; but not the second; therefore the first.

We’ll see how these fit into our presentation of logic at the end of Chapter 2.5

An early precursor to the mathematical tradition in logic was Leibniz, who envisioned a calculus
of logic, a set of rules which would completely automate the reasoning process, so that disagreements
might be settled by simple calculation. He even imagined one might build a machine to do these
calculations mechanically. Needless to say, this idea (dare I call it a dream?) of Leibniz’s was never
realized in his lifetime.6

But in the nineteenth century, an algebraic approach to propositional logic was successfully
designed by George Boole (we shall study Boolean algebras in the last section of the course). This

Curiously, given the nature of this quotation, he was Felix Mendelssohn’s brother-in-law. Gauss (1777-1855) was one
of the greatest mathematicians ever, who contributed significantly to just about every aspect of mathematics, as well
as to physics (he was particularly famous during his lifetime for his contributions to the understanding of electricity
and magnetism, and for his part in developing the telegraph).

4A slightly longer account, from the Oxford Companion to Philosophy, may be found on my webpage.
5But for now notice that in the 4th of these schemata the parenthetical phrase “and not both” renders the scheme

rather redundant. The Stoics would not have had that phrase, and in effect, this really just says that (unlike modern
logicians) they took “or” to be the “exclusive or”, which we’ll define very soon.

6Leibniz did get quite close to the idea behind the system Boole developed in one remark he made, using numbers
to represent “thoughts” or properties: “if the term for an ‘animate being’ should be imagined as expressed by the
number 2, and the term for ‘rational’ by the number 3, then the term for ‘man’ will be expressed by the number
2× 3, that is 6”. [Quoted in Kitty Ferguson, The Music of Pythagoras, Walker Books 2008.]
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could be marked as the first step in modern logic. What was missing, however, was a mathematical
account of predicates, and what we call quantifiers (Chapter 5 of this text). That was managed by
Gottlob Frege later in the century, in a remarkable text called Begriffsschrift, whose unconventional
notation makes this text an effort to penetrate for most readers. His ideas were quickly picked
up by the mathematical-logical community, however, and with a notation very like the one we
use in this text, became the basis for twentieth century logic. Very soon after, Peano gave an
axiomatization of the theory of natural numbers, and although there are technical reasons why a
complete mechanization of the rules of predicate logic cannot exist, one could claim the essence of
Leibniz’s dream was realized. (One of those technical reasons is Gödel’s incompleteness theorems,
which we shall study at the end of the course.)

In the late nineteenth, early twentieth century, logic went hand in hand with the attempt to
put the foundations of mathematics on a sure foundation. A number of paradoxes were becoming
apparent in mathematics, especially with the study of the infinite, and a need for a firm philosophical
basis for mathematics and logic was thought to be necessary. Set theory was a central tool in this
attempt, but a series of paradoxes in logic and set theory underlined just how conceptually tricky
(“subtle” might be a more positive term) things were.

The paradoxes

Without getting too technical, let’s consider some of the paradoxes that caused such a concern.
One is very old, in fact: it is often called The Liar and finds its origins in classical Greece. Consider
the statement: “This statement is false”. If it’s false, it’s true, but if it’s true, it’s false. There are
many variants of this; here is a simple one. Imagine a card with the following two statements, one
on one side, the other on the other: “The statement on the other side of this card is false”, “The
statement on the other side of this card is true”.

The work of Frege was interrupted by Bertrand Russell, who found an error in his system, which
allowed sets to be formed if defined by some property. The paradox Russell found was this (if your
knowledge of sets is insufficient, come back to this story after we’ve done chapter 6—in any case
I’ll give a simpler version in a moment): notice that some sets seem to contain themselves as an
element, such as the set of abstract entities (it is itself an abstract entity), whereas other sets (most,
in fact) do not, such as the set of words on this page, which is itself not a word on the page. We’ll
call those sets which do not contain themselves as an element “standard sets”, and those which do
contain themselves as an element “non-standard sets”. Consider now the collection of all standard
sets: is this set standard or not? If it’s standard, then it’s non-standard, but if it’s non-standard,
then it’s standard.

If this is too technical, here’s a non-technical variant. Consider a village, with just one (male)
barber, who shaves every man in the village who does not shave himself, and no one else. Who
shaves the barber? If he shaves himself, then he cannot shave himself, but if he doesn’t shave
himself, then he does shave himself.

Here’s a numerical paradox: notice that some numbers may be described with only a few words
(“one”, “the hundredth prime”), and others take more words (“one million seven hundred and forty
five thousand three hundred and twenty nine”). Generally (though there are exceptions), numbers
that take lots of words tend to be large, and ones that can be described in fewer tend to be smaller.
Here is an interesting number: the smallest number that cannot be described in less than thirteen
words. What’s the paradox? I just described it in twelve words.

There are oodles of other paradoxes—what they all have in common is that trying to understand
them caused mathematicians and philosophers to think hard about mathematics and logic, and that
resulted in a clearer understanding of what is going on in those domains. Many of these paradoxes
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still inspire thought and commentary (though for the practicing mathematician, they are more like
pleasant entertainments these days).

One serious result of the philosophical ferment in the early decades of the twentieth century was
the development of an alternate view of mathematics and logic, which goes by the general name of
intuitionism. We shall consider some aspects of intuitionism later in the course, but for now, let’s
just say that it demanded a more constructive approach to mathematics and logic. For instance, if
you asserted the existence of something, in intuitionist practice, you had to actually show the thing
in question, or give a clear algorithm for its construction. Here is an example (though you may have
to return to this after we study Chapter 7 to understand some of the terms): suppose you wonder if
there are numbers x, y with the property that x, y are not rational (are not expressible as fractions
of natural numbers), and yet xy is rational. Here is one possible answer, one that would have been
accepted by most mathematicians at the end of the nineteenth century (and would still be acceptable

today by most—non-intuitionist—mathematicians): consider
√
2
√
2
. Either this is rational or it is

not. If it is rational, then since
√
2 is not rational, you have your numbers (x = y =

√
2). If it

isn’t rational, then again you have your numbers: just take x =
√
2
√
2
, which you have supposed

isn’t rational, and y =
√
2, which isn’t rational, but now xy = (

√
2
√
2
)
√
2 =
√
2
(
√
2
√
2)

=
√
2
2
= 2

which is rational. What’s wrong with this, according to the intuitionists? Simply that at the end
of the argument, you still don’t really know what values x, y are that have the required property.

Just what is x? You don’t know from this argument: it might be
√
2 or it might be

√
2
√
2
—the

argument didn’t specify which one it really was. Your proof wasn’t constructive, in that it didn’t
put the necessary values at your fingertips.7 During the past century, intuitionist logic has had a lot
of study, and has become very important for practical reasons, for example in theoretical computer
programming, where constructivity is a key ingredient, as well as for philosophical purposes.

What about logic today? The past century has been (and continues to be) a golden age
in mathematical logic, with ever more impressive gains in understanding and in practical and
theoretical applications of that understanding to many disciplines. There are several features of
contemporary mathematical logic that distinguish it from the past practices. Perhaps the most
striking is that one no longer thinks of “logic” as a single entity, but rather there are many different
“logics”, for many different purposes. Logic(s) is(are) studied with mathematical tools, and indeed,
logics are mathematical entities in their own right. We shall see a simple example of this at the end
of the course, when we consider a logic suitable for the analysis of sentence structure in linguistics.

1.2.2 Some vocabulary

Logic is the science of discursive reasoning.8

As a science, logic aims to discover general laws that apply to all discursive reasoning. Narrowly
specific kinds of reasoning that are only relevant to some particular subject matter are the concern
of the special sciences.

Discursive reasoning consists of arguments made up of statements.
A statement is made by a declarative sentence. A statement is either true or false (although

its truth or falsity may not be known). No statement is both true and false.
An argument is a collection of one or more statements called premises and one statement

called the conclusion. Premises are offered as grounds for the conclusion.

7Actually, one can give a constructive proof. For example, it’s a fact that
√
5 and log5 9 are irrational (these facts

follow from the results of Chp 8), but (using your high-school algebra!)
√
5
log5 9

= (5log5 9)1/2 =
√
9 = 3.

8This is a provisional definition—we shall improve on it as we go.
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Premise-statements are grounds for a conclusion when the truth of those premise-statements
gives some assurance that the conclusion-statement is true. When the premises (if true) really do
give some assurance that the conclusion is true, we say that the premises support the conclusion,
or that they entail the conclusion, or that the conclusion follows from the premises. In such cases,
we say the argument is valid. If the conclusion does not follow from the premises, we call the
argument invalid.

Whether a collection of statements is an argument depends on the intention of the person who
makes the statements. It is an argument if she intends some of the statements as grounds for a
statement that she offers as a conclusion. If the premises do not support the conclusion, it is still an
argument, but it is a bad (invalid) argument. If the person never intended the premises to support
or entail the conclusion, it is not an argument.

In logic, we do not use “valid” to describe a statement. Statements are true or false; arguments
are valid or invalid.

Using this vocabulary, we refine the definition of “logic” given above. Logic is the science that
studies the general principles or laws of valid arguments.

Deductive logic is the science of deductive arguments. In a good deductive argument (a
valid deduction), the conclusion cannot be false if the premise(s) are true. The rules for deductive
reasoning guarantee that one cannot get a false conclusion from true premises.

Inductive arguments offer less assurance than deductive arguments. In a good inductive
argument (a valid induction), true premises assure us only that the conclusion is probably true. A
valid inductive argument makes it rational to believe that its conclusion is true, while allowing that
it might turn out to be false.9

Most of this course (and most of mathematics and logic) concerns deductive arguments. Induc-
tive argument is touched on in the section on the mathematics of probability and statistics.

1.2.3 Beginning steps in deductive logic

What kinds of arguments guarantee that their conclusions cannot be false when their premise(s)
are true?

An obvious example of such an argument is an argument based on definitions. For example, if
we define “bachelor” as an adult unmarried human male, we could argue:

John is a bachelor. (Premise)
(Therefore) John is unmarried. (Conclusion)

The conclusion cannot be false if the premise is true, because “bachelor” means (among other
things) “unmarried”.

Another obvious example is the classic:

All men are mortal. (Premise)
Socrates is a man. (Premise)
(Therefore) Socrates is mortal. (Conclusion)

This argument is an example of predicate logic.
Before looking at predicate logic, we study propositional logic. Propositional logic studies

arguments whose conclusions depend on the way compound statements are composed of simple
statements and special “connectives”. The compound statement “Ivanhoe is safe and Rebecca is

9These definitions of “deductive” and “inductive” are (demonstrably) better than most definitions found in
dictionaries—even good dictionaries. Dictionaries are not the ultimate arbiters of meaning.
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relieved” consists of two simple statements (“Ivanhoe is safe”, “Rebecca is relieved”) linked with
the conjunction connective “and”. “Nero is not pleased” is the negation of the simple statement
“Nero is pleased” that results from adding the negation (“not”) connective.

Here is an example of a propositional logic argument. From the (compound) statement “Ivanhoe
is safe and Rebecca is relieved” we can infer “Ivanhoe is safe”. That is, in the argument:

Ivanhoe is safe and Rebecca is relieved. (Premise)
(So) Ivanhoe is safe. (Conclusion)

when the conjunction “Ivanhoe is safe and Rebecca is relieved” is true, “Ivanhoe is safe” cannot be
false.

Notice that the validity of the Ivanhoe argument does not depend on the fact that it’s about
Ivanhoe and Rebecca. Look at the argument:

Mickey Mouse is safe and Minnie is relieved (Premise)
Therefore Mickey Mouse is safe. (Conclusion)

This is just as good (valid) as the Ivanhoe argument.

Frodo is an airhead and Arwen is neat. (Premise)
Frodo is an airhead. (Conclusion)

Here again the conclusion cannot be false when the premise is true. It’s just as good as the Ivanhoe
and Mickey arguments.

Dusty is silly but he’s beautiful. (Premise)
Dusty is silly. (Conclusion)

This is an argument that behaves exactly like the others even though it uses “but” instead of “and”
as the connective in the premise. A statement that results from linking two sentences with “but”
works the same way as one that uses “and”. Both kinds of statements are conjunctions. Another
word that has the same logical use (i.e., meaning) as “and” and “but” is “while” (as in “I’ll wait in
the car while you go in”. This permits the valid deductive inference “I’ll wait in the car”). Others
are “whereas” and “as” and “at the same time as” and so on. These are all instances of the same
logical connective, conjunction: they may have slightly different meanings in ordinary English, but
they all have the same property that the truth of the compound sentence requires the truth of the
first (indeed, both) constituent parts. This property characterizes conjunction.

As in any science, these observations enable us to propose a conjecture. We propose as a law
of deductive logic (a principle of valid deductive reasoning) that, given any conjunction as a
premise, we may validly infer the first conjunct. This means that whenever any conjunction
is true, its first conjunct cannot be false. We can restate the conjecture as a proposal for a valid
argument form. We propose that any argument of the form:

Statement 1 and/but/while/whereas . . . Statement 2 (Premise)
Statement 1 (Conclusion)

is a valid argument.
You should convince yourself that a similar principle allows the conclusion of Statement 2 from

the same premise: check each example to see how “obvious” this is.

Statement 1 and/but/while/whereas . . . Statement 2 (Premise)
Statement 2 (Conclusion)
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Another example of a valid deductive inference involves a conditional, as in the inference:

If you passed logic then I am delighted. (Premise)
You passed logic. (Premise)
(Therefore) I am delighted. (Conclusion)

If the two premises are true, the conclusion cannot be false.
Other English words might serve the same logical purpose as the “if . . . then . . . ” construction;

other languages have other words to do the same job. The validity of the argument has nothing to
do with your success in the course or with my happiness. We conjecture that this is another valid
argument form, expressed as:

If Statement 1 then Statement 2 (Premise)
Statement 1 (Premise)
Statement 2 (Conclusion)

This process of generalization leads us to propose laws of valid arguments that do not depend
on whether the premises are actually true. The validity of an argument only depends on
whether the conclusion follows from the premises.

A deductive argument aims to provide true premises and it aims to provide assurance that the
conclusion cannot be false when the premises are true. But a deductive argument might have true
premises and a true conclusion even if the premises do not guarantee the truth of the conclusion. In
such a case, the argument is (deductively) invalid. An argument can be valid even if the conclusion
and premises are not true.

The proposed rules above did not specify anything about what Statement 1 or Statement 2
were about. The content of the statements was not relevant to the validity of arguments. The
rules also were quite general about what particular words were used for the connective. In the first
conjecture, any word in any language was acceptable, as long as it did the same logical work as
the conjunction-connective “and”. I used “and/but/while/whereas. . . ” to indicate that it doesn’t
matter which of these words was used for the conjunction connective. Similarly, in the second
conjecture, other verbal expressions might be used for “if . . . then . . . ”, as long as they do the
same logical work.

The conjectured rules describe only the forms of valid arguments (which is why I said they
were “proposals for valid argument forms”). We refine our definition of deductive validity10, to
read:

A valid deductive argument is an argument whose form is such that it is
impossible to construct an argument of that form that has true premises
and a false conclusion.

From this definition, it follows that deductive invalidity can be defined as:

A deductive argument is invalid when it has a form such that one could construct
another argument of the same form whose premises were true and whose
conclusion was false.

We also improve our definition of “deductive logic” to:

Deductive logic is the science of the rules of truth-preserving transformations
on statements.

10Record this definition in your soul. It is central to understanding logic.
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All that matters for logic is the relation between the truth of our premise-statements and the truth
or falsity of our conclusion-statements. Every logic we shall consider will have this property.

A deductive argument can be:

1. Valid, with true premises and a true conclusion;

2. Invalid, with true premises and a true conclusion;

3. Invalid, with true premises and a false conclusion;

4. Valid, with false premises and a true conclusion;

5. Invalid, with false premises and a true conclusion;

6. Valid, with false premises and a false conclusion;

7. Invalid, with false premises and a false conclusion.

The one thing it cannot be (by the definition of “valid”) is “valid, with true premises and a false
conclusion”. Notice that you can have an invalid argument whose premises and conclusion are all
true, and valid arguments whose conclusions are false.

One more definition may be useful in light of the above. We call an argument (not a statement
or belief) sound when it satisfies the definition:

A sound deductive argument is a valid argument whose premise(s) are true.

From the definitions, what can you say about the conclusion of a sound deductive argument?

1.2.4 Exercise on arguments

For each of the following informal arguments11, identify the premises and the conclusion of the
argument made. Write these in “standard form”, meaning list the premises first, and the conclusion
last, each statement on a separate line. Some statements will be neither (they will be intermediate
parts of the argument from the premises to the conclusion); you should not include those in your
answers.

1. It is right that men should value the soul rather than the body; for perfection of soul corrects
the inferiority of the body, but physical strength without intelligence does nothing to improve
the mind. (Democritus)

2. There cannot be any emptiness; for what is empty is nothing, and what is nothing cannot be.
(Melissus)

3. About the gods, I am not able to know whether they exist or do not exist, nor what they are
like in form; for the factors preventing my knowledge are many: the obscurity of the subject,
and the shortness of human life. (Protagoras)

4. In the beginning man was born from creatures of a different kind; because other creatures
are soon self-supporting, but man alone needs prolonged nursing. For this reason he would
not have survived if this had been his original form. (Anaximenes)

11Taken from The Logic Book by Bergmann, Moor, and Nelson.
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5. Let us reflect in another way, and we shall see that there is great reason to hope that death is
good; for one of two things—either death is a state of nothingness and utter unconsciousness,
or as men say, there is a change and migration of the soul from this world to another. Now if
you suppose that there is no consciousness, but a sleep like the sleep of him who is undisturbed
even by dreams, death will be an unspeakable gain . . . for eternity is then only a single night.
But if death is the journey to another place, and there, as men say, all the dead abide, what
good, O my friends and judges, can be greater than this? . . . Above all, I shall then be able
to continue my search into true and false knowledge; as in this world, so also in the next; and
I shall find out who is wise, and who pretends to be wise, and who is not. (Socrates)

1.3 Truth-Functional Connectives

Expressions used to link sentences to create a new compound sentence are called “connectives”.
“Not” is a connective, even though it is used with a single sentence rather than connecting two
sentences.

Connectives actually link or modify statements, rather than sentences.12 Many sentences, in
many languages make the same statement. All that matters for logic is whether the conclusion of a
deductive argument can be false when the premise(s) are true. We don’t care about the particular
words or language in which the premise-statement(s) and conclusion-statement are expressed. We
don’t care about the sentences used to make the statements.

The connectives themselves are not language-specific. The conjunction-connective can be ex-
pressed many ways, even in English (as we saw). “Et” and “und” and “y” and a whole bunch of
words in other languages do the same logical job of conjoining two statements. Similarly “not” has
equivalents in English (“He is not going” is equivalent to “It is not the case that he is going” and
so on) and in other languages. We treat all connectives that do the same logical job as the same.

Some connectives are unimportant to logic.13 We shall only investigate “truth-functional con-
nectives”, viz connectives with the following property.

By “truth-functional connective” we mean a connective which links statements or modifies a
statement in such a way that the truth or falsity of the resulting compound statement (the original
statement(s) plus the connective) is a function of (i.e., depends only on) the truth or falsity of the
(original) component statement(s).

A connective that is not truth-functional is the phrase “I believe that. . . ”. You can stick that
phrase on the front of a sentence (e.g., “Arwen is somewhat neat”.) and get a new sentence (“I
believe that Arwen is somewhat neat”). But the connective is not truth-functional. The truth or
falsity of the new statement (made by the sentence “I believe that Arwen is somewhat neat”) cannot
be known just by knowing whether “Arwen is somewhat neat” is true or false. Other examples
might include “. . . because . . . ” (for instance “John skipped class because Susan loves Jo”); the

12Although one should keep this distinction clear, there may be times when any of us might use “sentence” when
really meaning “statement”. You should be able to decide, based on the context, which is intended: is it the actual
words used (the sentence), or is it their essence (the statement) that is at issue?

13Well, not exactly—what I really mean here is “unimportant to the classical logic we shall study”. Many connec-
tives that fall outside our survey are considered by other logics, for example modal logic, which studies non-truth-
functional operators like “necessarily” and “possibly”.
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truth (or otherwise) of such a statement does not depend on the truth of the individual components.
It is not truth-functional.14

On the other hand, the “not” connective is truth-functional. If it is true that Arwen is somewhat
neat, then “Arwen is not somewhat neat” must be false.

Propositional logic is the logic of the truth-functional connectives. The laws of valid
deductive reasoning in propositional logic are based on the meanings (rules for the correct use) of
the truth-functional connectives, and on nothing else.

1.3.1 The symbolism of propositional logic

The formal sciences (logic and mathematics) develop their own languages. These artificial lan-
guages15 are more precise and clear than natural languages. More precise and clearer language
leads to more precise and clearer thought and concepts. Learning mathematics and modern logic
involves learning its special language—the symbolism.

The main advantages of symbolic logic (using an artificial language of symbols) are: (1) we
avoid writing a lot of stuff that doesn’t matter for logic; (2) we emphasize the universality of logic;
and (3) it makes it easier to recognize the form of a compound statement or of an argument.

The English sentence “Frodo is an airhead” makes a statement. Other sentences (in English or
in other languages) make the same statement. We can refer to the statement they all make as “the
airhead statement” or “what you said about Frodo”. In propositional logic we use symbols, usually
letters, to stand for particular simple statements. For example, the letter “A” can represent the
statement made by the sentence “Frodo is an airhead”. “B” could be symbolic shorthand for the
statement made by “Arwen is somewhat neat”.

Then we could use “A and B” as shorthand for the statement made by the compound sentence
“Frodo is an airhead and Arwen is somewhat neat”. “Not B” could stand for “It is not the case
that Arwen is somewhat neat”.

Often we refer to any statement or a statement without having any particular statement in
mind. For example, we might want to say, “The negation of a true statement is false”. When
mathematicians want to say something about particular numbers they use symbols (called con-
stants) like 12 or 12364. They use variable-symbols like x or y to stand for some number, or an
unknown number, or any number. In propositional logic, we use letters like p and q to represent
some (unspecified) statement, or any statement. We could symbolize a conjunction of two (un-
specified) statements as “p and q”. That way, we can talk about a conjunction without worrying
about what statements are conjoined. We can discuss conjunctions in general, or the form of a
conjunction. Such letters act as statement variables.

We call the truth or falsity of a statement its truth-value. Every statement can have one of two
possible truth-values (true or false) and every meaningful statement has one of those values (even
when we don’t know what value it has).16

We define the truth-functional connectives in terms of the truth-value of the statement that
results from using that connective with one or more statements.

14We shall see a variant of “because”, namely “material implication”, which is truth functional. The distinction
comes from the fact that with material implication we drop all suggestion of causality, which is what stops “because”
from being truth-functional.

15Called “artificial” to distinguish them from “natural” languages like English, French, etc.
16There are alternate logics which do in fact allow more truth values, but we shall not study them in this course.
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1.3.2 The connectives

You must understand and memorize the four fundamental truth tables (for ¬, ∧, ∨, and −→) of this
section. They form the basis of our approach to logic, and they define how these four basic logical
operators behave.

Negation

The simplest truth-functional connective is the negation connective. We use the symbol “¬” to
stand for the word “not” and its logical equivalents. So we symbolize “Frodo is not an airhead” by
¬A.

Using our statement-variable symbols, we can define the negation operator as: “¬p is false when
p is true, and ¬p is true when p is false”. The variable p tells us that this applies to any statement
that you might substitute for p. So it tells us that ¬A is false if A is true, and ¬A is true if A is
false, for any constant (representing a particular statement) A. It also tells us that ¬B is false if
B is true, and so on.

We define the ¬ connective with a truth table. The truth table for ¬ is:

p ¬p
⊤ ⊥
⊥ ⊤

In a truth table, “⊤” indicates the case where the statement-form p is replaced by a statement
that is guaranteed to have the truth-value “true,” (for instance the statement 1 = 1), and “⊥”
indicates the case where the statement-form p is replaced by a statement that is guaranteed to
have the truth-value “false” (for instance the statement 1 = 0). In other words, ⊤ is a generic
true statement, and ⊥ is a generic false statement. The truth table tells you exactly what the “¬”
connective does to the truth-value of any compound statement. The whole logical meaning
of “¬” consists of what it does to the truth-value of a statement. It is truth-functional
because it operates on a truth-value and produces a new truth-value according to a rule. The rule
is that it produces a true statement from a false one, and vice versa.

A compound statement whose main connective17 is the negation connective is a negation.
The negation ¬p is false when p is true and true when p is false.

Negation is a unary connective. It works with only one statement (which could be a compound
statement). The following connectives are all binary connectives. Each works with two statements
(which could be compound statements).

Conjunction

A conjunction is a compound statement of the form “p and q”. Suppose you replace p with a true
statement and replace q with a false statement. Is the conjunction of the true statement with a
false statement true? A false conjunct makes the whole conjunction false. If both conjuncts are
false, the conjunction is false. We would only say that a conjunction is true if both conjuncts were
true.

A compound statement that results from linking two (simple or compound) statements
p and q with the conjunction connective ∧ is a conjunction, and p and q are its

17The notion of a “main connective” will be developed in section 1.3.3, on formation rules.



1.3. TRUTH-FUNCTIONAL CONNECTIVES 15

conjuncts. A conjunction is true if and only if both conjuncts are true. It is false if
and only if at least one conjunct is false.

We symbolize the conjunction connective with “∧”.18 The truth table defining ∧ is:

p q p ∧ q
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

Since “∧” connects two statements, we have to define it for all possible combinations of truth-
values of p and q. Start with the rightmost of the simple statement forms (q, in this case) and go
down the column, alternating ⊤ and ⊥. Then go down the column of the next simple form to the
left (p), alternating pairs of ⊤s and ⊥s. If there were three simple forms, the next column to the
left would consist of four ⊤s followed by four ⊥s, and so on. This technique ensures that every
combination is included.

The English word “but” has exactly the same truth-functional meaning as “and”. The two
words are truth-functionally equivalent: if we construct a truth table for “and” and for “but”, we
would end up with the same table. That is, “Frodo is an airhead but Arwen is somewhat neat”
is true or false in exactly the same circumstances as “Frodo is an airhead and Arwen is somewhat
neat”. The difference in meaning is not truth-functional, but reflects attitudes propositional logic
does not attempt to capture. Symbolize “Frodo is an airhead but Arwen is somewhat neat” as
A ∧B, just as you would “Frodo is an airhead and Arwen is somewhat neat”.

Disjunction

Another common English connective is “or”. We symbolize this as “∨”.19 It is truth-functional,
but defining it presents a slight problem, since there are at least two meanings (one more common
than the other) of the word “or”.

Consider “Either you do all the assignments or you fail the course” (D ∨ F ). When is that
statement false? Suppose you do all the assignments (D is true) and pass (don’t fail) the course
(F is false). You’d say the statement was true. Suppose you don’t do all the assignments and
you fail the course (D is false, but F is true). Still true. If you don’t do all the assignments and
don’t fail the course (D is false and F is false), the statement is false. But what if you do all the
assignments (D is true) and you fail anyway (F is also true)? Did the statement imply that both
these eventualities could not occur? The answer is “yes and no, depending on what ‘or’ means”.

The English word “or” is ambiguous: it has two (at least) possible meanings: inclusive-or
and exclusive-or. “D or F” could mean “either D or F or both” (inclusive) or it could, more
commonly, mean “either D or F but not both” (exclusive). When a highwayman holds up a stage
and shouts “Your money or your life”, the passengers hope that he intends to take their lives or
their money but not both. But when a teacher says, “Do the work or flunk the course”, he usually
intends that either or both could happen: he is not guaranteeing a pass to everyone who works.
(But notice something: if his statement is true, then he is guaranteeing a failure to anyone who
doesn’t do the work. In other words, if someone does not do the work and does not fail the course,
then his statement was false. You will see this in the following truth table.)

18Different authors favour different symbols; & is not uncommon, since it’s simple to find on a keyboard.
19This looks like the letter “v”, but in a different typeface. It comes from the Latin “vel”, meaning “or”.
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Such ambiguity is intolerable in logic. We have to decide which “or” we want to symbolize by
“∨”. Logicians and mathematicians use the inclusive sense of “or”, where it means “either or
both”. The truth table is, then:

p q p ∨ q
⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊤
⊥ ⊥ ⊥

A compound statement whose main connective is ∨ (“vel”) is called a disjunction, and
its two component statements are called its disjuncts. A disjunction is true if and only
if either or both of its disjuncts is/are true. It is false only if both disjuncts are false.

We could use another symbol (and truth table) for the exclusive sense of “or” (“exclusive-or”)
but we don’t need it. “And” means the same (logically) as “but”, so “either A or B but not both” is
just (A∨B)∧¬(A∧B). Later we’ll use truth tables to show that this expression captures the sense
of exclusive-or. It’s an amusing exercise (see BAFact 5 in Chapter 9) to define inclusive-or in terms
of exclusive-or (and other connectives) in a similar fashion; primarily we use inclusive-or as the basic
form not only because inclusive-or has very nice properties (e.g. it is dual to conjunction), but
also because in mathematics (and science), we usually want the inclusive-or, and only rarely seem
to need exclusive-or—one way in which mathematicians differ from highwaymen. It’s important to
remember this, since the inclusive-or is less common in daily non-mathematical usage.

Material implication

Consider the English implication or conditional20 “If you marry me (then) I’ll do all the cooking”.
When the premise (or antecedent) of the implication (the part between “if” and “then”) is true
(in this case, you do marry me) and the conclusion (or consequent) (the part after the “then”) is
false (I don’t do all the cooking), we would say that the conditional statement is false. In the case
where you marry me and I do do all the cooking, we would call it true.

What if the marriage does not take place? The premise of the implication is false. Should we
say that the implication is true or that it is false?

It doesn’t seem to matter whether the conclusion is true or false. In a sense “all bets are off!”:
you didn’t marry me, so any promise I made on that basis no longer holds. I won’t be breaking my
word, regardless of what meals I do or don’t cook. Our problem does not arise out of ignorance as
to whether or not I do the cooking.

We might like to say that the implication is neither true nor false when the premise is false.
But propositional logic requires that every meaningful statement must have a truth-value—must be
either true or false, and not both. If the truth-value of an “if . . . then . . . ” statement does not
depend on the truth-values of its components (the premise and the conclusion), then “if . . . then
. . . ” is not a truth-functional connective. This would be a disaster for propositional logic, where
implication is centrally important.

It would appear then that the ordinary-language “if . . . then . . . ” conditional connective is (log-
ically) ambiguous. We shall remove this ambiguity by defining “if . . . then . . . ” truth-functionally.
We call the resulting connective material implication or the material conditional, symbolized

20“Conditional” and “hypothetical” are nouns or adjectives logicians use for “if . . . then . . . ” sentences. Often,
especially in mathematical usage, we also call them “implications”, and say “. . . implies . . . ”.
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using an arrow (−→).21

The definition is:
p q p −→ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

In the first two rows, this truth table confirms our natural tendencies about how to handle
implication. The last two rows reflect the fact that we have defined the implication to be true
whenever the premise is false. Generally, those last two rows correspond to situations where normal
language probably doesn’t consider the “if . . . then . . . ” situation, so our definition doesn’t interfere
too badly with everyday usage (but more on that below!).

You will have noticed we use terminology for implications very reminiscent of the terminology
for arguments. It is important to keep the following distinction clear: an implication or conditional
is a single statement, with two components (think of one sentence with two subordinate clauses),
but an argument is a collection of several statements. A premise of an argument is a complete
statement, whereas the premise of an implication is only a sub-statement.

However, our terminology has the advantage of reflecting the similarity between a conditional
statement and an argument. In a sense, a conditional statement collects the separate statements
of an argument into a single statement with the same structure. Remember that an argument is
valid if it is impossible (from the form of the argument) for a conclusion to be false if the premises
are true. False premises do not make an argument invalid. This is similar to the structure of −→
as given in the table above. There is a technical way to make this idea precise; you will find that
in Remark 1.3.14 later.

You must remember the behaviour of “if . . . then . . . ”; it is central to propositional logic, (just
as is the related notion of a valid argument).

The compound statement that results from linking two simple or compound statements
with the “if . . . then . . . ” connective −→ is a material implication or conditional.
The component statement that states the condition (in the “if . . . ” clause) is put before
the −→ and is called the premise or antecedent. The other component statement is put
after the −→ and is called the conclusion or consequent. The material implication is
false if and only if the premise is true and the conclusion is false. It is therefore true in
all other cases.

Logicians call the conclusion of a material implication the necessary condition for whatever
the premise says, and they say that the premise is a sufficient condition for whatever the conclusion
says. Think this statement over very carefully—it might seem counter-intuitive, but if A −→ B is
true, then the truth of A is sufficient to guarantee the truth of B, whereas the truth of B is necessary
for A to be true (for if B were false and A −→ B true, then A could not possibly be true).

Warning: In everyday English usage, there is a tendency to “misinterpret” implication, to
assume that when one says “if A then B”, what is meant is “A if and only if B”, or in other words,
that A and B are “equivalent”, i.e. that they are either both true or both false. This is not the
meaning of A −→ B at all. Be very clear about this; it will probably require you to unlearn a
meaning that seems very natural to you.

21This is a very important notion, and so it’s perhaps no surprise that there are many different notations for it,
including a double shafted arrow (⇒), a hook (⊃), a less-than symbol (<), and various other “weird arrows” (−◦ is
a favorite of mine), among others.
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The implication B −→ A is the converse of the implication A −→ B. The contrapositive
of A −→ B is ¬B −→ ¬A. The converse of a true implication could be false (or true), but the
contrapositive of a true implication must be true. Notice that the contrapositive is just another
way of saying the implication: ¬B −→ ¬A has the same meaning, the same truth table, as A −→ B.
These statements are “equivalent”. (Check this for yourself!) By contrast, the converse is quite
independent of the implication: B −→ A and A −→ B may both be true, both false, or one can be
true and the other false, depending on the particulars of what A and B say. (Again, check this for
yourself, with various examples for A and B.)

Remark: Is material implication paradoxical? Before leaving implication, let’s consider
the following seeming paradox. According to our definition of (material) implication, the following
is a true statement: “If you are a purple unicorn, then you will win the lottery today”. It is true
simply because in fact, you are not a unicorn (purple or otherwise), and so whether or not you win
the lottery has no bearing on the truth of this statement. Similarly, this is also a true statement:
“If you are 50 years old, then 1+1 = 2”. This is true simply because 1+1 = 2 is true (regardless of
your age), and our definition of the (material) implication has the property that if the conclusion
is true, the implication is true also, regardless of the truth of the premise. (Check it out: ⊥ −→ q
and p −→ ⊤ are always ⊤, regardless of what p and q are. Keep in mind always that the only way
a implication is ⊥ is ⊤ −→ ⊥.)

To most English-speakers, this seems . . . well, silly! (though I’ll say “paradoxical” to sound
more impressive). Surely there ought to be some connection between the premise and the conclusion
of an implication of this sort. But these examples play fast and loose with that expectation. And
that’s the nub of the matter: the paradox, if there is any, is merely one of expectation. We expect
the English words “if . . . then . . . ” to behave, in the formal setting of propositional logic, as
they might in the informal setting of everyday English. They do not. It’s as simple as that. The
connectives ¬, ∧, ∨, and −→ are not words in everyday English, even if we pronounce them “not”,
“and”, “or”, and “if . . . then . . . ”. They are technical terms, whose meanings are strictly defined
(by their truth tables), and on that there is no room for a difference of opinion. Sorry! If you think
“or” should mean the exclusive variety, tough luck—that is not what ∨ means, and if it bugs you
to call it “or”, give it another name, like “vel”. Similarly for −→: call it “implies” or some other
word you don’t use very much. You cannot change the meanings of these connectives, however
much you want to, without changing the very subject we are studying. If it makes you feel better,
there are other logics which attempt to do just that, and you can turn to study them as a personal
project after the semester is over! For example, “relevance logic” is a generic name for a family of
logics which attempt to define an implication/conditional which requires some causal connection
between antecedent and consequent. For now, however, we shall stay with classical propositional
logic, with the connectives defined as above.

The biconditional—a derived connective

When an implication p −→ q and its converse q −→ p are both true, we say “p if and only if
q”. This kind of compound statement is important in mathematics. To represent this, we define
another connective, the biconditional, written ↔ or “≡” or even “iff”, as in p↔ q, in terms of the
implication and its converse:

p↔ q := (p −→ q) ∧ (q −→ p)

Whenever one sees ≡ or ↔, one should replace it as defined above.
In this definition, we had to use parentheses so that it was clear that the conjunction had

implications as its two conjuncts. The “:=” symbol indicates that the expression on the right defines
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(i.e., is the definiens for) the expression on the left (the definiendum). In logic, whenever we see
the definiens, we can replace it with the definiendum, and vice versa. Since the two expressions have
the same meaning, it is impossible for one statement to be false when the other is true. Replacing
the definiens with the definiendum can never lead to an invalid (false conclusion from true premises)
logical step. The truth table for (p −→ q) ∧ (q −→ p) (exercise: construct it!—or look at section
1.3.9.) shows that this whole expression is true whenever p and q have the same truth-value (either
both true or both false) and is false when p and q have different truth-values (one true and the
other false).

1.3.3 Formation rules

The rules of the syntax of our symbolic language are the formation rules.
WFF is an abbreviation for Well-Formed Formula, often simply called a “formula”. A simple

statement (e.g., A, or B, or Dusty is a cat) is a WFF. As we’ve defined the “¬” connective, ¬A is a
WFF. But A¬ is meaningless. It is not “well-formed”. It is not a WFF. Neither is A¬C. Neither
is ∧A, but B ∧A is a WFF. So is A∧A (nothing in the definition of “∧” says that p and q have to
be different statements). We shall adopt the convention that a statement variable is a WFF (since
it obviously becomes a WFF whenever it is replaced by a simple statement or by a WFF).

The components of a compound statement may be compound. As we saw when we defined the
biconditional, the conjuncts of a conjunction can be implications. But we may need parentheses to
clarify the logical meaning of the resulting compound.

Is ¬A ∧ B the conjunction of a negation and a simple statement or is it the negation of a
conjunction? Is “A ∧ B ∨ C” the conjunction of a simple statement A with a disjunction B ∨ C
or the disjunction of a conjunction A ∧B and a simple statement C? We add parentheses and a
precedence rule to the syntax of our symbolic language.

Parentheses Rule: When a binary compound statement is used as a component of a
compound statement, it must be surrounded by parentheses.

The example of conjoining (making a conjunction of) A and B ∨C requires that we put paren-
theses around B ∨ C before using it as a conjunct. We get A ∧ (B ∨ C). Now it is clear that this
is a conjunction and that its second conjunct is a disjunction.

Precedence rule: the ¬ connective takes precedence over any other connective.

This means that ¬A∧B must be interpreted as a conjunction whose first conjunct is a negation. It
works like (¬A)∧B. If we want to negate a conjunction, we must use parentheses to get ¬(A∧B).

WFF rules: A symbolic expression is a WFF if and only if:

1. it is a simple statement or a statement variable. Thus, A is a WFF. p is a WFF, ⊤
is a WFF, as is ⊥. The statement represented by the sentence “It is raining” is a
WFF. And so on. We call such WFFs “atomic formulas”, “atomic propositions”,
or simply “atoms”.

2. it is any WFF (in parentheses if it is a binary compound WFF) preceded by ¬.
Any WFF formed according to rule (2) is a negation. Its main connective is
the negation connective ¬.

3. it is any WFF (in parentheses if it is a binary compound WFF) followed by ∧,
followed by any WFF (in parentheses if it is a binary compound WFF). Any WFF
formed according to rule (3) is a conjunction and its main connective is the
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conjunction connective ∧. The two WFFs linked by the connective are called
conjuncts.

4. it is any WFF (in parentheses if it is a binary compound WFF) followed by ∨,
followed by any WFF (in parentheses if it is a binary compound WFF). Any
WFF formed according to rule (4) is a disjunction and its main connective is
the disjunction connective ∨. The two WFFs linked by the connective are called
disjuncts.

5. it is any WFF (in parentheses if it is a binary compound WFF) followed by
−→, followed by any WFF (in parentheses if it is a binary compound WFF). Any
WFF formed according to rule (5) is an implication or conditional, and its main
connective is the conditional connective −→. The WFF before the connective
is called the premise of the implication or the sufficient condition. The WFF
after the connective is the conclusion of the implication, also called the necessary
condition.

By rule (2), ¬A is a WFF, because A is a WFF. Since ¬B is a WFF by rule (2), so is ¬¬B.
So is ¬¬¬¬C. So is ¬(A −→ B) (since A −→ B is a WFF according to rule (5)). Rule (3) says that
A ∧B is a WFF. So is A ∧ ¬B. So is ¬¬B ∧ ¬(A −→ B). And so on. Rule (4) permits A ∨B as a
WFF. So is A ∨ ¬B. So is ¬¬B ∨ ¬(A −→ B). And so on. By Rule (5), A −→ B is a WFF. So is A
−→ ¬B. So is ¬¬B −→ ¬(A −→ B). And so on.

There is a second precedence rule we shall frequently use:

Second Precedence Rule: −→ binds less strongly than ∧ and ∨ (which bind equally
strongly as each other).

So, we can unambiguously interpret A −→ B ∧ C to mean A −→ (B ∧ C), and not (A −→ B) ∧ C,
which must be bracketed as shown.

Remark concerning parentheses. Although one needs to be careful about parentheses, one
has also to keep a sense of proportion about them. Their purpose is simply to avoid ambiguity in
logical expressions, nothing more. We shall feel free to use different styles of bracketing when it
helps make the expressions clearer. For example, contrast the following two expressions (intended
to be regarded as identical):

(((A ∧ p) −→ (q ∨B)) −→ ((¬A ∧ q) ∨ ¬(B −→ ¬p))) −→ r

([(A ∧ p) −→ (q ∨B)] −→ [(¬A ∧ q) ∨ ¬(B −→ ¬p)]) −→ r

The use of brackets [ ] instead of parentheses ( ) helps keep track of what groups go together.
In fact, parentheses may be totally avoided if we adopt a different technical presentation (known

as “reverse Polish notation”), where the connective follows the two formulas it joins, as in AB∧.
With this presentation, the formula above would look like this:

Ap ∧ qB∨ −→ A¬q ∧Bp¬ −→ ¬∨ −→ r −→

but for most folks, the current (“in-fix”, i.e. connectives in between their arguments) presentation
is clearer, even if it means fiddling with parentheses.

If we ignore parentheses for the moment, we can summarize the WFF rules in the following
compact form:

P := A | ¬P | P ∧ P | P ∨ P | P −→ P
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meaning a proposition (WFF) is either an atomic proposition (a constant or a variable), the negation
of a proposition, the conjunction of two propositions, the disjunction of two propositions, or the
implication of two propositions.

1.3.4 Parsing complex symbolic expressions

“Parsing” is the process of analyzing an expression to discover (1) if it is well-formed (syntactically
correct, grammatical) and (2) supposing it is well-formed, what kind of statement it symbolizes
(is it a negation, a conjunction, a disjunction, or an implication—in other words, what is its main
connective?).

To parse a compound expression, start by counting the left parentheses and the right parenthe-
ses. If there is not the same number of each, and if they are not balanced, the expression is not a
WFF.

You probably remember “balanced parentheses” from high-school maths, but if not, here is
a simple test you can use to check for them. Start at the left end of the expression, and count
parentheses, beginning with 1 and adding “+1” for each “(” and “−1” for each “)”. Here’s an
example, with the counting numbers indicated as superscripts:

(1(2(3A ∧ p)2 −→ (3q ∨B)2)1 −→ (2(3¬A ∧ q)2 ∨ ¬(3B −→ ¬p)2)1)0 −→ r

You should never get a negative number, and you should end up with 0, if the parentheses are
balanced. Note that each matched pair of parentheses carry indices n, n− 1.

If the expression passes the parentheses-check, proceed as follows:

Every simple statement symbol or statement variable in the expression is a WFF, by Rule (1).
Underline or highlight the simple statement symbols and statement variables. Then follow the
algorithm (where “highlight” means “highlight or underline”):
1. If the only thing that is not highlighted is a single connective, go to step 5.
2. If everything enclosed by a pair of parentheses is highlighted, highlight the parentheses and go
to step 1. Otherwise, go to step 3.
3. If any highlighted component is immediately preceded by a ¬, extend the highlight to include
the ¬ and go to step 1. Otherwise, go to step 4.
4. If there are two highlighted components separated by a binary connective (either ∧, ∨, or −→),
extend the highlighting on the components to include the connective and go to step 1. Otherwise,
go to step 2.
5. The connective that is not highlighted is the main connective. If the main connective is ¬, the
expression is a negation; if ∧, it is a conjunction; if ∨, the expression is a disjunction; if −→, it is
an implication.

Suppose we see an expression like

(D ∨ ¬H) −→ (R ∧ (S ∨ T )).

Here there are three left and three right parentheses and they are balanced, so this expression
passes the parentheses-test. Highlighting the simple statement symbols, we get

(D ∨ ¬H) −→ (R ∧ (S ∨ T ))

There are several connectives that are not highlighted, so we go on to step 2. No highlighted thing
has parentheses on both sides of it, so go to step 3. In step 3 of the algorithm, we get

(D ∨ ¬H) −→ (R ∧ (S ∨ T )).
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We go to step 1. Several connectives are not highlighted. Nothing happens in steps 2 or 3. Step 4
gives

(D ∨ ¬H) −→ (R ∧ (S ∨ T ))
(Notice that we did not highlight the ∧ connective between R and (S ∨ T ) because there was

more than just a connective between the highlighted R and the highlighted S ∨ T . There was also
a left-parenthesis.) Back to step 1. There are still connectives that are not highlighted, so step 2
gives

(D ∨ ¬H) −→ (R ∧ (S ∨ T )).
Back to step 1. There are two connectives that are not highlighted, so we go to steps 2 and 3.
There is no ¬ immediately preceding a highlighted component, so we go to 4. In R ∧ (S ∨ T ) we
have two highlighted components separated by a binary connective, so we extend the highlighting,
getting

(D ∨ ¬H) −→ (R ∧ (S ∨ T )).
One connective and two parentheses are not highlighted, so we go to step 1, then 2, and extend the
highlighting on the right side to include the parentheses and back to 1. The highlighted expression
now looks like

(D ∨ ¬H) −→ (R ∧ (S ∨ T )).
The only thing that is not highlighted is the −→. We go to step 5. −→ is the main connective. The
expression is an implication. Its premise is D ∨ ¬H, which is a disjunction (parse it and see). Its
conclusion is R ∧ (S ∨ T ), a conjunction whose second conjunct is a disjunction.

OK—take a breath!! You will find with a little practice that in fact this takes about 5 seconds to
do, really. Scan the displays above, noting how the underlines grow out from the simple statements
to engulf more and more of the structure, by identifying the role each bit plays in the whole
expression, ending up with two underlined bits joined by the main connective. In a way, every
time a connective is put in parentheses it is “buried” lower in the structure, and the “topmost”
connective is the main connective. It’s usually pretty obvious which one that is—just match the
parentheses and check that each connective joins exactly two (one for ¬) expressions.

1.3.5 Examples

1. Parse ¬(C ∧ D) ∨ (A ∨M). Two left and two right parentheses: check. Start with ¬(C ∧
D)∨ (A∨M). Go to step 2, then 3: there is no highlighted component preceded by ¬ (there
is an un-highlighted parenthesis after the ¬). Step 4: ¬(C ∧D) ∨ (A ∨M). Step 2 gives:
¬(C ∧D) ∨ (A ∨M). From step 3: ¬(C ∧D) ∨ (A ∨M). There is now only one un-marked
connective. The expression is a disjunction. The left disjunct is a negation of a conjunction.
The right disjunct is a disjunction.

2. Parse ¬(¬B ∧ ¬A). Following the algorithm, we get: ¬(¬B ∧ ¬A), leading to ¬(¬B ∧ ¬A),
then ¬(¬B ∧ ¬A), and finally ¬(¬B ∧ ¬A). The expression is a negation (of a conjunction,
each of whose conjuncts is a negation).

1.3.6 Parsing and WFF exercise

1. Each of the following expressions is a WFF. Parse it and say what kind of WFF (negation,
conjunction, disjunction, or implication) it is:

(a) ¬(A ∨ ¬A) (b) A ∧ ¬(B ∨ C)

(c) ¬(A −→ B) −→ ((A ∧ ¬B) ∨ ¬A) (d) ¬(A ∧B) ∨ ¬(¬C −→ ¬D)
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2. Make the longest WFF you can using only the symbols given (plus any number of parentheses
you need). You don’t have to use all the symbols shown, but you cannot use any symbol more
often than explicitly shown. (For example, in (a), you can use two As, one B, one ∧, one ∨,
and two ¬s.) Check (parse) each WFF you construct and say what kind of WFF it is.

(a) A A B ∧ ∨ ¬ ¬ (b) A A ¬ (c) G H W N ¬ ¬ ∨ ∧ −→
(d) D E F ¬ −→ (e) A B C −→ −→ ∨ (f) Make up some of your own.

3. Remark: Technically, any expression containing a subexpression of the form p ↔ q is not a
WFF, since one must expand the subexpression according to the definition of ↔. However,
it is easy to show that we could add rules for ↔ to the WFF formation and parsing rules,
analogous to the rules for −→, which would allow us to treat ↔ as if it were a connective
in the usual way. With such new rules, any expression would be a WFF if and only if the
expression with the ↔ expanded (using its definition) is a WFF, so nothing is a WFF with
the new ↔ rule that shouldn’t be a WFF. Verify this claim. (As an exercise, this is optional,
but you should understand the result.)

1.3.7 Substitution instances

A particular statement S is a substitution instance of a statement form F
if S is the result of replacing every simple statement variable in F with a
simple or compound statement constant. None of the connectives in F may be
altered or eliminated. If any statement variable occurs more than once in F , every
occurrence must be replaced by the same statement constant in S.

We can replace a simple variable with a compound constant. ¬((A∧B) −→ C) is a substitution
instance of ¬q, because it results from replacing every distinct simple statement variable (i.e., q)
in ¬q with the compound statement constant (A∧B) −→ C. The same statement ¬((A∧B) −→ C)
is also a substitution instance of ¬(q −→ r), replacing the statement variable q with the constant
A ∧ B and the variable r with the constant C (and following the parentheses rule). So a single
statement may be a substitution instance of many statement forms. It is also true that many
statements may be substitution instances of the same statement form; for instance, ¬(A −→ C) is
another substitution instance of ¬q.

Note 1: The definition of “substitution instance” permits us to obtain a substitution instance
from a statement form by replacing two different statement variables with the same statement
constant. A ∨A is a substitution instance of p ∨ q.

Note 2: The definition does not permit replacing a compound statement form with a simple
statement constant. A∧B is not a substitution instance of (p∨q)∧r, because A is not a substitution
instance of p ∨ q. The ∨ connective and the third distinct statement variable are lost in that
substitution.

Note 3: The definition requires that two simple forms that are represented by the same variable
be replaced by the same statement constants, so A ∨ ¬B is not a substitution instance of p ∨ ¬p
(one p is replaced with A and the other with B).

Note 4: The definition of substitution instance is strictly syntactic (it depends on exactly what
symbols are used and how they appear), not semantic (it does not in any way involve equivalence
of statements). So, even though ¬(A ∨B) is equivalent to ¬A ∧ ¬B, i.e. even though they always
have the same truth value, the first is a substitution instance of ¬p, but the second is not, and the
second is a substitution instance of p ∧ q, but the first is not. The notion of substitution instance
is not a matter of truth values, but rather one of the actual symbols used.
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Note 5: You should notice the role of parsing here: a statement S can only be a substitution
instance of a statement form F if both S and F have the same main connective, and this must
hold recursively as you go “deeper” into the structure of F , so for example, if both S and F are
conjunctions, then the first and second conjuncts of each must also have the same main connective.
This only ceases to be a condition when you reach variables in F . I won’t make this statement too
technical: look at the examples and you should see what is meant here. (This is really the main
reason we spent time on parsing: recognising substitution instances is crucial for the next chapter,
but we’ll never look at parsing for its own sake again.)

Any simple statement is a substitution instance of the simple statement form p. So is any
compound statement, like (W −→ A) ↔ ((A ∧ B) ∨ W ) (it results from replacing p with that
whole long thing). And so is ¬⊤. But A is not a substitution instance of ¬p (we lost the negation
connective). (A∨B)∧ (W −→ ¬⊥) is a substitution instance of p∧ q because (as parsing shows) it
is a conjunction, and p ∧ q is the form of a conjunction. A ∧ ¬A is also a substitution instance of
p ∧ q. So is H ∧H. (W ∧X) −→ J is not (it’s an implication, and the form p ∧ q is the form of a
conjunction).

This may seem complicated and unfamiliar, but it is really quite simple, once you get the idea—
it should help if you practice the exercises. Identifying substitution instances is crucial to the ability
to show that an argument is valid when it is represented in the symbols of truth-functional logic.

1.3.8 Exercise on statement forms and substitution instances

For each statement form in the left-hand column, say which of the statement constants in the
right-hand column are substitution instances of that form.

a. p 1. A
b. q 2. A −→ B
c. ¬p 3. (A ∨B) −→ C
d. p −→ q 4. (¬A ∨B) −→ C
e. ¬p −→ q 5. ¬(A ∨B) −→ C
f. ¬(p −→ q) 6. ¬(¬A ∨B) −→ C
g. ¬(¬p −→ q) 7. ¬((A ∨B) −→ C)
h. (p ∨ q) −→ r 8. ¬(¬(A ∨B) −→ C)
i. (p ∨ p) −→ ¬r 9. ¬(¬(¬A ∨B) −→ C)
j. (¬p ∨ q) −→ r 10. ¬((¬A ∨B) −→ C)
k. ¬(¬p ∨ q) −→ r
l. ¬(p ∨ q) −→ r

m. ¬(¬(¬p ∨ q) −→ r)
n. ¬((p ∨ q) −→ r)
o. ¬(¬(p ∨ q) −→ r)

1.3.9 Truth tables

To make a truth table of a compound statement type, we must look at the form of that type of
statement and construct a truth table that applies to every statement of that form. For this reason,
we only use statement variables in the WFFs for which we construct truth tables. (We allow one
exception: we may usefully construct truth tables for WFFs which contain the constants ⊤ or ⊥,
and as many variables as we wish: for example, we might construct the truth table for the WFF
(p ∨ ⊥) −→ (⊥ ∧ ¬q). Why not do so now as an exercise?)
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Earlier we saw that we don’t need an exclusive-or connective, because (p ∨ q) ∧ ¬(p ∧ q) did
the same truth-functional job (and therefore has the same meaning) as “p exclusive-or q”. This is
illustrated by its truth table. (We shall explain the meaning of the various columns in a moment.)

p q (p ∨ q) ∧ ¬ (p ∧ q)
⊤ ⊤ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊤ ⊥

∗

To construct this truth table, we start by making columns for all the simple statement-forms
we’ll need. The truth-values for the right-most simple form q are assigned alternating ⊤s and ⊥s.
The next column to the left gets alternating pairs of ⊤s and ⊥s. If there is a third column, it
gets four ⊤s followed by four ⊥s, and so on. Then we do the columns for the simplest compound
statement-forms—the next ones that we underline or highlight when parsing. We look at the truth
table for the connective in the compound form (e.g., in the example above we look first at the truth
table for disjunction). That truth table determines what we put under the p ∨ q, based on the
values of the components p and q. We then do the column for the next-simplest component (the
simple conjunction), and then the column for its negation. Finally we do the column for the most
complex compound statement-form. The column ⊥ ⊤ ⊤ ⊥ under this last form (the column that
contains the main connective of the whole statement) is called the “main column” of the truth
table. We have put an asterisk under the main column to draw your attention to it. We use the
truth table for the main connective (∧) to decide whether to put a ⊤ or a ⊥ into the main column.

We defined the biconditional connective as the conjunction of a conditional and its converse:
any expression of the form p ↔ q is defined to mean the same as an expression of the form (p
−→ q) ∧ (q −→ p). The truth table for the biconditional then is:

p q (p −→ q) ∧ (q −→ p)

⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊤ ⊤

∗

To enter the values for the q −→ p column, remember that an implication is only false when its
premise is true and its conclusion is false. Look for cases where q has value ⊤ and p has value ⊥
in the first two columns. We find it only on the third row, so we enter ⊥ in the third row of the
column, and put ⊤ on the other rows. The main connective is ∧, which is only true when both
conjuncts are true. We look for the cases where both p −→ q and q −→ p are true (the first and last
rows) and put a ⊤ there, and put ⊥ on the other rows. From this truth table we see that the truth
table for p↔ q is:

p q p↔ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊤

As a shortcut, we may now use this truth table whenever we meet the biconditional in a WFF,
instead of expanding the biconditional via its definition.
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Looking at these tables, we can notice some properties of the WFF forms they represent. For
instance, we see that the main column of the exclusive-or truth table (p∨q)∧¬(p∧q) is exactly the
opposite of the main column for the biconditional. That means that we could get the exclusive-or
result either by a WFF of the form (p ∨ q) ∧ ¬(p ∧ q) or by a WFF of the form ¬(p ↔ q). This
also tells us that we could have defined the biconditional as ¬((p ∨ q) ∧ ¬(p ∧ q)) (the negation of
exclusive-or). (In the exercises below you will see this is also equivalent to (¬p ∧ ¬q) ∨ (p ∧ q); in
words: “p is equivalent to q iff either both p and q are false, or they are both true”. The truth
table makes this very clear.)

Caution: Looking at a WFF like ¬(A ∨ B), some students do what you would do with an
arithmetic expression like −(a+ b), which is to “multiply through by minus one”. But ¬ is not a
minus sign, and this kind of move would be a mistake. Exercises 4, 5 below let you look at the
truth tables for the forms of similar-looking expressions that have different truth tables (and so,
different meanings). There is an algebra of truth values, which we shall see in Chapter 9, at the
end of the semester, but although it has some similarities with ordinary high-school algebra, there
are very important differences as well, and you should not confuse them.

1.3.10 Exercise on truth tables

1. Construct the truth table for ¬((p ∨ q) ∧ (q −→ ¬p)).

2. Construct the truth table for (p ∧ q) ∨ (¬p ∧ ¬q).

3. Compare the main columns of the truth tables you constructed in 1 and 2 with the main
column for the biconditional truth table. What do you observe? Since a truth table defines
the meaning of an expression, these three expressions have the same meaning for logic. We
say that they are equivalent (see the next section).

4. Compare the truth tables for ¬p∧ q, ¬(p∧ q), ¬p∧¬q and ¬p∨¬q. Draw conclusions about
the similarities or differences between them.

5. Compare the truth tables for p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r); do the same for p ∨ (q ∧ r)
and (p ∨ q) ∧ (p ∨ r) . You should find that each pair has the same truth table, so we have
two more equivalences. The first equivalence pair looks rather like the high-school algebra
distributive law: a × (b + c) = (a × b) + (a × c). However, under this analogy, the second
equivalence would seem to say a+ (b × c) = (a+ b) × (a + c), which certainly is not true of
high-school algebra. (Try it with numbers: e.g. is 1+ (2× 3) = (1+2)× (1+3)?) As we said
above, the algebra of propositions is quite different from the algebra of numbers, in spite of
some similarities. Don’t try to use your high-school algebra here!

1.3.11 Truth-functional equivalence

When the main columns of the truth tables for two expressions are the same, we say that the
two expressions are truth-functionally equivalent. Using one expression rather than the other
makes no difference in truth-functional logic.

Remark: In view of the nature of the truth table for↔, it should be clear that two expressions
P and Q are truth-functionally equivalent (or simply “equivalent”) if the truth table for P ↔ Q
has the property that its main column has only ⊤ as truth value. (We call such an expression a
“tautology”, as you will see soon.) Informally, you may remember this as “P and Q are equivalent
if each implies the other”.
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Sometimes when you translate a statement from a natural language into the language of the
symbolism, you may discover two (or more) alternative translations. Which is correct? A truth
table will show whether the different-seeming translations are equivalent. If they are, the best
translation is the one that best captures the “feel” of the original statement. If not, choose the
translation that best captures the truth-functional meaning of the natural-language statement.

We can symbolize the same natural-language compound statement using different connectives.
We could have used fewer connectives than the four (plus the defined biconditional connective)
that we have. Just one carefully chosen connective can be used to do everything that we do with
our five. It is more difficult to translate from natural language to the symbolism when we use
fewer connectives. Our set of connectives is a compromise between simplicity (why we left out the
exclusive-or connective) and ease of translation.

1.3.12 Some equivalences

Here is a list of useful equivalences; try constructing the truth tables for some of these to verify
that they are indeed equivalences. Think of the “intuitive meaning” for each statement, and try to
see why it must be an equivalence.

1. Commutativity:

(a) (p ∧ q)↔ (q ∧ p) (b) (p ∨ q)↔ (q ∨ p)

2. Associativity:

(a) ((p ∧ q) ∧ r)↔ (p ∧ (q ∧ r)) (b) ((p ∨ q) ∨ r)↔ (p ∨ (q ∨ r))

3. Distributivity:

(a) ((p ∧ q) ∨ r)↔ ((p ∨ r) ∧ (q ∨ r)) (b) ((p ∨ q) ∧ r)↔ ((p ∧ r) ∨ (q ∧ r))

4. De Morgan Laws:

(a) ¬(p ∧ q)↔ (¬p ∨ ¬q) (b) ¬(p ∨ q)↔ (¬p ∧ ¬q)

5. Others:

(a) (p −→ q)↔ (¬p ∨ q) (b) ¬(p −→ q)↔ (p ∧ ¬q)

1.3.13 Tautologies, contradictions, and contingencies

The truth table for p ∧ ¬p is
p p ∧ ¬p
⊤ ⊥ ⊥
⊥ ⊥ ⊤

which shows that a statement of the form p ∧ ¬p is false whether p represents a true or a false
statement.

A statement-form (made of variables and connectives) is a contradiction if and only
if its truth-value is ⊥, no matter what the truth-values of its component statements. A
particular statement is a contradiction (it is contradictory, or self-contradictory) if it
is a substitution instance of a contradictory form.
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So any statement that is a substitution instance of the form p ∧ ¬p is a contradiction. Contra-
dictions are trivially false. “Trivial” means that their truth doesn’t depend on the truth of any
particular statements, and therefore it doesn’t depend on the way the world is.

Now look at (p ∧ q) −→ p.
p q (p ∧ q) −→ p

⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊤
⊥ ⊤ ⊥ ⊤
⊥ ⊥ ⊥ ⊤

Statements of the form (p ∧ q) −→ p are true, no matter what truth-values p and q have.

A statement-form is a tautology (is tautologous) if and only if its truth-value is always
⊤. By extension, a particular statement is a tautology if it is a substitution instance of
a tautologous statement-form.

Tautologies are trivially true. (p ∧ q) −→ p is a tautology (it is tautologous). A common
example of a tautologous statement-form is p ∨ ¬p, whose truth table is:

p p ∨ ¬p
⊤ ⊤ ⊥
⊥ ⊤ ⊤

Finally, some (indeed, most) statement-forms have neither of these properties, and take on both
⊤ and ⊥ as truth values, depending on the truth values of the constituent parts. We call these
contingencies.

A statement-form is a contingency if and only if it is neither a tautology nor a con-
tradiction. We call a particular statement contingent when it is not a substitution
instance of any tautologous or contradictory form. Such statements are non-trivial
(although they may not be important).

One way to show that a statement is a tautology or a contradiction is to construct a truth
table of its statement form. We re-write the statement using variables, if necessary, replacing
each distinct simple statement constant (other than ⊤ and ⊥) with a distinct simple variable, and
using the same simple variable for every occurrence of the same simple constant. The statement
form should exactly duplicate all connectives and parentheses that are in the original compound
statement.

For example, given the statement ((A −→ M) ∧ (M −→ L)) −→ (A −→ L), we could either treat
A,M,L as variables, or we could construct the truth table for the form ((p −→ q) ∧ (q −→ r)) −→ (p
−→ r). The form is exactly like the statement we’re checking, except every A in the statement is
replaced with a p, every M is replaced with a q, and every L is replaced with an r.

The statement form contains three simple variables, p, q and r. We start with a column for
each of these. Beginning with the rightmost column (r), we alternate ⊤ and ⊥ values. Moving to
the next column to the left (q), we write alternating pairs of ⊤s and ⊥s. Moving one more column
to the left (p), we write alternating sets of four ⊤s and ⊥s. This mechanical procedure ensures that
our truth table will contain every possible combination of truth-values for the three variables. To
the right of those three columns we make a column for each compound form that is a component
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of the whole compound form: this gives us columns for p −→ q, for q −→ r, and p −→ r, then finally
for (p −→ q) ∧ (q −→ r), and the main connective, i.e. for the whole expression. (Since this is our
first example of a truth table with three variables, we have indicated the order in which we fill the
columns with little numbers above them; as before, we indicate the main column with an asterisk.)

(1) (4) (2) (5) (3)

p q r ((p −→ q) ∧ (q −→ r)) −→ (p −→ r)

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊥
⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤ ⊥
⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤

∗

Every row of the main column contains a ⊤. That means that an expression of the form ((p
−→ q)∧ (q −→ r)) −→ (p −→ r) is true no matter what the truth-values of its component simple parts
(p, q and r). It is a tautologous form. Any statement that is a substitution instance of this form
is a tautology. Our original statement is a substitution instance of this form, so it is a tautology.

1.3.14 Remark

Earlier we remarked on the similarity between material implications and argument-forms. For
example, an argument of the form “Premise: P ; Conclusion: C” is valid if and only if the statement
P −→ C is a tautology. If the argument has several premises: “Premise: P1; Premise: P2; Premise:
P3; Conclusion: C” for instance, then we can “internalize” this (represent it as a single statement)
by (P1∧P2∧P3) −→ C. The argument is valid if and only if the corresponding conditional sentence
is a tautology. In general, the validity of any argument-form can be expressed as whether or not
the corresponding conditional statement is tautological. It is in this sense that material implication
“internalizes” valid argument.

As an example, via the previous truth table we have just established a form of valid argument,
namely if one has premises of the form p −→ q and q −→ r, and a conclusion of the form p −→ r, then
the argument is valid. Every tautology corresponds to a valid form of argument in such a manner.

The method of showing that a statement is a contradiction is exactly parallel. If a truth table
constructed according to the method above results in a main column that contains both ⊤s and
⊥s, the statement is contingent.

1.3.15 Exercise on tautology, contradiction and contingency

For each of the following statements, determine (show and say) whether it is a contingency, a
tautology, or a contradiction. In each case write an English interpretation of the statement.

1. (A −→ B) −→ ¬A 2. (A ∧B) ∧ ¬A 3. A ∧ ¬(B ∨A)
4. (A −→ B)↔ (¬B −→ ¬A) 5. (A −→ B) −→ (B ∨ ¬A) 6. (A −→ B) ∨ (B −→ A)
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1.4 Translation

Translating from one natural language (like English) to another (e.g., French) is difficult. You have
to be familiar with both languages and with all sorts of subtle nuances of expression and idiom.
Artificial languages like symbolic logic are much simpler than natural languages. Logical symbolism
is less ambiguous or vague than a natural language. This greater precision can be a problem when
translating from informal natural languages into the formal language of the symbolism.

Some people think that this shows that the symbolism is an inadequate language. They are
wrong. It is the natural languages that are inadequate—for logic. Natural languages are far more
powerful and expressive than any artificial language. But they were invented for use in a wider
range of human activities than just doing logic. For the restricted uses of logic, natural language
is too vague and ambiguous.

The problem is that logic22 needs to restrict itself to the truth-functional aspect of language.
Many natural-language expressions do several jobs over and above the truth-functional-connecting
job. The non-truth-functional components of the meanings23 of these expressions obscure the
truth-functional meaning. It can be difficult to dig out just the truth-functional part.

For example, look again at the words “and” and “but”. Truth-functionally, they have exactly
the same meaning. For logic, there is no difference between “Rosemary is an attractive woman
and she’s a lawyer” and “Rosemary is an attractive woman but she’s a lawyer”. The two sentences
have somewhat different meanings, but there is no difference for logic. The difference is not truth-
functional.

In natural languages, words that sometimes do one (truth-functional) job may also play another
role in the language. For example, “and” may be used to connect two sentences in a conjunction-
sentence, or it may be used to conjoin two expressions to make the compound subject (or object)
of a simple sentence. “Monica and Steffi are tennis players” makes a compound statement, whose
logical meaning is “Monica is a tennis player and Steffi is a tennis player”. The “and” is the truth-
functional conjunction connective we symbolize with “∧”. But the sentence “Monica and Steffi are
rivals” does not make the compound statement “Monica is a rival and Steffi is a rival”. It makes a
simple statement about a relation between two people—“Monica is a rival of Steffi”.

Natural languages require subtle changes in the way a statement is expressed for grammatical
reasons that have nothing to do with the logical meaning of the sentence. The result may be that
two sentences that appear quite different may both have the same logical meaning (the differences
being merely grammatical or stylistic).

Sometimes translation is difficult because the statement of an argument in a natural language
may include one or all of the premises and the conclusion in a single sentence. In such cases, you
have to figure out whether the conclusion is (1) the whole single compound statement or (2) a part
of the sentence, so that other parts will be translated as one or more premise-statements.

When translating from natural language into the symbolism of propositional logic, the trick is
to check and re-check that the truth-value of the translation behaves exactly like the truth-value of
the form of the original sentence. If the translated statement would be true or false in exactly the
same circumstances as the original, the translation has the same logical meaning as the original.

An additional requirement for good translation is that the symbolic representation should reflect
as closely as possible the simplicity or complexity of the original sentence. For example, “If you
love me and I’m able, I’ll return to you” makes the same statement as “If you love me then, if I’m
able, I’ll return to you”. The first could be symbolized as (L∧A) −→ R and the second as L −→ (A

22At least, the kind of logic that we study in this course.
23By “meaning” in this text, I generally mean “use” or “rule for the correct use” of some piece of language.



1.4. TRANSLATION 31

−→ R). These have identical logical meaning (their forms have the same truth tables—check it!).
But the first translation more closely reflects the logical “feel” of the English sentence.

Once an argument has been represented in the symbolism, the problems of natural language
(for logic) disappear. Translating a natural-language sentence or argument into the symbolism
clarifies the logic of the sentence or argument. It is then easier to construct good arguments and
to recognize bad (invalid) arguments. The symbolism is a more logical language than any natural
language. It is pathetically poor for writing love songs.

Warning: There is one thing that might confuse you in making translations. You will know
that “if p then q” will become p −→ q. Other statements that also will become p −→ q include “q
if p”, “p implies q”, and (likely only in a mathematical context) “p is a sufficient condition for q”.
But what about an expression of the form “p only if q”? Be careful: this is not q −→ p, but is
instead p −→ q. This is one place where the statement following the “if” is not the premise, but
instead is the conclusion. Another way to say this is that “q is a necessary condition for p” is also
translated p −→ q. (We did discuss this when introducing the material implication in section 1.3.2.)
The reason for this is that if we say “p only if q”, then we are saying it is impossible for p to be
true unless q is also true, so that if q is false, so is p: that is, ¬q −→ ¬p, or in other words, p −→ q.
The best way to remember this is probably to think of “only if” as meaning “implies”. Don’t let
the position of the word “if” confuse you!

There is a lot of useful advice in section 3.3 of the Alberta Notes—you might want to refer to
that as well if you have trouble with the next set of exercises.

1.4.1 Translation exercise

Symbolize the following sentences (use appropriate abbreviations for the various statements, such
as H for “Harry will run for class president”, etc.):

1. Harry and Judith will both run for class president.

2. Either Harry will run for class president or Judith won’t.

3. If Harry runs for class president, then Judith won’t run, but if Harry doesn’t run, then Judith
will.

4. If Harry and Judith both run, then George won’t run.

5. It won’t happen that Harry and Judith both run.

6. If Judith runs, then either Harry won’t run or George will.

7. Harry will run if and only if Judith runs.

8. Neither Judith nor Harry will run.

9. George will run, and if Judith runs then Harry will also.

10. Harry will run only if Judith doesn’t.

11. Harry will run unless Judith runs.

12. On the assumption that Harry will run if George does, it follows that Judith won’t run.

13. Supposing that George runs provided that Judith does, it follows that Harry will run if Judith
doesn’t.
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14. Alcohol and marijuana are drugs.

15. Alcohol and Benzedrine are a deadly combination.

16. Though he loved her, he left her.

17. Cigarettes and whiskey and wild, wild women will drive me crazy.

18. If we reduce pollution and population doesn’t increase, our standard of living will not decline,
but if we fail to reduce pollution, or if the population increases, then our standard of living
will decline.

19. If we fail to reduce population or if the population increases, then our standard of living will
decline and we’ll have only ourselves to blame.

1.4.2 More translation exercises

For each of the following, construct a truth-functional paraphrase, and symbolize it in propositional
logic. Use the following abbreviations:

A Albert jogs regularly.

B Bob jogs regularly.

C Carol jogs regularly.

L Bob is lazy.

M Carol is a marathon runner.

H Albert is healthy.

1. If Bob jogs regularly, he is not lazy.

2. If Bob is not lazy, he jogs regularly.

3. Bob jogs regularly if and only if he is not lazy.

4. Carol is a marathon runner only if she jogs regularly.

5. Carol is a marathon runner just in case she jogs regularly.

6. If Carol jogs regularly, then if Bob is not lazy he jogs regularly.

7. If both Carol and Bob jog regularly, then Albert does too.

8. If either Carol or Bob jogs regularly, then Albert does too.

9. If either Carol or Bob does not jog regularly, then Albert doesn’t either.

10. If neither Carol nor Bob jogs regularly, then Albert doesn’t either.

11. If Albert is healthy and Bob is not lazy then both jog regularly.

12. If Albert is healthy, he jogs regularly just in case Bob does.

13. Assuming Carol is not a marathon runner, she jogs regularly if and only if Albert and Bob
both jog regularly.



1.5. KNIGHTS AND KNAVES 33

14. Although Albert is healthy he does not jog regularly, but Carol does jog regularly if Bob does.

15. If Carol is a marathon runner and Bob is not lazy and Albert is healthy, then they all jog
regularly.

16. If Albert jogs regularly, then Carol does provided that Bob does.

17. If Albert jogs regularly if Carol does, then Albert is healthy and Carol is a marathon runner.

18. If Albert is healthy if he jogs regularly, then if Bob is lazy he doesn’t jog regularly.

19. If Albert jogs regularly if either Carol or Bob does, then Albert is healthy and Bob isn’t lazy.

Now the reverse translation process: using the same abbreviations above, construct natural
English sentences whose meaning is given by the following sentences of propositional logic.

1. A ∨ (B ∨C) −→ A ∧ (B ∧ C)

2. C −→ (A ∧ ¬B)

3. B ↔ (¬L ∧A)

4. ¬A −→ (¬B −→ ¬C)

5. ¬A ∧ (B ↔ ¬L)

1.5 Knights and Knaves

And now for something completely different . . . 24

A story: There is an island far off in the Pacific, called the island of Knights and Knaves. On
this island, there are people called knights (who always tell the truth, meaning everything that a
knight says must be true) and knaves (who always lie, meaning everything a knave says must be
false). They may be either male or female. The people of this island are often called “knavghts”.25

So some knavghts are knights, some are knaves, and every knight or knave is a knavght.
Another peculiarity of the knavghts: they seem to speak English, but with a small difference, in

that they use the connectives of propositional logic in the strict sense we have defined earlier. So they
only use “or” in the inclusive sense, and they only use “if . . . then . . . ” (and similar expressions)
to mean material implication. There is no ambiguity in their use of these propositional connective
words.

One day you visit the island: you are then the only non-knavght on the island (so everyone else
is either a knight or knave). Suppose you meet two knavghts, and one says, pointing to the other,
“He said he was a knave”. What can you conclude from this?

Well, clearly the speaker is a knave. You can figure this out this way: no knight could say “I
am a knave”, for that would be false, and knights always tell the truth. But no knave could say
“I am a knave” either, for such a statement would then be true, but a knave always lies. So, no

24The material in this section comes (sometimes slightly modified) from the wonderful logic puzzle books of Ray-
mond Smullyan, in particular his book What is the name of this book?. This book is, I believe, presently out-of-print,
but if you ever come across a copy, I really recommend you buy it—it’s a great collection of amusing logic puzzles,
of which the following is merely a sample.

25“Knavght” is usually pronounced “knot”, although folks from Brooklyn sometimes pronounce it “knate”.
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knavght could ever say “I am a knave”, and anyone who tells you otherwise must be telling you a
lie. So the speaker told a lie (made a false statement): he must be a knave therefore.

You can see from this analysis that it’s often possible to deduce facts about knavghts from
statements they make, facts that aren’t explicitly part of their statements. In the situation above,
the knavght made a statement about his companion, but really he was telling you something about
himself (we still don’t know whether the companion was a knight or knave).

Let’s consider another situation: A knavght man was asked (about his wife, who was also a
knavght, and himself) which, if either, was a knight and which, if either, was a knave. He answered
“We are both knaves”; what are they?

See if you can figure out the answer yourself before you read the next paragraph!
He cannot be a knight, since a knight couldn’t say he was a knave. So he is a knave. Now you

might wonder about that, since a knave also couldn’t say he’s a knave. But that’s not really what
he said: he said “We are both knaves”, which can in fact be a legitimately false statement (such as
all knaves always make), provided his wife is not a knave. Careful now: if his wife were a knave,
then “We are both knaves” would be true, and so an impossible utterance by a knave. So the only
possibility is that he is a knave, his statement is false, and so his wife is a knight.

Here are some other situations; see if you can answer the questions posed. I have given you the
answers, with some hints as to how they may be obtained. But try them yourself first.

1. Another knavght man was asked, of his wife and himself, “Are you both knaves?”. He
answered “At least one of us is”; what are they?

(Ans: He cannot be a knave, because if he were a knave, his statement would be true, which
is impossible for a knave. So he’s a knight, and so his statement is true, so his wife must be
a knave.)

2. Same situation: this time the man answers “If I am a knight, then so is my wife”. What are
they?

(Ans: Assume he’s a knight. Then it would follow that his wife is a knight too, since that’s
just what he said, and if he’s a knight, his statement must be true. But look what we have
here: we just showed that if he’s a knight, then so is his wife. This is exactly what he claimed,
and we’ve just seen this statement is true. Since he said a true statement, he must be a knight,
and so therefore his wife must be too. There is a general principle at work here, which I’ll
summarize below, but see if you can guess what it must be.)

3. Same situation: this time his answer is “My wife and I are of the same type” (meaning either
both knights or both knaves). What are they?

(Ans: You cannot determine the husband’s type, he could be knight or knave, but since we
know he cannot claim he’s a knave, his wife couldn’t be a knave since that would in effect
mean his statement would be claiming he’s a knave too—so she’s a knight. You can verify
this by cases if you like. Again, there’s a general principle working here too.)

There are some general principles which one can see in looking at these situations and their
analyses.

1. No knavght can say “I am a knave”; every knavght must claim “I am a knight”.

2. For any statement P , if a knavght says “If I am a knight, then P”, then the knavght is in
fact a knight, and P is true.
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3. If a knavght says “If P then I am a knave”, then P must be false and the knavght is in fact
a knight. (Exercise: this is essentially the same as the previous principle.)

4. If a knavght says “I am a knight if and only if P”, then P must be true (but the knavght
could be either knight or knave).

5. If a knavght is asked “Is the statement you are a knight equivalent to the statement P?”,
then a “yes” answer means P is true, and a “no” answer means P is false.

6. Remember that sometimes it’s simpler to transform the sentence by standard equivalences,
such as A −→ B ↔ ¬A∨B, ¬(A −→ B)↔ A∧¬B, ¬(A∨B)↔ ¬A∧¬B, ¬(A∧B)↔ ¬A∨¬B.

So, for example: instead of thinking “If P then I am a knave”, think “either not P or I am a
knave”. (Whatever makes it easier for you to deconstruct the sentence.)

You may use these principles in analysing other scenarios, in particular, in solving the following
exercises. (If you have trouble, you might like to look at the next section, 1.5.2.)

1.5.1 Knights and knaves exercises

1. We have three people A, B, and C on the Island of Knights and Knaves. Suppose A and B
say the following:

A: All of us are knaves.
B: Exactly one of us is a knave.

Can it be determined what B is? Can it be determined what C is?

2. Suppose A says, “I am a knave but B isn’t.” What are A and B?

3. We again have three inhabitants, A, B and C, each of whom is a knight or a knave. Two
people are said to be of the same type if they are both knights or both knaves. A and B
make the following statements:

A: B is a knave.
B: A and C are of the same type.

What is C?

4. Again three people A, B and C. A says “B and C are of the same type.” Someone then asks
C, “Are A and B of the same type?” What does C answer?

5. We have two people A, B, each of whom is either a knight or a knave. Suppose A makes the
following statement: “If I am a knight, then so is B.” Can it be determined what A and B
are?

6. Someone asks A, “Are you a knight?” He replies, “If I’m a knight, then I’ll eat my hat!”
Prove that A has to eat his hat.

7. A says, “If I’m a knight, then two plus two equals four.” Is A a knight or a knave?

8. A says, “If I’m a knight, then two plus two equals five.” What would you conclude?

9. Given two people, A, B, both of whom are knights or knaves. A says, “If B is a knight then
I am a knave.” What are A and B?
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10. Two individuals, X and Y , were being tried for participation in a robbery. A and B were
court witnesses, and each of A, B is either a knight or a knave. The witnesses make the
following statement:

A: If X is guilty, so is Y .
B: Either X is innocent or Y is guilty.

Are A and B necessarily of the same type? (i.e. either both knights or both knaves.)

11. On the island of knights and knives, three inhabitants A,B,C are being interviewed. A and
B make the following statements:

A: B is a knight.
B: If A is a knight so is C.

Can it be determined what any of A, B, C are?

12. Another three inhabitants, A, B, C, make these statements:

A: B is a knave.
B: A is a knave.
C: Both A and B are knaves.

Can it be determined what any of A, B, C are?

13. Suppose the following two statements are true: (1) I love Betty or I love Jane. (2) If I love
Betty then I love Jane. Does it necessarily follow that I love Betty? Does it necessarily follow
that I love Jane?

14. Suppose that I am a knight, and someone asks me, “Is it really true that if you love Betty
then you also love Jane?” I reply, “If it is true, then I love Betty.” Does it follow that I love
Betty? Does it follow that I love Jane?

15. This problem, though simple, is a bit surprising. Suppose it is given that I am either a knight
or a knave. I make the following two statements:

(a) I love Linda.
(b) If I love Linda then I love Kathy.

Am I a knight or a knave?

16. Is There Gold on This Island? On a certain island of knights and knaves, it is rumored that
there is gold buried on the island. You arrive on the island and ask one of the natives, A,
whether there is gold on this island. He makes the following response: “There is gold on this
island if and only if I am a knight.” Our problem has two parts:

(a) Can it be determined whether A is a knight or a knave?
(b) Can it be determined whether there is gold on the island?

17. Suppose, instead of A having volunteered this information, you had asked A, “Is the statement
that you are a knight equivalent to the statement that there is gold on this island?” Had
he answered “Yes,” the problem would have reduced to the preceding one. Suppose he had
answered “No.” Could you then tell whether or not there is gold on the island?
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18. The First Island. On the first Island he tried, he met two natives A, B, who made the
following statements:

A: B is a knight and this is the island of Maya.
B: A is a knave and this is the island of Maya.

Is this the island of Maya?

19. The Second Island. On this Island, two natives A, B, make the following statements:

A: We are both knaves, and this is the island of Maya.
B: That is true.

Is this the island of Maya?

20. The Third Island. On this island, A and B said the following: A: At least one of us is a
knave, and this is the island of Maya. B: That is true. Is this the island of Maya?

21. Here is a bit of an offbeat question. One day, on the island of Knights and Knaves, you see
an inhabitant. You go up to her and ask: “Are you a knight or are you a knave?” She says:
“I won’t tell you” and walks away. Is it possible to decide if she is a knight or a knave?

1.5.2 What’s it all about?—more general principles

There are several serious points about the knights and knaves story (sorry! it isn’t all fun and games
after all!), which have to do with how negation acts with the various connectives. We shall see this
in several contexts, but here are a few comments to go on.

Notice there is a difference between a knavght saying one sentence: “p and q.” and a knavght
saying two sentences: “p.” “q.” We saw that early on: consider the difference between a knave
saying “We are both knaves.” (referring to himself and his wife), and a knave saying “I am a knave.
My wife is a knave.” The second utterance is impossible, since he cannot say “I am a knave” (it
would be a true statement uttered by a knave, an impossibility). But the first statement is possible:
“We are both knaves.” (which is the same as “I am a knave and my wife is a knave.”) could be said
by a knave, provided his wife is a knight. This reflects the fact that the negation of a conjunction
is a disjunction: ¬(p∧ q)↔ ¬p∨¬q. In the language of knights and knaves, a knave saying “p∧ q”
means at least one of p, q is false (maybe both, maybe not). It does not mean both p and q must
be false. But that’s just what a knave saying “p. q.” amounts to: both p and q would then have
to be false. This distinction would not hold for knights, for they always tell the truth, and “p ∧ q”
is true precisely if both p and q are true.

We can summarize this sort of thing as follows.

If a knight says then if a knave says then

¬p p is ⊥ ¬p p is ⊤
p ∧ q both p and q are ⊤ p ∧ q at least one of p or q is ⊥
p ∨ q at least one of p or q is ⊤ p ∨ q both p and q are ⊥
p −→ q either p is ⊥ or q is ⊤ p −→ q p must be ⊤ and q must be ⊥

Be sure you understand this—it will help in doing the exercises of course, but it also should
help firm up your understanding of how the connectives work.
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[Optional:] Translation into propositional logic

Finally, it is actually possible to translate a knight/knave problem into pure propositional logic
(I don’t really suggest you do this to solve knights and knaves problems, but it is an interesting
observation).

The crucial point is that A can make a statement P if and only if the statement “ ‘A is a knight’
is equivalent to P” is true.

To see why this is so, consider first what it means for A to assert P : if A is a knight, P must
be true, and if P is true, then (since A said P , i.e. the truth) A must be a knight. On the other
hand, if “ ‘A is a knight’ is equivalent to P” is true, then if A is in fact a knight, P must be true,
and so A can say P , whereas if A is in fact a knave, then P must be false, and so again, A can say
P .

Let’s abbreviate “A is a knight” by simply A, and “A is a knave” by ¬A (“A is not a knight”),
so that the statement “A says P” is equivalent to the statement A ↔ P . This is notationally
dubious, since we are using the same letter A to mean two totally different things: a person (the
knavght making the assertion), and a statement (that he is a knight). It is convenient, however,
for we have just shown that with this abbreviation, we can read A ↔ P as “A says P” as well as
“A is equivalent to P”, making these propositional formulas a bit easier to read.

This allows us to translate statements about the statements of knavghts into statements in
propositional logic. For example, consider our second example, where a knavght man was asked
about his knavght wife and himself which, if either, is a knight and which, if either, is a knave, and
he answered “We are both knaves”. Translating this, we would get the following: A↔ (¬A∧¬B),
where A is the man and B is his wife. The solution we outlined essentially amounted to showing
this implies ¬A∧B. In other words, we have to show [A↔ (¬A∧¬B)] −→ [¬A∧B] is a tautology,
which is a standard exercise in truth tables. (In fact, the −→ can be strengthened to ↔, and we’d
still have a tautology. In other words, if A is a knave and his wife is a knight, then if asked what
they are, A could26 reply “We are both knaves”. Check this by analysing the possibilities.)

Optional exercise: Verify all this, and translate some of the other examples and statements of
principle.

By the way: the usual classic knights-and-knaves puzzle is this: going to the town of Everlast-
ingDelights, you come to a fork in the road, where you meet a knavght. Not sure which way to go,
you want to ask him which direction will get you there; what single question, with only “yes” or
“no” as possible answers, could you put to him which will allow you to know what direction to go?

There are some variants of this: here are two.
Two knavghts are standing at a fork in the road. By asking one yes/no question to one of them,

can you determine the direction to the town of EverlastingDelights? And, by asking one yes/no
question to one of the knavghts, can you determine whether he is a knight?

26There are other replies he could also make—find as many as you can.
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1.6 Answers to the exercises

Exercises 1.2.4
There is considerable room for variant answers—if you have questions about these answers, ask

them!
BTW: these are clearly not arguments in propositional logic (or rather, to make them so, many
more premises would have to be added, premises having to do with attitudes and so on).
In each case, I have put the premises (numbered) above the horizontal line, and the conclusion
below it.

1.
1. Perfection of soul corrects the inferiority of the body

2. Physical strength without intelligence does nothing to improve the mind

It is right that men should value the soul rather than the body

2.
1. What is empty is nothing
2. What is nothing cannot be

There cannot be any emptiness

3.
1. The subject of the gods’ existence and form is obscure

2. Human life is short
About the gods, I am not able to know whether they exist or do not exist, nor

what they are like in form

4.
1. Other creatures are soon self-supporting

2. Man alone needs prolonged nursing

In the beginning man was born from creatures of a different kind

5.
1. Either death is a state of nothingness and utter unconsciousness,

or there is a change and migration of the soul from this world to another

Death is good

Exercise 1.3.6
1: (a) negation (b) conjunction (c) implication (d) disjunction

(I’ll leave 2, 3 to you.)

Exercise 1.3.8
(a) everything (b) everything (c) 7, 8, 9, 10 (d) 2, 3, 4, 5, 6 (e) 5, 6 (f) 7, 8, 9, 10
(g) 8, 9 (h) 3, 4 (i) none (j) 4 (k) 6 (l) 5, 6 (m) 9 (n) 7, 10 (o) 8, 9

Exercise 1.3.10
It will be clear from number 3 that the main column for numbers 1, 2 will be the same as the

main column for the biconditional (⊤, ⊥, ⊥, ⊤). Use this to check your answers.
Here’s number 4: (The column with the compound formula’s truth values is indicated by a ∗.)
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p q ¬p ∧ q

⊤ ⊤ ⊥ ⊥
⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊥

∗

p q ¬ (p ∧ q)
⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊥
⊥ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊥

∗

p q ¬p ∧ ¬q
⊤ ⊤ ⊥ ⊥ ⊥
⊤ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊥ ⊤ ⊤ ⊤

∗

p q ¬p ∨ ¬q
⊤ ⊤ ⊥ ⊥ ⊥
⊤ ⊥ ⊥ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤ ⊤

∗

Clearly the only two that are equivalent are ¬(p ∧ q) and ¬p ∨ ¬q.

Exercise 1.3.15

1.

A B (A −→ B)−→¬A
⊤ ⊤ ⊤ ⊥ ⊥
⊤ ⊥ ⊥ ⊤ ⊥
⊥ ⊤ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊤

∗

2.

A B (A ∧B) ∧ ¬A
⊤ ⊤ ⊤ ⊥ ⊥
⊤ ⊥ ⊥ ⊥ ⊥
⊥ ⊤ ⊥ ⊥ ⊤
⊥ ⊥ ⊥ ⊥ ⊤

∗

3.

A B A ∧ ¬(B ∨A)
⊤ ⊤ ⊤⊥⊥ ⊤
⊤ ⊥ ⊤⊥⊥ ⊤
⊥ ⊤ ⊥⊥⊥ ⊤
⊥ ⊥ ⊥⊥⊤ ⊥

∗

4.

A B (A −→ B)↔ (¬B −→¬A)
⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥
⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤

∗

5.

A B (A −→ B)−→ (B ∨ ¬A)
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊥ ⊤ ⊤

∗

6.

A B (A −→ B) ∨ (B −→ A)

⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊤ ⊤ ⊤

∗

And here is the rest:
(1) “If A implies B then A is false” (contingency)
(2) “A,B and ¬A are all true” (contradiction)
(3) “A is true, but not ‘B or A’ ” (contradiction)
(4) “ ‘A implies B’ is equivalent to ‘not B implies not A’ ” (tautology)
(5) “If A implies B then either B is true or A is false” (tautology)
NOTE: It is worth noticing that in fact “A implies B” is actually equivalent to “either B or not A”.

(6) “Either A implies B or B implies A” (tautology)
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Exercise 1.4.1
Variants are possible—check with me if you’re not sure.

(1) H ∧ J (2) H ∨ ¬J (3) (H −→ ¬J) ∧ (¬H −→ J) (4) (H ∧ J) −→ ¬G (5) ¬(H ∧ J)
(6) J −→ (¬H ∨G) (7) H ↔ J (8) ¬H ∧ ¬J (9) G ∧ (J −→ H) (10) H −→ ¬J
(11) H ∨ J (12) (G −→ H) −→ ¬J (13) (J −→ G) −→ (¬J −→ H) (14) A ∧M (15) C
(16) Loved ∧ Left (17) C (18) (R ∧ ¬I −→ ¬D) ∧ (¬R ∨ I −→ D)
(19) (¬R ∨ I) −→ (D ∧B)

Exercises 1.4.2
There are possible variants, but I’ve generally given the one “closest” to the English.

1. B −→ ¬L

2. ¬L −→ B

3. B ↔ ¬L

4. M −→ C

5. C ↔M (though possibly M −→ C or C −→M)27

6. C −→ (¬L −→ B)

7. (C ∧B) −→ A

8. (C ∨B) −→ A

9. (¬C ∨ ¬B) −→ ¬A

10. (¬C ∧ ¬B) −→ ¬A

11. (H ∧ ¬L) −→ (A ∧B)

12. H −→ (A↔ B) (though possibly H −→ (A −→ B) or H −→ (B −→ A))24

13. ¬M −→ (C ↔ (A ∧B))

14. H ∧ ¬A ∧ (B −→ C)

15. (M ∧ ¬L ∧H) −→ (C ∧B ∧A)

16. A −→ (B −→ C)

17. (C −→ A) −→ (H ∧M)

18. (A −→ H) −→ (L −→ ¬B)

19. (C ∨B −→ A) −→ (H ∧ ¬L)

Translations from propositional logic (there are lots of correct variations as well).

1. If any of Albert, Bob, or Carol jog regularly, then they all do.

27There is a possible dispute about the meaning of “p just in case q”; on reflection, I lean to it meaning p ↔ q,
though an argument could be made to support p −→ q or even q −→ p.
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2. If Carol jogs regularly, then Albert does but Bob doesn’t.

3. Bob jogs regularly if and only if he’s not lazy and Albert jogs regularly.

4. If Albert doesn’t jog regularly, then Carol doesn’t if Bob doesn’t.
(This is equivalent to: Carol doesn’t jog regularly if neither Albert nor Bob does.)

5. Albert doesn’t jog regularly, and Bob jogs regularly if and only if he’s not lazy.

Exercise 1.5.1
On a test, you would have to provide your reasons for the answers; here however I have usually

merely given the conclusion, with a hint in a few cases. To abbreviate things a bit, I have adopted
the following notation: if A is a knavght: ⊤(A) means “A is a knight”; its negation, ¬⊤(A), also
denoted ⊥(A), means “A is a knave”. I hope it’s clear why I use this notation: ⊤(A) not only
means “A is a knight”, it also means “everything A says is ⊤”, and similarly for ⊥. ?(A) means
“we do not know the type of A”.

1. ⊥(A), ?(B),⊤(C)

2. ⊥(A),⊥(B)

3. ⊥(C) (but ?(A), ?(B))

4. “yes”

5. ⊤(A),⊤(B) (Use principle 2)

6. ⊤(A), so he must eat his hat (Use principle 2)

7. ⊤(A) (Use principle 2)

8. This statement cannot be made by any knavght—so I must be a knave(!).

9. ⊤(A),⊥(B) via principle 3

10. same type

11. all ⊤
12. ⊥(C); A and B are not both the same type (so either ⊤(A),⊥(B) or ⊥(A),⊤(B)).

13. I love Jane (but ?Betty)

14. I love Betty (but ?Jane)

15. ⊤(me)
16. There is gold on the island (but ?(A))

17. No gold on the island (via principle 5)

18. ⊥(B),⊥(A) so not Maya

19. ⊥(A),⊥(B) so not Maya

20. ⊥(A),⊥(B) so not Maya

21. She’s a knight.
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1.7 X-treme Knights and Knaves—getting a bit blood-thirsty!

A visit to Transylvania

More problems from Smullyan’s What is the name of this book?

Preliminaries

In Transylvania, the population is made up of humans (who always intend to tell the truth)
and vampires (who always intend to lie); what complicates the matter is that half the population is
insane: they believe every true statement is really false, and vice versa. So, sane humans and insane
vampires always tell the truth, but insane humans and sane vampires always lie. (For example, an
insane vampire intends to lie, but since he thinks true statements are false and false statements are
really true, he ends up actually telling the truth.)

So, let’s explore some of the consequences of this odd situation. For example, if a Transylvanian
says “I am not a sane human”, what can you conclude? He cannot actually be a sane human (for
if so, he’d say so), nor can he be an insane human (for, being a human, he’d want to tell the truth,
but couldn’t, so he’d say he was not an insane human, or equivalently, he was either sane or a
vampire—he wouldn’t say he was not a sane human, for that would be equivalent to saying he was
either insane or a vampire, which is a true statement in his case). Check for yourself he cannot be
a sane vampire either, so he must be an insane vampire.

Another example (showing an alternate way to look at such statements): suppose he said “I am
human, or I am sane”. If this statement is false, he must be an insane vampire, so his statement
must be true, which is a contradiction. So the statement is true, and so he’s either human or sane,
but also he must be (because he told the truth) either a sane human, or an insane vampire. Only
a sane human fits both conditions. So he must be a sane human.

Here are some to try for yourself (the answers are in the footnotes). If he said “I am an insane
human”, what is he?28 If he said “I am a vampire”, what can you conclude?29 If he said “I am
insane”, what can you conclude?30

Here’s an interesting principle: If a Transylvanian believes that he believes something, then that
something must be true. If he does not believe that he believes something, then that something
must be false. (Note that his merely believing something doesn’t tell you about its truth or
falsehood—it’s the believing that he believes it that is crucial here!) Try to convince yourself of
this principle.

Here is an even more important principle: If a Transylvanian says “I believe X”, where X is
some statement, then if he is human, X must be true, whereas if he is a vampire, then X must be
false. (Convince yourself of this!)

Problem 1: I meet two Transylvanians, A and B. I ask A “Is B human?”, and A replies “I believe
so.” I ask B “Do you believe A is human?” B answered yes or no; which was it: “yes” or “no”?31

Another principle, an old one this time: Let’s call sane humans and insane vampires “knightlike”,
and insane humans and sane vampires “knavelike” (for the obvious reasons). Then, if a knightlike
individual says “If I am knightlike, then X” (for some statement X), then he must be knightlike,
and X must be true.

28He’s a sane vampire.
29He’s insane (but could be human or vampire).
30He’s a vampire (but could be sane or insane).
31“Yes”



44 CHAPTER 1. INTRODUCTION TO LOGIC

By the way: if you asked a Transylvanian “Are you knightlike?” what would his answer be?32

If you asked a Transylvanian “Do you believe you are knightlike?” what can you conclude from his
answer?33

Is Dracula alive and well in Transylvania?

Any tourist to Transylvania is bound to ask himself this question; suppose you asked a Tran-
sylvanian about this, and he replied “If I am human, then Count Dracula is still alive”, then what
can you conclude? . . . Well, think it over: you should realize that you still won’t know what you
want, even if you asked a knightlike Transylvanian (he could be a sane human, so Dracula would
be alive, or he could be an insane vampire and Dracula might be alive—or dead!). Check that the
same indeterminacy holds if you get the answer “If I am sane, then Count Dracula is still alive”,
or even if you get the answer “If I am a sane human, then Count Dracula is still alive”. However,
if you get the answer “If I am either a sane human or an insane vampire, then Count Dracula
is still alive”, then you will definitely know Dracula is really alive (because then he is saying he
is knightlike, which only knightlike individuals can do—we saw a similar principle when we were
doing ordinary knights and knaves problems).

Can you think of a statement you might receive as an answer that would convince you that (a)
Dracula is alive and (b) the statement itself is false. How about an answer-statement which would
convince you that Dracula is alive but for which you couldn’t determine if the statement is true or
false?34

Problem 2: Suppose a Transylvanian made these statements:

(1) I am sane.
(2) I believe that Count Dracula is dead.

Can you determine whether Dracula is alive?

Problem 3: Suppose instead that the Transylvanian made these statements:

(1) I am human.
(2) If I am human then Count Dracula is alive.

Can you determine whether Dracula is alive?

Problem 4: Here are some quickies: Find a single question you can ask a Transylvanian which
will determine whether he is a vampire or not. Now find one to determine if he is sane or not.
Next, find one which will force him to answer “Yes”, regardless of what sort of individual he is.
And finally, find a question which will determine if Count Dracula is still alive.35

Dracula’s Castle

Now things get interesting: the upper aristocracy in Transylvania use the old traditional lan-
guage for some words, and in particular, they don’t use “yes” and “no”, but instead “bal” and
“da”—the problem is, you don’t know which means which! So, when one day you find yourself

32“Yes”, regardless of what type of Transylvanian he is.
33“Yes” would mean he was sane; “no” would mean he was insane.
34“I am knavelike and Dracula is dead”; “I am knightlike if and only if Dracula is still alive”. There are other

possible answers. Show that another answer for the second situation is “I believe that if someone asked me whether
Dracula was alive, I would answer ‘Yes’ ”.

352. Dracula is dead. 3. Dracula is alive. 4. “Are you sane?”; “Are you human?”; “Do you believe you are
human?” or “Are you knightlike?”; “Is the statement that you are knightlike equivalent to the statement that
Dracula is alive?” or “Do you believe that the statement that you are human is equivalent to the statement that
Dracula is alive?”
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invited to Dracula’s Castle, which is inhabited by aristocrats (possibly including Dracula himself!),
you have to deal with the situation that not only do you not know which type of individual everyone
is, but you cannot really tell what they’re answering when they say “bal” or “da”. But think about
it a bit: it is possible to ask a single question (which will get you a “bal/da” answer) which will tell
you whether the individual you are speaking to is a vampire: namely “Is ‘Bal’ the correct answer
to the question ‘Are you sane?’?” (Check this for yourself!)

Now find similar questions which will determine whether you are speaking to an individual who
is sane or not; to determine what “Bal” means; to force him to answer “Bal” to your question; and
to find out whether or not Dracula is alive.36

Dracula’s Challenge

Finally, you get to meet Dracula. Normally, this wouldn’t be a good thing, but he offers you
a chance to save your life: he points out that although you’ve been very clever to get all those
questions to sort out who’s who, you’ve missed a general underlying principle that solves all such
questions. If you can find that principle, he will let you go away unharmed (but if you cannot,
then he’ll turn you into a vampire!). There is one single sentence S with the miraculous property
that it can help you determine the truth of any other sentence X merely by asking any individual
“Is S equivalent to X?”. For if they answer “Bal”, X must be true, but if they answer “Da”,
then X must be false. (For example, to find out if Dracula is alive, you’d just have to ask any
Transylvanian aristocrat “Is S true if and only if Dracula is alive?”) To save your life, you must
tell me what the sentence S is. (!)

Find a good candidate for S, to save your life.37

36“Is ‘Bal’ the correct answer to ‘Are you human?’?” (If he answers “Bal” then he’s sane.) “Do you believe you
are human?” (Everybody must answer “Yes” to that, so whatever he says must mean “yes”.) “Is ‘Bal’ the correct
answer to the question ‘Are you knightlike?’?” (Another question would be “Are you knightlike if and only if ‘Bal’
means ‘Yes’?” Both these will force an answer “Bal”.) And finally, “Do you believe that ‘Bal’ is the correct answer to
the question ‘Is the statement that you are human equivalent to the statement that Dracula is alive?’?”, or similarly
“Is ‘Bal’ the correct answer to the question ‘Is the statement that you are knightlike equivalent to the statement that
Dracula is alive?’?”

37Call a Transylvanian “Bal-ish” if he answers ‘Bal’ to the question ‘Is 1 + 1 = 2?’?” (or any similarly always-true
question). The point is: if “Bal” means “Yes”, then Bal-ish Transylvanians are knightlike, and if “Da” means “Yes”,
then Bal-ish Transylvanians are knavelike. So, S = “You are Bal-ish” does the trick: If the answer to “Is X equivalent
to the statement that you are Bal-ish?” is “Bal”, then X must indeed be true, and X must be false if the answer is
“Da”. Check this yourself!
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Chapter 2

Formal Proof—Form and Substitution

2.1 Derivations

We show that an argument is valid by showing that every step in the inference from premises to
conclusion is justified by a derivation rule. Derivation rules are rules for deriving a new statement
from one or more other statements.

A derivation or proof is a sequence of statements, each of which is either (1) a premise
or (2) a statement derived from one or more previous statement(s), where the last
statement in the sequence is the conclusion.

When logicians draw up a list of derivation rules (laws of derivation) their goal is a list that is
short enough to remember, but that is both complete and consistent.

A list of derivation rules is complete if and only if its rules permit us to derive every
conclusion that validly follows from any set of premises.

The definition of “valid deductive argument” says that a conclusion validly follows from a set
of premises when the form of the argument is such that the conclusion could not be false when
the premises are true. If our list of derivation rules is incomplete, there will be valid deductive
arguments whose conclusion could not be derived from the premises. That would mean that the
argument is valid, but it could not be shown to be valid.

A list of derivation rules is consistent if and only if the rules do not permit the deriva-
tion of a contradiction from premises that do not contain a contradiction.

If our rules permit the derivation of a contradiction from true premises, then we could derive
a false conclusion (every contradiction is necessarily false) from true premises. “Valid” means that
true premises cannot yield a false conclusion. Our derivation-rules have to be consistent.

In Chapter 1 we proposed the conjecture that “given any conjunction as a premise, we may
validly infer the first conjunct”. Using the symbolism, we re-state the conjecture as a derivation
rule: “any argument of the form

A ∧B
A

(∧E)

is a valid argument”. Here we list all premises above the horizontal line, separated by spaces, and
the conclusion below it. We have also given this rule a name: (∧E), read “and elimination”—we

47
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shall explain our naming convention later, but for the moment, it might help to think of the “E”
as standing for “elimination”, and to notice that in the rule, passing from top to bottom does seem
to eliminate an occurrence of the symbol ∧.

A more compact way to say the same thing is to say that the form

p ∧ q ⊢ p

is a valid argument form. This notation lists all the premise-forms (separated by commas if there
are more than one) to the left of the ⊢ (“entailment”) symbol, and the conclusion-form on its right.

It is fairly obvious that the argument
A ∧B
A

is an argument of the specified form. It may be less obvious that

(¬B −→ C) ∧ (C −→ D)

¬B −→ C

is also an argument of that form. Is this an argument “whose form is such that its conclusion
cannot be false when all of its premises are true”? How can we tell?

If we parse (¬B −→ C) ∧ (C −→ D), we see that the main connective is a conjunction, so this
statement is a conjunction. The argument has a conjunction as its premise. The conclusion is
exactly the same as the first conjunct (without the parentheses). So this particular argument is an
example, a substitution instance, of the general form p ∧ q ⊢ p.

It is pretty obvious that there is a variant of the (∧E) rule, which we shall also call (∧E) since,
in a sense, it is “morally the same rule”:1

A ∧B
B

(∧E)

or in words, from a conjunction, one may validly conclude the second conjunct. In compact notation,
p ∧ q ⊢ q.

There is also a quite different derivation rule involving conjunction, which may be expressed
this way:

A B
A ∧B (∧I)

This says that if you have two premises, A and B, then a valid conclusion from them is their
conjunction, viz the statement A ∧ B, for it is impossible that the premises A, B, could both be
true and yet the conclusion A ∧B be false. We name this (∧I) “and introduction”.

In our more compact notation, this is the rule

p, q ⊢ p ∧ q

Again, the issue is to recognise an instance of this rule when one sees it, which amounts to
recognising substitution instances of the rule.

Here is an example:
A −→ ¬C (¬A ∨D) −→ B

(A −→ ¬C) ∧ ((¬A ∨D) −→ B)

1Of course, it is not at all the same rule, for it mentions a different formula in its conclusion—and some folks do
give the two rules different names, such as (∧E)l and (∧E)r. You may use such names if you prefer, but I find no
confusion results from “overloading” the single name (∧E) with the two meanings. A similar remark might be made
about the rule (∨I), which you will meet soon.
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You should see that this is a substitution instance of the (∧I) rule by parsing the conclusion and
showing it has the right conjunctive form.

We state derivation rules by using statement variables (p, q, r, etc.) to describe the form(s) of
the premise(s) and of the conclusion. A particular argument made with particular statements is
justified by a derivation rule if (and only if) the particular argument is a substitution instance of
the form of the rule.

So, is the argument
A −→ ¬C (¬A ∨D) −→ B

(A −→ ¬C) ∧ ((¬A ∨D) −→ B)

justified by the (∧I) rule p, q ⊢ p∧ q? Our conclusion is a conjunction, as the rule requires. Its two
conjuncts are precisely the two premises, as the rule requires. So this is justified by the (∧I) rule.

Another example: is the argument

(¬B −→ C) ∧ (C −→ D)

¬(B −→ C)

justified by the (∧E) rule p∧q ⊢ p? Once again, we parse the premise, seeing that it is a conjunction,
and we compare each conjunct with the conclusion. The first conjunct is an implication, whereas
the conclusion is a negation—these do not match. The second conjunct isn’t even close, so clearly
this argument is not a substitution instance of the (∧E) rule, and so is not justified by that rule.

2.1.1 Substitution instance of an argument form or derivation rule

By now, the following definition is pretty obvious; when an argument does have the same form as
a derivation rule, we say that the argument is a substitution instance of the rule:

A particular argument is a substitution instance of a derivation rule if the par-
ticular argument is the result of replacing every distinct simple statement variable in
the rule with a simple or compound statement. None of the connectives in the rule may
be altered or eliminated. If any statement variable occurs more than once in the rule,
every occurrence must be replaced by the same (simple or compound) statement in the
particular argument.

Examples

1. Is the argument
A ∧B (A ∧B) −→ ¬C

¬C
a substitution instance of the argument form p −→ q, p ⊢ q?
The second premise is a conditional (parse it to check). Its antecedent is the compound WFF
A ∧ B. The first premise is A ∧ B. The rule requires a conditional and its antecedent as
premises, and that’s what we’ve got. (The order of the premises does not matter.) The
conclusion is ¬C, the consequent of the conditional, as the rule requires. Our argument is the
result of substituting A∧B for p and ¬C for q in the rule, so our argument is a substitution
instance of the rule.

2. Is the argument
A −→ B ¬¬A

B
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a substitution instance of the argument form p −→ q, p ⊢ q?
The first premise is a substitution instance of the first premise form p −→ q. Is the second
premise a substitution instance of p? No, because we substituted A for p in the first premise,
and the second premise does not make the same substitution. It substitutes ¬¬A for p. A is
not the same WFF as ¬¬A. You may object that they “mean the same” because the double-
negation of a statement and the statement itself are truth-functionally equivalent. But they
are not the same, syntactically. They are different: for instance one takes three symbols to
write, the other only one.

3. The argument
¬¬A −→ B ¬¬A

B

is a substitution instance of the form p −→ q, p ⊢ q.

4. Is the argument
A ∨B ¬B

A

a substitution instance of the form (p ∧ q) ∨ r,¬r ⊢ p ∧ q?
It is not. Although the argument does consistently substitute B for r, it tries to substitute
A for p ∧ q. One of the connectives (and one statement) in the form is missing from the
argument. However, the argument is a substitution instance of the form p ∨ r,¬r ⊢ p.

5. Is the argument
A ∨B ¬C

A

a substitution instance of the form p ∨ r,¬r ⊢ p?
It is not. In one premise it substitutes B for r, but it substitutes C for r in the second.

6. Is the argument
(J ∨K) −→ N F ∨ (J ∨K) F −→ N

N ∨N
a substitution instance of the form p −→ q, r −→ s, p ∨ r ⊢ q ∨ s?
It is. It substitutes N for both q and s, but careful reading of the definition and restrictions on
substitution instances of argument forms shows that every distinct different simple statement
form in the form need not have a distinct different simple statement as its substitution. The
rest of the substitution is F for p and J ∨K for r (but not the other way round, for then you
would have the mismatch of r ∨ p instead of p ∨ r—equivalent, but not the same).
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2.1.2 Exercise on argument form and substitution instance

For each of the argument forms in the left-hand column, say which of the arguments in the right-
hand column are substitution instances of that form. Give reasons to justify your answers.

a. p −→ q,¬q ⊢ ¬p 1. ¬B
¬¬¬B

b. p −→ q, q −→ r ⊢ p −→ r 2.
A ∧ (A ∨B)

(A ∧ A) ∨ (A ∧B)

c. p −→ q, r −→ s, p ∨ r ⊢ q ∨ s 3. J −→ K L −→ K
J −→ L

d. ¬(p ∧ q) ⊢ ¬p ∨ ¬q 4.
(A ∨B) −→ (J −→ K) (M ∧N) −→ (F −→ G) (A ∨B) ∨ (M ∧N)

(J −→ K) ∨ (F −→ G)

e. p ⊢ ¬¬p 5.
¬(K ∧B)

¬K ∧ ¬B

f. p ⊢ p ∨ ¬q 6.
A −→ (J −→ K) (J −→ K) −→ B

A −→ B

g. p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) 7.
Y

Y ∨ ¬(W −→ X)

8.
¬A −→ (F −→ G) ¬(F −→ G)

¬¬A

2.2 Basic Derivation Rules

In this section we shall consider the set of derivation rules we shall have available to create valid
arguments. The basic context is one you should remember: we want to have a set of rules, so that
(1) each is a valid argument form, and (2) every valid argument form may be obtained from the
set of rules we give, as a derivation based on those rules. (This means we want our rules to be
consistent and complete.)

Of course, we could (in principle) just give all valid argument forms as our rules, but that would
not be particularly useful, as remembering all these forms would be rather difficult. We want our
rules to be as simple as possible, and as natural as possible, so that it is easy to remember them,
as well as easy to use them to construct derivations for other valid argument forms. We shall
accomplish that by using what is called a “natural deduction” set of rules.

The rules we shall present in this (and the next) chapter, are in fact a complete and consistent
set of derivation rules for propositional logic. (We shall not actually prove them to be complete,
but I hope that fact will at least seem plausible by the end of the chapters. A completeness proof
will be outside the scope of this course.)

In a natural deduction system, the derivation rules are structured in a very simple way. Using
⋆ to represent any of our connectives (∧, ∨, −→, ¬), for each connective there will be two rules,
a ⋆-introduction rule (⋆I) and a ⋆-elimination rule (⋆E). The purpose of the ⋆-introduction rules
will be to introduce the connective, i.e. to introduce a new formula whose main connective is ⋆,
so that the rule is useful when one wants to prove a ⋆-formula, i.e. to produce a ⋆-formula as a
conclusion. The purpose of the ⋆-elimination rules will be to use (“eliminate”) a formula whose
main connective is ⋆ to derive something else, so that the rule will be useful in handling ⋆-formulas
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as premises. In each case, these rules will be a natural reflection of the truth-functional meaning of
the connective; so as long as you remember that, you should have no trouble in remembering the
rules. (That is why we spent time on truth tables!)

To begin with, we shall describe these rules somewhat informally, using the format with the
premises above a horizontal line, the conclusion below. In the next chapter we shall introduce a
somewhat more streamlined way of writing these, which will make it a bit easier to write longer
derivations using many of the rules together. In each case, you should focus on the meaning that
lies behind the notation, and try to keep the simple essence in mind, so you can understand these
rules easily.

2.2.1 Conjunction

We have already seen the two conjunction rules.

p q
p ∧ q (∧I)

In words, if two statements are both true, then so is their conjunction.

p ∧ q
p (∧E)

p ∧ q
q (∧E)

In words, if a conjunction is true, then so is each conjunct separately. (We regard this as one rule,
with two variants. One may regard each variant as a separate rule, if one wishes, but that seems
unnecessary.)

There is really not much more to say about these rules.

2.2.2 Disjunction

The first disjunction rule is simple enough:

p
p ∨ q (∨I) q

p ∨ q (∨I)

If a statement is true, then so is any disjunction which has that statement as a disjunct (first or
second). A moment’s reflection should convince you that this is essential to what “or” means. (This
is admittedly the “inclusive or”, for no restriction is being placed on whether both disjuncts are
true or not, merely that at least one is true.) Again, we regard this as one rule, with two variants.

The other disjunction rule is somewhat trickier, so let’s consider what’s involved first. We want
a “∨-elimination” rule, that is to say, a rule which will allow us to use a disjunctive formula as a
premise in a derivation. But how can we conclude something from a premise of the form A ∨ B?
Well, consider what we know if we claim A∨B is true: then one of the two formulas A, B is true,
at least, but we don’t know which one. If we want to use this information to prove some conclusion
(C let us say) then we shall have to be able to prove C from premise A, as well as from premise B
(since we don’t know which one is true, we have to “cover both possibilities” in effect). This means
we shall have to have two derivations in hand, A,X ⊢ C and B,X ⊢ C, in each case possibly with
some other premises (represented by the X) as well, and once we have them both, we can conclude
A ∨ B,X ⊢ C. Notice that in this new derivation, although we shall still need the extra premises
X, we no longer need the premises A and B, since they are replaced by the new premise A ∨B.

This is a bit of a load to think about, so think about it carefully. Here is an example, taken
from a simple mathematical proof that multiplying two successive whole numbers always gives an
even number as the product.
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We start with the observation (fact) that every whole number is either even or odd, and
from this we shall conclude that the product of two successive whole numbers is even.
We shall break the proof into two “cases”: one assuming the first number is even, the
other assuming that it is odd. So, our 1st case is this. Premise: suppose the first number
is even. Conclusion: the product of that number with its successor is even, since any
even number times another number is even. Our 2nd case is this. Premise: suppose the
first number is odd. Conclusion: the product of that number with its successor is even,
since that successor itself is even, and so again the product is even. So we are done:
since every number is even or odd, that means that any product of two successive whole
numbers is even.

Notice the key strategy here: we used the disjunctive hypothesis “the first number is even or odd”
by breaking the argument into two cases, one for each disjunct (that the first number was even,
and that the first number was odd). We’ve seen this strategy before: in many of the knights and
knaves problems, we often started “suppose A is a knight . . . ”, followed by “suppose instead that
A is a knave . . . ”, in both cases getting the same desired conclusion, which meant that conclusion
had to be true always. This amounted to taking the hypothesis “A is either a knight or a knave”
and breaking the argument into two cases, one for each possibility.

So this shall be our structure for the (∨E) rule: to prove some conclusion r from a disjunctive
premise p∨q, we shall “break the argument into cases”, i.e. we shall need to have two subderivations,
each with the conclusion r, but one with premise p, the other with premise q (other premises may
also be present). In our final conclusion, these premises p, q will be “discharged”—they shall no
longer be considered as premises, but will be removed from the premises in the new argument and
replaced by the new premise p ∨ q.

We represent this as follows:

p ∨ q

[p]1
....
r

[q]1
....
r

r (∨E)1

The superscripts on the premises, placed in brackets, indicate that those premises have been “dis-
charged” by the application of the rule with the matching index (the number 1 shown here, though
any other matching number or symbol could be used). Notice that above the “premise line” we
have one premise p ∨ q and two arguments, namely the two arguments or subderivations p, . . . ⊢ r
and q, . . . ⊢ r. The vertical dots in our rule just indicate whatever is necessary for those two
subderivations to work. The final conclusion is r, underneath the horizontal line. It has all the
premises above the line, except for the “discharged” p, q.

Here’s another example.

If you win the lottery, everybody will be after your money, you’ll retreat into a shell,
isolating yourself from the rest of society, and you’ll die a miserable lonely person. But
if you don’t win the lottery, you’ll end up on skid road, poor and grubby; no one will
want to be anywhere near you, and you’ll die a miserable lonely person. So, win the
lottery or not, you’ll still die a miserable lonely person.

This is an argument whose premise is a disjunction (“win the lottery or not”), proved by examining
each possible case separately, in other words, using (∨E).

This is a tricky rule, and we shall soon see many examples, which should help you become more
familiar with how it works. Try to keep in mind the essential idea: to prove something from a
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disjunction, it is necessary to break the argument into cases, one for each disjunct. Prove what you
want in each case, and you’ve got it from the disjunction itself.

[OK: take a breath!]

2.2.3 Implication

How do we prove a conditional formula A −→ B? What does it mean to prove such a formula?
Well, A −→ B means that if A is true, then B must also be true; this suggests that proving this
would amount to constructing a proof of B (as conclusion) from A (as premise). And this is exactly
right. If we have a proof of B from A (with other premises perhaps), then we also have a proof
of A −→ B, with the premise A no longer necessary in that proof. (This is another instance of a
premise being “discharged”, as we had with (∨E).)

In our usual symbolism, this may be written as follows.

[p]1
....
q

p −→ q (−→ I)1

where we use the same trick with superscripts to indicate the discharged premise p.
This isn’t quite as odd as it may seem; let’s consider an example. Here is an argument you

might make if you don’t want to lend your car to your crazy cousin:

Suppose you borrow my car. Whenever you have a car, you collect all your friends and
go driving. When you’re with your friends you always drink too much. When you drink
too much you love to show how fast you can drive. When you drive fast, you have
accidents. When you have accidents, you wreck cars. So you’ll wreck my car. Therefore
if you borrow my car, then you’ll wreck it.

What you’ve done here is construct an argument starting from the premise “suppose you borrow
my car”, and finished with the conclusion “so you’ll wreck my car”. That justified you in claiming
that “if you borrow my car, then you’ll wreck it”.

The elimination rule for implication is more straightforward.

p p −→ q
q (−→ E)

This rule is famously known as modus ponens. It says that if an implication is true, as well as its
antecedent, then its consequent must be true also.

Here is a simple example: If Jones shot Smith intentionally, then Jones is guilty of murder;
Jones intended to shoot Smith, and he did shoot Smith. Therefore Jones is guilty of murder.

We can prove this is valid using (∧I) (to conclude “Jones shot Smith intentionally” from “Jones
intended to shoot Smith” and “he did shoot Smith”) and (−→ E) (to conclude “Jones is guilty of
murder” from “if Jones shot Smith intentionally, then Jones is guilty of murder” and “Jones shot
Smith intentionally”).

2.2.4 Negation

Here’s a wonderful little conceptual trick: the formula ¬p is equivalent to the formula p −→ ⊥.
(Exercise: construct the truth tables for these and compare them.) It’s easy enough to see this
from the meaning of the material implication −→: p −→ ⊥ is false only if its premise p is true and
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its conclusion ⊥ is false (which it always is). Consider what was just said: p −→ ⊥ is false only if
p is true; so p −→ ⊥ is true only if p is false. In other words, p −→ ⊥ and p have “opposite” truth
values; in other words p −→ ⊥ is (equivalent to) ¬p.

This means we can construct the derivation rules for ¬p directly from the rules for −→, just
using the special case p −→ ⊥. If we do this, we get the following two rules.

[p]1
....
⊥
¬p (¬I)1

p ¬p
⊥ (¬E)

In words, if you can derive a contradiction (⊥) from assuming p then you can derive ¬p without
that assumption, and you can derive a contradiction from two premises of the form p and ¬p. The
first rule is often called “proof by contradiction”, and the second rule is often called “the law of
contradiction”.
Remark: Be careful when using proof by contradiction, (¬I), that you use only exact substitution
instances of this rule. As its name should remind you, it always introduces a new ¬ sign to the
statement involved; it cannot remove a ¬ sign. For example, if you have a derivation of ⊥ from an
assumption ¬p, then one may only conclude ¬¬p; you may not conclude p:

[¬p]1
....
⊥
¬¬p (¬I)1

[¬p]1
....
⊥
p (not correct!)1

To finally conclude p in this situation, you need to use an additional rule, the “law of the excluded
middle” ((¬¬E) below), which justifies that further conclusion. There are two reasons for care
here: first, it is good for your soul to get used to the precision needed to construct correct proofs
carefully, and secondly, there are strong philosophical and practical reasons to keep track of what
arguments need the (¬¬E) rule and which do not. Being careless of the (¬I) rule can hinder that
effort. We shall return to this point later.

2.2.5 Two additional rules

There are two extra rules we need. The first expresses the notion that a false premise allows any
conclusion one wishes: this is what I referred to earlier as the “all bets are off”, or “anything goes”,
situation that results from a false context or premise.

⊥
p (⊥E)

The second rule expresses the fact that in this logic, there are only two truth possibilities a
statement may have (true and false), so that if a statement is not false, it must be true:

¬¬p
p (¬¬E)

This is often called “the law of the excluded middle”.

Remark: We will generally be wary of using the rule (¬¬E), since it seems to me to be less well
justified philosophically than any other of the rules we’ve considered (it’s manifestly obvious that
there are many statements that don’t easily fit into the “true or false” box, even many purely
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mathematical statements). In the early twentieth century, a school of logic, known as “intuition-
ism”, formalised this objection, and considered logic without the (¬¬E) rule. This logic is very
important today, and finds applications in many situations where a more “constructivist” approach
is necessary. I will tend to point out derivations where we use the (¬¬E) rule, and so try to keep
track of what sort of logical conclusions are valid without it, and what sort require it.

2.2.6 Examples

Here are some derivations, using the informal presentation above, with premises separated from
conclusions by horizontal lines. We “stack” one derivation on top of another, by proving in the top
derivations the premises of the lower ones. This is the basis for a formal presentation of derivations,
but one that is somewhat unwieldy, and so one we shall not use extensively.2

These derivations in fact correspond to well-known derivation rules.3 We don’t need these rules,
since they may be derived as shown, although they can make nice short-cuts in longer derivations.
I have indicated their traditional names.

Disjunctive Syllogism:

p ∨ q [p]1

[q]1 ¬q
⊥ (¬E)

p (⊥E)

p (∨E)1

Modus Tollens:

[p]1 p −→ q
q (−→ E) ¬q

⊥ (¬E)

¬p (¬I)1

Hypothetical Syllogism:

[p]1 p −→ q
q (−→ E) q −→ r

r (−→ E)
p −→ r (−→ I)1

Constructive Dilemma:

p ∨ r

[p]1 p −→ q
q (−→ E)

q ∨ s (∨I)
[r]1 r −→ s

s (−→ E)

q ∨ s (∨I)
q ∨ s (∨E)1

Equivalence Rule:

[p]1

p↔ q

(p −→ q) ∧ (q −→ p)
(Def)

p −→ q (∧E)

q (−→ E) q −→ r
r (−→ E)

p −→ r (−→ I)1

Disjunctive Syllogism II:

p [q]1

p ∧ q (∧I) ¬(p ∧ q)
⊥ (¬E)

¬q (¬I)1

(Note that the Equivalence Rule is the formal version of the statement that in any valid argument
deriving r from assumption q, if p ↔ q you can replace q by p as assumption, and have a valid
argument deriving r from assumption p.)

So: we have a set of rules that reflect the basic properties of the logical connectives, but actually
putting them together to create more complicated arguments seems somewhat unwieldy. In the

2I am being a bit misleading here—this presentation, with the premises separated from conclusions by horizontal
lines, and stacking derivations above one another, is not at all informal, nor really unwieldy (though it can take a
lot of page space), and indeed, many completely rigorous research papers and books have been written using this
notation, including many by myself! But the Fitch-style presentation of the next chapter does seem to be somewhat
simpler for our purposes.

3These include the four basic schemata of the Stoics, in fact, without the redundant one about exclusive or.
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next chapter we shall revisit the derivation rules with a more streamlined presentation, more suited
to writing down longer derivations.

2.3 Answers to the exercises

Exercise 2.1.2:
(a): 8 (b): 6 (not 3) (c): 4 (d): none (not 5) (e): 1 (f): 7 (g): 2
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Chapter 3

Formal Proof—Fitch-style Natural

Deduction

3.1 The Natural Deduction Rules, revisited

Our task now is to develop a simpler way to write formal derivations, using these derivation rules.
We shall adopt the following formalism. Please take care: the point of this section is the formalism
itself, with its very fussy attention to detail, and its very particular formation rules. This is one
place where “getting the rough idea” just doesn’t cut it! You must pay attention to the nitty gritty
details, and be very precise in how you present things. Getting the details wrong is simply getting
it wrong—not much in the way of “feel-good consolation” to be found here!

A derivation will consist of a collection of numbered lines, beginning with the premises of the
argument. These will be separated from the rest of the derivation by a horizontal line. We shall also
use a vertical line (often called a “spline”) at the far left to indicate the “scope” of the derivation
(where it starts and ends); the line numbers will be to the left of this vertical line. At some points we
may insert a subderivation—that will have its own vertical line to indicate where it starts and ends,
“nested” one “level” in (or “one level down”) from the main derivation, but the line numbering
will continue at the far left, including the lines of the subderivation. This nesting of subderivations
may go as deep as you wish: subderivations may themselves contain subderivations. Every line will
contain a formula, and if that formula is not a premise, it must contain a notation indicating the
justification for the formula. That justification will consist of the derivation rule used, and the line
numbers of whatever premises are needed for that derivation rule to be applied.

In the following discussion of the rules, the line numbers are indicated by variables m,n, k; in
practice these would just be ordinary numbers, obtained by simply numbering the lines as they are
written.

3.1.1 Conjunction

We begin with the “easiest” rules: if each of two facts is true, then so is their conjunct, and if a
conjunction is true, so is each of the two facts separately. This simple observation is the basis of
the introduction and elimination rules for conjunction. Since we don’t care which conjunct comes
first, we have two variants of (∧I), and since we can conclude either conjunct if the conjunction is
true, we have two variants of (∧E).

59
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Conjunction introduction (∧I):
...

...

m p
...

...

n q
...

...

k p ∧ q (∧I), m, n

...
...

m q
...

...

n p
...

...

k p ∧ q (∧I), m, n

Conjunction elimination (∧E)

...
...

m p ∧ q
...

...

n p (∧E), m

...
...

m p ∧ q
...

...

n q (∧E), m
Note that the elimination rules correspond to the tautologies (p ∧ q) −→ p, (p ∧ q) −→ q.

In these rules, all the formulas occur at the same “level”, as indicated by the fact that they are
all aligned along the same vertical line.

Here are two simple examples. The first simply shows A ∧ (B ∧ C) ⊢ C, using (∧E) twice. The
second shows A ∧B ⊢ B ∧A, using both ∧ rules, elimination to break A ∧B into its constituents,
and then introduction to put them back together again, but this time in the reverse order.

1 A ∧ (B ∧ C)

2 B ∧ C (∧E), 1
3 C (∧E), 2

1 A ∧B
2 A (∧E), 1
3 B (∧E), 1
4 B ∧A (∧I), 2, 3

3.1.2 Disjunction

The introduction rule for ∨ is simple enough: if a statement is true, then so is any disjunction
which contains it as a disjunct. There are two variants of the rule, depending on whether we are
looking at the first or second disjunct. These correspond to the tautologies p −→ (p ∨ q) and q
−→ (p ∨ q).
Disjunction Introduction (∨I)

...
...

m p
...

...

n p ∨ q (∨I), m

...
...

m q
...

...

n p ∨ q (∨I), m
Here is a simple example; we derive A ⊢ A∧(A∨B) by using (∨I) to derive the necessary disjunction,
then (∧I) to derive the required conjunction.

1 A

2 A ∨B (∨I), 1
3 A ∧ (A ∨B) (∧I), 1, 2

The elimination rule is rather trickier, however. This is “proof by cases”, where one proves
an assertion with a disjunctive premise by examining all of the cases obtained by using one of the
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disjuncts as the premise instead. We saw lots of arguments of that form when we considered knights
and knaves: often in those problems we obtained our solution by just this sort of considering all
the cases relevant to the problem. This rule corresponds to the tautology [(p −→ r) ∧ (q −→ r)]
−→ [(p∨q) −→ r]. (Exercise: verify (1) that this is a tautology, and (2) that is really does correspond
to (∨E). In fact, this is an equivalence: [(p −→ r)∧ (q −→ r)]↔ [(p ∨ q) −→ r], the reverse direction
following from (∨I).) Here is the rule:

Disjunction Elimination (∨E)

...
...

ℓ p ∨ q
...

...

m p
...

...

n r

n+ 1 q
...

...

k r

k + 1 r (∨E), ℓ, m–n, (n+ 1)–k
Note that each case is a subderivation: a little derivation in its own right. Each of these may

use all the premises of the main derivation one level up, and all of the statements derived from
those premises, up till the point where the case subderivation began. However, each of the case
subderivations is independent of the other, and you may not use statements proved in one when
working on the other.

Each subderivation is marked by its own vertical line, which marks the “scope” of the subderiva-
tion, and its own horizontal line, which marks the premise (or hypothesis) for that subderivation.
That premise is added to the others in the main derivation, and indeed, in the subderivation, any
statements assumed or proven in the main derivation may be used in the subderivation (but not vice
versa: the only thing proven in the subderivation that may be “lifted” back to the main derivation
is the conclusion r which the (∨E) rule explicitly says you can bring back to the main derivation).
The scope (vertical) line indicates the scope of the subderivation’s premise: everything written to
the right of that line depends on that premise as well as the other premises of the main derivation.
But once one leaves the subderivation (once one is no longer to the right of its scope line), its
additional premise, and all that was derived from it, is no longer available for further deduction
(apart from whatever was brought back to the main derivation by the (∨E) rule).

Example: We derive A∨B ⊢ B∨A by eliminating the ∨ in the premise, and deriving the conclusion
in each of the two cases.

1 A ∨B
2 A

3 B ∨A (∨I), 2
4 B

5 B ∨A (∨I), 4
6 B ∨A (∨E), 1, 2–3, 4–5

3.1.3 Implication

This is another rule which requires a subderivation: in order to prove an implication, we must
prove that the premise really does entail the conclusion. We construct a subderivation with the
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new, temporary, assumption, and derive the necessary conclusion in that subderivation. This allows
us to go back to the main derivation one level up and conclude that we have proved the implication.
Here is the rule:

Implication Introduction (−→ I)

...
...

m p
...

...

n q

n+ 1 p −→ q (−→I), m–n

Here is an example. We derive A ⊢ B −→ (A ∧B).

1 A

2 B

3 A ∧B (∧I), 1, 2
4 B −→ (A ∧B) (−→I), 2–3

The elimination rule for implication is a venerable friend to logicians; known as Modus Ponens,
it is one of the logical laws well known to the ancient Greek philosophers: if both an implication
and its premise are true, so must its conclusion be true also. This corresponds to the tautology
[p ∧ (p −→ q)] −→ q. We have two variants, since we don’t care what order the two necessary parts
occur in. One thing to be careful about, however: we need both the implication and its premise,
before we can derive the conclusion. Do not try to use this rule when you have just one part. For
example, merely p −→ q being true is not enough to justify the claim that q is true; p must also be
true.

Implication Elimination (−→ E)

...
...

m p
...

...

n p −→ q
...

...

k q (−→E), m, n

...
...

m p −→ q
...

...

n p
...

...

k q (−→E), m, n

Here is an example. We derive A −→ B ⊢ (B −→ C) −→ (A −→ C). Note we have a subsubderivation
nested inside a subderivation—in principle, one may have as many levels of nested subderivations
as one wishes or needs.

1 A −→ B

2 B −→ C

3 A

4 B (−→E), 1, 3

5 C (−→E), 2, 4

6 A −→ C (−→I), 3–5

7 (B −→ C) −→ (A −→ C) (−→I), 2–6
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Remark: We do not have any deduction rules for the biconditional ↔, preferring to treat p ↔ q
as merely an abbreviation of (p −→ q)∧ (q −→ p). Of course, one could create appropriate rules, but
they wouldn’t really save us very much effort, and so hardly seem worth the bother.

3.1.4 Negation

The rules for negation parallel the rules for implication, because of the tautological equivalence
¬p↔ (p −→ ⊥).

The introduction rule for negation says you can prove a statement false by assuming it is true
and then deriving a contradiction (this is a frequent strategy mathematicians use in proving things,
and goes by the name “proof by contradiction”).

Negation introduction (¬I)
...

...

m p
...

...

n ⊥
n+ 1 ¬p (¬I), m–n

The elimination rule simply says that if you’ve proved both a statement and its negation, then
in fact you’ve arrived at a contradiction. This corresponds to the tautology (p ∧ ¬p) −→ ⊥.
Negation elimination (¬E)

...
...

m p
...

...

n ¬p
...

...

k ⊥ (¬E), m, n

...
...

m ¬p
...

...

n p
...

...

k ⊥ (¬E), m, n

Here is an example of a simple derivation using both of these negation rules. We shall derive
A −→ B ⊢ ¬B −→ ¬A by setting ourselves up to arrive at the conclusion ¬B −→ ¬A via the (−→ I)
rule, with a subderivation whose premise is ¬B. But to derive ¬A, which we must, we use (¬I),
and so set up a subsubderivation with premise A, aiming to derive a contradiction ⊥. That we
manage with (−→ E) and (¬E).

1 A −→ B

2 ¬B
3 A

4 B (−→E), 1, 3

5 ⊥ (¬E), 2, 4
6 ¬A (¬I), 3–5
7 ¬B −→ ¬A (−→I), 2–6
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Here is another example. I leave it to you to see why each step is “natural”. P −→ Q,P −→ ¬Q ⊢ ¬P .

1 P −→ Q

2 P −→ ¬Q
3 P

4 Q (−→E), 1, 3

5 ¬Q (−→E), 2, 3

6 ⊥ (¬E), 4, 5
7 ¬P (¬I), 3–6

We have two other rules which involve negation: the first expresses the property of propositional
logic that a contradiction entails anything. We’ve discussed this before (I referred to this as the
“anything goes” or “all bets are off” principle, when an assumption in an argument is in fact false);
it may still seem strange to you, but if so, you have to work a bit more on getting used to it! This
rule corresponds to the tautology ⊥ −→ p.

Contradiction Elimination (⊥E)

...
...

m ⊥
...

...

n p (⊥E), m
Example: ¬P ⊢ P −→ Q

1 ¬P
2 P

3 ⊥ (¬E), 1, 2
4 Q (⊥E), 3
5 P −→ Q (−→I), 2–4

The last negation rule expresses the property of (classical) propositional logic that there are
only two truth values, and so if a statement is not false, it must then be true. This corresponds to
the tautology p↔ ¬¬p.
Double Negation Elimination (¬¬E)

...
...

m ¬¬p
...

...

n p (¬¬E), m
Example: A typical use of (¬¬E) is in a second form of “proof by contradiction”, where we assume
¬p, prove a contradiction ⊥, and then conclude ¬¬p (by (¬I)), and hence p, by (¬¬E). For
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example, the following derivation shows p ∨ ¬p is a tautology (because it shows ⊢ p ∨ ¬p).

1 ¬(p ∨ ¬p)
2 p

3 p ∨ ¬p (∨I), 2
4 ⊥ (¬E), 1, 3
5 ¬p (¬I), 2–4
6 p ∨ ¬p (∨I), 5
7 ⊥ (¬E), 1, 6
8 ¬¬(p ∨ ¬p) (¬I), 1–7
9 p ∨ ¬p (¬¬E), 8

3.1.5 Repetition

Finally, we have a “bookkeeping” rule, which says we can repeat any premise or any statement we
have proved from the premises later in the derivation. There are some restrictions, which we shall
discuss after seeing the rule.

Repetition (R)

m p
...

...
... · · · ...

n p (R), m

Example: Here is a simple derivation of p ⊢ q −→ p.

1 p

2 q

3 p (R), 1

4 q −→ p (−→I), 2–3

The Repetition rule needs some care. It is just a bookkeeping rule, and we could actually do
without it, although it does help at times to make the derivation clearer. But it must be used
only where appropriate. The idea is that once a formula has been proved (or once it is stated as a
premise), one may use it at any later stage in the derivation where it is “visible”, meaning within the
same subderivation, including within any subderivations that appear in that same subderivation.
However, instances of a formula within separate (not nested) subderivations are not visible to each
other.

Formally, we may define this as follows. Suppose p appears in line m (either as a premise or as
a formula already derived); then one may repeat p at line n if m < n and every vertical line (or
spline) from line m continues without interruption to line n. This last condition just says that you
may repeat p as long as you stay within the same subderivation, but this does not permit repetition
between distinct, unconnected subderivations.

It is worth noting that one situation where we may not use the repetition rule is in argument
by cases, i.e. the (∨E) rule: one may not repeat a formula from one case inside the other case,
although one may repeat formulas from the main derivation in either case.

For example, in the following derivations, the first two uses of repetition are valid, but the
third is not, because the first p is in a subderivation unconnected to the subderivation where the
repeated p occurs.
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m p
...

...

n p (R), m

...
...

m p
...

...

k q
...

...

n p (R), m

...
...

m p
...

...

k q
...

...

n p (R), m

3.1.6 Remarks

There are several points to keep in mind when constructing proofs. General strategies will be
pointed out as we do some examples, but for now, here are a few things to remember.

• The derivation rules we have developed in this chapter are summarised in Table 3.1.

• You may only use the rules given in Table 3.1. Don’t just write down something “because
it is obvious”—it is precisely the formal nature of the proofs that gives them their power.
They justify the claim that with these few rules, all valid arguments may be constructed (at
least all such expressible in propositional logic). In other words, these rules are complete for
classical propositional logic.

• There is one way one may relax the previous dictum: if you prove a general entailment, you
could then use it as a “derived rule”; a rule not in our system, but one which has already
been shown to be valid. This is rather like using defined connectives (like ↔), in that we
could always expand the derived rule to its full derivation. Generally I don’t suggest you use
derived rules; the effort in learning them isn’t worth the effort for the very few times you’ll
find them really useful. In any event, if you do use a derived rule (e.g. in a test), you will be
required to produce the derivation for the derived rule as well as the derivation in which you
use it. There is an example of a derivation using a derived rule in the solutions to Exercise
3.3.2 (#4).

• Notice that each rule serves a very specific purpose. The elimination rules are used when
working with a premise, or some intermediate formula you have derived from the premises;
these E rules tell you what you can do with a premise, how to break it into its component
parts, how to proceed at that point in a derivation. On the other hand, the introduction
rules are used when working with a conclusion, or some intermediate conclusion you think
will help you get to the end; these I rules help you reach a goal (the conclusion) you are trying
to reach, they tell you how you can put component parts together into a compound formula.

So, the general strategy in making derivations will include two ways to proceed: top-down,
working with the premises towards your goal, and bottom-up, starting with the conclusion
and seeing what is needed to arrive at that conclusion. In each case the idea will be to
examine the formulas (WFFs) you have in front of you (initially just the premises and the
conclusion of the argument), for each formula, parse it to see what its main connective is,
and then use the introduction or elimination rule for that connective (depending on whether
you are working with the formula as a premise or as a conclusion). You will see this in the
examples; I will draw attention to this frequently, but you should try to see this principle
even when I haven’t explicitly discussed it.
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...
...

m p
...

...

n q
...

...

k p ∧ q (∧I), m, n

...
...

m q
...

...

n p
...

...

k p ∧ q (∧I), m, n

...
...

m p ∧ q
...

...

n p (∧E), m

...
...

m p ∧ q
...

...

n q (∧E), m

Conjunction introduction (∧I) Conjunction elimination (∧E)

...
...

m p
...

...

n p ∨ q (∨I), m

...
...

m q
...

...

n p ∨ q (∨I), m

...
...

ℓ p ∨ q...
...

m p...
...

n r

n+ 1 q...
...

k r

k + 1 r (∨E), ℓ, m–n, (n+ 1)–k

Disjunction Introduction (∨I) Disjunction Elimination (∨E)

...
...

m p
...

...

n q

n+ 1 p −→ q (−→I), m–n

...
...

m p...
...

n p −→ q...
...

k q (−→E), m, n

...
...

m p −→ q...
...

n p...
...

k q (−→E), m, n

Implication Introduction (−→ I) Implication Elimination (−→ E)

...
...

m p
...

...

n ⊥
n+ 1 ¬p (¬I), m–n

...
...

m p...
...

n ¬p...
...

k ⊥ (¬E), m, n

...
...

m ¬p...
...

n p...
...

k ⊥ (¬E), m, n

Negation introduction (¬I) Negation elimination (¬E)

...
...

m ⊥
...

...

n p (⊥E), m

...
...

m ¬¬p
...

...

n p (¬¬E), m
Contradiction Elimination (⊥E) Double Negation Elimination (¬¬E)

m p
...

...
... · · ·

...

n p (R), m

Repetition (R)

Table 3.1: The Fitch-style presentation of the natural deduction rules
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Frequently the idea will be to work bottom-up—use the structure of the conclusion to give you
hints as to what rules to use. In other circumstances, top-down will work better; experience
will help here (the more derivations you try to construct, the better you’ll get at it). In many
derivations, the structure of the formulas you start with will virtually “force” you to a certain
derivation structure; in other examples, you will have some choice how to proceed (choose
this or that formula to work on).

• Note that we can only prove tautologies, in effect. This is because all the rules preserve truth.
In other words, these rules are consistent. So if we apply a rule to true premises, we’ll get
a true conclusion. So, any argument constructed from the rules will be valid, and so will
correspond to a tautology (just form the implication whose premise is the conjunction of all
the premises of the argument, and whose conclusion is the conclusion of the argument).

So, if you have any reason to doubt that an argument is tautologous, before trying to prove
it, it might be a good idea to see if it can be disproved. We shall develop a simple technique
for that later, but in principle truth tables could do that for us. (Don’t worry—I won’t ask
you to prove something that cannot be proved! Well, not yet, anyway . . . )

3.2 Examples

These rules are pretty abstract, so we illustrate them with several examples. Remember that the
point in each case is to construct a derivation using only these rules and the premises stated to
arrive at the stated conclusion, in effect constructing a valid argument for that conclusion from the
premises.

Our first examples are the same six derived rules we ended the last chapter with. Detailed
comments will accompany these derivations—you should refer to the comments while studying the
derivations themselves. Of course, the idea is to learn how to create derivations yourself, so try to
anticipate the steps as much as you can.

Disjunctive Syllogism:
p ∨ q,¬q ⊢ p

1 p ∨ q
2 ¬q
3 p

4 p (R), 3

5 q

6 ⊥ (¬E), 2, 5
7 p (⊥E), 6
8 p (∨E), 1, 3–4, 5–7

First, look at the premises (p ∨ q,¬q) and the desired conclusion
(p): to build a derivation, either we can start top-down, with one
of the premises (a ∨ and a ¬ formula) and use an elimination
rule, or we can start bottom-up, with the conclusion (an atomic
formula) and use an introduction rule (of course, there is no ap-
propriate introduction rule for an atomic formula, so this isn’t a
real consideration). In this example this means we should expect
to work top-down, considering the rules (∨E), (¬E), and initially
no other rules. This simplifies things a lot! Let’s look at these
two rules.

To use (¬E) we need a pair of formulas, one the negation of
the other; we do not have that yet, so we can’t use (¬E) yet. So

we consider using (∨E) with the premise p∨ q; this means a proof by cases. Since we have no other
obvious options at present, we start our proof with two cases, i.e. two subderivations, one with the
hypothesis p, the other with hypothesis q. In each case we shall aim for our ultimate conclusion p
(we might as well go for broke!).

The first case argument is simple: we have supposed p, so it’s easy to conclude p (we just use
the repetition rule (R)). The second case (with hypothesis q) is a little more bothersome. But now
we recall why we initially didn’t use (¬E): to do so, we needed both a formula and its negation.
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But now that’s exactly what we have: ¬q and q. So we use (¬E) to get ⊥. Next we use a trick
we’ll often find useful: once we get ⊥, we can derive any formula we like, in particular, whatever
formula you’re aiming for. Here we want p, so we use (⊥E) to get it.

Finally, we write down the conclusion we may derive from this cases argument. Be sure to
justify each step with the rule used, citing the lines that are needed for that rule. For instance, our
final conclusion was the result of a cases argument, i.e. the (∨E) rule, which requires a ∨ formula
(on line 1), and two case subderivations (on lines 3–4, and on lines 5–7).

Notice that with some rules we need only cite one line (because they take only a single premise);
(R) and (⊥E) are such rules, and when we justify their use, we only reference one line. Some rules
require us to cite two lines, corresponding to the two premises they need; (¬E) is such a rule, and
we referenced the two relevant lines when we used it. Finally, some rules require us to cite not
only single lines (corresponding to premises) but also line ranges (corresponding to subderivations);
(∨E) is such a rule, and we were careful to include all that information in the justification.

Modus Tollens:
p −→ q,¬q ⊢ ¬p

1 p −→ q

2 ¬q
3 p

4 q (−→E), 1, 3

5 ⊥ (¬E), 2, 4
6 ¬p (¬I), 3–5

Again we look at the premises and conclusion: a −→ formula and
a ¬ formula as premises suggest the (−→ E) and (¬E) rules; a ¬
formula as conclusion suggests the (¬I) rule. But what do these
rules need?

(−→ E) needs an implication (p −→ q, which we have) and
its premise (p, which we don’t have), so we cannot use that yet.
(¬E) similarly needs two elements, of which we only have one
(what is missing?). So we consider working bottom-up, using
(¬I) to conclude ¬p: this means setting up a subderivation with
premise p, with the intention of proving ⊥ in that subderivation.

But once we have added p as a new premise, we are able to use the (−→ E) rule we were unable
to use before. So we do use it to get q. Note we justify this by mentioning not only the rule,
but the two line numbers where the necessary data may be found. Next we notice that now we
have the necessary data to use (¬E), which we did not have before. Now the subderivation has
accomplished its task, and so we are in a position to finish using the (¬I) rule we started with.
This puts our final conclusion back in the main derivation, and with the necessary justification in
place, we’re done.

Hypothetical Syllogism:
p −→ q, q −→ r ⊢ p −→ r

1 p −→ q

2 q −→ r

3 p

4 q (−→E), 1, 3

5 r (−→E), 2, 4

6 p −→ r (−→I), 3–5

This is rather similar to the previous derivation, and this is no
coincidence: remember that ¬p is equivalent to p −→ ⊥, and so
the only difference between the two proofs is that we use r instead
of ⊥ (and so change the ¬ rules to −→ rules).
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Constructive Dilemma:
p −→ q, r −→ s, p ∨ r ⊢ q ∨ s

1 p −→ q

2 r −→ s

3 p ∨ r
4 p

5 q (−→E), 1, 4

6 q ∨ s (∨I), 5
7 r

8 s (−→E), 2, 7

9 q ∨ s (∨I), 8
10 q ∨ s (∨E), 3, 4–6, 7–9

Again, look at the premises (and the corresponding elimination
rules) and the conclusion (and the corresponding introduction
rule). The −→ elimination rules need the extra data of the
implication-antecedents, which are not available to us (yet!),
so we are forced to use the (∨E) rule, proof by cases. As with
[DS], we set up the cases with their temporary premises p and
r (since we are applying the rule to the disjunctive premise
p ∨ r).

In each case subderivation we want to derive q ∨ s (again,
going for our ultimate conclusion at once); there is not much
doubt as to what we should do, since we have two implications
we can eliminate (use as premises) now, and our conclusion
gives us a disjunction to introduce. In other words, we use
(−→ E) (once in each case) and (∨I) (again, once in each case).

Notice a paradox of proof-construction in these examples: we started conceptually with the
(∨E) elimination rule, but when we look at the finished derivation, that rule seems to be the last
one used. This is typical of the bottom-up method of constructing derivations; as you saw in the
first example, it is also typical when you start a derivation with (∨E). Our next example shows
that one sometimes really does start with the rule one starts with(!).

Equivalence Rule:
p↔ q, q −→ r ⊢ p −→ r

1 (p −→ q) ∧ (q −→ p)

2 q −→ r

3 p −→ q (∧E), 1
4 p

5 q (−→E), 3, 4

6 r (−→E), 2, 5

7 p −→ r (−→I), 4–6

This derivation starts with the replacement of the biconditional
with its definition (the premise in line 1). Our first step is to use
(∧E) to get the implication on line 3. After that, we just duplicate
the steps used in the derivation of [HS]; notice that lines 2 and 3
just duplicate the premises of [HS].

Disjunctive Syllogism II:
¬(p ∧ q), p ⊢ ¬q

1 ¬(p ∧ q)
2 p

3 q

4 p ∧ q (∧I), 2, 3
5 ⊥ (¬E), 1, 4
6 ¬q (¬I), 3–5

In this case, we start with the (¬I) rule, which more or less finishes
the job, since we now have both p and q, and so p∧q.

A word problem

Here is an argument:

Unless the Vulcans leave the Federation and join the Romulans, the Klingons will attack
the Romulans. If the Klingons attack the Romulans, the Romulans will surrender and
join the Klingons to attack the Federation. If the Klingons and Romulans together
attack the Federation, the Federation will be destroyed. Therefore, if the Vulcans
remain in the Federation, it will be destroyed.
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Translate it into a formal argument, and prove it is valid. Use the following abbreviations: V = The
Vulcans will leave the Federation; R = The Vulcans will join the Romulans; K = The Klingons
will attack the Romulans; S = The Romulans will surrender; J = The Romulans will join the
Klingons; A = The Romulans and Klingons will attack the Federation; D = The Federation will
be destroyed.

Solution: It’s pretty straightforward to translate the English, though you might have been tricked
by “unless”: but if you think of the truth-functional properties of “p unless q”, you will soon realise
that this means either q or, if not, then p: q∨(¬q −→ p), which simply means p∨q.1 You might even
think of translating this as p ∨ (¬p −→ q), but it’s easy enough to check that this is also equivalent
to p ∨ q, so you might as well use the simpler form.

So we get this as the translation:

(V ∧R) ∨K,K −→ ((S ∧ J) ∧A), A −→ D ⊢ ¬V −→ D

And so we set up the following derivation (with comments).

1 (V ∧R) ∨K
2 K −→ ((S ∧ J) ∧A)
3 A −→ D

4 ¬V
5 V ∧R
6 V (∧E), 5
7 ⊥ (¬E), 4, 6
8 D (⊥E), 7
9 K

10 (S ∧ J) ∧A (−→E), 2, 9

11 A (∧E), 10
12 D (−→E), 3, 11

13 D (∨E), 1, 5–8, 9–12
14 ¬V −→ D (−→I), 4–13

Write out the 3 premises and the conclusion—leave
lots of space in between.

We cannot use the premises on lines 2, 3, so we
either use (∨E) (“cases”) (from the premise on line
1 which is a disjunction) or (−→ I) (from the con-
clusion, which is an implication). In other words,
we have a choice here: we can work bottom-up,
starting with (−→ I) or we can work top-down,
starting with (∨E). This is an honest choice: ei-
ther strategy would work, and we would end up
with different derivations depending on which we
chose. Here I have opted for the simpler (−→ I),
working bottom-up. So we set up a subderivation
with the temporary aim to prove D from premise
¬V . (Again, leave lots of space for what comes in
between.)

Now we’re forced to use cases (with premise on
line 1), so we set up the two cases subderivations, lines 5 and 9, again each with D as target. In
the first case, we see we can get ⊥ from V , which gives us anything we want, including D. For the
second case, having K “frees up” (S ∧ J)∧A, and so A, and so finally D, like dominoes! This gets
us to the end, finishing off the cases proof and the implication introduction proof.2

Study these derivations and the comments carefully—you should often feel a sense of inevitabil-
ity in these proofs: the structure of the premises and the conclusion really force you to the structure
of the derivation. Sometimes you will have a choice (often between working bottom-up or top-down,
sometimes you will have a choice of which premise to use first when proceeding top-down). Often
you will be led to a derivation just by following the hints produced by the structure of the premises
and conclusion. The point is this: when faced with a set of premises and a conclusion to prove,

1You need the (¬¬E) rule for this.
2There’s an “almost-animated” version of this explanation on the course web-site, making the step-by-step process

clearer. Look under “Assignments and Answers”.



72 CHAPTER 3. FORMAL PROOF—FITCH-STYLE NATURAL DEDUCTION

there is a definite strategy that should get you started; you don’t have to wait for inspiration or a
visit from the muses.

I cannot lie to you: sometimes a proof can be very tricky, and these simple steps insufficient
to crack it. But I can assure you that you won’t meet many like that in this course, and the few
you do usually involve the double negation rule (¬¬E). So don’t panic, and try to get the hang of
things. You can start with the following exercises!

3.3 Exercises

3.3.1 Some natural deduction problems

Find a Fitch-style natural deduction derivation (proof) for each of the entailments listed below.
Remember that the premises are listed above the horizontal line (before the entailment sign ⊢ in
the compact “in-line” notation), and the conclusion is the last statement of your proof (after the
⊢ sign in the compact notation). In the first two questions, I have given both notations. Using
the Fitch-style notation, I have written the premises and the conclusion, leaving you to fill in the
in-between lines necessary to make a derivation ending with the conclusion. To save space, the rest
of the questions are only presented using the “in-line” entailment notation.

You will notice that some entailments have no premises—that is fine, and really just means
that there is nothing above the horizontal line which usually indicates premises (and so, indeed,
that line isn’t necessary anymore). In fact, as you will see by looking at Examples 11 and 12, it’s
easy enough to “move” premises into the conclusion, using implication, so every entailment could
be written without premises.

Entailments marked ⊢∗ require the (¬¬E) rule. This usually means you should aim to contradict
the negation of what you want to prove.

1. A ⊢ A ∧ (A ∨B)

1 A
...

...

? A ∧ (A ∨B) Find a proof

2. A ∧ (A ∨B −→ C) ⊢ C ∨D

1 A ∧ (A ∨B −→ C)
...

...

? C ∨D Find a proof

3. A,A −→ B ⊢ A ∧B 4. A ∧B −→ C,B −→ A,B ⊢ C
5. A −→ B,B −→ C ⊢ A −→ B ∧ C 6. A −→ (B −→ C) ⊢ B −→ (A −→ C)

7. A −→ B ⊢ ¬B −→ ¬A 8. ⊢∗ A ∨ ¬A
9. (A −→ B) −→ C ⊢ B −→ C 10. (A −→ B) −→ C ⊢∗ A ∨C
11. ⊢ A −→ ¬¬A 12. ⊢∗ ¬¬A −→ A

13. ¬(A −→ B) ⊢ ¬B 14. A ∨ (A ∧B) ⊢ A
15. ¬(A ∨B) ⊢ ¬A ∧ ¬B 16. ⊢ ¬(A ∨B) −→ ¬A ∧ ¬B
17. ¬A ∨ ¬B ⊢ ¬(A ∧B) 18. ¬(A ∧B) ⊢∗ ¬A ∨ ¬B
19. ¬A ∨B ⊢ A −→ B 20. ¬A ⊢ A −→ B

21. (A −→ B) ∨ (A −→ C) ⊢ A −→ B ∨ C 22. A −→ B ∨ C ⊢∗ (A −→ B) ∨ (A −→ C)

23. A ∨B −→ C ⊢ (A −→ C) ∧ (B −→ C) 24. (A −→ C) ∧ (B −→ C) ⊢ A ∨B −→ C

25. A −→ B ∧ C ⊢ (A −→ B) ∧ (A −→ C) 26. (A −→ B) ∧ (A −→ C) ⊢ A −→ B ∧ C
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27. (A −→ C) ∨ (B −→ C) ⊢ A ∧B −→ C 28. B ∧ C −→ A , ¬A −→ C ⊢∗ (C −→ B) −→ A

29. ¬(A ∧ ¬B) ⊢∗ A −→ B 30. A −→ B ⊢ ¬(A ∧ ¬B)

31. A ∨B ⊢ ¬B −→ (C −→ A) 32. (B −→ A) −→ A ⊢∗ A ∨B

33. (A −→ B) ∨ C , A −→ ¬C ⊢ (B −→ C) −→ ¬A

3.3.2 Some natural deductions from arguments

Translate each of the following into a formal argument, and prove it is valid. (Following the
exercises, I have actually done the translations for you—try them yourself first, and then compare
your answers with mine. You may use whatever abbreviations you like for the statements, but I
have used some pretty obvious ones in my translations.)

1. If life is a carnival, then I’m a clown or a trapeze artist. But life isn’t a carnival if there aren’t
any balloons, and there aren’t any balloons if I’m a clown. So, if life is a carnival, then I’m a
trapeze artist.

2. Spring has sprung, and the flowers are blooming. If the flowers are blooming, the bees are
happy. If the bees are happy but aren’t making honey, then spring hasn’t sprung. So the
bees are making honey.

3. Albert is a Liberal only if Bruce or Carol is. If Bruce is a Liberal, so are Deirdre and Ethel.
If Deirdre is a Liberal, then Ethel is a Liberal only if Freda is; but Freda and Albert aren’t
both Liberals. So Albert is a Liberal only if Carol is.

4. Ladies and gentlemen: either my client has an alibi for this crime, or he is too stupid to
have committed it; and anyway he never knew the victim. If he never knew the victim, then
clearly he was absent from the crime scene and has no alibi. If he is too stupid to have done
the crime, then either he has an alibi or he is innocent. So, either he is innocent, or you are
all too incompetent at logic to be jurors.

5. If God exists, he is omnipotent and omniscient; moreover he is benevolent (provided he exists).
If God can prevent evil, then if he knows evil exists, he is not benevolent if he doesn’t prevent
it. If he is omnipotent, he can prevent evil. And if he is omniscient, he knows evil exists if it
does exist. Evil does not exist if God prevents it. However, evil does exist. So God does not
exist.

6. We say an argument is inconsistent if its premises and conclusion, taken together (as a set
of premises) allow, as a valid conclusion, the contradiction ⊥. In symbols, P1, P2, . . . , Pn ⊢ C
is inconsistent if (and only if) P1, P2, . . . , Pn, C ⊢ ⊥ is valid3. This is really just saying that
the premises and the conclusion together set up a contradiction.
Show that the following argument is inconsistent.
Bach is popular only if Beethoven is forgotten. If Bach is unpopular and Beethoven isn’t
forgotten, then current musical tastes are hopeless. So current musical tastes aren’t hopeless,
and Beethoven isn’t forgotten.

3Equivalently, if and only if P1, P2, . . . , Pn ⊢ ¬C is valid.
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Suggested translations of the word problems

1.

1 L −→ C ∨ T
2 ¬B −→ ¬L
3 C −→ ¬B
...

...

? L −→ T Find a proof

2.

1 S ∧B
2 B −→ H

3 H ∧ ¬M −→ ¬S
...

...

? M Find a proof∗

3.

1 A −→ B ∨C
2 B −→ D ∧ E
3 D −→ (E −→ F )

4 ¬(F ∧A)
...

...

? A −→ C Find a proof

4.

1 (A ∨ S) ∧ ¬K
2 ¬K −→ C ∧ ¬A
3 S −→ A ∨ I
...

...

? I ∨ J Find a proof

5.

1 G −→ P ∧ S
2 G −→ B

3 C −→ (K −→ (¬V −→ ¬B))

4 P −→ C

5 S −→ (E −→ K)

6 V −→ ¬E
7 E
...

...

? ¬G Find a proof

6.

1 B −→ F

2 ¬B ∧ ¬F −→ H

3 ¬H ∧ ¬F
...

...

? ⊥ Find a proof

Now try to construct the derivations for these entailments. (The one marked with a ∗ will
require the (¬¬E) rule.)
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3.4 Answers to the exercises

Exercise 3.3.1
Note that there are possible variants of these proofs which would be equally correct—ask me if

you are unsure of your own attempts.

Entailments requiring the (¬¬E) rule are marked ⊢∗ . What makes these a bit trickier is that
by trying to prove ¬¬C when your desired conclusion is C, you open up a line of attack (via
the negation introduction rule) that you would not otherwise expect to use. This is the classic
mathematical “proof by contradiction”: assume what you want is false, derive a contradiction, and
conclude that what you want is true.4 In our system, this requires two rules: (¬I) and (¬¬E). By
“warning” you of this, I hoped to make these problems a bit easier than they would otherwise be.

1. A ⊢ A ∧ (A ∨B)

1 A

2 A ∨B (∨I), 1
3 A ∧ (A ∨B) (∧I), 1, 2

2. A ∧ (A ∨B −→ C) ⊢ C ∨D

1 A ∧ (A ∨B −→ C)

2 A ∨B −→ C (∧E), 1
3 A (∧E), 1
4 A ∨B (∨I), 3
5 C (−→E), 2, 4

6 C ∨D (∨I), 5
3. A,A −→ B ⊢ A ∧B

1 A

2 A −→ B

3 B (−→E), 1, 2

4 A ∧B (∧I), 1, 3

4. A ∧B −→ C,B −→ A,B ⊢ C

1 A ∧B −→ C

2 B −→ A

3 B

4 A (−→E), 2, 3

5 A ∧B (∧I), 3, 4
6 C (−→E), 1, 5

5. A −→ B,B −→ C ⊢ A −→ B ∧ C

1 A −→ B

2 B −→ C

3 A

4 B (−→E), 1, 3

5 C (−→E), 2, 4

6 B ∧ C (∧I), 4, 5
7 A −→ B ∧ C (−→I), 3–6

6. A −→ (B −→ C) ⊢ B −→ (A −→ C)

1 A −→ (B −→ C)

2 B

3 A

4 B −→ C (−→E), 1, 3

5 C (−→E), 2, 4

6 A −→ C (−→I), 3–5

7 B −→ (A −→ C) (−→I), 2–6

4Contrast this with the other version of “proof by contradiction”, where you assume some premise, derive a
contradiction, and conclude that what you assumed is false. This is more obviously valid: it is just the rule (¬I),
and does not require (¬¬E). It is intuitionistically valid.
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7. A −→ B ⊢ ¬B −→ ¬A

1 A −→ B

2 ¬B
3 A

4 B (−→E), 1, 3

5 ⊥ (¬E), 2, 4
6 ¬A (¬I), 3–5
7 ¬B −→ ¬A (−→I), 2–6

8. ⊢∗ A ∨ ¬A

1 ¬(A ∨ ¬A)
2 A

3 A ∨ ¬A (∨I), 2
4 ⊥ (¬E), 1, 3
5 ¬A (¬I), 2–4
6 A ∨ ¬A (∨I), 5
7 ⊥ (¬E), 1, 6
8 ¬¬(A ∨ ¬A) (¬I), 1–7
9 A ∨ ¬A (¬¬E), 8

9. (A −→ B) −→ C ⊢ B −→ C

1 (A −→ B) −→ C

2 B

3 A

4 B (R), 2

5 A −→ B (−→I), 3–4

6 C (−→E), 1, 5

7 B −→ C (−→I), 2–6

10. (A −→ B) −→ C ⊢∗ A ∨ C

1 (A −→ B) −→ C

2 ¬(A ∨ C)
3 A

4 A ∨C (∨I), 3
5 ⊥ (¬E), 2, 4
6 ¬A (¬I), 3–5
7 A

8 ⊥ (¬E), 6, 7
9 B (⊥E), 8
10 A −→ B (−→I), 7–9

11 C (−→E), 1, 10

12 A ∨ C (∨I), 11
13 ⊥ (¬E), 2, 12
14 ¬¬(A ∨C) (¬I), 2–13
15 A ∨C (¬¬E), 14

11. ⊢ A −→ ¬¬A

1 A

2 ¬A
3 ⊥ (¬E), 1, 2
4 ¬¬A (¬I), 2–3
5 A −→ ¬¬A (−→I), 1–4

12. ⊢∗ ¬¬A −→ A

1 ¬¬A
2 A (¬¬E), 1
3 ¬¬A −→ A (−→I), 1–2

13. ¬(A −→ B) ⊢ ¬B

1 ¬(A −→ B)

2 B

3 A

4 B (R), 2

5 A −→ B (−→I), 3–4

6 ⊥ (¬E), 1, 5
7 ¬B (¬I), 2–6

14. A ∨ (A ∧B) ⊢ A

1 A ∨ (A ∧B)

2 A

3 A (R), 2

4 A ∧B
5 A (∧E), 4
6 A (∨E), 1, 2–3, 4–5



3.4. ANSWERS TO THE EXERCISES 77

15. ¬(A ∨B) ⊢ ¬A ∧ ¬B

1 ¬(A ∨B)

2 A

3 A ∨B (∨I), 2
4 ⊥ (¬E), 1, 3
5 ¬A (¬I), 2–4
6 B

7 A ∨B (∨I), 6
8 ⊥ (¬E), 1, 7
9 ¬B (¬I), 6–8
10 ¬A ∧ ¬B (∧I), 5, 9

Notice how #16 is almost the same as #15.

16. ⊢ ¬(A ∨B) −→ ¬A ∧ ¬B

1 ¬(A ∨B)

2 A

3 A ∨B (∨I), 2
4 ⊥ (¬E), 1, 3
5 ¬A (¬I), 2–4
6 B

7 A ∨B (∨I), 6
8 ⊥ (¬E), 1, 7
9 ¬B (¬I), 6–8
10 ¬A ∧ ¬B (∧I), 5, 9
11 ¬(A ∨B) −→ ¬A ∧ ¬B (−→I), 1–10

17. ¬A ∨ ¬B ⊢ ¬(A ∧B)

1 ¬A ∨ ¬B
2 A ∧B
3 ¬A ∨ ¬B (R), 1

4 ¬A
5 A (∧E), 2
6 ⊥ (¬E), 4, 5
7 ¬B
8 B (∧E), 2
9 ⊥ (¬E), 7, 8
10 ⊥ (∨E), 3, 4–6, 7–9
11 ¬(A ∧B) (¬I), 2–10

18. ¬(A ∧B) ⊢∗ ¬A ∨ ¬B

1 ¬(A ∧B)

2 ¬(¬A ∨ ¬B)

3 ¬A
4 ¬A ∨ ¬B (∨I), 3
5 ⊥ (¬E), 2, 4
6 ¬¬A (¬I), 3–5
7 A (¬¬E), 6
8 ¬B
9 ¬A ∨ ¬B (∨I), 8
10 ⊥ (¬E), 2, 9
11 ¬¬B (¬I), 8–10
12 B (¬¬E), 11
13 A ∧B (∧I), 7, 12
14 ⊥ (¬E), 1, 13
15 ¬¬(¬A ∨ ¬B) (¬I), 2–14
16 ¬A ∨ ¬B (¬¬E), 15

19. ¬A ∨B ⊢ A −→ B This can be done two ways: first introduce the −→ or first eliminate the ∨.

1 ¬A ∨B
2 A

3 ¬A ∨B (R), 1

4 ¬A
5 ⊥ (¬E), 2, 4
6 B (⊥E), 5
7 B

8 B (R), 7

9 B (∨E), 3, 4–6, 7–8
10 A −→ B (−→I), 2–9

1 ¬A ∨B
2 ¬A
3 A

4 ⊥ (¬E), 2, 3
5 B (⊥E), 4
6 A −→ B (−→I), 3–5

7 B

8 A

9 B (R), 7

10 A −→ B (−→I), 8–9

11 A −→ B (∨E), 1, 2–6, 7–10
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20. ¬A ⊢ A −→ B

1 ¬A
2 A

3 ⊥ (¬E), 1, 2
4 B (⊥E), 3
5 A −→ B (−→I), 2–4

21. (A −→ B) ∨ (A −→ C) ⊢ A −→ B ∨ C

1 (A −→ B) ∨ (A −→ C)

2 A

3 (A −→ B) ∨ (A −→ C) (R), 1

4 A −→ B

5 B (−→E), 2, 4

6 B ∨ C (∨I), 5
7 A −→ C

8 C (−→E), 2, 7

9 B ∨ C (∨I), 8
10 B ∨ C (∨E), 3, 4–6, 7–9
11 A −→ B ∨ C (−→I), 2–10

22. A −→ B ∨ C ⊢∗ (A −→ B) ∨ (A −→ C)

1 A −→ B ∨C
2 ¬((A −→ B) ∨ (A −→ C))

3 ¬A
4 A

5 ⊥ (¬E), 3, 4
6 B (⊥E), 5
7 A −→ B (−→I), 4–6

8 (A −→ B) ∨ (A −→ C) (∨I), 7
9 ⊥ (¬E), 2, 8
10 ¬¬A (¬I), 3–9
11 A (¬¬E), 10
12 B ∨ C (−→E), 1, 11

13 B

14 A

15 B (R), 13

16 A −→ B (−→I), 14–15

17 (A −→ B) ∨ (A −→ C) (∨I), 16
18 C

19 A

20 C (R), 18

21 A −→ C (−→I), 19–20

22 (A −→ B) ∨ (A −→ C) (∨I), 21
23 (A −→ B) ∨ (A −→ C) (∨E), 12, 13–17, 18–22
24 ⊥ (¬E), 2, 23
25 ¬¬((A −→ B) ∨ (A −→ C)) (¬I), 2–24
26 (A −→ B) ∨ (A −→ C) (¬¬E), 25

23. A ∨B −→ C ⊢ (A −→ C) ∧ (B −→ C)

1 A ∨B −→ C

2 A

3 A ∨B (∨I), 2
4 C (−→E), 1, 3

5 A −→ C (−→I), 2–4

6 B

7 A ∨B (∨I), 6
8 C (−→E), 1, 7

9 B −→ C (−→I), 6–8

10 (A −→ C) ∧ (B −→ C) (∧I), 5, 9
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24. (A −→ C) ∧ (B −→ C) ⊢ A ∨B −→ C

1 (A −→ C) ∧ (B −→ C)

2 A −→ C (∧E), 1
3 B −→ C (∧E), 1
4 A ∨B
5 A

6 C (−→E), 2, 5

7 B

8 C (−→E), 3, 7

9 C (∨E), 4, 5–6, 7–8
10 A ∨B −→ C (−→I), 4–9

25. A −→ B ∧C ⊢ (A −→ B) ∧ (A −→ C)

1 A −→ B ∧C
2 A

3 B ∧ C (−→E), 1, 2

4 B (∧E), 3
5 A −→ B (−→I), 2–4

6 A

7 B ∧ C (−→E), 1, 6

8 C (∧E), 7
9 A −→ C (−→I), 6–8

10 (A −→ B) ∧ (A −→ C) (∧I), 5, 9
26. (A −→ B) ∧ (A −→ C) ⊢ A −→ B ∧C

1 (A −→ B) ∧ (A −→ C)

2 A −→ B (∧E), 1
3 A −→ C (∧E), 1
4 A

5 B (−→E), 2, 4

6 C (−→E), 3, 4

7 B ∧ C (∧I), 5, 6
8 A −→ B ∧ C (−→I), 4–7

27. (A −→ C) ∨ (B −→ C) ⊢ A ∧B −→ C

1 (A −→ C) ∨ (B −→ C)

2 A ∧B
3 A (∧E), 2
4 B (∧E), 2
5 A −→ C

6 C (−→E), 3, 5

7 B −→ C

8 C (−→E), 4, 7

9 C (∨E), 1, 5–6, 7–8
10 A ∧B −→ C (−→I), 2–9

28. B ∧ C −→ A,¬A −→ C ⊢∗ (C −→ B) −→ A

1 B ∧C −→ A

2 ¬A −→ C

3 C −→ B

4 ¬A
5 C (−→E), 2, 4

6 B (−→E), 3, 5

7 B ∧ C (∧I), 5, 6
8 A (−→E), 1, 7

9 ⊥ (¬E), 4, 8
10 ¬¬A (¬I), 4–9
11 A (¬¬E), 10
12 (C −→ B) −→ A (−→I), 3–11

29. ¬(A ∧ ¬B) ⊢∗ A −→ B

1 ¬(A ∧ ¬B)

2 A

3 ¬B
4 A ∧ ¬B (∧I), 2, 3
5 ⊥ (¬E), 1, 4
6 ¬¬B (¬I), 3–5
7 B (¬¬E), 6
8 A −→ B (−→I), 2–7
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30. A −→ B ⊢ ¬(A ∧ ¬B)

1 A −→ B

2 A ∧ ¬B
3 A (∧E), 2
4 ¬B (∧E), 2
5 B (−→E), 1, 3

6 ⊥ (¬E), 4, 5
7 ¬(A ∧ ¬B) (¬I), 2–6

31. A ∨B ⊢ ¬B −→ (C −→ A)

1 A ∨B
2 ¬B
3 A

4 C

5 A (R), 3

6 C −→ A (−→I), 4–5

7 B

8 ⊥ (¬E), 2, 7
9 C −→ A (⊥E), 8
10 C −→ A (∨E), 1, 3–6, 7–9
11 ¬B −→ (C −→ A) (−→I), 2–9

32. (B −→ A) −→ A ⊢∗ A ∨B

1 (B −→ A) −→ A

2 ¬(A ∨B)

3 A

4 A ∨B (∨I), 3
5 ⊥ (¬E), 2, 4
6 ¬A (¬I), 3–5
7 B

8 A ∨B (∨I), 7
9 ⊥ (¬E), 2, 8
10 ¬B (¬I), 7–9
11 B

12 ⊥ (¬E), 10, 11
13 A (⊥E), 12
14 B −→ A (−→I), 11–13

15 A (−→E), 1, 14

16 ⊥ (¬E), 6, 15
17 ¬¬(A ∨B) (¬I), 2–16
18 A ∨B (¬¬E), 17

33. (A −→ B) ∨ C , A −→ ¬C ⊢ (B −→ C) −→ ¬A

1 (A −→ B) ∨ C
2 A −→ ¬C
3 B −→ C

4 A

5 ¬C (−→E), 2, 4

6 A −→ B

7 B (−→E), 4, 6

8 C (−→E), 3, 7

9 C

10 C (R), 9

11 C (∨E), 1, 6–8, 9–10
12 ⊥ (¬E), 5, 11
13 ¬A (¬I), 4–12
14 (B −→ C) −→ ¬A (−→I), 3–13
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Exercise 3.3.2

1.

1 L −→ C ∨ T
2 ¬B −→ ¬L
3 C −→ ¬B
4 L

5 C ∨ T (−→E), 1, 4

6 C

7 ¬B (−→E), 3, 6

8 ¬L (−→E), 2, 7

9 ⊥ (¬E), 4, 8
10 T (⊥E), 9
11 T

12 T (R), 11

13 T (∨E), 5, 6–10, 11–12
14 L −→ T (−→I), 4–13

2.

1 S ∧B
2 B −→ H

3 H ∧ ¬M −→ ¬S
4 S (∧E), 1
5 B (∧E), 1
6 H (−→E), 2, 5

7 ¬M
8 H ∧ ¬M (∧I), 6, 7
9 ¬S (−→E), 3, 8

10 ⊥ (¬E), 4, 9
11 ¬¬M (¬I), 7–10
12 M (¬¬E), 11

3.

1 A −→ B ∨C
2 B −→ D ∧ E
3 D −→ (E −→ F )

4 ¬(F ∧ A)
5 A

6 B ∨ C (−→E), 1, 5

7 B

8 D ∧E (−→E), 2, 7

9 D (∧E), 8
10 E (∧E), 8
11 E −→ F (−→E), 3, 9

12 F (−→E), 10, 11

13 F ∧ A (∧I), 5, 12
14 ⊥ (¬E), 4, 13
15 C (⊥E), 14
16 C

17 C (R), 16

18 C (∨E), 6, 7–15, 16–17
19 A −→ C (−→I), 5–18

4.

1 (A ∨ S) ∧ ¬K
2 ¬K −→ C ∧ ¬A
3 S −→ A ∨ I
4 ¬K (∧E), 1
5 C ∧ ¬A (−→E), 2, 4

6 ¬A (∧E), 5
7 A ∨ S (∧E), 1
8 A

9 ⊥ (¬E), 6, 8
10 I ∨ J (⊥E), 9
11 S

12 A ∨ I (−→E), 3, 11

13 A

14 ⊥ (¬E), 6, 13
15 I ∨ J (⊥E), 14
16 I

17 I ∨ J (∨I), 16
18 I ∨ J (∨E), 12, 13–15, 16–17
19 I ∨ J (∨E), 7, 8–10, 11–18
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4. Let’s do number 4 again, this time with the derived rule DS:
p ∨ q,¬p ⊢ q (or p ∨ q,¬q ⊢ p )

1 (A ∨ S) ∧ ¬K
2 ¬K −→ C ∧ ¬A
3 S −→ A ∨ I
4 ¬K (∧E), 1
5 C ∧ ¬A (−→E), 2, 4

6 ¬A (∧E), 5
7 A ∨ S (∧E), 1
8 S (DS), 6, 7

9 A ∨ I (−→E), 3, 8

10 I (DS), 6, 9

11 I ∨ J (∨I), 10

This “trick” with the derived rule DS can
also be used to make numbers 1–3 a bit
simpler too, though the savings aren’t as
great as they are for number 4.

5.

1 G −→ P ∧ S
2 G −→ B

3 C −→ (K −→ (¬V −→ ¬B))

4 P −→ C

5 S −→ (E −→ K)

6 V −→ ¬E
7 E

8 G

9 P ∧ S (−→E), 1, 8

10 P (∧E), 9
11 S (∧E), 9
12 C (−→E), 4, 10

13 E −→ K (−→E), 5, 11

14 K (−→E), 7, 13

15 K −→ (¬V −→ ¬B) (−→E), 3, 12

16 ¬V −→ ¬B (−→E), 14, 15

17 B (−→E), 2, 8

18 V

19 ¬E (−→E), 6, 18

20 ⊥ (¬E), 7, 19
21 ¬V (¬I), 18–20
22 ¬B (−→E), 16, 21

23 ⊥ (¬E), 17, 22
24 ¬G (¬I), 8–23

6.

1 B −→ F

2 ¬B ∧ ¬F −→ H

3 ¬H ∧ ¬F
4 ¬H (∧E), 3
5 ¬F (∧E), 3
6 B

7 F (−→E), 1, 6

8 ⊥ (¬E), 5, 7
9 ¬B (¬I), 6–8
10 ¬B ∧ ¬F (∧I), 5, 9
11 H (−→E), 2, 10

12 ⊥ (¬E), 4, 11



Chapter 4

Analytic Tableaux

Definition: A signed formula is an expression T(A) or an expression F(A), where A is a WFF.
(We may drop the parentheses if this doesn’t obscure clarity, as in TA.)

4.1 Basic Rules of Knights and Knaves

If we interpret T(A) as meaning “A is true”, and F(A) as “A is false”, then the following are true
(and well-known from our experiences on the Island of Knights and Knaves! - take a look again at
the table in section 1.5.2):

• If T(¬A), then F(A).

• If F(¬A), then T(A).

• If T(A ∧B), then T(A) and T(B).

• If F(A ∧B), then F(A) or F(B).

• If T(A ∨B), then T(A) or T(B).

• If F(A ∨B), then F(A) and F(B).

• If T(A −→ B), then F(A) or T(B).

• If F(A −→ B), then T(A) and F(B).

We can use these facts to quickly check the truth values of the components of a WFF, once we
know its truth value. For instance, if p −→ (A ∧ B) is false, then p must be true and one of A,B
must be false. We can diagram this in the following way:

F(p −→ (A ∧B))

T(p)
F(A ∧B)

F(A) F(B)

where we have used signed formulas to indicate the truth value of the formula, and where we have
indicated a choice of two possible truth values by a “fork” in the diagram. We shall call such a
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diagram a “tree” (sometimes called “Australian trees”, since they branch downwards!). The tree
represents the “decomposition” of the original signed formula, and each path in the tree gives a
possible set of truth values of the component parts of the initial formula with its specified truth
value. In this example, we have two paths, which give the two possible truth value specifications
(namely T(p),F(A) and T(p),F(B)) which result in F(p −→ (A ∧ B)). Any other truth value
specification will make p −→ (A ∧B) true.

Actually, we should be a bit careful here: we said we had two truth specifications, but in each
one, the truth value of one of the atoms was unspecified, and so could have either value. So those
two apparent specifications really give three specifications: first, T(p),F(A) and either T(B) or
F(B); and second, T(p),F(B) and either T(A) or F(A). Looking at that, you will realise this is the
three specifications T(p),F(A),T(B) and T(p),F(A),F(B) and T(p),T(A),F(B).

When you decompose a formula, if you find a path which has two oppositely signed instances
of the same formula (for example T(p) and F(p)), then we shall say that path is closed, and we
shall not add any further formulas or branches of our diagram to that path. In a sense, such closed
paths correspond to impossible or contradictory truth specifications (you cannot make a formula
be both true and false at the same time).

We may use this simple observation to give a quite powerful method (the “method of analytic
tableaux”, or simply the “tableau method”) for determining whether a particular argument is valid
or not. The same method can also determine if a particular formula is a tautology or not, and if
not, it can determine specifications of truth values for the atomic components which render the
formula false (and similarly for an invalid argument). Likewise the method can determine if a
formula is satisfiable (i.e. not a contradiction), and what truth value specifications satisfy it (i.e.
make it true). In short, the method does what truth tables do, but usually a lot more efficiently.

There is a reason for this: truth tables start from the values of the atoms and build the values
of the compound formula, which is a good way to get all possible values. But tableaux start with
a desired truth value of the compound formula, and work back to figure out what values the atoms
must have to give it. In effect, tableaux just build the relevant part of the truth table, ignoring the
bits you don’t want. Generally this is a lot faster.

4.2 Tableaux rules

A tableau for a signed formula, or for a set of signed formulas, is constructed quite simply. We start
with a list of the signed formulas. Then pick one and, using the observations above, decompose
that signed formula: when the decomposition gives two definite truth values, list both, and when
the decomposition gives a choice of two truth values, create a fork, “splitting” (or “branching”)
the tree, as in the example above. Mark the signed formula you picked (so you don’t pick it
again), and then choose another signed formula to do the same decomposition operation. The
decomposition you perform must be done at the bottom of each path containing the signed formula
you are decomposing. Continue in this way until you have decomposed every signed formula in your
tree, including the ones you have created in building the tree. Closed paths represent impossible,
contradictory assignments of truth values: if every path is closed, then the original specification
represented by the signed formula(s) is contradictory and cannot be obtained by any assignment
of truth values to its atoms. If any paths are open, then they give truth value assignments which
do realize the original specification.

So, we arrive at the following method:

To determine if an argument is valid: Take the premises of the formula, sign them each with
a T; take the conclusion of the argument and sign it with an F. Then develop the tableau for
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this: if all paths close, the argument is valid. On the other hand, if any paths remain open,
the argument must be invalid, and you have found a truth value specification invalidating it.
(The strategy here is to try to invalidate the argument, by specifying true premises and a false
conclusion; if all paths close, you have arrived at a contradiction, so you failed to invalidate
the argument, so it must be valid.)

To determine if a formula is a tautology: Here the idea is essentially the same: start with
the formula signed F. Develop the tableau, and if all paths close, the formula is a tautology.
On the other hand, if any path remains open, you have found a truth value specification
which makes the formula false (so showing it is not a tautology).

To determine if a formula is satisfiable: Start with the formula signed T. Develop the tableau:
any open path gives a truth value specification satisfying the formula; if all paths close, the
formula is not satisfiable.

A summary of the tableaux rules

Here are the basic graphical steps used in building tableaux. Be sure you understand how they
reflect the basic observations above, the “basic rules of knights and knaves”.
Remark: In practice, we sometimes omit the vertical lines (edges), only keeping the slanted ones
where the tree splits or branches. In the first example, I shall not do that, but don’t worry if you
sometimes find missing vertical edges.

[T∧]
T(p ∧ q)

T(p)

T(q)

[F∧]
F(p ∧ q)

F(p) F(q)

[T∨]
T(p ∨ q)

T(p) T(q)

[F∨]
F(p ∨ q)

F(p)

F(q)

[T −→]

T(p −→ q)

F(p) T(q)

[F −→]

F(p −→ q)

T(p)

F(q)

[T¬]
T(¬p)

F(p)

[F¬]
F(¬p)

T(p)
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4.3 Examples

Example 1

Show that the following WFF is a tautology:

(p ∨ (q ∧ r)) −→ ((p ∨ q) ∧ (p ∨ r))

Also show that the following entailment is valid:

(p ∨ (q ∧ r)) ⊢ ((p ∨ q) ∧ (p ∨ r))

The first point to make is that these two problems use essentially the same tableau; they are
equivalent, and that equivalence is reflected in the fact that the same tableau solves them both.

Let’s start with the first question:

show that (p ∨ (q ∧ r)) −→ ((p ∨ q) ∧ (p ∨ r)) is a tautology.

Here is the tableau for this; I shall comment on the steps below. One point to mention is that the
little line numbers (1,2,3,4,5) are not part of the tableau, but are just there to make it easier for
me to comment on the lines you see there.

(1)F((p ∨ (q ∧ r)) −→ ((p ∨ q) ∧ (p ∨ r)))X

(2)T(p ∨ (q ∧ r))X
(3)F((p ∨ q) ∧ (p ∨ r))X

(4)T(p)

F(p ∨ q)X

F(p)
F(q)
×

F(p ∨ r)X

F(p)
F(r)
×

(5)T(q ∧ r)X

T(q)
T(r)

F(p ∨ q)X

F(p)
F(q)
×

F(p ∨ r)X

F(p)
F(r)
×

So: we start with line 1, which is the original formula signed F (remember the strategy is to
deny the formula, and then try to arrive at a contradiction by having all paths close down, i.e.
be contradictory). Line 1 is an implication, and according to the rule (F −→), a negatively signed
implication breaks down into two (non-branching) lines, the premise of the implication signed T
and its conclusion signed F. These are the direct consequences of line 1, and we write them on lines
2,3. We then check off line 1 (we say it has been “used”), since we’ve finished decomposing it (we
don’t want to either miss a decomposition, nor do one twice, so marking the ones you do as you do
them helps you keep track of your work). At this point, the tree would look like this:

F((p ∨ (q ∧ r)) −→ ((p ∨ q) ∧ (p ∨ r)))X

T(p ∨ (q ∧ r))
F((p ∨ q) ∧ (p ∨ r))

Now we need to decompose another formula (our intent is to work this way till there are no
undecomposed formulas left, only atomic ones). We may choose any one we wish (lines 2 and 3 are
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available to us); we choose to decompose line 2. This is a T signed disjunction, and those branch
(consider the (T∨) rule) into two T signed possibilities, one for each disjunct. By the way: line 3
is an F signed conjunction, which also branches or splits, so even if we’d chosen to decompose line
3 instead of line 2, we’d have had splitting anyway. You may see the splitting of line 2 in the fork
leading to lines 4 and 5. Now the tree looks like this:

F((p ∨ (q ∧ r)) −→ ((p ∨ q) ∧ (p ∨ r)))X

T(p ∨ (q ∧ r))X
F((p ∨ q) ∧ (p ∨ r))

T(p) T(q ∧ r)
We continue in this way. Line 5 is very simple to decompose, so we do it right away, giving

the T(q),T(r) you see under line 5. At this point we have to go back to decompose line 3, which
we’ve not done yet (we could have done it earlier, the tableau method works regardless of what
order you decompose things, so you should choose an order that makes your job simpler). Line
3 is a negative conjunction, which splits into two negatively signed conjuncts. We must do that
splitting at the end of every path containing line 3—this means that splitting occurs in two places,
once below line 4, and once below line 5, as you can see. That finally gives us four instances of F
signed disjunctions, which do not split, but instead give us the direct consequences you see in the
tableau. Look at each path: you will find in each a pair of contradictory atoms. For instance, in
the left-most path, there is an F(p) and a T(p). So each path is closed (indicated by the × placed
at the bottom of each path—in general, mark a path closed, with a ×, as soon as you see it has
a contradictory pair of formulas T(X),F(X)). Hence the tree is closed, meaning that the original
formula is a tautology. (We failed to find any way of making the formula false.)

Now let’s consider the second problem: show that the following entailment is valid:

(p ∨ (q ∧ r)) ⊢ ((p ∨ q) ∧ (p ∨ r))

We would start this by setting up a tableau with the premise signed T and the conclusion signed
F; again, this is because we are trying to disprove our goal (hoping to fail in the attempt!), so we
are trying to show the argument is invalid, meaning that it is possible to have the premise true but
the conclusion false.

But doing that just gives us lines 2 and 3 of the tableau above, and so continuing would just
build the same tableau without line 1. So we again get a closed tableau, and so the entailment is
valid.

So essentially the same tableau solves both problems.

More examples

Here are tableaux to show each of the following is a valid argument. It’s good practice to construct
correct derivations for these as well. I’ll leave that as an exercise.
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1. 1 C −→ (M ∨ ¬A)
2 ¬A −→ P

3 P −→M

? C −→M

Comments: It’s generally good strategy to
perform all non-branching decompositions be-
fore you do branching ones, since this tends
to keep the size of the tree smaller. So we
decompose the last initial signed formula, the
conclusion F(C −→M), first. The other three
all branch, so our next step is to choose one of
them to decompose; I chose the first, mainly
because I saw it would give me a F(C), which
would close a path. Decomposing line 3 would
also have accomplished this, with a T(M).
Generally you should try to close paths as
quickly as you can, again since this will help
keep the size of the tree down. Continue this
way, and you soon have all compound formu-
las decomposed into their atoms, and then you
can verify that all the paths have been closed.
Notice one small trick: whenever you have
T(¬X) or F(¬X), you should immediately re-
move the ¬, switching the sign. (Always do
the easy stuff first!)

T(C −→ (M ∨ ¬A))X
T(¬A −→ P )X
T(P −→M)X
F(C −→M)X

T(C)
F(M)

F(C)
×

T(M ∨ ¬A)X

T(M)
×

T(¬A)X
F(A)

F(¬A)X
T(A)
×

T(P )

F(P )
×

T(M)
×

2. 1 (V ∧R) ∨K
2 K −→ ((S ∧ J) ∧A)
3 A −→ D

? ¬V −→ D

Comments: Ah, this is our old Klingon and
Romulan problem . . . Well, we know it’s valid,
as we have a derivation; let’s see how easily
we get a tableau confirming that. I’ll let you
study this one—my main strategy was to do
the non-branching signed formulas first, start-
ing with the simplest ones (leaving that hor-
rible second premise to last!).

T((V ∧R) ∨K)X
T(K −→ ((S ∧ J) ∧A))X

T(A −→ D)X
F(¬V −→ D)X

T(¬V )X
F(V )
F(D)

F(A)

T(V ∧R)X
T(V )
T(R)
×

T(K)

F(K)
×

T((S ∧ J) ∧A)X
T(S ∧ J)X
T(A)
×

T(D)
×
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3. 1 A

2 A −→ B

3 B −→ C

? C ∨D

Not a lot to say about this one!

T(A)
T(A −→ B)X
T(B −→ C)X
F(C ∨D)X

F(A)
×

T(B)

F(B)
×

T(C)
F(C)
×

4. 1 (A ∨B) −→ C

? (A −→ C) ∧ (B −→ C)

Comments: Both the initial en-
tries split; I chose to split the first
(it seemed a bit simpler I guess!).
Since the F(A ∨ B) entry decom-
poses directly (no split), do that
right away. Then decompose the
other initial entry, at both path
ends in its way. This produces
two more branching paths, but
these quickly decompose to close
all paths. Note that I haven’t
bothered to finish decompositions
as soon as I saw the path close.
Again, this is merely to finish the
job faster.

T((A ∨B) −→ C)X
F((A −→ C) ∧ (B −→ C))X

F(A ∨B)X
F(A)
F(B)

F(A −→ C)X
T(A)
×

F(B −→ C)X
T(B)
×

T(C)

F(A −→ C)X
F(C)
×

F(B −→ C)X
F(C)
×

5. 1 (B ∧C) −→ A

2 ¬A −→ C

? (C −→ B) −→ A

Comments: Again, not a lot to
say. Do the non-splitting ones
first, and simple splitting ones be-
fore more complicated ones (which
is why I split the F(B ∧ C)). But
there are other ways you could do
this tree, without significant dif-
ferences.

T((B ∧ C) −→ A)X
T(¬A −→ C)X

F((C −→ B) −→ A)X

T(C −→ B)X
F(A)

F(B ∧ C)X

F(B)

F(¬A)X
T(A)
×

T(C)

F(C)
×

T(B)
×

F(C)

F(¬A)X
T(A)
×

T(C)
×

T(A)
×
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4.3.1 Exercises

Use the method of tableaux to solve the following problems.

1. Show that the following formula is a tautology: (p ∨ q) −→ (q ∨ p).

2. Show that the following formula are equivalent: A −→ (B ∨ C) and (A −→ B) ∨ (A −→ C).
(Hint: show that each entails the other; this means constructing two tableaux. You could do
this in just one huge tableau, but I think it’s probably simpler to use two smaller ones.)

3. Show that each of the following entailments is valid:

(a) ¬A −→ ¬B ⊢ B −→ ¬(A −→ ¬B).

(b) (A −→ B) ∨ C,A −→ ¬C ⊢ (B −→ C) −→ ¬A

4. Show that the following formula is not a tautology; find an assignment of truth values which
makes it false: (p ∨ q) −→ (p ∧ q). However, show that (p ∧ q) −→ (p ∨ q) is a tautology.

5. Here is a list of useful equivalences; verify that each is a tautology.

(a) Commutativity:
i. (p ∧ q)↔ (q ∧ p) ii. (p ∨ q)↔ (q ∨ p)

(b) Associativity:
i. ((p ∧ q) ∧ r)↔ (p ∧ (q ∧ r)) ii. ((p ∨ q) ∨ r)↔ (p ∨ (q ∨ r))

(c) Distributivity:
i. ((p ∧ q) ∨ r)↔ (p ∨ r) ∧ (q ∨ r)) ii. ((p ∨ q) ∧ r)↔ (p ∧ r) ∨ (q ∧ r))

(d) De Morgan Laws:
i. ¬(p ∧ q)↔ (¬p ∨ ¬q) ii. ¬(p ∨ q)↔ (¬p ∧ ¬q)

(e) Others:
i. (p −→ q)↔ (¬p ∨ q) ii. ¬(p −→ q)↔ (p ∧ ¬q)

6. Here is an argument: If there is a blizzard, the highway will be in poor condition. If the
highway is in poor condition, I will miss class unless I leave home early. Indeed, there has
been a blizzard. Therefore I must leave home early to avoid missing class. Translate this
and show it is valid. (As a contrast, you might also like to construct a derivation for this
argument.)

7. (The “Tardy Bus Problem”)

• If Bill takes the bus, then Bill misses his appointment if the bus is late.

• Bill shouldn’t go home, if (a) he misses his appointment and (b) he feels sad.

• If Bill doesn’t get the job, then (a) he feels sad, and (b) he should go home.

Is it valid to conclude that if Bill doesn’t miss his appointment, then (a) he shouldn’t
go home, and (b) he doesn’t get the job?

Show that this conclusion is not a valid consequence of the premises, and provide some truth
assignments to the individual statements that show this.
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4.3.2 More Exercises

Construct tableaux to show the following are valid; for extra practice, also construct derivations
for each.

1. A ∨B −→ C ⊢ (A −→ C) ∧ (B −→ C)

2. B ∧ C −→ A , ¬A −→ C , C −→ B ⊢∗ A

3. A −→ B , (C ∨B) ∧ ¬B , C −→ D ⊢ A ∨D

4. A −→ C ∨D , ¬B −→ ¬A , C −→ ¬B ⊢ A −→ D

5. (A −→ B) ∨ C , A −→ ¬C , B −→ C ⊢ ¬A

6. (¬A ∨B) ∧ C , ¬B ∨ ¬C ⊢ ¬A

7. P −→ Q , R −→ S , P ∨R ⊢ Q ∨ S

8. (P −→ Q) −→ P ⊢∗ P (Peirce’s Law)

Translate the following to appropriate symbols (use the initial for each name), and construct tableau
and derivation as above.

1. Either Andy or Betty will run for President. If Andy runs for president, then Carol will be
sad. Betty won’t run for president if Dave isn’t coming home. So, either Carol will be sad,
or Dave is coming home.∗

2. If God exists, he is omnipotent and omniscient; moreover he is benevolent (provided he exists).
If God can prevent evil, then if he knows evil exists, he is not benevolent if he doesn’t prevent
it. If he is omnipotent, he can prevent evil. And if he is omniscient, he knows evil exists if it
does exist. Evil does not exist if God prevents it. However, evil does exist. So God does not
exist.

Construct tableaux to show the following are not valid; in each case, give an assignment of truth
values to the variables which illustrates the invalidity of the argument.

1. ¬(P ∨Q) , P ∨R , S −→ P ∨ U ⊢ ¬S ∧ (Q ∨ U)

2. A −→ (B −→ C) , C ∧D −→ ¬E , ¬F −→ D ∧ E ⊢ ¬C −→ ¬E ∨ ¬F
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4.4 Answers to the exercises

Exercise 4.3.1

1.
F((p ∨ q) −→ (q ∨ p))X

T(p ∨ q)X
F(q ∨ p)X
F(q)
F(p)

T(p)
×

T(q)
×

2.
T(A −→ B ∨ C)X

F((A −→ B) ∨ (A −→ C))X
F(A −→ B)X
F(A −→ C)X

T(A)
F(B)
T(A)
F(C)

F(A)
×

T(B ∨ C)X

T(B)
×

T(C)
×

T((A −→ B) ∨ (A −→ C))X
F(A −→ (B ∨ C))X

T(A)
F(B ∨ C)X
F(B)
F(C)

T(A −→ B)X

F(A)
×

T(B)
×

T(A −→ C)X

F(A)
×

T(C)
×

3.
T(¬A −→ ¬B)X

F(B −→ ¬(A −→ ¬B))X
T(B)

F(¬(A −→ ¬B))X
T(A −→ ¬B)X

F(A)

F(¬A)X
T(A)
×

T(¬B)X
F(B)
×

T(¬B)X
F(B)
×

T((A −→ B) ∨ C)X
T(A −→ ¬C)X

F((B −→ C) −→ ¬A)X
T(B −→ C)X

F(¬A)X
T(A)

F(A)
×

T(¬C)X
F(C)

T(A −→ B)X

F(A)
×

T(B)

F(B)
×

T(C)
×

T(C)
×
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4.
T(p ∨ q)X
F(p ∧ q)X

T(p)

F(p)
×

F(q)
◦

T(q)

F(p)
◦

F(q)
×

Truth value specification:
either p = ⊤, q = ⊥ or
p = ⊥, q = ⊤, read off the
two open paths, indicated
with a ◦.

T(p ∧ q)X
F(p ∨ q)X
T(p)
T(q)
F(p)
F(q)
×

6.
T(B −→ H)X

T(H −→ (M ∨ E))X
T(B)

F(¬M −→ E)X
T(¬M)X
F(M)
F(E)

F(B)
×

T(H)

F(H)
×

T(M ∨ E)X

T(M)
×

T(E)
×

I’ll let you do #5—none are difficult, exercise 1 illustrated the idea, and one
aim was to remind you of these basic equivalences! #6: Above, right. #7:
Next page
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Exercise 4.3.2

The valid ones:

1. T((A ∨B) −→ C)X
F((A −→ C) ∧ (B −→ C))X

F(A ∨B)X
F(A)
F(B)

F(A −→ C)X
T(A)
×

F(B −→ C)X
T(B)
×

T(C)

F(A −→ C)X
F(C)
×

F(B −→ C)X
F(C)
×

1 (A ∨B) −→ C

2 A

3 A ∨B (∨I), 2
4 C (−→E), 1, 3

5 A −→ C (−→I), 2–4

6 B

7 A ∨B (∨I), 6
8 C (−→E), 1, 7

9 B −→ C (−→I), 6–8

10 (A −→ C) ∧ (B −→ C) (∧I), 5, 9

2. T(B ∧ C −→ A)X
T(¬A −→ C)X
T(C −→ B)X

F(A)

F(B ∧ C)X

F(B)

F(¬A)X
T(A)
×

T(C)

F(C)
×

T(B)
×

F(C)

F(¬A)X
T(A)
×

T(C)
×

T(A)
×

1 B ∧ C −→ A

2 ¬A −→ C

3 C −→ B

4 ¬A
5 C (−→E), 2, 4

6 B (−→E), 3, 5

7 B ∧ C (∧I), 5, 6
8 A (−→E), 1, 7

9 ⊥ (¬E), 4, 8
10 ¬¬A (¬I), 4–9
11 A (¬¬E), 10
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3. T(A −→ B)X
T((C ∨B) ∧ ¬B)X

T(C −→ D)X
F(A ∨D)X
F(A)
F(D)

T(C ∨B)X
T(¬B)X
F(B)

F(A)

F(C)

T(C)
×

T(B)
×

T(D)
×

T(B)
×

1 A −→ B

2 (C ∨B) ∧ ¬B
3 C −→ D

4 C ∨B (∧E), 2
5 ¬B (∧E), 2
6 C

7 D (−→E), 3, 6

8 A ∨D (∨I), 7
9 B

10 ⊥ (¬E), 5, 9
11 A ∨D (⊥E), 10
12 A ∨D (∨E), 4, 6–8, 9–11

4. T(A −→ C ∨D)X
T(¬B −→ ¬A) X
T(C −→ ¬B) X
F(A −→ D) X

T(A)
F(D)

F(A)
×

T(C ∨D)X

T(C)

F(¬B)X
T(B)

F(C)
×

T(¬B)
F(B)
×

T(¬A)X
F(A)
×

T(D)
×

1 A −→ C ∨D
2 ¬B −→ ¬A
3 C −→ ¬B
4 A

5 C ∨D (−→E), 1, 4

6 C

7 ¬B (−→E), 3, 6

8 ¬A (−→E), 2, 7

9 ⊥ (¬E), 4, 8
10 D (⊥E), 9
11 D

12 D (R), 11

13 D (∨E), 5, 6–10, 11–12
14 A −→ D (−→I), 4–13
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5. T((A −→ B) ∨ C) X
T(A −→ ¬C) X
T(B −→ C) X

F(¬A) X
T(A)

T(A −→ B) X

F(A)
×

T(B)

F(B)
×

T(C)

F(A)
×

T(¬C)X
F(C)
×

T(C)

F(B)

F(A)
×

T(¬C)X
F(C)
×

T(C)

F(A)
×

T(¬C)X
F(C)
×

1 (A −→ B) ∨ C
2 A −→ ¬C
3 B −→ C

4 A

5 ¬C (−→E), 2, 4

6 A −→ B

7 B (−→E), 4, 6

8 C (−→E), 3, 7

9 ⊥ (¬E), 5, 8
10 C

11 ⊥ (¬E), 5, 10
12 ⊥ (∨E), 1, 6–9, 10–11
13 ¬A (¬I), 4–12

6. T((¬A ∨B) ∧ C)X
T(¬B ∨ ¬C) X

F(¬A) X
T(A)

T(¬A ∨B) X
T(C)

T(¬B)X
F(B)

T(¬A)X
F(A)
×

T(B)
×

T(¬C)X
F(C)
×

1 (¬A ∨B) ∧ C
2 ¬B ∨ ¬C
3 A

4 ¬A ∨B (∧E), 1
5 C (∧E), 1
6 ¬A
7 ⊥ (¬E), 3, 6
8 B

9 ¬B
10 ⊥ (¬E), 8, 9
11 ¬C
12 ⊥ (¬E), 5, 11
13 ⊥ (∨E), 2, 9–10, 11–12
14 ⊥ (∨E), 4, 6–7, 8–13
15 ¬A (¬I), 3–14
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7. T(P −→ Q)X
T(R −→ S) X
T(P ∨R) X
F(Q ∨ S) X

F(Q)
F(S)

F(P )

F(R)

T(P )
×

T(R)
×

T(S)
×

T(Q)
×

1 P −→ Q

2 R −→ S

3 P ∨R
4 P

5 Q (−→E), 1, 4

6 Q ∨ S (∨I), 5
7 R

8 S (−→E), 2, 7

9 Q ∨ S (∨I), 8
10 Q ∨ S (∨E), 3, 4–6, 7–9

8. T((P −→ Q) −→ P ) X
F(P )

F(P −→ Q) X
T(P )
×

T(P )
×

1 (P −→ Q) −→ P

2 ¬P
3 P

4 ⊥ (¬E), 2, 3
5 Q (⊥E), 4
6 P −→ Q (−→I), 3–5

7 P (−→E), 1, 6

8 ⊥ (¬E), 2, 7
9 ¬¬P (¬I), 2–8
10 P (¬¬E), 9

1. The “word problems”

T(A ∨B) X
T(A −→ C) X

T(¬D −→ ¬B) X
F(C ∨D) X

F(C)
F(D)

F(A)

T(A)
×

T(B)

F(¬D)
T(D)
×

T(¬B)
F(B)
×

T(C)
×

1 A ∨B
2 A −→ C

3 ¬D −→ ¬B
4 A

5 C (−→E), 2, 4

6 C ∨D (∨I), 5
7 B

8 ¬D
9 ¬B (−→E), 3, 8

10 ⊥ (¬E), 7, 9
11 ¬¬D (¬I), 8–10
12 D (¬¬E), 11
13 C ∨D (∨I), 12
14 C ∨D (∨E), 1, 4–6, 7–13
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2. (The derivation was done in Chapter 3: Exercise 3.3.2 Q5)

T(G −→ P ∧ S)X
T(G −→ B)X

T(C −→ (K −→ (¬V −→ ¬B)))X
T(P −→ C)X

T(S −→ (E −→ K))X
T(V −→ ¬E)X

T(E)
F(¬G)X
T(G)

F(G)
×

T(P ∧ S)X
T(P )
T(S)

F(G)
×

T(B)

F(P )
×

T(C)

F(V )

F(S)
×

T(E −→ K)X

F(E)
×

T(K)

F(C)
×

T(K −→ (¬V −→ ¬B))X

F(K)
×

T(¬V −→ ¬B)X

F(¬V )X
T(V )
×

T(¬B)X
F(B)
×

T(¬E)X
F(E)
×
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The invalid ones:

1. T(¬(P ∨Q))X
T(P ∨ R)X

T(S −→ P ∨ U)X
F(¬S ∧ (Q ∨ U))X

F(P ∨Q)X
F(P )
F(Q)

T(P )
×

T(R)

F(¬S)X
T(S)

F(S)
×

T(P ∨ U)X

T(P )
×

T(U)
◦

F(Q ∨ U)X
F(Q)
F(U)

F(S)
◦

T(P ∨ U)X

T(P )
×

T(U)
×

So: P = Q = ⊥, R = S = U = ⊤
or P = Q = S = U = ⊥, R = ⊤

2. T(A −→ (B −→ C))X
T(C ∧D −→ ¬E)X
T(¬F −→ D ∧ E)X

F(¬C −→ ¬E ∨ ¬F )X
T(¬C)X
F(C)

F(¬E ∨ ¬F )X
F(¬E)X
T(E)
F(¬F )X
T(F )

F(¬F )X
T(F )

F(C ∧D)X

F(C)

F(A)
◦

T(B −→ C)X

F(B)
◦

T(C)
×

F(D)

F(A)
◦

T(B −→ C)X

F(B)
◦

T(C)
×

T(¬E)X
F(E)
×

T(D ∧ E)X
T(D)
T(E)

F(C ∧D)X

F(C)

F(A)
◦

T(B −→ C)X

F(B)
◦

T(C)
×

F(D)
×

T(¬E)X
F(E)
×

So: Many possibilities, essentially amounting to
A or B = ⊥, C = ⊥, E = F = ⊤, and possibly D = ⊤.



Interlude I

Some other logics

This section may be considered “optional”. Its main point is to flesh out to a small extent my
comment in Chapter 1 that there were many different logics, constructed for many purposes, but
logics where mathematical rigour and clarity still determine the structure of the logic, and where
techniques such as we have seen with classical propositional logic are still useful. The three examples
below illustrate three possible ways one could alter the classical propositional logic we’ve been
studying. First, one could drop some derivation rules from our set to get a logic that cannot
construct all the derivations possible in classical propositional logic. Or one could add additional
sentence constructors. Or one could alter the deep structure underlying our derivation rules.

I.1 Intuitionistic Logic

The first logic I will consider here is intuitionistic logic. Early in the twentieth century, dissatis-
faction with one aspect of classical propositional logic found eloquent expression in the writings of
several mathematicians, Brouwer and Poincaré in particular. The point was this: there are many
contexts, even within mathematics (and certainly outside mathematics) where the idea that ‘if a
statement is not false, then it must be true’ seemed . . . well, fishy! (though I suppose it would
sound more “scholarly” were I to say “suspect”). In other words, one may reasonably doubt that
p ∨ ¬p is a tautology, in the sense that there are statements for which it seems not obviously true.
Here is an example: consider the decimal expansion of the number π: 3.1415926535 . . . . Define a
new number δ in the following manner: start by duplicating the decimal expansion of π, so that the
first few decimals of δ are 3.1415926535, but make the following crucial distinction: if the decimal
expansion of π contains a sequence of 5 million (or more) consecutive 1s, then change the first 5
million 1s (and no others) to 0s. Now, here’s the problem: at present, no one knows whether or not
the decimal expansion of π does contain a sequence of 5 million 1s, so at present we don’t know if
δ equals π, or if it is strictly smaller. Although we have a definite algorithm for calculating δ, we
don’t know how big it is, really. And so it’s an article of faith to assert that “either δ is smaller
than π or it isn’t”. This is related to another philosophical observation: if one asserts “p ∨ q”, one
should know which of p or q it is that is true. That is not so with classical propositional logic.
So one of the intentions of intuitionistic logic was that one should be more “constructive” in one’s
assertions. If ⊢ p∨ q is valid, then one should have either ⊢ p or ⊢ q. (Notice this is not true
of classical propositional logic: one has ⊢ p ∨ ¬p without either ⊢ p or ⊢ ¬p.)

It turns out that a formal logic which captures these ideas may be obtained simply from our
natural deduction presentation of classical propositional logic (and also from the predicate logic of
Chapter 5) merely by dropping one rule: eliminate the (¬¬E) rule, and we have intuitionistic logic.

101
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To be sure, we do lose many tautologies and many valid argument-forms, but we retain many as
well. (This is why I indicated with an ∗ all those derivations which used this rule—the ones without
that ∗ are still valid intuitionistically.)

Some things do become more complicated in the intuitionistic setting. We can no longer use
truth tables or analytic tableau (since they built the double negation rule in from the start).
Versions of these which comply with the intuitionistic view are more complicated than is worth
describing here. But the payoff is that in some contexts, derivations that are intuitionistically valid
have constructive content which is lacking in classical derivations (which use the double negation
rule), constructive content that makes them useful in contexts such as theoretical computer science.
I cannot go into full detail here, but the following interpretation of intuitionistic propositional logic
might make this claim at least plausible. To describe this interpretation, I need some simple ideas
from set theory—you may delay reading the next paragraphs until after we have studied sets in
Chapter 6, or you might just remember enough from high school to make sense of this.

The idea is to think of formulas as sets (you may even think of identifying a formula with the
set of its proofs, in a sense—I will use that language, but in fact one may be more abstract and not
bother identifying just what these sets contain). ⊥ may be thought of as an empty set (it has no
proofs), and ⊤ has one element (since we think of ⊤ as an obviously true statement, it needs only
one obviously correct proof(!)). A conjunction A∧B may be thought of as all ordered pairs 〈a, b〉,
where a is a proof of A, and b is a proof of B. A disjunction A ∨ B may be thought of as the set
of pairs 〈i, x〉, where i is either 0 or 1, and if i = 0 then x must be a proof of A, and if i = 1, then
x must be a proof of B. (Notice that an element of the “set” A ∨ B tells you which of A or B it
comes from, and so this is what represents the notion that if A ∨ B is true, one should be able to
determine which disjunct is responsible for that.)

An implication A −→ B may be thought of as the set of all functions which send proofs of A
to proofs of B (so a typical element of the set representing A −→ B would be a function f , whose
domain is the set representing A, and for an a in that set—thought of as a proof of A—f(a) is an
element of the set representing B, thought of as a proof of B). This also tells us how to interpret
¬A, since we may regard it as A −→ ⊥: it is the set of all functions which take proofs of A to proofs
of ⊥—but there are no such proofs of ⊥, so ¬A must be empty unless A itself is empty, in which
case ¬A would have exactly one element (the empty function between the empty set and itself, in
a sense, the function which does nothing to nothing). This does fit the basic idea: there should
not be any proofs of ¬A if there are proofs of A, but if A has no proof, then ¬A may have a proof
(and in fact just one).

What does this mean for ¬¬A? If A were not empty (so there are proofs of A), then ¬A would
be empty, and in that case ¬¬A would be a single element set. There is clearly a map (in fact,
only one) from A to ¬¬A in this case. Suppose A were empty, however (so there are no proofs of
A). In this case, ¬A has a single element, so is not empty, and then ¬¬A would have to be empty,
so again, we have a map (just one) from A to ¬¬A. In each case there is only one such map, so
there is no doubt what it must be. (We shall make this more precise in a moment.)

But now consider the reverse direction. Is there in general any reason to believe there should
always be maps from ¬¬A to A; any reason to regard ¬¬A −→ A as always “inhabited” by a proof?
The answer is “no”, because without knowing whether A is inhabited or not, you don’t know what
function might take you from a proof of ¬¬A to a proof of A. If A is inhabited, there are generally
many such functions to choose between (one for each element of A), and so there is no general
description we can use to specify a general map from ¬¬A to A.

We can specify the function taking you from proofs of A to proofs of ¬¬A in a somewhat
abstract, but completely general, manner; it is a bit of a tongue-twister, so let’s go slowly. A proof
of ¬¬A is a function which takes proofs of ¬A to proofs of ⊥, so what we really want is a function
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which takes us from a proof of A together with a proof of ¬A to a proof of ⊥. But a proof of ¬A
is itself a function taking proofs of A to proofs of ⊥, so all we need to do is apply that function to
the proof of A we started with, and we get that illusive proof of ⊥. (This is a very curious process,
since there are no proofs of ⊥(!), but it really does work, and so this justifies the intuitionist view
that A −→ ¬¬A is tautologous, but not the converse ¬¬A −→ A.)

By the way, this is a special case (when B = ⊥) of the fact that there is always a map from
proofs of A to proofs of (A −→ B) −→ B, given essentially by “evaluation”: given an element of A
and a map from A to B, we get the desired element of B by applying the map to the element of A.

The idea that propositions in intuitionistic logic behave like sets has been found useful in several
contexts. One is in the study of computer programs: one might treat a program (or better still,
the specification of a program) as an entailment between “propositions” which in fact describe
datatypes. A valid entailment, or better, a derivation, would then be a program that correctly
carries out the intended specification. One may then use the techniques of logic to debug programs
as you write them. This idea has been at the core of a lot of research activity in theoretical
computer science, and has informed the development of programming languages and the analysis
of programming paradigms.

I.2 Modal Logic

Modal logic is a general term used to describe a large family of logics which intend to analyse
and describe such notions as “possibly”, “necessarily”, and others. We shall briefly describe two
variants which have been found useful, either philosophically or mathematically.

In both cases, our language will be the same: to the usual connectives of classical propositional
logic, we add two operators: � and ♦. The intended meaning of �p is “necessarily p”, and the
intended meaning of ♦p is “possibly p”. In addition, these are dual in both our examples: ♦p is
logically equivalent to (may even be defined as) ¬�¬p.

So, for instance, if p represented the statement “football is fun”, then �p would mean “football
is necessarily fun” and ♦p would mean “football is possibly fun” or “it’s possible that football is
fun”. Note that this could also be expressed by “it’s not necessarily the case that football is not
fun”.

I.2.1 S4

One very common modal logic is generally known as S4. It adds to the usual rules of classical
propositional logic the following rules. First, we have four “axioms”: these are statement-forms
which are intended to be tautological, in that they should be true, regardless of the truth values
of their constituent atoms. They could be regarded as derivation rules with no premises, only the
formulas as conclusions.

�p −→ p

�p −→ ��p

⊤ −→ �⊤
�p ∧�q −→ �(p ∧ q)

Furthermore, we add the derivation rule

p −→ q

�p −→ �q
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You might like to interpret these rules and see if you think they capture the meaning of “necessarily”.
(One reason there are so many variants of modal logic—and there are many variants indeed—is
that there are many disagreements as to just what properties really do characterize “necessarily”.)
For example, the first axiom says that if some statement is necessarily true, then it is in fact true.
Furthermore, you might notice that these rules are a bit stronger than they might appear. For
instance, the second axiom isn’t merely an implication, but in view of the first axiom, it really
establishes an equivalence �p ↔ ��p. A similar remark might be made of the third and fourth
axioms. In addition, there is a derived rule:

p

�p

There is a subtlety here worth mentioning. In S4 it is not true that p −→ �p is tautologous, but
even if p doesn’t tautologically imply �p, it is true that if you can prove p without premises, then
you can prove �p (again, without premises). (This is not true if there are other premises involved.)

By the way, if you wonder what S4 has to say about “possibly”, remember that the usual rules
of propositional logic will generate properties of ♦, since it is dual to �. So, for instance, the first
axiom above will force the implication p −→ ♦p.

I.2.2 G

One variant modal logic is of interest to us particularly because it captures the notion of “provable”.
In this system, sometimes known as G (after Gödel, one of the great twentieth century logicians),
we add the following two axioms and the following derivation rule to the usual rules of classical
propositional logic.

�(p −→ q) −→ (�p −→ �q)

�(�p −→ p) −→ �p

p

�p

Before discussing the meaning of � in system G, it’s worth pointing out that this system is different
from S4. For instance, in G you cannot prove �p −→ p, nor is any statement of the form ♦p provable
in G. But if one added �p −→ p and �p −→ ��p as additional axioms to G, then the resulting
system would just be (equivalent to) S4.

So, just what is the intention behind system G? One could think of �p as “necessarily p”, but
more insight into the system may be obtained by thinking of �p as meaning “p is provable”. So,
for instance, the first axiom above would be interpreted as saying that if you can prove p −→ q and
p, then you can prove q as well (which is true). This interpretation of system G is related to what
are known as Gödel’s incompleteness theorems, which we shall explore at the end of the course.

I.3 Substructural Logic

Our last family of variant logics attempt to address, among other things, the seeming paradox that
one can have an implication p −→ q be true without any connection between p and q, as in “if you
are a purple unicorn, then pigs can fly”. Other “issues” such logics address involve sequentiality
and preservation of resources, in the following sense. In classical propositional logic, A ∧ B is
equivalent to B ∧ A, but there are contexts where that seems a bit unlikely: consider for example
“John flew to Toronto and he had breakfast” compared to “John had breakfast and he flew to
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Toronto”. There are many uses for a logic in which “A and B” is not equivalent to “B and A”
(we shall see one application when exploring sentence-generation in linguistics, at the end of the
course). Furthermore, in classical propositional logic, one may re-use premises as often as necessary
(this is the essence of the repetition rule), but again, one may imagine a scenario where this isn’t
likely. Consider for instance the fact (in classical propositional logic) that if A ⊢ B and A ⊢ C,
then also A ⊢ B ∧ C. Imagine now that A represents the statement “I have $1”, B represents the
statement “I can buy a chocolate bar”, and C represents “I can buy a pack of chips”. With this
interpretation, that fact of propositional logic seems questionable: “if I have $1 then I can buy a
chocolate bar” and “if I have $1 then I can buy a pack of chips” may well be true and yet “if I have
$1, then I can buy a chocolate bar and I can buy a pack of chips” may nonetheless be false (it is
almost certainly false, in fact!). Classical propositional logic is not intended to handle such matters
of limited resources, but one can easily imagine that it might be useful to have a logic which can;
in fact such logics are proving very useful in computer science, as well as in quantum physics.

We will see in full detail a simple such logic in the section on sentence-generation in linguistics,
so for now, I shall just point out how one might arrive at such a logic. The basic idea is to alter the
fundamental context in which our derivation rules are situated. There are two basic assumptions
our rules operated with: one was that it didn’t matter what order the premises were given, that as
long as the required premises came before the suitable conclusions, all would be well (in fact, we
explicitly had some variant rules to guarantee this). That would have to be discarded. The order
of premises would become important in any logic that attempts to differentiate between statements
such as A ∧B −→ C and B ∧A −→ C.

Next, we allowed premises to be used repeatedly in our rules—the repetition rule made this
explicit, but we used this principle even without explicitly using the repetition rule. Again, that
would have to be abandoned as a general principle: a resource-sensitive logic would have to be sure
that every premise was used exactly once, not more, not less. (Actually, unused premises are less
problematic than repeatedly used premises, and one could relax things in that direction.) So, if
one needed to use a premise twice, one would have to list it twice. In our example with the money
and the candy, we would be happy with the symbolic summary that A ⊢ B and A ⊢ C implies
A ∧A ⊢ B ∧ C. “If I have $1 and $1, then I can buy a chocolate bar and a pack of chips”. But in
this logic, we would not expect to have a valid derivation of A ⊢ A ∧A. (After all, money doesn’t
grow on trees . . . )
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Chapter 5

Formal Proof—Predicate Logic

5.1 Limitations of Propositional Logic

All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

This is the standard example of a valid deductive argument, but you cannot prove its validity
in propositional logic. “All men are mortal” is a simple statement. Suppose we symbolize it with
a propositional constant H. “Socrates is a man” is another simple statement, S, and “Socrates is
mortal” is another, M . The argument then looks like:

H,S ⊢M

which clearly is an invalid argument. Its form is

p, q ⊢ r

and it’s easy enough to think of a substitution instance of r which is false when substitution instances
of both p and q are true. (“1 + 1 = 2”, “John Abbott College is a cegep” ⊢ “Bart Simpson is
Prime Minister of Canada”. Hardly a valid argument!) By the methods of propositional logic, the
argument is invalid.

Of course, this is silly. The problem is that these sentences are not simple statements, but
instead involve several component parts. “All men are mortal” considers “men” and “mortal”, and
makes a connection between them. It has the form “All As are B” (where A represents “man” and
B represents “mortal”). Similarly for the other two statements.

Predicate logic lets us translate and construct derivations for arguments whose validity de-
pends on the components of simple statements. This chapter introduces the symbolism of predicate
logic and illustrates the kind of derivation rules it uses.

5.1.1 New argument forms

The form of the Socrates argument is:

All As are/have B. (Premise)
C is an A. (Premise)
C is/has B. (Conclusion)
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Other arguments that have the same form are:

All cats are furry.
Dusty is a cat.
Therefore Dusty is furry.

and

All blitzgedorffs have plurak zingers.
Gnafftzku is a blitzgedorff.
Therefore Gnafftzku has plurak zingers.

It doesn’t matter what you replace the letters with, as long as A is replaced with a kind of thing,
C with a thing of that kind, and B with a property that such things have (and you adjust for
grammatical correctness). In every argument of this form, whenever the first two sentences make
true statements, the third sentence will make a true statement.

The two premise-statements need not be true (not all cats need be furry). It doesn’t even
matter whether they are meaningful (what is a blitzgedorff? plurak? a zinger?) for us to be able
to say that the argument is valid. In every argument of that form, if the premises are true, the
conclusion cannot be false.

By contrast, the argument:

All Norwegians are human.
All Europeans are human.
Therefore all Norwegians are Europeans.

is invalid (even though its premises and conclusion are all true). It is invalid because it is an
argument of the form:

All As are B. (Premise)
All Cs are B. (Premise)
Therefore all Cs are A. (Conclusion)

If we replace A with “woman” and B with “human” (making appropriate grammatical adjust-
ments), and replace C with “men”, we get:

All women are human.
All men are human.
Therefore all men are women.

The premises of this argument are true; its conclusion is false. But the argument has the same
form as the Norwegians argument, which shows that the Norwegians argument is invalid.

Note that we have not (indeed, cannot) use our propositional truth tables to show invalidity,
since this analysis doesn’t fit into the framework of propositional logic. We have used another
technique, the method of counterexample: find another argument that has the same form and that
has true premises and a false conclusion. But this is not a suitable method for showing an argument
is valid (one could never be sure one had considered all possible counterexamples), so in this chapter
we shall develop a suitable extension of the Fitch-style natural deduction to construct derivations
of valid arguments. We shall not spend much time on the extension of analytic tableau to include
predicate logic, but a brief introduction may be found at the end of the chapter.
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5.2 Predicates

In propositional logic, the statement expressed by “Socrates was mortal” would be symbolized by
a statement symbol S, “Socrates was bald” by a different symbol B. We lose the information
that both statements are about the same subject. “Gandhi was bald” might be symbolized as G.
“Socrates was bald and Gandhi was bald” would be B∧G, while “Socrates was mortal and Gandhi
was bald” would be S ∧ G. The first two statements have something in common (they are both
about baldness). The second pair does not. The difference is lost in the symbolism.

The “All men are mortal” argument shows that such subtleties are important for some kinds
of inference. In that argument the second premise and the conclusion are both about the same
entity (Socrates). The first and second premises are both about things that have the same property
(being human). The link between the premise-statements is the property of humanity that all men
and Socrates have in common.

“Socrates is a man” states that a thing or entity or being (Socrates) has a property (humanness).1

The statement is true if and only if that thing actually has that property.
Predicate logic extends the formalism and methods of propositional logic so that the logical

relations between subjects and predicates can be considered.
There are new WFF-rules. We symbolize a simple (non-compound) statement using two dif-

ferent kinds of symbols: (1) one kind of symbol to point to the thing that has a property, and (2)
another kind of symbol that represents the property the thing is asserted to have. A symbol that
points to a thing is called a term. A symbol representing a property is a predicate symbol. So,
we assume we have a language (a set of basic symbols) containing a set of term constants (symbols
for some of the entities which we wish to consider), and a set of predicate symbols, each of which is
associated with a natural number (0, 1, 2, 3, 4, . . .) called the “arity” of the predicate symbol. (We
shall explain the meaning and role of “arity” below.)

In most mathematical contexts it is also very useful to have “function symbols” of various arities,
which represent functions which assign entities to entities. For example, if we were considering our
entities to be numbers, we might want to have a symbol s which represented the function “+1”, so
that if n was a term (representing some number), then s(n) would be the term representing that
number plus 1 (“the next number”, in an obvious sense). Similarly, one might want a symbol M
representing the multiplication function, so M(m,n) would be the term representing the product
of the numbers represented by the terms m,n. Generally we won’t consider function symbols very
much in this chapter, but we shall see them again when we consider Gödel’s theorem at the end of
the course.

If P is a predicate symbol of arity n, and if t1, t2, . . . , tn is a list of n terms, then P (t1, t2, . . . , tn)
is the predicate P applied to the terms t1, t2, . . . , tn. For example, “Socrates is mortal” becomes
M(s) where M is the symbol for the predicate “being-mortal” and s is the term or symbol for
the entity called “Socrates”. “Socrates is bald” is B(s). “Gandhi is bald” is B(g). These two
statements (B(s) and B(g)) ascribe the same property (the property of “baldness”, represented by
the symbol B) to two different things (represented by the terms s and g).

Likewise, if F is a function symbol of arity n, and if t1, t2, . . . , tn is a list of n terms, then
F (t1, t2, . . . , tn) is the term obtained when the “function” F is applied to the terms t1, t2, . . . , tn,
as with our example above of multiplication.

A predicate alone is a sort of pattern for a possible sentence. The predicate B in the above
example stands for something like “. . . is bald”. The ellipsis indicates that something is missing.
Clearly, “. . . is bald” is not a sentence and does not make a statement. It only makes a statement

1We shall assume that “man” in this context really means “human”—this is not a gender issue!
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when we provide the missing something: a term. The truth of the resulting statement depends
both on what subject the term names and on what property the predicate ascribes to that subject.

Because “. . . is bald” takes just one term as its argument (as a substitution for the “. . . ”), we
call B a unary or 1-ary predicate. But predicates may take more than one term to make them
complete; such predicates are often called “relations”. (It’s typical of mathematicians that they
then turn around and also call unary predicates “1-ary relations”, but we’ll not do that generally.)

By the way, a 0-ary predicate is just a propositional statement, as we’ve been dealing with for
the past several chapters. In a similar manner, a 0-ary function symbol is just an entity constant,
i.e. a term.

5.2.1 Predicates and relations

The sentence “Socrates is shorter than Plato” resembles “Socrates is bald” in being about both a
property and entities. We analyzed the second sentence as ascribing a property (the property of
being bald) to the thing called Socrates. Socrates is the subject and “. . . is bald” is the predicate.
But it seems perverse to consider “. . . is shorter than Plato” as a logical predicate in “Socrates
is shorter than Plato”. Plato is an entity just as much as Socrates is. Plato should also be
represented by a term and treated as an entity which could be replaced by another entity. We
would say Socrates and Plato are logical subjects of the statement “Socrates is shorter than Plato”.
So, it makes sense in this context to represent “shorter” as a two-place (“binary”) predicate, T
for example (for “tiny”?), which takes two arguments: T (s, p) represents “Socrates is shorter than
Plato”.

“Montreal is north of Burlington” is a similar sentence, which could be represented by N(m, b),
where N represents the predicate “. . . is north of . . . ”. We say such predicates are binary, or
2-ary, because they need two logical subjects. n-ary predicates are just predicates which require n
logical subjects, where n is some number. Such predicates express relations between their subjects.
For example, “Montreal is between Kingston and Quebec City” has three logical subjects (terms
standing for distinct entities). It should be symbolized by something like B(m, k, q). It does not
assert a property of Montreal. It expresses a relation between three subjects. It uses a 3-ary or
ternary (three-place) predicate symbol to express this relation. The predicate B is “. . . is between
. . . and . . . ”. Similarly, “I love Lucy” would be L(i, lucy)2 (“. . . love(s) . . . ” is a binary predicate).
“Arnie loves himself” would be L(a, a). Since “Arnie” and “himself” are two ways of referring to
the same entity, we would use the same symbol a for both. A relation can be a relation of a thing
to itself.

One binary relation gets special treatment in predicate logic. We use the symbol “=” to indicate
a relation between two terms that name the same thing. A statement like “Lewis Carroll was Charles
Dodgson” (the writer of Alice in Wonderland was the same person as the Oxford logician) might
be symbolized as ℓ = c.

The ambiguity of the verb “to be” has caused lots of problems in philosophy. In statements
like “Socrates was bald” the verb is the “is” of predication. It predicates the property of baldness
to Socrates. In the Lewis Carroll statement, the verb is called the “is” of identity. In logic we use
different symbols to avoid this dangerous ambiguity. So, we write B(s) to represent “Socrates is
bald” rather than B = s. The last statement is often said “not to type correctly”, meaning that
when we write “X = Y ”, both X and Y should be “the same type of thing”; “Socrates” is a human,
“bald” is a property of humans: these are not at all the same type of thing.

2Notice here that we treat “lucy” as a single symbol—even though it looks as if it is made up of several symbols!
A “symbol” is not quite the same thing as a letter of the alphabet, and may seem to be compound, even when it is
not. Usually the context makes this clear.
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For example, we might have terms c, ℓ, a representing the entities Charles Dodgson, Lewis
Carroll, and Alice in Wonderland. We might even have ‘ℓ’ representing the name ‘Lewis Carroll’
(as opposed to the person ℓ by that name). We might also have several predicates P (x) (“x is a
person”), S(x, y) (“x is a pseudonym of y”), T (x) (“x is the title of a book”), A(x, y) (“x is the
author of y”). Then we could “say” P (c), S(‘ℓ’, c), T (a), A(ℓ, a), A(c, a), and maybe even ℓ = c.3

(There is a branch of logic, called “type theory”, which studies this idea of giving things “types”,
and restricting the logic to respect the notion of typing.)

Since H(s) and N(m, b) and c = d symbolize statements, we can use the connectives of propo-
sitional logic to construct new statements. Thus, we can say H(s) ∧ N(m, b) (Socrates is human
and Montreal is north of Burlington), and ¬N(b,m) (Burlington is not north of Montreal) and so
on. “You’re not funny!” would be ¬F (y).

5.3 Quantifiers: the tale of ∀belard and ∃loise
We need still more tools before we can do the “all men are mortal” derivation. How should we
symbolize “all men are mortal”?

This statement is equivalent to the conjunction “If a is a man then a is mortal and if b is a man
then b is mortal and . . . ”. We could symbolize this as:

(H(a) −→M(a)) ∧ (H(b) −→M(b)) ∧ (H(c) −→M(c)) ∧ . . .

but the statement would be hugely long, with one conditional for every thing in our universe (the
ellipsis is not meaningful in our symbolism).

“In our universe” brings up the notion of a universe of discourse. The universe of discourse
consists of everything that could be a term in our statements. It relates to the idea of “relevance”
in ordinary discourse. When you visit someone who has just redecorated her house and she says,
“What do you think?” there is an implicit context where your remarks will be understood to be
relevant to the redecoration. That is, if you say “Everything is boring” it is understood that “every-
thing” includes the colours, the fabric patterns, the layout, the furniture styles, etc. “Everything”
would not be taken to include your new car or the movie you saw last night. In predicate logic,
the universe of discourse is everything that exists (i.e., everything that could be referred to by a
term) in any statements in a particular piece of discourse (a particular argument, a book about
logic, etc.).

If we restrict our universe of discourse to Socrates, Plato, Aristotle and Hypatia, represented
by s, p, a, and y, then “All humans are mortal” becomes

(H(s) −→M(s)) ∧ (H(p) −→M(p)) ∧ (H(a) −→M(a)) ∧ (H(y) −→M(y))

Most discourse involves a wider range of entities. We need another solution.
When a mathematician wants to say something about a whole lot of numbers, she doesn’t name

every particular number to which the statement applies. She uses a variable to represent numbers.
To say, “Any number greater than three is greater than two”, she could say “If x > 3 then x > 2”,
or “x > 3 −→ x > 2”. The mathematician’s universe of discourse could be specified to include only
numbers, so we’d know that x has to stand for a number. In English, pronouns perform a similar
function. “He” can be used to represent any male person (or cat or whatever). “He” works as a

3But notice that we could not have ‘ℓ’= c, nor S(ℓ, c), as these would confuse a name with an entity bearing that
name; these type wrongly.
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term as long as either (1) we know what person (or cat, etc.) it points to, or (2) we know that it
doesn’t matter what particular person, cat, etc. it points to.

a, s, p and so on are particular terms. They are like constants, like the particular numbers 3
and 2 in the arithmetic expressions above. They are not variables. We must add variables (for
terms) to our setting, in order to handle unspecified terms.

H(x) symbolizes “. . . is human”. x > 3 works like “. . . is greater than three”. In each case
the ellipsis needs to be filled in with something that identifies just what thing(s) the predicate or
relation applies to. x > 3 is not true when x is 1 or 2 or 3. H(x) is not true when x is Dusty (my
cat). We have to say what thing the variable stands for.

We used statement forms to describe general rules for operating on any statement. Expressions
like H(x) and N(x, y) and x > 3 are also statement forms. They are not true or false until the
variable terms x and y are given values. Statement forms like H(x) and N(x, y) and x > 3 are
“propositional functions”. A propositional function is the form of a predicate-logic statement.

What things does the predicate H apply to? Between what things does the relation N hold?
For this course, these questions are answered by the notion of the universe of discourse: it is just
the collection of things our predicates apply to.4

Now that we have a notion of variable term, we can express the notions of “every” and “some”
in the following way, using “quantifiers”.

The Universal quantifier is the symbol ∀; a universally quantified formula is the symbol ∀
plus a variable term (as ∀x) placed before a propositional function. ∀x is read “for all x . . . ” or
“for any x . . . ”. It says that the propositional function is true when x is replaced by any term
that points to any logical subject in the universe of discourse. Thus “all men are mortal” would be
symbolized ∀x(H(x) −→M(x)). It says “for all x, if x is human then x is mortal” or “take anything
in the universe of discourse: if that thing is human then that thing is mortal”.

The Existential quantifier is the symbol ∃; an existentially quantified formula is the symbol
∃ plus a variable term (as ∃x) placed before a propositional function. ∃x is read “there is at least
one x such that . . . ”, or (geek-speak!) “there exists at least one x so that . . . ”. It says that the
propositional function is true when x is replaced by at least one of the terms that point to subjects
in the universe of discourse. Thus ∃xB(x) says “there is at least one x such that x is bald” or
“at least one thing in the universe of discourse is bald”. This is equivalent to a disjunction like
B(s) ∨ B(p) ∨ B(a) ∨ B(y) in the limited universe of discourse of Socrates, Plato, Aristotle and
Hypatia. It is equivalent to an indefinitely long disjunction in a larger universe.

When a quantifier is applied to a statement containing a variable, that variable “disappears”
as far as the meaning of the statement goes. Consider the difference between H(x) and ∃xH(x).
The first says of (some unspecified entity called x) that x is human, whereas the second says
“something is human”. The x is in a sense merely a “place-holder”, and could be replaced by any
other variable: ∃yH(y) is equivalent to ∃xH(x) for any variables x, y. We say that the variable
x has become “bound” by the quantifier; variables that are not bound by a quantifier are called
“free” (in a sense they retain their individuality!). We make this precise in the following definition.

We assume our formal language includes a collection of variables, for example x, y, z, w, . . . ,
x′, y′, z′, . . . , x′′, . . ., a collection of (entity or term) constants, and a collection of predicate symbols
(each with its associated arity). We define “terms” as being either variables or constants, and
formulas (WFFs) as follows.

4In a more subtle setting, we may have several different universes of discourse, and the arity of a predicate symbol
would specify which universes each of its arguments ranged over. For instance, we might say SN is a predicate of
arity P × N, with the intention that SN(p, n) represented the statement “p has student number n”, restricting p to
be a person and n to be a number. This is essentially what “type theory” deals with, as referred to above.
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An atomic formula is an expression of the form P (t1, t2, . . . , tn), where P is an n-ary
predicate symbol and t1, t2, . . . , tn are terms.
A formula is either: an atomic formula, or
an expression ¬ϕ, where ϕ is a formula, or
an expression ϕ ∧ ψ, where ϕ and ψ are formulas, or
an expression ϕ ∨ ψ, where ϕ and ψ are formulas, or
an expression ϕ −→ ψ, where ϕ and ψ are formulas, or
an expression ∃xϕ, where x is a variable and ϕ is a formula, or
an expression ∀xϕ, where x is a variable and ϕ is a formula.

In the expressions ∃xϕ, ∀xϕ, we say the variable x is bound by the quantifier. We say
∃xϕ is the scope of the ∃ quantifier in ∃xϕ, and similarly ∀xϕ is the scope of ∀ in ∀xϕ.

We must be careful about parentheses in these expressions: for example, whenever ϕ,ψ are com-
pound formulas, they should be enclosed in parentheses before forming the new compound formulas
above. So, ∀xP (x) is well-formed if P (x) is atomic, but we should write ∀x(A(x)∨B(x)), where we
enclose the compound formula A(x) ∨B(x) in parentheses before prefixing it with the quantifier.

That formula also illustrates the meaning of the scope of a quantifier and shows the need for
suitable parentheses: in the expression ∀x(A(x)∨B(x)), the scope is the entire formula, the x refers
to the same entity in both A(x) and B(x). This WFF says “ everything has either property A or
property B”.

But in (∀xA(x)) ∨ B(x) the scope of ∀ is only ∀xA(x); the x in B(x) is not related to (and
need not reference the same entity as) the x in A(x). This is an open formula, it has one free
variable (the x in B(x)), unlike the first formula, which had no free variables. This WFF says
“either everything has property A, or x has property B”.5

Note also that this indicates the need to be careful not to accidentally forget to include parenthe-
ses, since they indicate the scope. Our convention on parentheses implies that ∀xA(x)∨B(x) should
be interpreted as (∀xA(x)) ∨ B(x); if that is not the intended meaning, one must use parentheses
to make the real meaning clear. This example also illustrates another point: it’s good practice
to use different variables for free variables and for bound variables, in order to make the formula
easier to read. So (∀xA(x))∨B(x) is less likely to cause confusion if it is written (∀yA(y))∨B(x);
remember that changing a bound variable has no effect on the meaning of a WFF.

We distinguish between WFFs that are statements (often called “sentences” or “closed for-
mulas”), and those that are not (i.e. propositional functions, which sometimes we call “open
formulas”). In this technical sense sentences are WFFs without free variables, in other words,
those WFFs in which all variables have been bound by a quantifier. Sentences are those WFFs for
which it makes sense to ask if they are true or not. For example, H(x) is not a sentence (because
x is free), and without knowing just what x was, it’s not really meaningful to ask if this sentence
is true. But ∀xH(x) is a sentence. ∀xH(x) would be read as “for any x, x is human”, which
means “everything is human”. This is a statement of which it makes sense to ask ‘is this true?”;
whether or not it is true would depend on just what one’s universe of discourse is. If the universe
of discourse consists of everyone registered for this course, then the answer is (probably!) “yes, it is
true”, but if it refers to all living creatures in my house, the answer might be “no, it is false, since

5You might try to wriggle out of this scope-problem by thinking “x could refer to anything, so ‘x has property B’
really just means ‘everything has property B’ ”. Well, you cannot get off that easily! For you still have a different
statement. For instance, if we were talking about people, “everyone is male or female” doesn’t mean the same thing
as “everyone is male or everyone is female”. You really do need to pay attention to the scope of a free variable within
a quantified formula.



114 CHAPTER 5. FORMAL PROOF—PREDICATE LOGIC

my cats are not human”. The mathematical statement “there is at least one x, so that x is greater
than three and x is less than six”, or “something is between three and six”, would be symbolized
∃x(x > 3 ∧ x < 6). Depending on the universe of discourse, this is probably a true statement, but
one cannot meaningfully say that about the open formula x > 3∧x < 6. That is really a predicate,
stating a property of the variable x.

5.3.1 Translation

Four classical “all” and “some” statement-types are symbolized as:
Form Symbolized

All A is/are B. ∀x(Ax −→ Bx)
No A is/are B. ∀x(Ax −→ ¬Bx)
Some A is/are B. ∃x(Ax ∧Bx)
Some A is/are not B. ∃x(Ax ∧ ¬Bx)

Do not translate “all whales are mammals” as ∀x(W (x)∧M(x)). It is ∀x(W (x) −→M(x)). The
first (a universally quantified conjunction) says that everything is a whale and a mammal. That is
wrong; it is just not what “all whales are mammals” means. The second (“take anything you like,
if it’s a whale then it’s a mammal”) is right. Translating “Some mathematicians are women” as
∃x(M(x) −→ W (x)) would also be a mistake. This says that there is something such that, if it’s a
mathematician then it’s a woman. But such a thing could be the shoe on my right foot!—that is
not what was meant. What we meant to say is ∃x(M(x) ∧W (x)) (there is something that is both
a mathematician and a woman).

Multiple Quantifiers

Statements like “someone loves someone” require more than one quantifier. We translate it as
∃x∃yL(x, y).

How about “someone doesn’t love anyone”? It’s ∃x(¬∃yL(x, y)) which says there is something
(x) such that it is not the case that there is something (y) such that x loves y. x and y don’t have
to refer to two distinct things. “Someone doesn’t love anyone” includes that the person doesn’t
love himself. Another equally good translation would have been ∃x∀y¬L(x, y) (there is someone
(x) such that, no matter whom you pick (call that person y), x does not love y). (Exercise: What
if you want to exclude self-hatred, and say “someone doesn’t love anyone but himself”? Hint: you
will need to use the equality predicate.)

The universe of discourse in these examples is people. If the universe of discourse included
other kinds of stuff and I wanted my statements to refer just to people loving people, I would have
had to use P (x) (x is a person). “Someone doesn’t love anyone” would then be ∃x(P (x)∧∀y(P (y)
−→ ¬L(x, y))) (“some person does not love any person”).

Examples

Example: “The only good test is one that some students will fail”.

∀x((T (x) ∧G(x)) −→ ∃y(S(y) ∧ F (x, y)))

If anything (x) is a good test (“is a test and is good”) then something (y) is a student and y will
fail x.

Example: “Any test that every student fails is a bad test”.

∀x(T (x) ∧ (∀y(S(y) −→ F (x, y))) −→ ¬G(x))
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If anything (x) is a test and everything that is a student fails x, then x is not good (bad). Another
way we could symbolize this is

∀x(T (x) −→ (∀y(S(y) −→ F (x, y)) −→ ¬G(x)))
If anything (x) is a test then if every student fails x then x is bad. These are equivalent because
(exercise!) (p ∧ q) −→ r is equivalent to p −→ (q −→ r).

Example: “I’ll go first”. This means something like “I will go and, if anything goes and that thing
is not me, then that thing goes after me”. Using G(i) for “I will go” and A(x, y) for “x goes after
y” I get G(i) ∧ ∀x((G(x) ∧ ¬(x = i)) −→ A(x, i)).

Try the following exercises, and if you need more help with translation, check out the Alberta Notes:
I’ve provided a link to the appropriate section on the course webpage.

5.3.2 Translation exercise

Translate these statements into the symbolism of predicate logic. Specify what each of your predi-
cates means, as “P (x) = x is a politician; C(x) = x is a crook”, etc.

1. All politicians are crooks.

2. Some crooks are not politicians.

3. Some numbers are even and some are odd.

4. No non-scientists are able to repair flush toilets.

5. Some Unitarians believe in a deity.

6. Not all males are male chauvinists.

7. Some people don’t love everybody.

8. Nobody knows everybody.

9. Nobody knows anybody.

10. A platypus is a mammal.

11. A number that can only be divided evenly by itself and 1 is a prime number.

12. Barbers shave all and only those who are not barbers.6

13. He jests at scars who never felt a wound.7

14. A lawyer who pleads his own case has a fool for a client.

15. Whosoever sheddeth man’s blood, by man shall his blood be shed.8

16. Every Christian obeys all the commandments.

17. No psychiatrist can help anyone who doesn’t want to be helped.

18. The first cut is the deepest.

6The equivalence connective may be helpful for the notion of “all and only”.
7(Shakespeare) Include wounds and scars as things in your universe of discourse. “John did not feel a wound”

might be symbolized as ∃x(W (x)∧ ¬F (j, x).
8Genesis 9:6.
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5.4 Derivation Rules for Quantifiers

We retain all the derivation rules for propositional logic. In addition, we need special predicate-logic
derivation rules to get rid of quantifiers or add quantifiers. These can be a little technical, due to
the need to be careful with variables (especially when they are bound or unbound by the addition
or the removal of quantifiers), but in essence they should seem very familiar. The thing to keep
in mind is that ∀ behaves somewhat like a huge (maybe even infinitary) conjunction, and ∃ like
a huge disjunction, as we saw when the quantifiers were introduced. So not too surprisingly, the
rules for ∀ look a bit like the rules for ∧, and the rules for ∃ look a bit like the rules for ∨. Try to
see the resemblance/analogy, and it should help you remember these rules.

5.4.1 Universal quantifier rules

Suppose ∀xP (x) is true: then for any entity represented by any term t, P (t) is also true. For
instance, if we have as a premise ∀x(H(x) −→ M(x)) (for any x, if x is human then x is mortal),
then we can infer H(s) −→ M(s) (if Socrates is human, then Socrates is mortal). In general, from
the statement that something is true of any arbitrarily selected thing x, it follows that it is true of
some particular instance (thing) t.

This gives us the following elimination rule for ∀.
...

...

m ∀xP (x)
...

...

n P (t) (∀E), m

where t is any term. Here is an example:

1 ∀x(H(x) −→M(x))

2 H(s)

3 H(s) −→M(s) (∀E), 1
4 M(s) (−→E), 2, 3

which proves the classic “All men are mortal. Socrates is a man. Therefore Socrates is mortal”.
On line (3) we eliminate the quantifier by “instantiating” the variable x in the generalization (line
(1)) by the particular instance: Socrates. The derivation ends with the (−→ E) rule, familiar from
propositional logic.

This rule should remind you of (∧E), in that we are starting from a premise asserting many facts
(for that is just what ∀xP (x) does assert, viz P (x) for every entity x in the universe of discourse),
and then concluding one of those facts, viz P (t). Remember that in effect, t is one of the many
possible values x represents.

Be careful about the form of the rule: we must replace all occurrences of the variable x with
the term t, and we must keep the entire predicate P when we do so; we cannot just keep part of
the predicate. To use rule (∀E), the universal quantifier must be the first thing on the line, and
the whole line must be in its scope. We remove the quantifier from the start of the line and replace
every instance of the variable that was bound by that quantifier with the same particular term.
For example, we can not use rule (∀E) on the statement ∀x(H(x) −→ M(x)) ∧H(s), because the
universal quantifier has only part of the line in its scope. In this case we would first have to use
(∧E) to get the quantified expression on a line of its own, and then use (∀E).
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For instance, the following are not valid:

1 ∀x(H(x) −→M(x))

2 M(d) (∀E), 1
1 ∀x(H(x) −→M(x))

2 H(s) −→M(d) (∀E), 1

In the first example, we have used the true premise that all men are mortal to derive “Donny (my
pet rock) is mortal”. But Donny (being a rock) is not mortal, so the inference is invalid. The
problem is that all of the predicate H(x) −→M(x) must be used in the substitution, not justM(x).

In the second example, we used the true premise that all men are mortal to derive “If Socrates
is a man then Donny (my pet rock) is mortal”. Donny is still not mortal, but Socrates is/was a
man, so the conditional on line (2) is false even if the premise (1) is true. That shows that the
inference is invalid.

The introduction rule for ∀ is technically a bit trickier, as it involves a new construct in our
derivations. The idea is simple enough: if we can prove P (u) is true for every entity u in the
universe of discourse, then we’ve proven ∀xP (x) is true. The problem is how to write down and
prove P (u) for every u in the universe—in principle this would seem potentially to need an infinite
number of statements and proofs. We get around this by introducing a “new” variable (for example
u) into the context, a variable which does not appear anywhere else in the derivation.9 Then we
suppose that we have a subderivation without additional premises which uses that new variable,
and proves it has the property represented by P , i.e. the subderivation should prove P (u). If we
can do that, in other words, if we can prove P (u) for any u whatsoever, with no special assumptions
or knowledge about u itself, then we can say we’ve proven “P (u) for any u”, or in other words,
we’ve proven ∀uP (u), and so equivalently ∀xP (x). This rule is written this way:

...
...

m u
...

...
...

n P (u)

n+ 1 ∀xP (x) (∀I), m–n

where u is a “new” variable (one that doesn’t appear elsewhere in the derivation, outside the
specified subderivation). We “decorate” the subderivation with the u to indicate that it is new,
and that its scope is only as shown, i.e. that it appears only in the indicated subderivation.

The idea is that this subderivation represents the potentially infinite number of derivations of
the potentially infinite number of statements P (u), and so in this way, this rule is analogous to
(∧I). We prove one “general” case instead of lots of specific cases.

Here is an example:
1 ∀x(P (x) −→ Q(x))

2 ∀xP (x)
3 u P (u) −→ Q(u) (∀E), 1
4 P (u) (∀E), 2
5 Q(u) (−→E), 3, 4

6 ∀xQ(x) (∀I), 3–5
9Actually, we could be a little more liberal, but making precise the technical conditions on just where and how

such a variable might appear elsewhere harmlessly is more trouble than it is worth, so for simplicity’s sake, we shall
just require that the variable be entirely new.
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Note that we proved Q(u) for an arbitrary variable u: since it was new, we could have used any
other variable and got the same result, so we are (morally!) justified in claiming that we’ve proven
∀xQ(x). (That is the intent of the (∀I) rule.)

Remark: we have essentially just shown that ∀x(P (x) −→ Q(x)) ⊢ ∀xP (x) −→ ∀xQ(x). You
might be tempted to think that in fact ∀x(P (x) −→ Q(x)) is equivalent to ∀xP (x) −→ ∀xQ(x), but
this is not in fact true. Find an interpretation for P and Q that convinces you there is no entailment
the other way, in other words, that ∀xP (x) −→ ∀xQ(x) ⊢ ∀x(P (x) −→ Q(x)) is not valid.10

5.4.2 Existential quantifier rules

From the statement that Socrates is bald, we can validly infer that someone is bald. Given a state-
ment that ascribes some property or relation to some particular thing (represented by a particular
term), we can infer the statement that results by replacing zero or more instances of that term with
a variable and putting the whole resulting expression within the scope of an existential quantifier
using that same variable. So, from B(s) we can infer ∃xB(x). This is the basis for the introduction
rule for the existential quantifier. It may be written thus:

...
...

m P (t)
...

...

n ∃xP (x) (∃I), m

The reverse inference does not work. Knowing that somebody was bald does not permit us to
infer that John Lennon in particular was bald. We shall soon have a more subtle rule for existential
elimination.

Here is an example. This example exposes a tiny subtle point about our quantifier rules,
however—see if you can spot it.11

1 ∀xP (x)
2 P (t) (∀E), 1
3 ∃xP (x) (∃I), 2

In the (∃I) rule, please note that you do not have to replace all (or even any) occurrences of the
term. From the premise H(r) ∧ (B(r) ∧ S(r)) (Little Robin is handsome and brave and strong) we
could validly infer ∃x(H(x)∧(B(x)∧S(x))) (“Somebody is handsome, brave and strong”). It would
also be valid to infer ∃x(H(x) ∧ (B(r) ∧ S(r))) (“Somebody is handsome and Little Robin is brave
and strong”). It would not be correct to derive ∃xH(x)∧(B(r)∧S(r)), however, because (∃I) cannot
be used on part (just the H(r) part, in this example) of a line. The existential quantifier has to be
put in front of the whole line, and parentheses may have to be added to ensure that the whole line

10This might be easier to read if we used different bound variables wherever possible: we want to show that ∀xP (x)
−→ ∀yQ(y) ⊢ ∀z(P (z) −→ Q(z)) is not valid. For example, take P (x) to be “x is disgusting” and Q(x) to be “x is
disgusted”. (It’s possible disgusting people disgust other disgusting people, but not themselves.)

11The subtle point? This entailment should only be valid if our universe of discourse has some entities; otherwise
the premise is vacuously true, regardless of what P is (because there are no x to verify the condition), and the
conclusion is obviously false (since it says something exists, which isn’t true if the universe of discourse is empty).
How does this get reflected in the derivation above? Well, that derivation only works if the language you are using
has at least one term. Since we are supposing we have variables, we always have them as terms, but then that does
raise the following philosophical issue. Suppose the universe of discourse is empty, and so has no entities. Then
we don’t want this derivation to be correct. That would mean there really should be no terms, including variables,
making this entailment invalid, as required. To keep things simple, we shall ignore this issue further and shall assume
our universe of discourse always has some entities, and is never empty.
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is within the scope of the quantifier. By the way, if we really wanted to infer ∃xH(x)∧ (B(r)∧S(r))
from the premise above, we could first use (∧E) to get H(r) on a line by itself, use (∃I) to get
∃xH(x), then use (∧E) again to get B(r) ∧ S(r) from the premise, and then use (∧I) to get the
desired result.

Finally we turn to the elimination rule for the existential quantifier. Our analogy will be with
the (∨E) rule, proof by cases. We shall have a version of “proof by cases” for ∃ as well. Let’s see how
this might work. Suppose ∃xP (x) is true. We want to use this as a premise to derive some formula
C. In the case of disjunction, we had to have subderivations for each possibility represented by the
disjunctive premise; here that would amount to subderivations for each possibility P (u), where u
could be any entity in our universe of discourse: a potentially infinite collection of subderivations.
To avoid that, we use the “new variable” trick again: we construct a subderivation with premise
P (u) and conclusion C, where u is a new variable, one that appears nowhere else but in this
subderivation. Then since we know nothing whatsoever about u, we have in effect proved C from
merely knowing that P held for something (P (u)). Since u is “new”, it could be anything, and
so this subderivation in effect represents all the cases implicit in the premise ∃xP (x). So we are
justified in concluding C from ∃xP (x). Here is what the rule looks like

...
...

k ∃xP (x)
...

...

m u P (u)
...

...

n C

n+ 1 C (∃E), k, m–n

where u is a “new” variable (one that doesn’t appear elsewhere in the derivation, outside the
specified subderivation). We “decorate” the subderivation with the u to indicate that it is new,
and that its scope is only as shown.

Here is an example:
1 ∃x∀yP (x, y)
2 u ∀yP (u, y)
3 P (u, u) (∀E), 2
4 ∃xP (x, x) (∃I), 3
5 ∃xP (x, x) (∃E), 1, 2–4

5.4.3 Other rules

Since bound variables don’t have any effect on the truth of a formula, we may change bound
variables whenever we want. In fact, this can be proven; for example we have a (derived) rule as
follows. ...

...

m ∃xP (x)
...

...

n ∃yP (y) Change of bound variables, m

This (and the corresponding rule for ∀) is an exercise at the end of this chapter.
As with propositional logic, you may use derived rules, as long as you explicitly state them and

prove them. I’ll point out some examples later. Generally, this isn’t something you should worry
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...
...

m u
...

...
...

n P (u)

n+ 1 ∀xP (x) (∀I), m–n

...
...

m ∀xP (x)
...

...

n P (t) (∀E), m

Universal Introduction (∀I) Universal Elimination (∀E)

...
...

m P (t)
...

...

n ∃xP (x) (∃I), m

...
...

k ∃xP (x)
...

...

m u P (u)
...

...

n C

n+ 1 C (∃E), k, m–n

Existential Introduction (∃I) Existential Elimination (∃E)

where u is a new variable in (∀I) and (∃E).

Table 5.1: Natural deduction rules for quantifiers

too much about; if a derived rule is really useful, I’ll mention it. Otherwise you should expect to
use only the four introduction and elimination rules and the rules for propositional logic.

The quantifier rules are summarized in Table 5.1.

5.5 Examples

5.5.1 Example

Let’s warm up with a simple example: “Ptah is an Egyptian god. Ptah is the father of all Egyptian
gods. Therefore Ptah is his own father”. This translates as follows.

G(p),∀x(G(x) −→ F (p, x)) ⊢ F (p, p)

Here is a derivation. The idea behind this one is that we want F (p, p), which seems related to
what’s inside the ∀ sentence. So we strip away (“eliminate”) that quantifier via (∀E) which gives
us an implication, which we can also eliminate to get what we want. The only trick is to choose
the right term to use in the (∀E) rule, but since the only term (entity) mentioned is Ptah, it’s a
good guess that that’s the one to use!

1 G(p)

2 ∀x(G(x) −→ F (p, x))

3 G(p) −→ F (p, p) (∀E), 2
4 F (p, p) (−→E), 1, 3
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5.5.2 Example

Here is a lovely example of an argument whose validity is not obvious, but which can be shown to
be valid by a derivation. The argument is

All the world loves a lover.
Bob does not love Jane.
Therefore Jane does not love herself.

Does that conclusion follow from those premises?

The trickiest bit in the derivation is translating the first premise. I took “All the world loves a
lover” to be equivalent to “Everybody loves everybody who loves somebody”. That leads to “Take
any x: if there is some y that x loves, then everybody loves x”. That leads in turn to “Take any
x, if there is some y that x loves, then whatever z you pick, z loves x”. The other two are easy
enough, so we get this entailment representing the argument:

∀x(∃yL(x, y) −→ ∀zL(z, x)),¬L(b, j) ⊢ ¬L(j, j)

Here is a derivation: see if you can see the strategy first, before reading my comments below.

1 ∀x(∃yL(x, y) −→ ∀zL(z, x))
2 ¬L(b, j)
3 L(j, j)

4 ∃yL(j, y) −→ ∀zL(z, j) (∀E), 1
5 ∃yL(j, y) (∃I), 3
6 ∀zL(z, j) (−→E), 4, 5

7 L(b, j) (∀E), 6
8 ⊥ (¬E), 2, 7
9 ¬L(j, j) (¬I), 3–8

So the conclusion is a valid consequence of the premises. Consider the strategy used in constructing
this derivation: We want to show ¬L(j, j), so we expect to use the (¬I) rule, which tells us to intro-
duce a subderivation with premise L(j, j), which we do on line 3. Line 1 is a universal generalization.
The scope of ∀x includes the whole statement. Since the statement on line 1 is true for any x, it
must be true when x is Jane, and that’s what line 4 says. Line 5 uses (∃I) on line 3 (if “Jane loves
Jane” is true, then there is at least one person or thing that Jane loves, i.e. Jane is a lover). From
(−→ E) (modus ponens) we can conclude line 6 (if Jane is a lover, then everybody loves her), giving
us a universally quantified statement on which we can use rule (∀E) (since everybody loves her,
so does Bob), to get a contradiction (line 8) (since Bob doesn’t love her). That finishes our use of
(¬I), as we hoped: we may conclude that Jane does not love Jane, since if we supposed she did
love herself we’d get a contradiction.

Remark: There is a possible alternate translation of the interpretation of the sentence “All
the world loves a lover”, which although equivalent, would make the derivation slightly different,
as well as an alternate inequivalent translation of this sentence, which would make the argument
invalid! Such are the consequences of the ambiguity of natural language . . .

An alternate equivalent translation might be ∀z∀x(∃yL(x, y) −→ L(z, x)). With this translation



122 CHAPTER 5. FORMAL PROOF—PREDICATE LOGIC

of “All the world loves a lover”, the derivation representing the argument might look like this:

1 ∀z∀x(∃yL(x, y) −→ L(z, x))

2 ¬L(b, j)
3 L(j, j)

4 ∀x(∃yL(x, y) −→ L(b, x)) (∀E), 1
5 ∃yL(j, y) −→ L(b, j) (∀E), 4
6 ∃yL(j, y) (∃I), 3
7 L(b, j) (−→E), 5, 6

8 ⊥ (¬E), 2, 7
9 ¬L(j, j) (¬E), 3–8

This is equivalent to our first translation, since

∀z∀x(∃yL(x, y) −→ L(z, x)) ≡ ∀x(∃yL(x, y) −→ ∀zL(z, x))

To verify this, prove (exercise!) that in general

∀z∀x(P (x) −→ Q(z, x)) ≡ ∀x(P (x) −→ ∀zQ(z, x))

so the previous equivalence is just the case where P (x) is ∃yL(x, y) and Q = L. (The answer may
be found in the “Answers to the exercises”.)

But there is another translation of “All the world loves a lover”, which is not equivalent—it
simply does not mean the same thing as the translations above (this is because “All the world
loves a lover” has two possible meanings in English). In our translations above, we imagined that
if x was a lover, then everybody loved x, but one might have meant something more modest: that
everybody loves some x who is a lover, but not necessarily the same x for everybody, in other words,
everybody loves a lover, but not necessarily all lovers. Some folks might love one lover, and others
might love another. That might translate thus: ∀x∃y(L(x, y)∧∃zL(y, z)). And with this wff, the
argument is no longer valid, simply because Bob might love someone other than Jane (and not love
Jane), and so be a lover, and Jane might love someone, even herself, and so be a lover, without any
contradiction. Isn’t ambiguous natural language lovely?

5.5.3 Example

“If there are no unicorns, then if Benji is a unicorn then Benji is orange”. This could be done two
ways: we could take “There are no unicorns” and “Benji is a unicorn” as premises, and have the
conclusion be simply “Benji is orange”. Or we could treat the whole sentence as one single unit,
a conclusion without any premises. (There’s another way: can you see it?) We’ll illustrate the
second view, a conclusion without premises. That gives us the entailment

⊢ ¬∃xU(x) −→ (U(b) −→ O(b))

which may be proved as follows. (Note that having two implications suggests we use (−→ I)
twice, which means having doubly nested subderivations, each with its own premise. The inner
subderivation is essentially what one would produce if one handled this as a simple conclusion with
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two premises.)
1 ¬∃xU(x)

2 U(b)

3 ∃xU(x) (∃I), 2
4 ⊥ (¬E), 1, 3
5 O(b) (⊥E), 4
6 U(b) −→ O(b) (−→I), 2–5

7 ¬∃xU(x) −→ (U(b) −→ O(b)) (−→I), 1–6

Note the use of contradiction to produce what we wanted at line 5. The whole point of this
argument is that by starting with an assumption that nothing has a particular property, any
further conclusions about things with that property must be valid, however silly they might seem
(because they are conclusions about non-existent entities). That’s the way material implication
works, as we’ve seen before.

5.5.4 Example

Here is a very important entailment (for reasons we’ll discuss in a moment):

∀x(¬P (x)) ⊢ ¬∃xP (x)

1 ∀x(¬P (x))
2 ∃xP (x)
3 u P (u)

4 ¬P (u) (∀E), 1
5 ⊥ (¬E), 3, 4
6 ⊥ (∃E), 2, 3–5
7 ¬∃xP (x) (¬I), 2–6

This is one half of an equivalence, in fact. Here is the other direction.

¬∃xP (x) ⊢ ∀x(¬P (x))

1 ¬∃xP (x)
2 u P (u)

3 ∃xP (x) (∃I), 2
4 ⊥ (¬E), 1, 3
5 ¬P (u) (¬I), 2–4
6 ∀x(¬P (x)) (∀I), 2–5

We see here that negation and the quantifiers work together much the same way negation works
with conjunction and disjunction: it “flips” between them. Explicitly, here is the equivalence above,
and a simple variant (which you should try to prove yourself!)

¬∃xP (x) ↔ ∀x(¬P (x))
∃x(¬P (x)) ↔ ¬∀xP (x)

(The second equivalence requires the double negation rule (¬¬E).)
You may use this equivalence when working with quantified formulas, should you think it helps.

Just reference it as “Equivalence”, giving the line number of the original quantified statement you
are replacing with an equivalent one. Here is an example:

¬∃xF (x) ⊢ F (a) −→ G(a)
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1 ¬∃xF (x)
2 ∀x(¬F (x)) Equivalence, 1

3 F (a)

4 ¬F (a) (∀E), 2
5 ⊥ (¬E), 3, 4
6 G(a) (⊥E), 5
7 F (a) −→ G(a) (−→I), 3–6

(Exercise: Construct a derivation without using the equivalence. It must be possible, as you could
always just “build in” the proof of the half-equivalence needed here. But see if you can find a shorter
way. Here’s a hint: the direct derivation is actually one line shorter! Another hint: “Benji”!)

5.5.5 Remark

There is a famous12 paradox of quantification, at least in classical logic, called “The drinkers’
paradox”. The following statement is a tautology “there’s someone in the bar with the property that
if they’re drinking, then everyone’s drinking”, ⊢ ∃x(D(x) −→ ∀yD(y)). This may easily be seen to
be valid, since ∃x(D(x) −→ ∀yD(y)) is equivalent to ¬∀yD(y)∨∀yD(y), using tautologies we’ve seen
already: ∃x(D(x) −→ ∀yD(y) ≡ ∃x(¬D(x)∨∀yD(y)) ≡ ∃x(¬D(x))∨∀yD(y) ≡ ¬∀xD(x)∨∀yD(y).
This requires the (¬¬E) rule; in fact it cannot be proven in intuitionist logic, without (¬¬E). So
maybe only intuitionists are sober . . . 13

5.6 Exercises

Construct derivations for each of the following entailments. (As before, a starred exercise uses the
(¬¬E) rule.) In questions 25, 26 and 27, where I’ve explicitly indicated “not the converse”, find a
model or situation which shows the converse is not valid.

1. P (a), Q(a) ⊢ ∃x(P (x) ∧Q(x)) 2. ∀x(P (x) −→ Q(x)), P (a) ⊢ Q(a)

3. ∃x∀yA(x, y) ⊢ ¬∀x∃y¬A(x, y)

4. ∀x(R(x) −→ B(x)),¬B(a) ⊢ ¬R(a)

5. R(a),∀x(¬G(x) −→ ¬R(x)),M(b) ⊢∗ ∃xG(x) ∧ ∃xM(x)

6. ∀x((R(x) ∧A(x)) −→ T (x)), A(b), R(b) ⊢ ∃xT (x)
7. ∀x(P (x) ∧Q(x)) ⊢ ∀xP (x) ∧ ∀xQ(x) 8. ∀xP (x) ∧ ∀xQ(x) ⊢ ∀x(P (x) ∧Q(x))

9. ∀x(∃yP (y) −→ Q(x)) ⊢ ∃yP (y) −→ ∀xQ(x) (where there is no free variable x in ∃yP (y))

10. ∃y∀xA(x, y),∀x∀y(A(x, y) −→ B(x, y)) ⊢ ∀x∃yB(x, y)

11. ∀x∃yA(x, y),∀x∀y(A(x, y) −→ A(y, x)),∀x∀y∀z(A(x, y) ∧A(y, z) −→ A(x, z)) ⊢ ∀xA(x, x)

12. ∃x(P (x) −→ ∀yQ(y)) ⊢ ∀xP (x) −→ ∀xQ(x)

13. ∀x(A(x) −→ B(x)) ⊢ ∃xA(x) −→ ∃xB(x)

14. P −→ ∀xQ(x) ⊢ ∀x(P −→ Q(x)) 15. ∀xR(x) ∨ ∀xS(x) ⊢ ∀x(R(x) ∨ S(x))
12I think this was first made famous by Raymond Smullyan (in What is the Name of this Book).
13But there is a classically equivalent statement which is provable intuitionistically—so they’re only moderately

sober.
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16. ∀x(P (x) −→ Q) ⊢ ∃xP (x) −→ Q

17. ∀x(P (x) −→ Q(x)),∀x(Q(x) −→ R(x)) ⊢ ∀x(P (x) −→ R(x))

18. ∀x∀yP (x, y) ⊢ P (a, a) 19. ∀x∀yP (x, y) ⊢ ∀xP (x, x)

20. ∀x(P (x) ∧Q(x) −→ R(x)), Q(a) ∧ ∀zP (z) ⊢ P (a) ∧R(a)

21. ∃xP (x) ⊢ ∀xQ(x) −→ ∃x(P (x) ∧Q(x))

22. ∀x∀y(R(x, y) −→ (P (x) ∧ ¬P (y))),∃x∃y(R(x, y) ∧R(y, x)) ⊢ ∃x(P (x) ∧ ¬P (x))
(and hence Q23:)

23. ∀x∀y(R(x, y) −→ (P (x) ∧ ¬P (y))),∃x∃y(R(x, y) ∧R(y, x)) ⊢ ⊥

24. ∃zR(z, z),∃y∀xS(y, x) ⊢ ∃y∃z(S(z, y) −→ R(y, y))

25. ∃x(P (x) ∧Q(x)) ⊢ ∃xP (x) ∧ ∃xQ(x) (but not the converse!)

26. ∀xP (x) ∨ ∀xQ(x) ⊢ ∀x(P (x) ∨Q(x)) (but not the converse!)

27. ∃x∀yR(x, y) ⊢ ∀y∃xR(x, y) (but not the converse!)

28. ∃x∃yR(x, y) ⊢ ∃y∃xR(x, y) and ∃y∃xR(x, y) ⊢ ∃x∃yR(x, y)

29. ∀x∀yR(x, y) ⊢ ∀y∀xR(x, y) and ∀y∀xR(x, y) ⊢ ∀x∀yR(x, y)

30. ¬∃x(P (x) ∧Q(x)) ⊢ ∀x(P (x) −→ ¬Q(x))

31. ∀x(P (x) −→ ¬Q(x)) ⊢ ¬∃x(P (x) ∧Q(x))

32. ∃x(P (x) ∨Q(x)) ⊢ ∃xP (x) ∨ ∃xQ(x)

33. ∃xP (x) ∨ ∃xQ(x) ⊢ ∃x(P (x) ∨Q(x))

34. ∀x(P (x) ∧Q(x)) ⊢ ∀xP (x) ∧ ∀xQ(x) 35. ∀xP (x) ∧ ∀xQ(x) ⊢ ∀x(P (x) ∧Q(x))

36. ∀x(P (x) −→ Q(x)),∃x(P (x) ∧R(x)) ⊢ ∃x(Q(x) ∧R(x))

37. ∀x(P (x) ∨Q(x)),∃x¬P (x) ⊢ ∃xQ(x)

5.6.1 Word problem exercises

For each of the following, translate the argument and construct a derivation for it.

1. Generous people are happy; Albie is intelligent, but not happy. Everyone is either generous
or they’re not very free with their money. Hence, someone is intelligent but not very free
with their money.

2. Groucho isn’t a member of any club that is willing to have him as a member. Any club that
isn’t willing to have Groucho as a member doesn’t. Therefore Groucho isn’t a member of any
club.

3. Bruce is charismatic. Bruce will retire to Australia only if everyone is satisfied. Everyone is
happy if they are satisfied. Everyone will retire to Australia if someone is charismatic. Hence
everyone is happy.
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4. France is a country bigger than Luxembourg; some country is bigger than France. If something
is bigger than a second thing, and the second is bigger than a third, then the first is bigger
than the third. So, some country is bigger than either France or Luxembourg (i.e. bigger
than France and bigger than Luxembourg—this is a case where in English usage or really
means ∧—do you see why?—which just goes to show how much more confusing everyday
language is than logic!).

5. Only people who are neither wealthy nor famous are logicians. Anybody who doesn’t need
to ask the price of anything is wealthy. So logicians need to ask the price of something. (∗)

6. Everybody loves somebody. Hence nobody doesn’t love anybody.

7. Here’s an almost biblical example:
If the first be greater than the second, then the second cannot be greater than the first. God
is that which is greater than all things. That which is is greater than that which is not.
Something exists.14 Therefore, God exists. (∗)

(If you find this too confusing, look up the translation in the solutions, and then try to
construct the derivation. Don’t just give up!)

8. Some students like Roger; all teachers like any student; Roger is a teacher. Therefore there
is someone who both likes and is liked by Roger.

9. All horses are animals; therefore all heads of horses are heads of animals

10. Some teachers like all students; no teacher likes any jerk. Therefore no students are jerks.

11. Show that the following argument is inconsistent (meaning that these statements, taken as
premises, allow a contradiction ⊥ to be derived).

People who steal are breaking the law. People who download songs via BitTorrent are stealing.
Some people do download songs via BitTorrent. People who download songs via BitTorrent
aren’t breaking the law.

(It’s interesting to note that without the third assumption (“Some people do download songs
via BitTorrent”), this argument is not inconsistent—can you see why?)

14Maybe you do, because you think??
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Appendix: Tableau for Predicate Logic

In Chapter 4 we considered analytic tableau for propositional logic, as a technical method for
determining if an entailment is valid, invalid, or satisfiable. Is there an extension of tableau for
predicate logic? The answer is yes, and we shall briefly describe what that is, with a few examples
to illustrate such tableau.

We need four new tableau rules for the quantifiers. We leave it to the reader to verify that these
do indeed capture the “meaning” of the quantifiers, as embodied by the classical derivation rules.
(As with propositional logic, the (¬¬E) rule is embedded in these rules, so the quantifiers are dual
to each other.)

[T∀]
T(∀xA(x))

T(A(t))

[F∀]
F(∀xA(x))

F(A(u))

[T∃]
T(∃xA(x))

T(A(u))

[F∃]
F(∃xA(x))

F(A(t))

where t is any term, and u is a new variable.

For example, here is a tableau showing that ∀x(H(x) −→ M(x)),H(s) ⊢ M(s) is valid (our old
Socratic friend).

T(∀x(H(x) −→M(x))) X
T(H(s))
F(M(s))

T(H(s) −→M(s)) X

F(H(s))
×

T(M(s))
×

Notice in the fourth line that we’ve used the (T∀) rule, replacing the x in the first line with s.

Another example: we can show that ∃x∀yR(x, y) ⊢ ∀y∃xR(x, y) is valid with this tableau. (This
is just Exercise 5.6, #27.)

T(∃x∀yR(x, y)) X
F(∀y∃xR(x, y)) X
T(∀yR(u, y)) X
F(∃xR(x, v)) X

T(R(u, v))
F(R(u, v))
×

This simple tableau uses all four quantifier rules, with u, v being first introduced as new variables,
then introduced as instances of an arbitrary term. Check to be sure you understand how the rules
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have been used.
And more, we can show that the converse ∀y∃xR(x, y) ⊢ ∃x∀yR(x, y) is not valid:

T(∀y∃xR(x, y)) X
F(∃x∀yR(x, y)) X
T(∃xR(x, t)) X

T(R(u, t))
F(∀yR(u, y)) X

F(R(u, v))
◦

This tableau (with one open path) shows that as long as the predicate R allows for some object u
to have two objects t, v so that one pair satisfies R and the other does not (as shown above), then
the reverse entailment will indeed be invalid. An example of such a R might be R(x, y) means x
is y’s parent. Surely a single u might well be the parent of one individual t, but not of another v.
And indeed, the argument “If everyone has a parent, then there is one individual who is everyone’s
parent” is surely invalid, though “If there is an individual who is everyone’s parent, then everyone
has a parent” is valid.

And finally, a slightly more fun example, showing that the following statement is not satisfiable:

There is a set whose members are exactly those sets which are not members of them-
selves.

We translate this using the predicates S(x) =“x is a set”, and E(y, x) =“y is an element of x”,
so the sentence above becomes

∃x[S(x) ∧ ∀y(E(y, x)←→ ¬E(y, y))]

Here is a tableau that shows any attempt to make this true (T) ends in contradiction (i.e. a closed
path). (The contradiction is already evident by the fifth line; the rest is merely following the rules
of tableau to close the paths.)

T(∃x[S(x) ∧ ∀y(E(y, x)←→ ¬E(y, y))])X
T(S(u) ∧ ∀y(E(y, u)←→ ¬E(y, y)))X

T(S(u))
T(∀y(E(y, u)←→ ¬E(y, y)))X
T(E(u, u) ←→ ¬E(u, u))X
T(E(u, u) −→ ¬E(u, u))X
T(¬E(u, u) −→ E(u, u))X

F(E(u, u))

F(¬E(u, u))X
T(E(u, u))
×

T(E(u, u))
×

T(¬E(u, u))X
F(E(u, u))

F(¬E(u, u))X
T(E(u, u))
×

T(E(u, u))
×
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Tableaux Exercises

1. Prove the following entailments with tableaux:

(a) ∀x(P (x) −→ Q) ⊢ ∃xP (x) −→ Q (b) ∀x∃yP (x, y) ⊢ ¬∃x∀y¬P (x, y)

2. Try the following one yourself: translate the following argument and construct a tableau to
show that it is valid (though, if you succeed, not sound!). Build a derivation as well.

If anyone can solve this problem, then any mathematician can solve it. Bob is a
mathematician, but he cannot solve it. Therefore, nobody can solve it.

Use S(x) =“x can solve this problem”, M(x) =“x is a mathematician”, and b =“Bob”.

3. Finally, show that change of bound variables can be derived from the other four quantifier
rules: ∃xP (x) ⊢ ∃yP (y) and ∀xP (x) ⊢ ∀yP (y). Construct derivations and tableaux, for these
(very simple!) entailments.

Appendix: Deduction rules for equality

Earlier (section 5.2.1) we considered (very briefly) having an equality predicate s = t, which is
essential for the mathematical use of logic; one might ask if equality can be integrated into formal
logic in the same way the logical connectives and quantifiers are handled, with introduction and
elimination rules. The answer is simply “yes”. In this appendix, we’ll see how this may be done;
the rather nice fact is that the introduction and elimination rules for equality are basic and very
familiar properties of equality—in the best sense, its addition retains the “natural” nature of natural
deduction. The other usual (“standard”) properties of equality follow from these, as we’ll see from
some simple exercises. Some details will be left to the reader.

So we start with the elimination rule for equality (or rather one version of it—there is a “per-
muted variation of this rule, as we’ve seen with the (∧I) rule, for example):

...
...

m t = s
...

...

n P (t)
...

...

k P (s) (=E), m, n

(and the permuted version, where the premises may be given in the opposite order).
This rule is often known as the “Substitution” rule (meaning that one may substitute a term

with an equal term in any WFF).15

A subtle point: As with the (∃I) rule, we have some flexibility with the (= E) rule in terms
of substitutions. If t = s and P (t), then when we use (= E) to conclude P (s), we do not actually
have to replace all instances of t by s. For example (a silly example, for sure(!), but one which will
reappear in the exercises), if P (t) were t = t, then with the additional hypothesis t = s, we could
use (= E) to correctly give us the conclusion s = t, by substituting s for t in the first occurrence

15Note that the (= E) rule may not hold for non-truth-functional statements. For example, “Jack knows that
1 + 1 = 2 ” may be true, and yet “Jack knows that 1 + 1 =

∑∞
i=0 2

−i ” may be false, even though
∑∞

i=0 2
−i = 2 is in

fact true (Jack may not know this!).
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of t in P (t), i.e. in t = t. We could also get the conclusion s = s by substituting s for t in both
occurrences.

The equality introduction rule is an axiom (i.e. a rule with no premises):
...

...

k t = t (=I)

for any term t. This axiom is often known as “Reflexivity”.
From these simple rules, the usual properties of equality follow. We illustrate this with the

following exercises, which begin with some simple derived rules.

Equality Exercises

1. Show that the Substitution rule (= E) is easily generalized:

...
...

n1 t1 = s1
n2 t2 = s2...

...

nk tk = sk...
...

m P (t1, t2, . . . , tk)...
...

ℓ P (s1, s2, . . . , sk) (=E), n1, . . , nk, m

(and permuted versions)

2. Show these two other properties of equality are derivable:

First, symmetry: ...
...

n t = s
...

...

k s = t (Sym), n

And also transitivity: ...
...

n t1 = t2
n+ 1 t2 = t3...

...

m t1 = t3 (Trans), n, n+ 1

(hint: you’ll need to use symmetry to derive transitivity)

Some other derivation exercises:

3. (A very simple one!:) Show ⊢ ∃x(x = t) for any term t (corresponding to an object in
the universe of discourse). Obviously, this assumes we have excluded the “empty” universe
of discourse from consideration; this is for the same reason we mentioned in the discussion
(footnote) of the validity of ∀xP (x) ⊢ ∃xP (x), which also is not valid for an empty universe
of discourse.
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4. Show these WFFs are equivalent: ∃x(x = t ∧ P (x)) and P (t).

5. Show these WFFs are equivalent: ∀x(x = t −→ P (x)) and P (t).

In other words, show ∀x(x = t −→ P (x)) ⊢ P (t) and P (t) ⊢ ∀x(x = t −→ P (x)).

6. Similarly, show these WFFs are equivalent: ∀x∀y(x = y −→ P (x, y)) and ∀xP (x, x).

7. Next, show these entailments are equivalent: P (t(x)) ⊢ Q(x) and P (y) ⊢ ∀x(t(x) = y −→
Q(x))

In other words show that if π1(x) is a derivation P (t(x)) ⊢ Q(x) then there is a derivation π2(y)
of P (y) ⊢ ∀x(t(x) = y −→ Q(x)), and conversely, if π2(y) is a derivation P (y) ⊢ ∀x(t(x) = y
−→ Q(x)) then there is a derivation π1(x) of P (t(x)) ⊢ Q(x). (Note that the term t has a
free variable x; it is or is constructed from a function symbol. Also, note that the derivations
themselves depend on free variables, as indicated by the notation. Actually, there is even
more structure here, but we shall leave that unexplored in this text.)

8. Similarly, show these entailments are equivalent: P (x) ⊢ Q(t(x)) and ∃x(t(x) = y ∧ P (x)) ⊢
Q(y).

Again, this means given a derivation of one sequent, one can construct a derivation of the
other. These derivations depend on the free variables that appear in the entailments, as in
the previous exercise.

9. Show that the following two WFFs are equivalent and that they have the (same) meaning,
namely that the universe discourse has exactly one element with property P :

∃x(P (x) ∧ ∀y(P (y) −→ x = y)) and ∃xP (x) ∧ ∀x∀y(P (x) ∧ P (y) −→ x = y)

Now try some translation problems: translate the following into suitable symbols and show the
arguments are valid.

1. All logicians are crazy. Bob is a logician. Bob is Professor Frankenstein, so therefore Prof
Frankenstein is crazy.

2. No logician is sensible. Bob is a logician. Professor Frankenstein is sensible, so therefore Prof
Frankenstein is not Bob.

3. Only Bob and Harry are at work late tonight; they are both doing logic homework. Therefore
everyone working late tonight is doing logic homework. (“Only” is a bit tricky—there are
several ways it could be translated; I’ve given one in the answers. Feel free to explore some
other possibilities, but be sure that you render “only” with both parts of its meaning: that
Bob and Harry both do work late, and that no one else does.)

4. There is at most one logician at John Abbott. Bob is a logician. Harry is not Bob. Therefore
Harry is not a logician.
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5.7 Answers to the exercises

Exercise 5.3.2

Variations are also possible—ask me if you are not sure about your own answers. (I’ll leave you to
guess my notation!)

1. ∀x(P (x) −→ C(x)) 2. ∃x(C(x) ∧ ¬P (x))
3. ∃x(N(x) ∧ E(x)) ∧ ∃x(N(x) ∧O(x)) 4. ∀x(RFT (x) −→ S(x))

5. ∃x(U(x) ∧BD(x)) 6. ∃x(M(x) ∧ ¬MC(x))

7. ∃x¬∀yL(x, y) 8. ¬∃x∀yK(x, y)

9. ¬∃x∃yK(x, y) 10. ∀x(P (x) −→M(x))

11. ∀x(DE(x) −→ P (x)) 12. ∀x(B(x) −→ ∀y(S(x, y) ≡ ¬B(y)))

13. ∀x(∀y(W (y) −→ ¬F (x, y)) −→ JS(x)) 14. ∀x(L(x) ∧ PHOC(x) −→ FFC(x))

15. ∀x(∃y SB(x, y) −→ ∃y SB(y, x)) 16. ∀x∀y(Chr(x) ∧ Comm(y) −→ Obey(x, y))

17. ∀x∀y(P (x) ∧ ¬W (y) −→ ¬H(x, y)) 18. ∀x(C(x) ∧ F (x) −→ D(x))

Example 5.5.2 (the story of Bob and Jane)
The equivalence: ∀z∀x(P (x) −→ Q(z, x)) ≡ ∀x(P (x) −→ ∀zQ(z, x))

1 ∀z∀x(P (x) −→ Q(z, x))

2 u P (u)

3 v ∀x(P (x) −→ Q(v, x)) (∀E), 1
4 P (u) −→ Q(v, u) (∀E), 3
5 Q(v, u) (−→E), 2, 4

6 ∀zQ(z, u) (∀I), 3–5
7 P (u) −→ ∀zQ(z, u) (−→E), 2–6

8 ∀x(P (x) −→ ∀zQ(z, x)) (∀I), 2–7

1 ∀x(P (x) −→ ∀zQ(z, x))

2 v u P (u)

3 P (u) −→ ∀zQ(z, u) (∀E), 1
4 ∀zQ(z, u) (−→E), 2, 3

5 Q(v, u) (∀E), 4
6 P (u) −→ Q(v, u)) (−→I), 2–5

7 ∀x(P (x) −→ Q(v, x)) (∀I), 2–6
8 ∀z∀x(P (x) −→ Q(z, x)) (∀I), 2–7

Exercise 5.6

1. P (a), Q(a) ⊢ ∃x(P (x) ∧Q(x))

1 P (a)

2 Q(a)

3 P (a) ∧Q(a) (∧I), 1, 2
4 ∃x(P (x) ∧Q(x)) (∃I), 3

2. ∀x(P (x) −→ Q(x)), P (a) ⊢ Q(a)

1 ∀x(P (x) −→ Q(x))

2 P (a)

3 P (a) −→ Q(a) (∀E), 1
4 Q(a) (−→E), 2, 3
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3. ∃x∀yA(x, y) ⊢ ¬∀x∃y¬A(x, y)

1 ∃x∀yA(x, y)
2 ∀x∃y¬A(x, y)
3 u ∀yA(u, y)
4 ∃y¬A(u, y) (∀E), 2
5 v ¬A(u, v)
6 A(u, v) (∀E), 3
7 ⊥ (¬E), 5, 6
8 ⊥ (∃E), 4, 5–7
9 ⊥ (∃E), 1, 3–8
10 ¬∀x∃y¬A(x, y) (¬I), 2–9

4. ∀x(R(x) −→ B(x)),¬B(a) ⊢ ¬R(a)

1 ∀x(R(x) −→ B(x))

2 ¬B(a)

3 R(a)

4 R(a) −→ B(a) (∀E), 1
5 B(a) (−→E), 3, 4

6 ⊥ (¬E), 2, 5
7 ¬R(a) (¬I), 3–6

5. R(a),∀x(¬G(x) −→ ¬R(x)),M(b) ⊢ ∃xG(x) ∧ ∃xM(x)

1 R(a)

2 ∀x(¬G(x) −→ ¬R(x))
3 M(b)

4 ¬G(a) −→ ¬R(a) (∀E), 2
5 ¬G(a)
6 ¬R(a) (−→E), 4, 5

7 ⊥ (¬E), 1, 6
8 ¬¬G(a) (¬I), 5–7
9 G(a) (¬¬E), 8
10 ∃xG(x) (∃I), 9
11 ∃xM(x) (∃I), 3
12 ∃xG(x) ∧ ∃xM(x) (∧I), 10, 11

6. ∀x((R(x) ∧A(x)) −→ T (x)), A(b), R(b) ⊢ ∃xT (x)

1 ∀x((R(x) ∧A(x)) −→ T (x))

2 A(b)

3 R(b)

4 R(b) ∧A(b) −→ T (b) (∀E), 1
5 R(b) ∧A(b) (∧I), 2, 3
6 T (b) (−→E), 4, 5

7 ∃xT (x) (∃I), 6

7. ∀x(P (x) ∧Q(x)) ⊢ ∀xP (x) ∧ ∀xQ(x)

1 ∀x(P (x) ∧Q(x))

2 u P (u) ∧Q(u) (∀E), 1
3 P (u) (∧E), 2
4 ∀xP (x) (∀I), 2–3
5 v P (v) ∧Q(v) (∀E), 1
6 Q(v) (∧E), 5
7 ∀xQ(x) (∀I), 5–6
8 ∀xP (x) ∧ ∀xQ(x) (∧I), 4, 7

8. ∀xP (x) ∧ ∀xQ(x) ⊢ ∀x(P (x) ∧Q(x))

1 ∀xP (x) ∧ ∀xQ(x)

2 ∀xP (x) (∧E), 1
3 ∀xQ(x) (∧E), 1
4 u P (u) (∀E), 2
5 Q(u) (∀E), 3
6 P (u) ∧Q(u) (∧I), 4, 5
7 ∀x(P (x) ∧Q(x)) (∀I), 4–6
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9. ∀x(∃yP (y) −→ Q(x)) ⊢ ∃yP (y) −→ ∀xQ(x) (where there is no free variable x in ∃yP (y))

1 ∀x(∃yP (y) −→ Q(x))

2 ∃yP (y)
3 u ∃yP (y) −→ Q(u) (∀E), 1
4 Q(u) (−→E), 2, 3

5 ∀xQ(x) (∀I), 3–4
6 ∃yP (y) −→ ∀xQ(x) (−→I), 2–5

10. ∃y∀xA(x, y),∀x∀y(A(x, y) −→ B(x, y)) ⊢ ∀x∃yB(x, y)

1 ∃y∀xA(x, y)
2 ∀x∀y(A(x, y) −→ B(x, y))

3 u v ∀xA(x, v)
4 A(u, v) (∀E), 3
5 A(u, v) −→ B(u, v) (∀E), 2
6 B(u, v) (−→E), 4, 5

7 ∃yB(u, y) (∃I), 6
8 ∃yB(u, y) (∃E), 1, 3–7
9 ∀x∃yB(x, y) (∀I), 3–8

11. ∀x∃yA(x, y),∀x∀y(A(x, y) −→ A(y, x)),∀x∀y∀z(A(x, y) ∧A(y, z) −→ A(x, z)) ⊢ ∀xA(x, x)

1 ∀x∃yA(x, y)
2 ∀x∀y(A(x, y) −→ A(y, x))

3 ∀x∀y∀z(A(x, y) ∧A(y, z) −→ A(x, z))

4 u ∃yA(u, y) (∀E), 1
5 v A(u, v)

6 ∀y(A(u, y) −→ A(y, u)) (∀E), 2
7 A(u, v) −→ A(v, u) (∀E), 6
8 A(v, u) (−→E), 5, 7

9 A(u, v) ∧A(v, u) (∧I), 5, 8
10 ∀y∀z(A(u, y) ∧A(y, z) −→ A(u, z)) (∀E), 3
11 ∀z(A(u, v) ∧A(v, z) −→ A(u, z)) (∀E), 10
12 A(u, v) ∧A(v, u) −→ A(u, u) (∀E), 11
13 A(u, u) (−→E), 9, 12

14 A(u, u) (∃E), 4, 5–13
15 ∀xA(x, x) (∀I), 4–14
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12. ∃x(P (x) −→ ∀yQ(y)) ⊢ ∀xP (x) −→ ∀xQ(x)

1 ∃x(P (x) −→ ∀yQ(y))

2 ∀xP (x)
3 u P (u) −→ ∀yQ(y)

4 P (u) (∀E), 2
5 ∀yQ(y) (−→E), 3, 4

6 ∀xQ(x) (Change of bound variables), 5

7 ∀xQ(x) (∃E), 1, 3–6
8 ∀xP (x) −→ ∀xQ(x) (−→I), 2–7

13. ∀x(A(x) −→ B(x)) ⊢ ∃xA(x) −→ ∃xB(x)

1 ∀x(A(x) −→ B(x))

2 ∃xA(x)
3 u A(u)

4 A(u) −→ B(u) (∀E), 1
5 B(u) (−→E), 3, 4

6 ∃xB(x) (∃I), 5
7 ∃xB(x) (∃E), 2, 3–6
8 ∃xA(x) −→ ∃xB(x) (−→I), 2–7

14. P −→ ∀xQ(x) ⊢ ∀x(P −→ Q(x))

1 P −→ ∀xQ(x)

2 u P

3 ∀xQ(x) (−→E), 1, 2

4 Q(u) (∀E), 3
5 P −→ Q(u) (−→I), 2–4

6 ∀x(P −→ Q(x)) (∀I), 2–5

15. ∀xR(x) ∨ ∀xS(x) ⊢ ∀x(R(x) ∨ S(x))

1 ∀xR(x) ∨ ∀xS(x)
2 u ∀xR(x)
3 R(u) (∀E), 2
4 R(u) ∨ S(u) (∨I), 3
5 ∀xS(x)
6 S(u) (∀E), 5
7 R(u) ∨ S(u) (∨I), 6
8 R(u) ∨ S(u) (∨E), 1, 2–4, 5–7
9 ∀x(R(x) ∨ S(x)) (∀I), 2–8

16. ∀x(P (x) −→ Q) ⊢ ∃xP (x) −→ Q

1 ∀x(P (x) −→ Q)

2 ∃xP (x)
3 u P (u)

4 P (u) −→ Q (∀E), 1
5 Q (−→E), 3, 4

6 Q (∃E), 2, 3–5
7 ∃xP (x) −→ Q (−→E), 2–6

17. ∀x(P (x)−→Q(x)), ∀x(Q(x)−→R(x))⊢∀x(P (x)−→R(x))

1 ∀x(P (x) −→ Q(x))

2 ∀x(Q(x) −→ R(x))

3 u P (u)

4 P (u) −→ Q(u) (∀E), 2
5 Q(u) −→ R(u) (∀E), 2
6 Q(u) (−→E), 3, 4

7 R(u) (−→E), 5, 6

8 P (u) −→ R(u) (−→I), 3–7

9 ∀x(P (x) −→ R(x)) (∀I), 3–8

18. ∀x∀yP (x, y) ⊢ P (a, a)

1 ∀x∀yP (x, y)
2 ∀yP (a, y) (∀E), 1
3 P (a, a) (∀E), 2

19. ∀x∀yP (x, y) ⊢ ∀xP (x, x)

1 ∀x∀yP (x, y)
2 u ∀yP (u, y) (∀E), 1
3 P (u, u) (∀E), 2
4 ∀xP (x, x) (∀I), 2–3
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20. ∀x(P (x) ∧Q(x) −→ R(x)), Q(a) ∧ ∀zP (z) ⊢ P (a) ∧R(a)

1 ∀x(P (x) ∧Q(x) −→ R(x))

2 Q(a) ∧ ∀zP (z)
3 Q(a) (∧E), 2
4 ∀zP (z) (∧E), 2
5 P (a) (∀E), 4
6 P (a) ∧Q(a) (∧I), 3, 5
7 P (a) ∧Q(a) −→ R(a) (∀E), 1
8 R(a) (−→E), 6, 7

9 P (a) ∧R(a) (∧I), 5, 8

21. ∃xP (x) ⊢ ∀xQ(x) −→ ∃x(P (x) ∧Q(x))

1 ∃xP (x)
2 ∀xQ(x)

3 u P (u)

4 Q(u) (∀E), 2
5 P (u) ∧Q(u) (∧I), 3, 4
6 ∃x(P (x) ∧Q(x)) (∃I), 5
7 ∃x(P (x) ∧Q(x)) (∃E), 1, 3–6
8 ∀xQ(x) −→ ∃x(P (x) ∧Q(x)) (−→I), 2–7

22. ∀x∀y(R(x, y) −→ (P (x) ∧ ¬P (y))),∃x∃y(R(x, y) ∧R(y, x)) ⊢ ∃x(P (x) ∧ ¬P (x))
Notice in Q22, in lines 7,8 the (∀E) rule is used twice each.

1 ∀x∀y(R(x, y) −→ (P (x) ∧ ¬P (y)))
2 ∃x∃y(R(x, y) ∧R(y, x))
3 u ∃y(R(u, y) ∧R(y, u))
4 v R(u, v) ∧R(v, u)
5 R(u, v) (∧E), 4
6 R(v, u) (∧E), 4
7 R(u, v) −→ P (u) ∧ ¬P (v) (∀E), 1
8 R(v, u) −→ P (v) ∧ ¬P (u) (∀E), 1
9 P (u) ∧ ¬P (v) (−→E), 5, 7

10 P (v) ∧ ¬P (u) (−→E), 6, 8

11 P (u) (∧E), 9
12 ¬P (u) (∧E), 10
13 P (u) ∧ ¬P (u)) (∧I), 11, 12
14 ∃x(P (x) ∧ ¬P (x)) (∃I), 13
15 ∃x(P (x) ∧ ¬P (x)) (∃E), 3, 4–14
16 ∃x(P (x) ∧ ¬P (x)) (∃E), 2, 3–15

23. The simplest way to do Q23 is to use the derivation in Q22, but change line 13 to ⊥ (via the
(¬E) rule), and then line 14 can be dropped, and lines 15 and 16 also become ⊥. But notice
that the conclusion is “obvious”, since “saying” that there is an x so that P (x) and ¬P (x)
are both true is “obviously” a contradiction.



5.7. ANSWERS TO THE EXERCISES 137

24. ∃zR(z, z), ∃y∀xS(y, x)⊢∃y∃z(S(z, y)−→R(y, y))

1 ∃zR(z, z)
2 ∃y∀xS(y, x)
3 u R(u, u)

4 S(u, u)

5 R(u, u) (R), 3

6 S(u, u) −→ R(u, u) (−→I), 4–5

7 ∃z(S(z, u) −→ R(u, u)) (∃I), 6
8 ∃y∃z(S(z, y) −→ R(y, y)) (∃I), 7
9 ∃y∃z(S(z, y) −→ R(y, y)) (∃E), 1, 2–8

25. ∃x(P (x) ∧Q(x)) ⊢ ∃xP (x) ∧ ∃xQ(x)

1 ∃x(P (x) ∧Q(x))

2 u P (u) ∧Q(u)

3 P (u) (∧E), 2
4 ∃xP (x) (∃I), 3
5 Q(u) (∧E), 2
6 ∃xQ(x) (∃I), 5
7 ∃xP (x) ∧ ∃xQ(x) (∧I), 4, 6
8 ∃xP (x) ∧ ∃xQ(x) (∃I), 1, 2–7

26. ∀xP (x) ∨ ∀xQ(x) ⊢ ∀x(P (x) ∨Q(x))

1 ∀xP (x) ∨ ∀xQ(x)

2 u ∀xP (x)
3 P (u) (∀E), 2
4 P (u) ∨Q(u) (∨I), 3
5 ∀xQ(x)

6 Q(u) (∀E), 5
7 P (u) ∨Q(u) (∨I), 6
8 P (u) ∨Q(u) (∨E), 1, 2–4, 5–7
9 ∀x(P (x) ∨Q(x)) (∀I), 2–8

27. ∃x∀yR(x, y) ⊢ ∀y∃xR(x, y)

1 ∃x∀yR(x, y)
2 u v ∀yR(v, y)
3 R(v, u) (∀E), 2
4 ∃xR(x, u) (∃I), 3
5 ∃xR(x, u) (∃E), 1, 2–4
6 ∀y∃xR(x, y) (∀I), 2–5

The two problems in Q28 and in Q29 are done similarly: just change the roles of Qx and Qy
in each case, for the appropriate quantifier: “Q = ∃ ” in Q28, and “Q = ∀ ” in Q29. Here’s
half for each.

28. ∃x∃yR(x, y) ⊢ ∃y∃xR(x, y)

1 ∃x∃yR(x, y)
2 u ∃yR(u, y)
3 v R(u, v)

4 ∃xR(x, v) (∃I), 3
5 ∃y∃xR(x, y) (∃I), 4
6 ∃y∃xR(x, y) (∃E), 1
7 ∃y∃xR(x, y) (∃E), 1

29. ∀x∀yR(x, y) ⊢ ∀y∀xR(y, x)

1 ∀x∀yR(x, y)
2 u v ∀yR(u, y) (∀E), 1
3 R(u, v) (∀E), 1
4 ∀xR(u, x) (∀I), 2–3
5 ∀y∀xR(y, x) (∀I), 2–4
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30. ¬∃x(P (x) ∧Q(x)) ⊢ ∀x(P (x) −→ ¬Q(x))

1 ¬∃x(P (x) ∧Q(x))

2 u P (u)

3 Q(u)

4 P (u) ∧Q(u) (∧I), 2, 3
5 ∃x(P (x) ∧Q(x)) (∃I), 4
6 ⊥ (¬E), 1, 5
7 ¬Q(u) (¬I), 3–6
8 P (u) −→ ¬Q(u) (−→I), 2–7

9 ∀x(P (x) −→ ¬Q(x)) (∀I), 2–8

31. ∀x(P (x) −→ ¬Q(x)) ⊢ ¬∃x(P (x) ∧Q(x))

1 ∀x(P (x) −→ ¬Q(x))

2 ∃x(P (x) ∧Q(x))

3 u P (u) ∧Q(u)

4 P (u) (∧E), 3
5 Q(u) (∧E), 3
6 P (u) −→ ¬Q(u) (∀E), 1
7 ¬Q(u) (−→E), 4, 6

8 ⊥ (¬E), 5, 7
9 ⊥ (∃E), 2, 3–8
10 ¬∃x(P (x) ∧Q(x)) (¬I), 2–9

32. ∃x(P (x) ∨Q(x)) ⊢ ∃xP (x) ∨ ∃xQ(x)

1 ∃x(P (x) ∨Q(x))

2 u P (u) ∨Q(u)

3 P (u)

4 ∃xP (x) (∃I), 3
5 ∃xP (x) ∨ ∃xQ(x) (∨I), 4
6 Q(u)

7 ∃xQ(x) (∃I), 6
8 ∃xP (x) ∨ ∃xQ(x) (∨I), 7
9 ∃xP (x) ∨ ∃xQ(x) (∨E), 2, 3–5, 6–8
10 ∃xP (x) ∨ ∃xQ(x) (∃I), 1, 2–9

33. ∃xP (x) ∨ ∃xQ(x) ⊢ ∃x(P (x) ∨Q(x))

1 ∃xP (x) ∨ ∃xQ(x)

2 ∃xP (x)
3 u P (u)

4 P (u) ∨Q(u) (∨I), 3
5 ∃x(P (x) ∨Q(x)) (∃I), 4
6 ∃x(P (x) ∨Q(x)) (∃E), 2, 3–5
7 ∃xQ(x)

8 v Q(v)

9 P (v) ∨Q(v) (∨I), 8
10 ∃x(P (x) ∨Q(x)) (∃I), 9
11 ∃x(P (x) ∨Q(x)) (∃E), 7, 8–10
12 ∃x(P (x) ∨Q(x)) (∃E), 1, 2–6, 7–11

34. ∀x(P (x) ∧Q(x)) ⊢ ∀xP (x) ∧ ∀xQ(x)

1 ∀x(P (x) ∧Q(x))

2 u P (u) ∧Q(u) (∀E), 1
3 P (u) (∧E), 2
4 ∀xP (x) (∀I), 2–3
5 v P (v) ∧Q(v) (∀E), 1
6 Q(v) (∧E), 5
7 ∀xQ(x) (∀I), 5–6
8 ∀xP (x) ∧ ∀xQ(x) (∧I), 4, 8

35. ∀xP (x) ∧ ∀xQ(x) ⊢ ∀x(P (x) ∧Q(x))

1 ∀xP (x) ∧ ∀xQ(x)

2 u ∀xP (x) (∧E), 1
3 P (u) (∀E), 2
4 ∀xQ(x) (∧E), 1
5 Q(u) (∀E), 4
6 P (u) ∧Q(u) (∧I), 3, 5
7 ∀x(P (x) ∧Q(x)) (∀I), 2–6
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36. ∀x(P (x)−→Q(x)),∃x(P (x) ∧R(x)) ⊢ ∃x(Q(x) ∧R(x))

1 ∀x(P (x) −→ Q(x))

2 ∃x(P (x) ∧R(x))
3 u P (u) ∧R(u)
4 P (u) (∧E), 3
5 R(u) (∧E), 3
6 P (u) −→ Q(u) (∀E), 1
7 Q(u) (−→E), 4, 6

8 Q(u) ∧R(u) (∧I), 5, 7
9 ∃x(Q(x) ∧R(x)) (∃I), 8
10 ∃x(Q(x) ∧R(x)) (∃E), 2, 3–9

37. ∀x(P (x)∨Q(x)),∃x¬P (x) ⊢ ∃xQ(x)

1 ∀x(P (x) ∨Q(x))

2 ∃x¬P (x)
3 u ¬P (u)
4 P (u) ∨Q(u) (∀E), 1
5 P (u)

6 ⊥ (¬E), 3, 5
7 Q(u) (⊥E), 6
8 Q(u)

9 Q(u) (R), 8

10 Q(u) (∨E), 4, 5–7, 8–9
11 ∃xQ(x) (∃I), 10
12 ∃xQ(x) (∃E), 2, 3–11

Some remarks:

Q24 Notice that we don’t actually need the second premise—(basically because any proposition
of the form P −→ ⊤ is equivalent to ⊤—in this case, knowing that there is a z so that R(z, z)
means that any statement ∃y(Q −→ R(y, y)) will be “true”).

As for the questions (25, 26, & 27) whose converses are invalid, here are some suggestions:

Q25 Notice that the two x’s need not be the same in ∃xP (x)∧∃xQ(x), but they must be the same
in ∃x(P (x) ∧Q(x), so just think of a situation where they might be different. For example,
just because you know there is a blond person and a blue-eyed person in the class, does not
guarantee that there is a blond&blue-eyed person there.

Q26 This is similar: for example, it may well be true that everyone in the class is either male or
female, but that does not guarantee that everyone is male or that everyone is female.

Q27 This says if there is an x so that R(x, y) holds for all y, then for any y, there is an x (the
same x in fact) that satisfies R(x, y), which is “obvious”. But the converse says that if for
any y there is an x satisfying R(x, y), then one x will work for all the y. This is not always
true: you might have different x’s for different y’s.
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For example, consider the positive integers (i.e., the positive whole numbers 1, 2, 3, 4, 5, . . .),
and let R be “is not smaller than” (i.e. “is equal or greater than”): R(x, y) ≡ “x ≥ y”. Then
∀y∃xR(x, y) is true: it simply says that for any integer, there’s a number not smaller than
it (e.g. the given number itself, or any bigger one). But that need not imply that there is
a single “biggest” number, i.e. an x so that for every number y, x ≥ y, for, in fact, there is
no “biggest” integer. So ∃x∀yR(x, y) is false. Similar examples could deal with any situation
where there’s no single “extreme” instance (“biggest”, “smallest”, “richest”, and so on), even
though “locally” there is.

Q27–29 Note that a consequence of exercises 27–29 is that you can change the order of quantifiers if
they are the same type, but not if they are different types. “∃x∃y ≡ ∃y∃x”, “∀x∀y ≡ ∀y∀x”,
but “∃x∀y” is not equivalent to “∀y∃x”.
(This is “obvious” in retrospect, if you regard ∃ as “being like ∨”, and ∀ as a “being like ∧”,
since we know that you can bracket ∨’s anyway you want, and likewise ∧’s, but mixing ∨’s
and ∧’s becomes sensitive to brackets. And from this perspective, exercises 25 and 26 fit into
the same “story”.)

Exercise 5.6.1

In some exercises I’ve footnoted quantifier rules to help you see what they are doing in each case.

1.

1 ∀x(G(x) −→ H(x))

2 I(a) ∧ ¬H(a)

3 ∀x(G(x) ∨ ¬F (x))
4 I(a) (∧E), 2
5 ¬H(a) (∧E), 2
a6 G(a) −→ H(a) (∀E), 1
b7 G(a) ∨ ¬F (a) (∀E), 3
8 G(a)

9 H(a) (−→E), 6, 8

10 ⊥ (¬E), 5, 9
11 I(a) ∧ ¬F (a) (⊥E), 10
12 ¬F (a)
13 I(a) ∧ ¬F (a) (∧I), 4, 12
14 I(a) ∧ ¬F (a) (∨E), 7, 8–11, 12–13
c15 ∃x(I(x) ∧ ¬F (x)) (∃I), 14

a(a replacing x)
b(a replacing x)
c(taking a as the required x)
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2.

1 ∀x(W (x, g) −→ ¬M(g, x))

2 ∀x(¬W (x, g) −→ ¬M(g, x))
ab3 u W (u, g) −→ ¬M(g, u) (∀E), 1
c4 ¬W (u, g) −→ ¬M(g, u) (∀E), 2
5 M(g, u)

6 W (u, g)

7 ¬M(g, u) (−→E), 3, 6

8 ⊥ (¬E), 5, 7
9 ¬W (u, g) (¬I), 6–8
10 ¬W (u, g)

11 ¬M(g, u) (−→E), 4, 10

12 ⊥ (¬E), 5, 11
13 ¬¬W (u, g) (¬I), 10–12
14 ⊥ (¬E), 9, 13
15 ¬M(g, u) (¬I), 5–14
d16 ∀x(¬M(g, x)) (∀I), 3–15

a(we’re going to try to prove the conclusion ¬M(g, u)
for any arbitrary, i.e. “fresh”, u)

b(g replacing x)
c(g replacing x)
d(since we got ¬M(g, u) for any u, we got ¬M(g, x) for all x).

An alternate derivation using the tautology ⊢ A ∨ ¬A may be found at the end of this
Answers section.

3.

1 C(b)

2 R(b) −→ ∀xS(x)
3 ∀x(S(x) −→ H(x))

4 ∃xC(x) −→ ∀yR(y)
a5 ∃xC(x) (∃I), 1
6 ∀yR(y) (−→E), 4, 5
b7 R(b) (∀E), 6
8 ∀xS(x) (−→E), 2, 7
cd9 u S(u) −→ H(u) (∀E), 3
e10 S(u) (∀E), 8
11 H(u) (−→E), 9, 10
f12 ∀xH(x) (∀I), 9–11

a(taking b as the required x)
b(b replacing y)
c(aiming to prove the conclusion for any u)
d(u replacing x)
e(ditto)
f(proving H(u) for any u justifies ∀xH(x))
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4.

1 C(f) ∧B(f, l)

2 ∃x(C(x) ∧B(x, f))

3 ∀x∀y∀z[(B(x, y) ∧B(y, z)) −→ B(x, z)]
a4 u C(u) ∧B(u, f)

5 B(u, f) (∧E), 4
6 B(f, l) (∧E), 1
7 B(u, f) ∧B(f, l) (∧I), 5, 6
b8 ∀y∀z[(B(u, y) ∧B(y, z)) −→ B(u, z)] (∀E), 3
c9 ∀z[(B(u, f) ∧B(f, z)) −→ B(u, z)] (∀E), 8
d10 B(u, f) ∧B(f, l)) −→ B(u, l) (∀E), 9
11 B(u, l) (−→E), 7, 10

12 B(u, f) ∧B(u, l) (∧I), 5, 11
13 C(u) (∧E), 4
14 C(u) ∧ (B(u, F ) ∧B(u, l)) (∧I), 12, 13
e15 ∃z[C(z) ∧ (B(z, f) ∧B(z, l))] (∃I), 14
f16 ∃z[C(z) ∧ (B(z, f) ∧B(z, l))] (∃E), 2, 4–15

a(taking an arbitrary “fresh” u for x, as per line 2)
b(u replacing x)
c(f replacing y)
d(l replacing z)
e(taking u as the required z)
f(if 4-15 works for u, it’ll work for whatever x satisfies line 2)

5.

1 ∀x(L(x) −→ [P (x) ∧ ¬W (x) ∧ ¬F (x)])
2 ∀x([P (x) ∧ ¬∃yN(x, y)] −→ W (x))
a3 b L(b)

4 ¬∃yN(b, y)
b5 L(b) −→ P (b) ∧ ¬W (b) ∧ ¬F (b) (∀E), 1
6 P (b) ∧ ¬W (b) ∧ ¬F (b) (−→E), 3, 5

7 P (b) (∧E), 6
8 ¬W (b) (∧E), 6
9 P (b) ∧ ¬∃yN(b, y) (∧I), 4, 7
c10 P (b) ∧ ¬∃yN(b, y) −→W (b) (∀E), 2
11 W (b) (−→E), 9, 10

12 ⊥ (¬E), 8, 11
13 ¬¬∃yN(b, y) (¬I), 4–12
14 ∃yN(b, y) (¬¬E), 13
15 L(b) −→ ∃yN(b, y) (−→I), 3–14
d16 ∀x(L(x) −→ ∃yN(x, y)) (∀I), 3–15

a(We’re going to prove the conclusion L(b) −→ ∃yN(b, y) for a “fresh” variable b.)
b(b replacing x)
c(b replacing x)
d(Since we got L(b) −→ ∃yN(b, y) for any b, we have L(x) −→ ∃yN(x, y) for all x.)
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6.

1 ∀x∃yL(x, y)
2 ∃x∀y¬L(x, y)
3 u ∀y¬L(u, y)
a4 ∃yL(u, y) (∀E), 1
5 v L(u, v)
b6 ¬L(u, v) (∀E), 3
7 ⊥ (¬E), 5, 6
c8 ⊥ (∃E), 4, 5–7
d9 ⊥ (∃E), 2, 3–8
10 ¬∃x∀y¬L(x, y) (¬I), 2–9

a(u replacing x)
b(v replacing y)
c(if 5-7 works for arbitrary v, it will work for any y satisfying line 4)
d(if 3-8 works for arbitrary u, it will work for any x satisfying line 2)

7.

1 ∀x∀y[G(x, y) −→ ¬G(y, x)]
2 ∀yG(d, y)
3 ∀x∀y[E(x) ∧ ¬E(y) −→ G(x, y)]

4 ∃xE(x)

5 ¬E(d)

6 u E(u)

7 E(u) ∧ ¬E(d) (∧I), 5, 6
a8 E(u) ∧ ¬E(d) −→ G(u, d) (∀E), 3
9 G(u, d) (−→E), 7, 8
b10 G(u, d) −→ ¬G(d, u) (∀E), 1
11 ¬G(d, u) (−→E), 9, 10
c12 G(d, u) (∀E), 2
13 ⊥ (¬E), 11, 12
d14 ⊥ (∃E), 4, 6–13
15 ¬¬E(d) (¬I), 5–14
16 E(d) (¬¬E), 15

a(actually we use (∀E) twice, replacing x with u and y with d)
b(again we use (∀E) twice, with the same substitutions)
c(this time replace y with u)
d(if 6-13 works for an arbitrary u, it will work for anything that satisfies line 4)
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8.

1 ∃x(S(x) ∧A(x, r))
2 ∀x∀y(T (x) ∧ S(y) −→ A(x, y))

3 T (r)

4 u S(u) ∧A(u, r)
5 ∀y(T (r) ∧ S(y) −→ A(r, y)) (∀E), 2
6 T (r) ∧ S(u) −→ A(r, u) (∀E), 5
7 S(u) (∧E), 4
8 T (r) ∧ S(u) (∧I), 3, 7
9 A(r, u) (−→E), 6, 8

10 A(u, r) (∧E), 4
11 A(u, r) ∧A(r, u) (∧I), 9, 10
12 ∃x(A(x, r) ∧A(r, x)) (∃I), 11
13 ∃x(A(x, r) ∧A(r, x)) (∃E), 1

9.

1 ∀y(H(y) −→ A(y))

2 u ∃y(T (u, y) ∧H(y))

3 v T (u, v) ∧H(v)

4 T (u, v) (∧E), 3
5 H(v) (∧E), 3
6 H(v) −→ A(v) (∀E), 1
7 A(v) (−→E), 5, 6

8 T (u, v) ∧A(v) (∧I), 4, 7
9 ∃y(T (u, y) ∧A(y)) (∃I), 8
10 ∃y(T (u, y) ∧A(y)) (∃E), 2
11 ∃y(T (u, y) ∧H(y)) −→ ∃y(T (u, y) ∧A(y)) (−→I), 2–10

12 ∀x(∃y(T (x, y) ∧H(y)) −→ ∃y(T (x, y) ∧A(y))) (∀I), 2–11
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10.

1 ∃x(T (x) ∧ ∀y(S(y) −→ A(x, y)))

2 ∀x∀y(T (x) ∧ J(y) −→ ¬A(x, y))
3 ∃y(S(y) ∧ J(y))
4 u S(u) ∧ J(u)
5 v T (v) ∧ ∀y(S(y) −→ A(v, y))

6 ∀y(T (v) ∧ J(y) −→ ¬A(v, y)) (∀E), 2
7 T (v) ∧ J(u) −→ ¬A(v, u) (∀E), 6
8 T (v) (∧E), 5
9 J(u) (∧E), 4
10 T (v) ∧ J(u) (∧I), 8, 9
11 ¬A(v, u) (−→E), 7, 10

12 ∀y(S(y) −→ A(v, y)) (∧E), 5
13 S(u) −→ A(v, u) (∀E), 12
14 S(u) (∧E), 4
15 A(v, u) (−→E), 13, 14

16 ⊥ (¬E), 11, 15
17 ⊥ (∃E), 1, 5–16
18 ⊥ (∃E), 3, 4–17
19 ¬∃y(S(y) ∧ J(y)) (¬I), 3–18

11.

1 ∀x(S(x) −→ L(x))

2 ∀x(B(x) −→ S(x))

3 ∃xB(x)

4 ∀x(B(x) −→ ¬L(x))
a5 u B(u)
b6 S(u) −→ L(u) (∀E), 1
c7 B(u) −→ S(u) (∀E), 2
d8 B(u) −→ ¬L(u) (∀E), 4
9 S(u) (−→E), 5, 7

10 L(u) (−→E), 6, 9

11 ¬L(u) (−→E), 5, 8

12 ⊥ (¬E), 10, 11
e13 ⊥ (∃E), 3, 5–12

a(taking an arbitrary “fresh” u for x, as per line 3)
b(u replacing x)
c(u replacing x)
d(u replacing x)
e(if 5-12 works for u, it’ll work for whatever x satisfies line 3)
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Remark
There is an alternate derivation for Q2 (the “Groucho” problem) using the tautology ⊢ A∨¬A
(this is #8 in Exercise 3.3.1). However, as this tautology is equivalent to the (¬¬E) rule, which we
saw isn’t actually necessary in this case, philosophically this alternate derivation isn’t as “nice” as
the original one (even if it is perhaps simpler(?)).

1 ∀x(W (x, g) −→ ¬M(g, x))

2 ∀x(¬W (x, g) −→ ¬M(g, x))

3 u W (u, g) −→ ¬M(g, u) (∀E), 1
4 ¬W (u, g) −→ ¬M(g, u) (∀E), 2
5 W (u, g) ∨ ¬W (u, g) (Tautology)

6 W (u, g)

7 ¬M(g, u) (−→E), 3, 6

8 ¬W (u, g)

9 ¬M(g, u) (−→E), 4, 8

10 ¬M(g, u) (∨E), 5, 6–7, 8–9
11 ∀x(¬M(g, x)) (∀I), 3–10
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Solutions to the Tableaux Appendix exercises

1. T(∀x(P (x) −→ Q))X
F(∃xP (x) −→ Q)X

T(∃xP (x))X
F(Q)

T(P (u))
T(P (u) −→ Q)X

F(P (u)
×

T(Q)
×

T(∀x∃yP (x, y))X
F(¬∃x∀y¬P (x, y))X
T(∃x∀y¬P (x, y))X
T(∀y¬P (u, y))X
T(∃yP (u, y))X
T(P (u,w))

T(¬P (u, v))X
F(P (u, v))
×

2. To show ∃xS(x) −→ ∀y(M(y) −→ S(y)),M(b) ∧ ¬S(b) ⊢ ¬∃xS(x) is valid:

T(∃xS(x) −→ ∀y(M(y) −→ S(y)))X
T(M(b) ∧ ¬S(b))X

F(¬∃xS(x))X
T(∃xS(x))X
T(M(b))

T(¬S(b))X
F(S(b))
T(S(u))

F(∃xS(x))X
F(S(u))
×

T(∀y(M(y) −→ S(y)))X
T(M(b) −→ S(b))X

F(M(b))
×

T(S(b))
×

As a derivation:

1 ∃xS(x) −→ ∀y(M(y) −→ S(y))

2 M(b) ∧ ¬S(b)
3 M(b) (∧E), 2
4 ¬S(b) (∧E), 2
5 ∃xS(x)
6 ∀y(M(y) −→ S(y)) (−→E), 1, 5

7 M(b) −→ S(b) (∀E), 6
8 S(b) (−→E), 3, 7

9 ⊥ (¬E), 4, 8
10 ¬∃xS(x) (¬I), 5–9

3. Finally, ∃xP (x) ⊢ ∃yP (y), ∀xP (x) ⊢ ∀yP (y):
T(∃xP (x)) X
F(∃yP (y)) X

T(P (u))
F(P (u))
×

1 ∃xP (x)
2 u P (u)

3 ∃yP (y) (∃I), 2
4 ∃yP (y) (∃E), 2–3

T(∀xP (x)) X
F(∀yP (y)) X

F(P (u))
T(P (u))
×

1 ∀xP (x)
2 u P (u) (∀E), 1
3 ∀yP (y) (∀I), 2–2
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Solutions to the Equality Appendix exercises

1.
...

...

n1 t1 = s1
n2 t2 = s2...

...

nk tk = sk
m P (t1, t2, . . . , tk)...

...

ℓ1 P (s1, t2, . . . , tk) (=E), n1, m

ℓ2 P (s1, s2, . . . , tk) (=E), n2, ℓ1...
...

ℓk P (s1, s2, . . . , sk−1, tk) (=E), ℓ1, ℓ2, . . .

ℓ P (s1, s2, . . . , sk) (=E), ℓ1, ℓ2, . . , ℓk

2. Symmetry:

We use (= E) with P (t1, t2) as t1 = t2; we start with P (t, t), then derive P (s, t) from t = s
and t = t: ...

...

n t = s

n+ 1 t = t (=I)
...

...

k s = t (=E), n, n+ 1

And transitivity:

...
...

n t1 = t2
n+ 1 t2 = t3...

...

m t1 = t3 (=E), n, n+ 1

3.

1 t = t (=I)

2 ∃x(x = t) (∃I), 1

4.

1 ∃x(x = t ∧ P (x)
2 u u = t ∧ P (u)
3 u = t (∧E), 2
4 P (u) (∧E), 2
5 P (t) (=E), 3, 4

6 P (t) (∃E), 1, 2–5

1 P (t)

2 t = t (=I)

3 t = t ∧ P (t) (∧I), 1, 2
4 ∃x(x = t ∧ P (x) (∃I), 3
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5.

1 ∀x(x = t −→ P (x))

2 t = t −→ P (t) (∀E), 1
3 t = t (=I)

4 P (t) (−→E), 2, 3

1 P (t)

2 u u = t

3 P (u) (=E), 1, 2

4 u = t −→ P (u) (−→I), 2–3

5 ∀x(x = t −→ P (x)) (∀I), 2–4

6.

1 ∀x∀y(x = y −→ P (x, y))

2 u ∀y(u = y −→ P (u, y) (∀E), 1
3 u = u −→ P (u, y) (∀E), 2
4 u = u (=I)

5 P (u, u) (−→E), 3, 4

6 ∀xP (x, x) (∀I), 2–5

1 ∀xP (x, x)
2 u v u = v

3 P (u, u) (∀I), 1
4 P (u, v) (=E, 2, 3

5 u = v −→ P (u, v) (−→I), 2–4

6 ∀y(u = y −→ P (u, y)) (∀I), 2–5
7 ∀x∀y(x = y −→ P (x, y)) (∀I), 2–6

7.

1 P (y)

2 u t(u) = y

3 P (t(u)) (=E), 1, 2

4 Q(u) π1(u)

5 t(u) = y −→ Q(u) (−→I), 2–4

6 ∀x(t(x) = y −→ Q(x) (∀I), 2–5

1 P (t(u))

2 ∀x(t(x) = t(x) −→ Q(x)) π2(t(x))

3 t(x) = t(x) −→ Q(x) (∀E), 2
4 t(x) = t(x) (=I)

5 Q(x) (−→E), 3, 4

8.

1 ∃x(t(x) = y ∧ P (x)
2 u t(u) = y ∧ P (u)
3 P (u) (∧E), 2
4 Q(t(u) π1(u)

5 t(u) = y (∧E), 2
6 Q(y) (=E), 4, 5

7 Q(y) (∃E), 1, 2–6

1 P (x)

2 t(x) = t(x) (=I)

3 t(x) = t(x) ∧ P (x) (∧I), 1, 2
4 ∃x(t(x) = t(x) ∧ P (x) (∃I), 3
5 Q(t(x)) π2(t(x))
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9.

1 ∃x(P (x) ∧ ∀y(P (y) −→ x = y))

2 u P (u) ∧ ∀y(P (y) −→ u = y)

3 v w P (v) ∧ P (w)
4 ∀y(P (y) −→ u = y) (∧E), 2
5 P (v) (∧E), 3
6 P (w) (∧E), 3
7 P (v) −→ u = v (∀E), 4
8 P (w) −→ u = w (∀E), 4
9 u = v (−→E), 5, 7

10 u = w (−→E), 6, 8

11 v = u (Sym), 10

12 v = w (Trans), 11, 10

13 P (v) ∧ P (w) −→ v = w (−→I), 3–12

14 ∀y(P (v) ∧ P (y) −→ v = y) (∀I), 3–13
15 ∀x∀y(P (x) ∧ P (y) −→ x = y) (∀I), 3–14
16 ∀x∀y(P (x) ∧ P (y) −→ x = y) (∃E), 1, 2–15
17 r P (r) ∧ ∀y(P (y) −→ r = y)

18 P (r) (∧E), 17
19 ∃xP (x) (∃I), 18
20 ∃xP (x) (∃E), 1, 17–19
21 ∃xP (x) ∧ ∀x∀y(P (x) ∧ P (y) −→ x = y) (∧I), 16, 20

1 ∃xP (x) ∧ ∀x∀y(P (x) ∧ P (y) −→ x = y)

2 ∃xP (x) (∧I), 1
3 ∀x∀y(P (x) ∧ P (y) −→ x = y) (∧I), 1
4 u P (u)

5 u P (v)

6 P (u) ∧ P (v) (∧I), 4, 5
7 P (u) ∧ P (v) −→ u = v (∀E), 3
8 u = v (−→E), 6, 7

9 P (v) −→ u = v (−→I), 5–8

10 ∀y(P (y) −→ u = y) (∀I), 5–9
11 P (u) ∧ ∀y(P (y) −→ u = y) (∧I), 4, 10
12 ∃x(P (x) ∧ ∀y(P (y) −→ x = y)) (∃I), 11
13 ∃x(P (x) ∧ ∀y(P (y) −→ x = y)) (∃E), 3, 4–12

(Note: (∀E) is used twice in line 7.)
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The translation problems (with “obvious” symbols):

1.

1 ∀x(L(x) −→ C(x))

2 L(b)

3 b = f

4 L(b) −→ C(b) (∀E), 1
5 C(b) (−→E), 2, 4

6 C(f) (=E), 3, 5

2.

1 ∀x(L(x) −→ ¬S(x))
2 L(b)

3 S(f)

4 f = b

5 S(b) (=E), 3, 4

6 L(b) −→ ¬S(b) (∀E), 1
7 ¬S(b) (−→E), 2, 6

8 ⊥ (¬E), 2, 6
9 ¬(f = b) (¬I), 4–9

3.

1 W (b)

2 W (h)

3 ∀x(W (x) −→ x = b ∨ x = h)

4 L(b)

5 L(h)

6 u W (u)

7 W (u) −→ u = b ∨ u = h (∀E), 3
8 u = b ∨ u = h (−→E), 6, 7

9 u = b

10 L(u) (=E), 4, 9

11 u = h

12 L(u) (=E), 5, 11

13 L(u) (∨E), 8, 9–10, 11–12
14 W (u) −→ L(u) (−→E), 6–13

15 ∀x(W (x) −→ L(x) (∀I), 6–14
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4.

1 ∀x∀y(L(x) ∧ L(y) −→ x = y)

2 L(b)

3 ¬h = b

4 L(h)

5 L(h) ∧ L(b) −→ h = b (∀E), 1
6 L(h) ∧ L(b) (∧I), 2, 4
7 h = b (−→E), 5, 6

8 ⊥ (¬E), 3, 7
9 ¬L(h) (¬I), 4–8

(Note: (∀E) is used twice in line 5.)

A final remark about equality:

One nice technical point is that having equality as a predicate, we can now define functions in terms
of predicates, in the following way. Suppose we want to have a symbol s representing “+1”. One
could define it in terms of an “addition predicate” A(m,n, k), interpreted as “k is the sum of m and
n”, as follows. Assuming that our entities are ordinary numbers, with the usual properties (later
we shall see how one could construct a “theory” where such properties are required as “axioms”),
then we would want the following statements to be true.

∀x∀y∃zA(x, y, z)
∀x∀y∀z∀z′(A(x, y, z) ∧A(x, y, z′) −→ z = z′)

This says that for any pair of numbers m,n, their sum is uniquely determined. We could then
introduce a new term constructor s with arity 1, and “define” it by the assertion A(n, 1, s(n)),
which just says that s(n) = n + 1, as intended. With the assertions above, we would know that
s(n) has the properties n+ 1 ought to have.

And next . . . ?

Now that we have a good understanding of what a (formal) proof is, we may relax somewhat, and
use these logical principles more informally, which is exactly what mathematicians do when they
want to prove things about the mathematical universe. In the remainder of the course, we shall
look at several mathematical topics, and shall construct mathematical proofs of various claims and
statements. Those proofs will be informal, conversational in fact, but it should always be clear
that one could translate these informal proofs into a formal presentation of the sort we have been
considering in these past few chapters. In other words, the arguments use informal versions of the
derivation rules we have been using for formal derivations.



Chapter 6

Sets and Things

6.1 Sets

Membership in a set is a kind of pattern that is basic to our ability to count and, ultimately, to
conceive of numbers and arithmetic operations on numbers.

The concept of “number” depends on the “set” concept. Set theory also includes a lot of
propositional and predicate logic that we touched on in the last chapters. Sets are a bridge between
logic and number theory.

A set is a collection of things. Counting how many things are in the collection is basic to the
concept of number.

When we say “a set is a collection of things”, what sort of things do we have in mind: what is
a “thing”? We allow “things” to be almost anything you can imagine, not only concrete objects
like stones and people, but also abstract entities as well, like colours and qualities (“goodness” is
a thing, in this view). There are some minimal properties “things” must have. A set must come
equipped with a notion of “equality”: it must be possible to say whether or not two things in a set
are equal. The things in a set must be the kind of thing about which it makes sense to say how
many of them there are (so we can count them). Things must be self-identical (so a thing continues
to be that thing for as long as it matters) and distinct (so we can somehow distinguish this thing
from that thing).

A set may be represented by a predicate, in the sense that it is the collection of all things which
satisfy that predicate. For instance, one might define a set by saying it contains all people with
blue eyes (i.e. all things having the property that they are people and have blue eyes). Or a set
might just be specified by listing the things in the collection.

It is important to be able to distinguish between a collection of things, and the things in that
collection. We can consider the properties of the collection independently of the properties of the
things. For example, the students in a college class form a collection. One property of everything
in that collection is that he/she has a mother. But the class does not have a mother. On the
other hand, a property of the college class is its male/female ratio, but a student cannot have a
male/female ratio.

So a collection, group or set can be itself a thing with properties. A set is a new kind of
(compound) thing: since one set can be distinguished from another, we see that sets are things. So
a set could be a collection of sets (a set of sets). (This means there should be a notion of equality
for sets—we shall return to this shortly.)

For greater clarity and less ambiguity mathematicians have developed an artificial language of
symbols for dealing with sets and things.

153
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Sets and things will be symbolized with variables, similarly to how we handled terms in predicate
logic. Suppose we have a collection of Beanie Babies, consisting of Bamboo, Prissy, Purplebeary,
two Romeos and Shadow. The two Romeos have to be given distinct names, so we might call them
Romeo1 and Romeo2 (or OldRomeo and NewRomeo). We may symbolize these as b (Bamboo),
p (Prissy), q (Purplebeary), r (Romeo1), m (Romeo2) and s (Shadow). The set of my Beanie
Babies might be symbolized as B. Special sets (like the empty set, the universal set, and certain
sets of numbers) have special identifiers (names). When we deal with numbers, the identifiers for
individual things are numerals—the names of the numbers.

6.1.1 Specifying sets

There are two ways to define a set. The denotative definition defines a set by giving its denotation.
The denotation of a set is a list of all the members of the set. The definition of the set B is B =
{b, p, q, r,m, s}. We list the names of the members inside curly brackets. T = {1, 2, 3, . . . , 10} can
represent the set of positive integers less than 11. The ellipsis (. . . ) indicates that there are members
not specifically listed. We can define a set with infinitely many members as C = {a, b, c, . . .}, the
ellipsis indicating that the list goes on indefinitely. For example N = {0, 1, 2, 3, . . .} is the set of
all non-negative integers, usually called the natural numbers. There is no last natural number; this
list goes on without stop, the set N is infinite.

To say that a thing is a member or an element of a set (i.e. that it is in the set), we use the
symbol ∈. To say that Bamboo is one of my Beanie Babies we write b ∈ B. To deny that a thing
is a member (or element) of a set we can either use the ¬ symbol or the special symbol /∈. To say
that Duster (symbolized as d) is not one of my Beanie Babies, we say d /∈ B or ¬ d ∈ B.1

Connotative definitions define a set by giving the connotation of the name of the set. The
connotative definition of a set is a specification of the rule (the property or predicate) which
determines whether or not something is a member of the set. It states a rule that something must
satisfy if it is to be included in the set. We could define the set “all-my-Beanies-except-the-Romeos”
as C = {x|x ∈ B ∧ (x 6= r ∧ x 6= m)}. We read this expression as: C is the set of all x such that x
is a member of B and x is not r and x is not m. This way of stating the definition is often called
“set-builder notation”, because the notation specifies how to build the set. This expression defines
the property (predicate) that something must have to be included in the set C. The “x” in the
notation is a variable that stands for the identifier of a thing.

Remember that implicitly, every set comes equipped with a notion of equality—we assume that
we can always tell whether or not two things are to be regarded as “the same thing”, meaning that
they are equal.2 Since sets are things, this means we must also be able to determine if two sets
are equal. And here hangs a philosophical tale: there are two well-established notions of equality
of sets (corresponding to the two ways of specifying sets), and which one we use has a significant
effect on how we regard and handle sets.

Extensional equality of sets is determined by the actual elements of the sets: we say that two
sets are equal (extensionally), indicated by P = Q, if and only if the two sets contain exactly the
same elements. P = Q means that every member of P is also a member of Q, and every member
of Q is also a member of P :

(P = Q)↔ ∀x((x ∈ P −→ x ∈ Q) ∧ (x ∈ Q −→ x ∈ P ))
1∈ is a (binary) predicate, and we handle it just as we did other predicates before. We may use the other logical

operations, of course, so for example, we might write b ∈ B ∧ ¬ d ∈ B, to mean Bamboo, but not Duster, is one of
my Beanie Babies.

2Formal treatments of set theory often take such an equality relation as part of the specification of a set, so that
a set is not merely a collection, but is a collection together with a suitable notion of equality.
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(meaning “set P is equal to set Q if and only if for any x, if x is a member of P then x is a
member of Q and if x is a member of Q then x is a member of P”). Of course this is equivalent
to: (P = Q)↔ ∀x(x ∈ P ↔ x ∈ Q) (read as “set P is equal to set Q if and only if for any x, x is
a member of P if and only if x is a member of Q”). The definition of equality entails that, for any
set A, A = A.

Intensional equality of sets is determined by the predicates that define them: two sets are
intensionally equal if they are defined by the same predicate.

So, here’s a bit of 60’s trivia for you: there are official Beatles recordings on which exactly 1, 2,
3, or 4 of the Beatles (John, Paul, George, Ringo) performed. (For example, only Paul performed
on “Yesterday”, only John and Paul on “Ballad of John and Yoko”, all but Ringo on “Back in the
USSR”, and they all performed on “Help!”.) So, extensionally the following two sets are both equal
to {1, 2, 3, 4} (and so to each other):

{x|x is a natural number ∧ 0 < x < 5}
= {x|∃y(y is a Beatles recording ∧ x is the number of Beatles performing on y)}

However, intensionally these sets are not at all equal. It’s merely a historical accident that these
sets have the same elements; their connotations are quite distinct.

Unless otherwise stated, we shall always mean extensional equality by A = B. The only
times I shall refer to intensional equality will be to point out how that notion makes for a different
set theory.

6.2 Two important sets

When considering sets, there are two extremes: the set that has nothing, and the set that has ev-
erything. The empty set is the set that has no members. It is represented either as { } (empty curly
brackets) or as ∅ (a stylized Greek letter phi).3 No matter what connotative definition you give, the
empty set has the same denotative definition, since it contains exactly the same members (no mem-
bers at all). So, extensionally speaking there is only one empty set. However, different connotative
definitions can all define the empty set. (So intensionally speaking, one would have many different
empty sets—this is one sign that intensional set theory is more complicated, or “richer”, to be more
positive, than extensional set theory.) The set W = {x|x is a woman more than 16 meters tall}
states a different rule from that stated by L = {x|x is a leprechaun}. But W is the empty set, and
so is L, because neither set has any members. The predicates “. . . is a woman more than 16 meters
tall” and “. . . is a leprechaun” have the same denotation but different connotations: they have the
same extension (or reference), but different intensions (or senses).

Chapter 5 introduced the concept of a “universe of discourse”. A similar notion in set theory is
the universal set. The universal set consists of every individual thing in the universe of discourse.
Usually the universe of discourse is restricted, either explicitly or implicitly. If we are talking
about my Beanie Babies, I would probably not have to specify x ∈ B when defining the set C. I
assume you understand that I’m talking about Beanies when I say “Everything is for sale except
the Romeos”. The set of Beanies for sale could be defined as C = {x|x 6= r ∧ x 6= m} on this
assumption. The symbol for the universal set is U. If I want to restrict the universe of discourse
to my Beanie Babies, I could say U = B or U = {b, p, q, r,m, s}.

We saw that sets may be members of other sets. In fact, a set can include members that are
sets as well as members that are individuals. Suppose I need some money and decide to sell my

3Be careful here: do not represent the empty set as {∅}. That is not an empty set, as it has (exactly) one member,
namely the empty set ∅. That is, it is a set with one element, and that element is a set itself, but with no elements.
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MIDI synthesizer (i), my computer (j) and my collection of Beanie Babies. The set of things I’m
selling can be defined denotatively as S = {i, j, B}. Romeo1 (r) is not a member of this set. I’m
selling the Beanie Babies as a set, not individually. The set is one of the things I’m selling. Even
when I define the set as S = {i, j, {b, p, q, r,m, s}}, it is not true that r ∈ S, rather, r /∈ S. S itself
just has three elements (i, j, B), no more, no less. None of those elements is r. One of the elements
(B) is a set, and that set has r as an element, but S does not have r as an element. This is an
important distinction (between sets as things, and sets of things), and you should be careful to
make it.

6.3 Subsets, Proper Subsets, and the Power Set

Set A is a subset of set B, symbolized by A ⊆ B, if and only if all the elements of set A are also
elements of set B. In symbols:

A ⊆ B ↔ ∀x((x ∈ A) −→ (x ∈ B))

We write A ⊂6= B, to mean A ⊆ B ∧ A 6= B; i.e. that A is a subset of B, but is definitely not

equal to B.4 We call such a subset a proper subset. Notice that saying A ⊂6= B is giving more
information than A ⊆ B, and in fact A ⊆ B is equivalent to A ⊂6= B ∨A = B.

The set of Romeos {r,m} is a subset of the set B of my Beanie Babies. If we call the set of
Romeos R = {r,m}, we can say R ⊆ B. (We can go further and also say R ⊂6= B, since we have
that additional information.)

Now we have a conceptual framework (definitions) that permits us to do some simple proofs
in set theory. We shall relax the requirements for proof (i.e., derivation) in these mathematical
proofs, compared to our formal logical derivations. So in particular, we shall replace the formal
structure of derivations with a more “conversational” style, although it is implicit that such strict
structure could be applied if a proof were questioned.

6.3.1 Examples

1. Prove that any set is a subset of itself. That is, prove that ∀X(X ⊆ X) (for any set X, X is
a subset of X).

Proof: Clearly, ∀X(∀x((x ∈ X) −→ (x ∈ X))) (for any set X, every member of X is a member
of X), so ∀X(X ⊆ X).

2. Prove ∀X∀Y (X = Y −→ X ⊆ Y ) (for any sets X and Y , if X = Y then X ⊆ Y ).

Remark: this is a bit subtle, even though it is easy and obvious(!). For when we say X = Y ,
we are not really saying X and Y are the same thing (and so this example isn’t just a repeat of
the previous one), but rather we are saying that they have the same elements. In particular,
the proof of this property is tied to the fact that we are using extensional equality; this proof
would not work if we were using intensional equality.

Proof: By the definition of set equality, whenever X = Y , every member of X is also a
member of Y . Therefore X ⊆ Y . It is also true that Y ⊆ X. In fact:

3. Show that we could have defined set equality as

X = Y ↔ (X ⊆ Y ∧ Y ⊆ X)

4Other notations are used, most commonly A ⊂ B; but since A ⊂ B is also used by some writers to mean A ⊆ B,
we’ll avoid this potentially confusing notation.
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4. Prove ∀X(∅ ⊆ X) (the empty set is a subset of every set).

Proof: Since the empty set ∅ has no members, then for every x ∈ U, x ∈ ∅ is false. An
implication with a false premise is true. So the implication (x ∈ ∅) −→ (x ∈ Y ) is true for all
possible values of x and for any set Y . Every member of the empty set is a member of any
set Y . In other words, the empty set is a subset of every set.

5. Prove ∀X(X ⊆ U).

Proof: The universal set U includes everything that could be a member of any set X, so every
member of any set X must be a member of U.

Be very clear about the difference between one set being a subset of another set and a set
being a member of another set. ∅ is a subset of the set B of Beanie Babies. But ∅ is not a Beanie
Baby, so it is not a member of B. That is, ∅ ⊆ B is true but ∅ ∈ B is false.

When a set A is not a subset of a set B we write ¬A ⊆ B or just A 6⊆ B. Don’t confuse this
with A ⊂6= B (which says A is a subset of B, just not equal to it).

6.3.2 Power sets

The power set of a set A is the set of all the subsets of A. We write P(A) to mean the power set
of the set A.

For example, if A = {a, b}, what are the subsets of A? We proved above that the empty set ∅
is a subset of every set, so it’s a subset of A. We also showed that every set is a subset of itself,
so {a, b} is a subset of A. What else? The set {a} is a subset, because every one of its members is
also a member of A. The same is true of the set {b}. What about {b, a}? It is a subset of A, but it
is the same set as {a, b} (by the definition of set equality, since they have the same elements). So
all the subsets of A are: ∅, {a}, {b}, and {a, b}. These are all the members of the power set of A.
P(A) is the set that has these sets as members, so

P(A) = P({a, b}) = {∅, {a}, {b}, {a, b}}

You may prefer to use { } for the empty set, so you might write P(A) = {{ }, {a}, {b}, {a, b}}. Note
that every element of P(A) is a set, so if we write sets denotationally (listing elements explicitly),
every element is of the form {. . .}.

Some more examples: what is the power set of the one-element set {a}? It’s {{}, {a}}. The
power set of the empty set is {{}} (that is, it is the set that has one member, and that one member
is the empty set). The only subset of the empty set is the empty set (which is a subset of every
set).

Later (Chapter 8) we shall prove the fact that if n is the number of elements of a set A, then
P(A) has 2n elements. Verify this in the examples above (and in the examples in exercises 1–3
below).

6.3.3 Exercise on subsets and power sets

1. Write out all the subsets of the set A = {a, b, c, d}. How many are there? Which of them are
proper subsets? Write the denotative definition of P(A).

2. Write out the power sets (a) of a three-element set and (b) of a five-element set.
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3. Since a power set is a set, so it too will have a power set. Since the power set is a set of sets,
its power set will be a set of sets of sets. Based on the previous exercise, what would you
think P(P(A)) will be when A = {a, b, c}? How many sets are in the power set of the power
set of {a, b, c}?

4. Each of the following statements is intended to apply to all non-empty sets A and B. Indicate
whether each statement is true or false (for all non-empty A,B). (If a statement is only true
for some A,B but not for all A,B, then the statement is false.)

(a) (A ⊆ B) −→ (A ⊂6= B) (b) (A ⊂6= B) −→ (A ⊆ B) (c) A ⊂6= A
(d) A ⊆ A (e) ∅ ⊆ A (f) ∅ ⊂6= A
(g) ∅ ⊂6= ∅ (h) A ⊆ U (i) U ⊆ ∅
(j) ∅ ⊂6= U (k) ∅ ⊆ ∅ (l) A ⊂6= U

6.4 Operations on Sets

In set theory, =,⊆,∈ and so on are (binary) relations or predicates. The power-set operator P is a
(unary) operator: it operates on a set and produces a set.5 Other operators on sets that produce
sets are complement, union, intersection and Cartesian product. The set-complement operation
acts on one set (it is a unary operator) and produces a new set. Union, intersection and Cartesian
product are binary operators.

6.4.1 Venn diagrams

A B

A Venn diagram is often useful to represent sets. We shall use
Venn diagrams to illustrate the set operations complement, union and
intersection. The basic idea is to make a diagram that shows the
universal set as a rectangle with the set or sets (e.g. marked A and B
in the diagram at left) shown as circles. To show a set, the convention
is to shade everything that is in the set and leave the rest un-shaded.6

The diagram illustrates the set A by shading the region enclosed by
A. This is a Venn diagram of the set A. You might like to draw simple Venn diagrams for the set
B, for U, and for ∅.

One important point to make is that the various regions of the rectangle U may be empty (may
have no elements in them), or may be non-empty (may have elements in them). In general we make
no assumptions as to whether or not any region (circle or part thereof) is empty or inhabited. So,
in the picture at left, there may or may not be things in the lune-shaped region where A and B
overlap, or in any of the other regions one might specify.

5It is actually a function symbol, something we only briefly mentioned in the previous chapter.
6This is not universally agreed upon—many authors do exactly the opposite, shading what is not in the set, leaving

the desired set un-shaded. You should be careful in reading other books etc. which have Venn diagrams, and be sure
which convention is being used.
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A B

C

You may have as many circles (representing different sets) as you
need. For example, to represent three sets in the universe, you would
draw three circles. To have the most general configuration possible,
they should overlap in all possible ways—a little thought should con-
vince you that this means the diagram must look something like the
one at left. Needless to say, as the number of circles increases, this
could get a bit complicated!

6.4.2 The complement of a set

A B

The complement of a set A is another set whose members are
everything that is not a member of A. Since the diagram in section
6.4.1 shows the set A, shading everything outside A would diagram
the complement of A, as shown in the Venn diagram at left. This gives
us the following definition.

The complement of a set A is the set of everything that is not a
member of A—every element in the universal set except the things (if

any) that are members of A. The complement of A is symbolized as Ac (read A-complement). In
symbols, we define Ac as:

Ac = {x|x /∈ A}.
Equivalently: ∀x((x ∈ Ac)↔ (x /∈ A)).

6.4.3 The union of sets

A B

The union of two sets A and B is the set containing all elements
that are in either A or B or both, and is symbolized as A ∪B.

So we define the set-union as follows:

A ∪B = {x|x ∈ A ∨ x ∈ B}

The diagram at left shows the union A ∪ B shaded. Everything that
is not in A ∪B is unshaded.

There is a point of English language usage about which you should be careful. Although set
union is defined in terms of inclusive-or, we often describe a union with “and”. For example, we
may say something like “All of my colleagues and friends are invited” to mean that the set of
invitees consists of the union of the set of my colleagues and the set of my friends, which means
everyone who is either a colleague or a friend or both. Think about this, so you understand what
is happening here. In spite of the English usage, the union is the set of elements of one or the
other set, not the set of elements of both. The set of people who are both colleagues and friends is
not the union, but instead is the intersection (defined next), namely those people who have both
properties at once: colleagues who are also friends. That’s not what is usually meant by the phrase
“all of my colleagues and friends”: that phrase usually means all your colleagues and also all your
friends, including those who are only one or the other. That is the union.

What is going on here? It’s actually quite simple: in everyday English “and” has two meanings,
roughly corresponding to logical and to arithmetical usage. “It is raining and it is Monday” is the



160 CHAPTER 6. SETS AND THINGS

“logical and”, meaning that both conditions hold. “The invitees are all my colleagues and friends”
is the “arithmetical and”, meaning that one adds my colleagues to my friends to get the collection
of invitees. There is actually a mathematical reason why the latter is really the dual of the former
(“or” vs “and”, logically speaking), but that would take us way beyond the scope of this course.

6.4.4 The intersection of sets

A B

The intersection of two sets A and B is the set containing all
elements that are members of both sets, symbolized as A ∩ B. The
definition of set-intersection is:

A ∩B = {x|x ∈ A ∧ x ∈ B}

In the Venn diagram of A∩B, at left, only the lune-shaped overlap of
the two circles is shaded.

If A is the set of colleagues and B is the set of friends, then the intersection of the two sets is
all those people (if there are any) who are both colleagues and friends. Friends who are not also
colleagues and colleagues who are not friends are excluded.

If the intersection of two sets is the empty set ∅ (so the two sets have no elements in common),
we say that the sets are disjoint.

6.4.5 Set difference

The difference of two sets A and B, symbolized as A \ B, is the set containing all elements that
are members of A but not members of B. So:

A \B = A ∩Bc = {x|(x ∈ A) ∧ (x /∈ B)}

Exercise: Draw the Venn diagram of A \B.

6.4.6 Cartesian product

The Cartesian product of two sets is a set of ordered pairs. An ordered pair has two elements, a
first element and a second element, so the order of the elements matters. We indicate an ordered
pair using angle-brackets, so that 〈a, b〉 would be the ordered pair consisting of a and b, in that
order. The ordered pair 〈b, a〉 is a different ordered pair. Every ordered pair in the Cartesian
product set A×B has its first element from set A and its second element from set B. So, we define
the Cartesian product of set A and set B, denoted by A×B, to be the set of all ordered pairs 〈a, b〉
such that a ∈ A and b ∈ B:

A×B = {〈a, b〉|(a ∈ A) ∧ (b ∈ B)}

Example: if A = {a, b, c} and B = {h,m}, then A×B = {〈a, h〉, 〈a,m〉, 〈b, h〉, 〈b,m〉, 〈c, h〉, 〈c,m〉}.
The first element in each ordered pair is a member of set A and the second is a member of set B.
In this example, A × B is not the same set as B × A (exercise: list the elements of B × A and
check the two sets are different) so, using the definition of set equality, A×B 6= B ×A. Prove (for
non-empty sets A,B) that (A × B = B × A) ↔ (A = B). This is not true if we allow the empty
set, however, as A× ∅ = ∅ ×A = ∅ for any A; prove this as well.
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Generally, Venn diagrams are not a suitable graphic way to
represent Cartesian products,7 but you have already learned a nice
way in high school, namely the rectangular axes of a Cartesian
coordinate system (the axes could be any sets, not merely the real
line, which is how such axes are usually used in high school). The
axes for the sets A,B in the previous paragraph contain only three
and two points, respectively (though we shall represent them by

lines to make the figure more familiar), and the product A×B has exactly six points, one for each
element of the set. This is illustrated at left.

We can also form the Cartesian product of a set with itself, as A×A. In this case, each member
of A would be paired with every member of A (including itself). Using set A = {a, b, c} from the
previous example, we have

A×A = {〈a, a〉, 〈a, b〉, 〈a, c〉, 〈b, a〉, 〈b, b〉, 〈b, c〉, 〈c, a〉, 〈c, b〉, 〈c, c〉}
Exercise: Show that if A has n elements, B has m elements (for appropriate numbers n,m), then
A × B will have n ×m elements. Verify this for the examples above, and show it is true for any
sets A,B.

6.4.7 Exercise on set operators

1. Draw Venn diagrams to illustrate the following sets:

(a) (A ∪B) ∪ C (b) A ∪ (B ∪ C) (c) (A ∩B) ∩ C (d) A ∩ (B ∩ C)

(e) A ∩ (B ∪C) (f) (A ∩B) ∪ (A ∩C) (g) A ∪ (B ∩ C) (h) (A ∪B) ∩ (A ∪ C)

(i) A ∪B (j) B ∪A (k) A ∩B (l) B ∩A
(m) A ∩U (n) A ∪ ∅ (o) A ∪ U (p) A ∩ ∅
(q) A ∩Bc (r) Ac ∪B (s) ∅c (t) Uc

2. Look at the diagrams for 1.(a) and 1.(b), above. Does it make any difference which pair of
sets is parenthesized? What about 1.(c) and 1.(d)? Prove (based on the definitions of union
and intersection) that it doesn’t matter. Notice that in each case the proof essentially uses
the same “associative property” of ∨ and ∧.8 In general, operators that have the associative
property are said to be associative operators. ∪ and ∩ are associative operators.

3. Look at the diagrams for 1.(e) and 1.(f), above. Do the same for 1.(g) and 1.(h). This
suggests that there are distributive laws for sets, much like the distributive law in arithmetic
a × (b+ c) = (a × b) + (a× c), and like the distributive rules in propositional logic. We say
that union is distributive over intersection and intersection is distributive over union. Prove
(based on the definitions) that the union and association operators have these distributive
properties. One interesting point to notice here is that each of ∪ and ∩ distributes over the
other, unlike in arithmetic where only one of the two possible distribution properties is true
(the distribution a+ (b× c) = (a+ b)× (a+ c) is false).

4. Consider the pairs 1.(i), 1.(j) and 1,(k), 1.(l), what can you say about the commutativity of
union and intersection? Prove (from the definitions) that the union and intersection operators
have the commutative property. Notice in all your proofs that a property of set operators
reflects a similar property of logical connectives.

7You’d need a 4D picture! Can you see why?
8The commutative, associative, and distributive properties for propositional logic were stated and proven to be

equivalences in Section 1.3.12 and again in Exercise 4.3.1 #5.
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5. What general principles (rules or laws) can you conclude from 1.(m) to 1.(p)? Prove them.

6. What do the pair 1.(q), 1.(r) suggest? These two sets are always complements: prove this
from the definitions. Reword the equation using set-difference. And what do the last pair
1.(s), 1.(t) suggest? Prove that these sets are complementary, i.e. that ∅c = U and Uc = ∅.

7. Some other equations dealing with complements are:

(a) (A ∪B)c = Ac ∩Bc (b) (A ∩B)c = Ac ∪Bc (c) (Ac)c = A

Prove each of these, and illustrate the equation with Venn diagrams.

8. Can you prove that the Cartesian product operator is commutative? Explain your answer.

9. Given a universe of 26 elements named by the lower-case letters of the alphabet: U =
{a, b, c, . . . , z}, a set A = {a, l, p, h, b, e, t, s}, a second set B = {s, e, t, i, n, r, c, o}, and C =
{s, e, t, u, n, i, o}, draw a Venn diagram and show the members of the sets by putting the
letters into the appropriate areas.

10. Prove that there can be no more than one empty set: if E and N are both empty, then
E = N . Use only the “official” (extensional) definition of set equality.

11. Some of the following statements are equivalent to A ⊆ B, some are not. Identify which
statements are which, using Venn diagrams in each case to help justify your answer.

(a) A ∩Bc = ∅ (b) A \B = ∅
(c) Bc ⊆ Ac (d) A ∪B = B

(e) A ∩B = A (f) Ac ∩B = ∅

12. (Optional challenge:) Construct a Venn diagram for four sets, showing regions for all 16
subsets (including the empty set). Feel free to try to find a way to represent a suitable Venn
diagram for five (or more!) sets.

6.5 Answers to Exercises

Exercises 6.3.3

1. Subsets of A = {a, b, c, d}: ∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}
(16 subsets). All but the last are proper subsets.
PA =

{

∅, {a}, {b}, {c}, {d} , {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d}

}

2. P{a, b, c} =
{

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
}

P{a, b, c, d, e} =
{

∅, {a}, {b}, . . . , {e}, {a, b}, {a, c}, . . . , {a, e}, {b, a}, {b, c}, . . . , {d, e} ,
{a, b, c}, {a, b, d}, . . . , {c, d, e}, {a, b, c, d}, . . . , {b, c, d, e}, {a, b, c, d, e}

}

I have not written all 32 subsets—I leave it to you to fill in the gaps.

3. P(P(A)) will have 256 different elements, each being a set of subsets of A, such as the following
(see the subsets of A as listed in #2 above—we are now considering sets of these sets):
{

∅, {a}, {b, c}
}

,
{

{b}, {a, b, c}
}

and
{

{a, b}, {a, c}, {a, b, c}
}

and 253 others . . .P(P(A)) will have all these sets as elements.



6.5. ANSWERS TO EXERCISES 163

4. (a) F (b) T (c) F (d) T (e) T (f) T (since A is not empty) (g) F (h) T (i) F
(j) T (k) T (l) F

Exercises 6.4.7

1. (a – r): see the figure on the next page. (s,t): ∅c = U and Uc = ∅.

2. Clearly these pairs are equal, as shown in the Venn diagrams. To illustrate the proofs, I’ll
prove (a) = (b).

Let x ∈ (A ∪ B) ∪ C. Then (x ∈ A or x ∈ B) or x ∈ C. Because (p ∨ q) ∨ r ↔
p ∨ (q ∨ r), we can conclude x ∈ A or (x ∈ B or x ∈ C); i.e. x ∈ A∪ (B ∪C). And
similarly vice versa because of the equivalence. So (A ∪B) ∪ C = A ∪ (B ∪C).

The other proofs in these exercises are similar. Ask me if you need more details.
Here are hints for the rest of this exercise set:

7. I’ll illustrate this with a proof of the first one:

Suppose x ∈ (A ∪ B)c: then x /∈ A ∪ B, in other words, ¬(x ∈ A ∨ x ∈ B). But
¬(p ∨ q) ↔ (¬p ∧ ¬q), so this is equivalent to x /∈ A ∧ x /∈ B. In other words,
x ∈ Ac ∩Bc. (And vice versa, because of the equivalence.)

See the figure for Venn diagrams to illustrate this, and the others.

8. This is discussed in the text; show that A× B 6= B × A for the specific sets in the Example
in section 6.4.6, for instance.

9. See the figure.

10. For any x ∈ E, x ∈ N is true (simply because there is no x ∈ E in the first place). So E ⊆ N ,
and the reverse is similar. So E = N .

11. The statements that are equivalent to A ⊆ B are (a) (there is nothing in A ‘outside’ B),
(b) (taking all elements also in B from A leaves nothing behind), (c) (everything not in B
is also not in A), (d) (adding elements from A to B doesn’t actually add anything to B),
(e) (only things from A are in both A and B). (f) is not equivalent (there’s nothing in B
‘outside’ A—that means B ⊆ A, not A ⊆ B).

I’ll let you draw Venn diagrams to illustrate this. I’ve done (a) in the figure.

12. See the figure for one possibility.
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Chapter 7

What is a Number?

7.1 Numbers, Numerals, Cardinals, and Ordinals

What is a number? This is not an easy question to answer; think about it a bit to see if you can
come up with a satisfactory answer. Numbers are abstract: you cannot touch, draw, or point to a
number. (You can draw a numeral; we’ll come to that in a moment.) You can hold up five fingers,
but you cannot hold up just ‘five’. Some abstract notions are tied to some physical reality: for
instance “red” corresponds to a wavelength of light. But some are less tied: for instance “goodness”
doesn’t seem to be linked to a physical phenomenon. Numbers have something of this nature as
well, and one way around the problem of defining just what numbers are is similar to a well-known
way to define notions like “goodness”: “goodness” may be defined to be that property shared by all
things that are good (!), and so in a similar fashion (but without the transparent circularity!) we
might define “five” as the property shared by all collections (sets) which have exactly five elements.

We shall start this chapter by looking at this idea more carefully, and show that it can be
handled in a way to define numbers in a fashion that is well grounded (not being circular in its
logic). We shall then look at the history of numbers, in particular, at number systems used by past
cultures which have had an influence on our own history. Finally we shall look at some different
types of numbers used in mathematics today.

7.1.1 Counting

Let’s start with an intuitive idea of what “number” means, and draw the distinction between
“number” and “numeral”: a number is a “quantity of countable things”. A numeral is a word or
symbol that stands for a number. So, when you hold up five fingers, the number five is the quantity
of fingers, and the word “five” is the numeral representing that number. The distinction between
numbers and numerals is very important. We invented numerals; numerals are artefacts of human
language, arbitrarily chosen and adopted by convention. We did not invent the (natural) numbers.
The number of sheep in a valley is some particular number, whether there are people around to
count them or not, even if nobody has a name or symbol for that number.

It’s worth remarking that counting is a very basic human skill, one that predates the invention
of numerals. Prehistoric humans could count quantities even without having much in the way of
numeric concepts. In many languages, the largest numerals refer to fairly small numbers, such
as two or three or five. To refer to a number that is larger than the one named by their largest
numeral, they use a word or phrase that means something like our words “many” or “infinity”.
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Still, these groups of people can and could count and record large countable quantities.1

How do pre-numerate2 cultures count and record numbers? They use a fundamental principle
of set theory, namely that two sets contain the same number of elements if there is a
one-to-one correspondence between the elements of the two sets. This is what we mean
by numerical equality, and the point is that we don’t need to know what numbers are to use it.

Imagine a pre-numerate sheep-owner about to send her sheep out with the herd-boy. The owner
puts a pebble into a jar as each sheep leaves. When the sheep return, the owner dumps the pebbles
into a bowl and puts one back into the jar as each sheep enters the fold. If the owner has extra
pebbles in the bowl after all the sheep are in the fold, she has lost sheep. If she runs out of pebbles
before all the sheep are in, she has gained sheep. She doesn’t need numerals (a way of saying how
many sheep she has). She cannot answer the question “How many?” in words. She just holds up
the jar. The set of pebbles is not a numeral—it is not a symbol of the number. It is the number.
It is a set that has a one-to-one correspondence with the collection of sheep. It answers “How
many?” with “This many”. Notches carved in sticks or bones, knots in cords, beads on a string,
or tally-marks on clay tablets or on paper work the same way.

The point to notice about this is that it is possible to understand what it means for two collec-
tions (sets) to have “the same number of things”, without having to understand what “number”
means. So “same size” would seem to be a more basic concept than “size”, and that is what we
look at next.

7.1.2 Cardinality and sets

Numbers that answer the “How many?” question are referred to as cardinal numbers. The point
being made in the previous paragraphs is that it is easier to define what it means for two sets to have
the same cardinality (or size) than it is to define what cardinal numbers are themselves. From this
observation, in the early twentieth century, when mathematical logicians and philosophers tried to
define just what is a number, they arrived at the viewpoint that it would be a good strategy to
define number in terms of sets, more particularly, in terms of “same-size sets”. There were several
variations on this theme: we shall briefly look at two. Later in the century, an alternate approach
to “foundations of mathematics” (trying to define what maths is about, and in particular, what
numbers are) was proposed, which avoids this set-theoretical baggage: I shall also briefly describe
that as well. What may one conclude from all this? Well, perhaps mainly that it is possible to
give a logical basis for discussing numbers, for to be sure, most practicing mathematicians do not
actually bother with such issues, being quite happy to work with numbers regardless of how they
are defined.3

A naive proposal4 (essentially what Bertrand Russell and Alfred North Whitehead did in their
seminal Principia Mathematica) would be to say a cardinal number is a (maximal) set of sets all of
which have the same cardinality. So for instance, we could say the number two is the set of all the

1You might like to look at Pi in the Sky: Counting, Thinking, and Being, by John D. Barrow, Oxford 1992.
2“Numeracy” means “ability with or knowledge of numbers”. John Allen Paulos (Innumeracy: Mathematical

Illiteracy and its Consequences, Vintage Books 1988) defines “innumeracy” as “an inability to deal comfortably with
the fundamental notions of number and chance”. As we speak of “pre-literate” cultures, “pre-numerate” seems a
good word for those without a sophisticated vocabulary for dealing with numbers, and “innumerate” is as a kind of
correlate to “illiterate”.

3Actually, I should be a bit more careful: it is natural numbers, defined soon, that mathematicians are happy to
use without definition; other numbers, such as integers, rationals, reals, . . . , are carefully defined starting with the
natural numbers, more or less as we shall do later in this chapter.

4There are some technical problems with this naive idea, but they have fairly simple technical resolutions, so we
won’t worry too much about that here.
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sets which have the same size as the set {0, 1} (i.e. all sets with two elements, but note that we
don’t need to know what “with two elements” means; we merely need to understand what “which
have the same size as {0, 1}” means). Then, e.g., saying that the set {a, b} has two elements would
be understood as saying that it belongs to the set we are identifying as the number two.

An alternate view, associated with the logicians Ernst Zermelo and John von Neumann, is to
say a cardinal number is a particular representative set, whose size (cardinality) establishes the
number. So, for example, the number 0 is defined to be ∅, the empty set, 1 is the set {∅}, 2 is the
set {∅, {∅}} (which is also {0, 1}, which suggests the pattern: each number is the set of previous
numbers), and so on. So, according to this definition, to say a set has 2 elements would be to say it
has the same cardinality as the set {0, 1}. What both definitions have in common is that numbers
are defined to be particular sets, and to say that a set has a particular “number of elements” is taken
to mean that it has the same cardinality as some other set (whose cardinality is pre-determined).

With this view, then, the (philosophical) problem of defining what a number is has been shifted
to the problem of what it means for two sets to have the same size or cardinality. We define this
as follows:

Two sets A and B have the same (equal) cardinality if and only if there is a correspon-
dence such that every element of A corresponds to exactly one element of B, in such a
way that every element of B corresponds to exactly one element of A. (This is called a
one-to-one correspondence.)

We write #A = #B to mean A and B have the same cardinality. We often read this as “the
cardinality of A equals the cardinality of B”, thinking of #A as “the cardinality of A” or even
as “the number of elements of A”. But the real notion is not “cardinality” (yet), but “of equal
cardinality”.

Note that sets may have the same cardinality without being equal; consider for example the
sets A = {a,m, t, b} and B = {0, 1, 2, 3}. #A = #B, but A 6= B (the sets are not equal: A might
be a collection of Beanie Babies while B is a set of (natural) numbers).

The idea then is that a cardinal is the cardinality (size) of certain sets.5 When we say “the
cardinality of this set is two”, we may understand this as saying “this set has the same cardinality
as {0, 1}”. Two (or deux or zwei or 2 or II or whatever numeral we use to refer to it) is the size
of any set which is the same size as (can be put into a one-to-one correspondence with) the set of
my feet or the set {a, b} or the set {0, 1}. Three (trois, drei, 3, III, or whatever) is the cardinality
of any set that is the same size as the set {0, 1, 2}. And so on. Finite cardinal numbers are called
natural numbers. The set of natural numbers is an infinite set, denoted N = {0, 1, 2, 3, 4, . . .}.6
We use the notation #A to denote the cardinality of the set A, so for example #{a, e, i, o, u} = 5.

What would it mean (in the spirit of the discussion in this section) to say #A < #B? Think
about this a moment: you should be able to convince yourself that this should mean that whenever
you try to establish a correspondence between the elements of A and the elements of B, there
should be some “left over”: every element in A corresponds to exactly one element of B, but there
are always (no matter how you do the correspondence) elements in B that are not associated with

5Technically, the relation “of equal cardinality” is an equivalence relation, and cardinals are the equivalence classes
for this relation (modulo some technical quibbles). In the Zermelo approach, these equivalence classes are represented
by canonical representatives. If this idea is unclear, don’t worry: all you need to remember is that it is possible to
give an unambiguous definition of number in terms of the clear notion of “same size”.

6Here is another convention about which there is no universal agreement: some people regard 0 as the first natural
number (what is the cardinality of ∅ ?), some start with 1 (being guilty of anti-∅ism). In this course we shall start
with 0, but you should be aware that some other books you might look at could use the other convention. This
changes very little of importance, however.
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elements of A. This last condition means that you cannot associate every element of B with exactly
one element of A. This leads us to the following definition:

#A < #B (the cardinality of a set A is less than the cardinality of a set B) if and only
if the cardinality of A is equal to the cardinality of a subset of B and the cardinality of
B is not equal to the cardinality of any subset of A.

What the definition says is that the cardinality of a set A is less than the cardinality of a set
B if there is a subset of B that is the same size as A, but there is no subset of A that is the
same size as B. The shepherd who lost sheep found that the sheep could be put into a one-to-one
correspondence with a subset of the pebbles from the jar, but that there was no way to put all the
pebbles from the jar into a one-to-one correspondence with any subset of the sheep (there would
always be extra pebbles left over—corresponding to the missing sheep).

We can define > and other order relations (like ≤,≥, 6<, 6>, 6=) in the obvious way.

Remark: For finite sets A and B, if A ⊂6= B (i.e. A is a proper subset of B) then #A < #B,
i.e., the set A is smaller—has a smaller cardinality—than B. But be careful!! This is only true
for finite sets, and is definitely not true for infinite sets, such as N. We’ll discuss this later in this
chapter. Cardinalities for infinite sets have some very surprising properties.

Freeing ourselves from set theory

I said earlier that there was another approach to numbers which avoided the complications of set
theory: basically that approach says not to worry about what a number is, focus instead on what
properties it possesses. So one takes (say) the natural numbers to be just some entities, and lists
a set of axioms those entities must possess in order for them to have the required properties one
expects of the natural numbers. Such axioms we shall see later (the Peano axioms), so I won’t go
into detail now. But what this view of the basis of number gives us is the freedom not to worry
what numbers are, instead we can act as if we already know that, and focus on their properties.
This is what most of us (mathematicians and non-mathematicians alike) do anyway, and it will be
what I shall do from now on in this text (except for now I assume you know the basic properties
of numbers, leaving the technicalities for later).

7.1.3 Ordinals and counting

Another aspect of counting gives an order relation on the things counted; this corresponds to the
notion of an ordinal. As with cardinals, this is a very ancient notion; pre-numerates understand
ordinals. A pre-numerate shepherd can know that Dolly was her first sheep and Belle was her
second, or which sheep came home first and which came home second. These ordinal notions derive
from recognition of the order of events in time. Once she had no sheep. Then she had Dolly. Once
she had just Dolly, and then she had Dolly and Belle. These statements embody ordinal concepts
even before the shepherd has ordinal numerals. “First”, “second”, and “third” and so on are ordinal
numerals. Numerals like “1”, “2”, and “3” can represent ordinals when they are used to express a
place in a series of numbers. They also can represent cardinals (which makes them ambiguous).

The first ordinal number corresponds to the cardinal number of the smallest set: the empty
set. We call it 0. The next number could be defined as: 1 is the cardinality of any set X such that
#X > 0 and for any other set Y , if #Y > 0 then #Y ≥ #X. Think about this definition carefully.
We define “next number” (an ordinal notion) in terms of minimally-greater cardinality. Exercise:
define the next cardinal number after 1.
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Now, when an ancient shepherd is counting her flock, she can name each sheep (or each pebble
in the jar) by using the names of the ordinal numerals in order. So, implicitly (before counting the
first sheep) she starts with 0, then, as she counts the first sheep, she uses the name of the next
ordinal (1), then the next (2), and so on. When she has matched an ordinal n against the last (nth)
sheep, she can report the number of sheep in the flock by stating the last ordinal (n) she used. The
last ordinal is the cardinal number of sheep. That’s the way we count.

7.2 Transfinite Arithmetic

Discovering the foundations of number in the concept of “set” has many consequences. One of the
consequences is that we can speak and write more clearly about infinity. Until Georg Cantor in
the 19th century, we were a little like those people whose numerals only go up to three or five. If
we were asked how many natural numbers there are, we could only say “infinitely many”. Asked
how many rational numbers (fractions) there are, we could only say, again, “infinitely many”. How
many real numbers? Again we would say “infinitely many”. No distinction was made between the
sizes of these various sets of numbers.

Cantor chose the numeral (symbol) ℵ0 for the cardinality of the set N (the set of natural
numbers). He called the cardinality of an infinite set its “order of infinity”. The numeral ℵ0 is
aleph (the first letter in the Hebrew alphabet) followed by a subscript zero (0), and it’s pronounced
“aleph-nought” or “aleph-null” or simply “aleph-zero”. Then, by definition, #N = ℵ0.
ℵ0 stands for a new kind of number, a transfinite (or infinite) cardinal.
How can we decide whether infinite sets have cardinalities that are less than, the same as, or

greater than the cardinality of the set of natural numbers? We go back to the idea that sets of
equal size can be mapped one-to-one against each other.

The (infinite) set of even natural numbers is the set {0, 2, 4, 6, 8, . . .}. There is a simple way to
establish a one-to-one correspondence between this set and N, to find a correspondence such that
every element of the set of even natural numbers corresponds to exactly one element of N: Just
map 0 ↔ 0, 1 ↔ 2, 2 ↔ 4, 3 ↔ 6, and so on. It is clear that by this mapping every even number
corresponds to one and only one natural number, and every natural number is covered by this
correspondence. By the definition of “equal cardinality” these two sets are the same size! But the
set of even natural numbers is a proper subset of the set of natural numbers. So the whole (the set
of natural numbers) is not greater than the part (the set of even natural numbers). This seems
to violate a basic axiom of arithmetic and geometry. Intuitively, if there are ℵ0 even numbers,
there are 2 · ℵ0 numbers. It seems that 2 · ℵ0 = ℵ0. You get the same result if you notice that the
set of all odd natural numbers can also be mapped one-to-one against the set of natural numbers
(each natural number n maps to the odd number 2n + 1). The cardinality of the set consisting of
the union of the two disjoint sets is ℵ0 + ℵ0. But the union of those two sets is just the set of all
natural numbers, whose size is ℵ0. So, contrary to our intuition, it follows that ℵ0 + ℵ0 = ℵ0.
It is possible to show that for any infinite cardinal numbers α, β, the sum α + β is in fact equal
to the larger of the two cardinals. One of the things you must let go of when dealing with infinite
cardinalities is your intuition, based on finite numbers. The finite is not a good guide in guessing
what the infinite is like.

Galileo noticed that the infinite set of all squares of natural numbers can be put into a one-to-
one correspondence with the set of natural numbers. Map each natural number against its square,
as 0 ↔ 0, 1 ↔ 1, 2 ↔ 4, 3 ↔ 9, 4 ↔ 16, and so on. The set of squares is a proper subset of the set
of natural numbers, yet the two sets have equal cardinality.

We defined “less-than” by saying “the cardinality of a set A is less than the cardinality of a
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set B, #A < #B, if and only if the cardinality of A is equal to the cardinality of a subset of B
and the cardinality of B is not equal to the cardinality of any subset of A”. The cardinality of
the set of squares is equal to the cardinality of a subset of the set of natural numbers, because the
set of squares is a subset of the set of natural numbers. Is the cardinality of the set of natural
numbers equal to the cardinality of a subset of the set of squares? It is: we have just shown that
the cardinality of the set of natural numbers is equal to the cardinality of the set of squares by
finding a one-to-one correspondence between them, and the set of squares is a subset of the set of
squares. (Any set is a subset of itself.) The sets are “the same size” in the sense that they have
equal cardinality.

This seems, and seemed to Cantor’s contemporaries, very paradoxical: a set can be the same
size as a proper subset? How can the part be the same size as the whole? Well, the answer in
one sense is just what we have already seen: the one-to-one mappings show this is exactly what is
the case. But we can turn this seeming paradox on its head, and notice that in fact this is a basic
property of infinite sets: it is only infinite sets that can have proper subsets of the same cardinality
as the whole set. In fact, this could be a definition of infinite set: a set X is infinite if there is a
proper subset A with the same cardinality #A = #X.
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There are more surprises for you dealing with infinite sets of
numbers. Consider the following fact: the cardinality of the
set of all fractions (all “rational numbers”, which we shall de-
fine more carefully soon, should you not recall them from high
school) is also exactly ℵ0. Try to see if you can create a one-
to-one association of natural numbers to all fractions. Here’s
one way: it is possible to arrange all fractions in (infinitely
long) rows, stacked one above the other in an infinitely tall
and infinitely wide table. Put all the fractions with denom-
inator 1 in the first row (01 ,

1
1 ,

2
1 ,

3
1 ,. . .), all the fractions with

denominator 2 in the second row (02 ,
1
2 ,

2
2 ,

3
2 ,. . .), etc. This will

give you lots of duplicates, but you can easily eliminate them
if you want. Then trace a path through this table, starting at the top-left, and working along diag-
onals right and down. In this way you can list, one after the other, every fraction (skip duplicates
if you want), thus giving the one-to-one correspondence you need.7 Notice that this suggests that
ℵ0 · ℵ0 = ℵ0.

It is starting to look as if every infinite set has size (cardinality) ℵ0, so that ℵ0 appears to be just
another way of saying “infinitely many”. It’s not. Cantor proved that there are infinite sets whose
cardinality is greater than the cardinality of the (infinite) set of natural numbers. In particular, he
showed that the cardinality of the set of natural numbers (ℵ0) is less than the cardinality of the
power set of the set of natural numbers. The proof is a nice example of subtlety and creativity in
mathematics.

Here is a simple variant of this result: we shall show that the set of decimal numbers between 0
and 1 has a strictly greater cardinality than ℵ0, by showing that any enumeration of such decimals
(any attempt at a one-to-one correspondence between the decimals and the natural numbers)
always omits some decimals. So, consider any enumeration of decimal numbers between 0 and 1:
for example, the first decimal in your enumeration might be 0.12345678987654321 . . . , the second

7There are many other clever ways to “count” all the fractions. Here is another: collect all the fractions in lowest
terms where the sum of numerator and denominator is 1, and arrange them in numerical order; then do the same for
those where the sum of numerator and denominator is 2 (omit duplicates), then 3 then 4 . . . . This gives a list of all
fractions, as required. This list would start thus: 0

1
, 1
1
, 1
2
, 2
1
, 1
3
, 3
1
, 1
4
, 2
3
, 3
2
, 4
1
, . . ..
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might be 0.098765432123456789 . . . , and so on. We construct a decimal (let’s call it x) which is
not in your enumeration as follows: look at the first decimal place in your first decimal number
(which is a 1 in our example), and set the first decimal place of x to be something different (e.g.
add one to the digit, unless the digit is 9, in which case take 8 to be your different digit8). So in our
example x begins 0.2. For the second decimal place in x, look at the second decimal digit in the
second decimal number in your enumeration: in our example, this digit is 9. Again take a different
digit (in our example, using the procedure mentioned for the first digit, we would take 8 as our
different digit). That is the second digit of x, so x now looks like 0.28. Continue in this way—every
digit of x differs in at least one position from every decimal number in your enumeration, so your
enumeration cannot contain x. In this way, we can see that no enumeration of decimal numbers
between 0 and 1 can possibly list every decimal number between 0 and 1, and so the cardinality
of the set of all decimal numbers between 0 and 1 must be strictly greater than ℵ0. In fact, the
cardinality of the set of decimal numbers between 0 and 1 is the same as the cardinality of P(N),
and Cantor’s proof in that case is essentially the same. His proof may be modified slightly to show
that for every set A, #A < #P(A) (the power set of A always has a strictly greater cardinality
than that of A itself). So there are lots (infinitely many) of infinite cardinals.9

This proof is a bit subtle, to be sure, but underlying it is a principle (called “diagonalization”)
that has proved of considerable power in twentieth century mathematical logic (we shall see a
similar technique when we consider Gödel’s incompleteness theorems, at the end of the course).

Infinite sets whose cardinality is ℵ0 are called “countably infinite sets”. Although we could
never finish counting all the members, they are “countable” in the sense that we can map them
one-to-one against the set of “counting numbers” (N, the natural numbers). Infinite sets whose
cardinality is greater than ℵ0 are called uncountably infinite.

“How many natural numbers are there?” “Infinitely many” is vague and ambiguous. “ℵ0 many”
is more precise. There are (infinitely many) different “sizes” (orders) of infinity. Not all infinities
are the same. A similar story may also be told about infinite ordinals, though not in this text.

7.3 Systems of Numeration

By a system of numeration we mean a set of elementary numerals and a scheme or rule for combining
elementary numerals to represent numbers.

There are all sorts of odd developments in the early history of numerals as they developed
beyond the “one, two, many” counting systems. In some cultures, the names for the numbers
differed depending on the kind of thing one was counting. In such systems, the numeral for the

8This choice avoids the problem that some different decimal numbers are in fact equal, such as 0.49999 . . . =
0.5000 . . .

9This is the tip of a very interesting, if astounding, story. One aspect is the following. The cardinality of P(N)
is usually denoted 2ℵ0 ; we know that ℵ0 < 2ℵ0 , but are there any (infinite) cardinalities in between? One of the
significant achievements of twentieth century set theory was to find the (surprising) answer to this question. Cantor
had proposed the “Continuum Hypothesis” (CH), his hypothesis that any set of reals (the “continuum”, in his
terminology) was either finite, or had cardinality ℵ0 or 2ℵ0 ; in other words, that there was no cardinality in between
ℵ0 and 2ℵ0 . In spite of all his efforts, he failed to prove or disprove his Hypothesis. Gödel, in the late 1930’s, showed
that CH is consistent with the usual axioms of set theory, by finding a model in which 2ℵ0 was the next infinite
cardinal after ℵ0. Later, in the early 1960’s, Paul Cohen proved CH independent of the usual axioms of set theory,
by finding a model in which there were other cardinals between ℵ0 and 2ℵ0 . So no wonder Cantor couldn’t prove
or disprove his guess—there is no such proof or disproof, and in order to settle the matter, one must use principles
about sets that go beyond the usual axioms. Since Cohen’s proof, many other mathematical questions have been
found with this property that they are consistent with but independent of the usual axioms of set theory. The world
of the infinite is a very odd place indeed.
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number four when applied to sheep was different from the numeral for four when counting pebbles
or trees. Traces exist in English, where we say “a pair of shoes”, “a brace of pistols”, “a span of
oxen”, and so on.

However, there are two basic patterns we see in various systems: additivity and place-value.
These are sometimes “pure”, but frequently are mixed together or with other types of systems.

Some of the first systems of numeration were ad-
ditive systems. In an additive system, the number
represented by a particular string of numerals is the
sum of the values of the numerals. The purest form
of an additive system perhaps is a simple token-
based system: there is only one numeric symbol, a
stroke perhaps, and numbers are represented by ap-
propriate numbers of strokes. So, e.g. three might
be |||. Of course, this quickly becomes impractica-
ble, so generally many tokens were used, but the key
feature of adding the tokens to derive the number
represented by a numeral remained. The most fa-
miliar additive system is the Roman system, based
on a small set of elementary numerals (such as I,
V, X, L, C, and so on), repeating them as neces-
sary to represent larger numbers.10 The Egyptian
system of numeration was similar—you may find a
summary of these in the figure to the left.

An additive system has the advantage of being
simple in concept, but can quickly become unwieldy,

especially for representing large numbers. In the Roman system, very large numbers become almost
parodies of themselves—consider the spider-like figures used for 100000. But the most serious
drawback is in using such numerals for computation. Multiplication and division are so complicated
as to be almost impossible—and in fact societies that used Roman numerals generally also used
small portable computers (the abacus) for routine calculations. For instance, every shop would
have an abacus so as to be able to calculate products like XV times VII (which, by the way, comes
to CV—try to figure that out without converting to our numerals!).

Sometimes an additive system used a lot of elementary numerals—such a system is often referred
to as a ciphered system. For example, the Ionic Greeks and the Hebrews used a ciphered system.
Ciphered systems use a different symbol for each small number. Ancient Greek numerals were
the 24 letters from their alphabet plus three letters from the Phoenician alphabet. Nine of these
symbols represented the numbers from 1 through 9. Nine different symbols were used for 10, 20,
30, . . . , 90, and another nine for 100, 200, 300, . . . , 900. For 3000, they used the symbol for 3 (γ,
“gamma”) and added a tick-mark, so 3000 was ,γ. The value of a compound numeral was still the
sum of the values of the component simple numerals, but there was no repetition of symbols as in
a purely additive system.

Well, not exactly: to represent very large numbers, eventually a form of repetition was intro-
duced, by using a dot (or period) to represent multiplication by 10000. With this convention, for
example, 5214 would be represented by , ǫσιδ (note that comma to get 5000 from the ǫ representing

10The medieval trick of using subtraction, as in IV representing 4, being V minus I, or IX being X minus I, or 9,
is a late development, added presumably for convenience. You will see the earlier IIII instead of IV on many clocks,
although VIIII is rarer, IX being preferred.
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5), 1331 by , ατλα, and these two numbers could be combined by multiplying the second by 10000
and adding, to get 13315214 represented by , ατλα., ǫσιδ.

But this system still was very awk-
ward to use, and calculations almost
impossible to perform. There was
also a high price to pay memorizing
all the elementary numerals. But an-
other (unsuspected) problem makes
such a system a hindrance in doing
mathematics: by using letters to rep-
resent numbers, how do you repre-
sent variables (as in 3x2 + 1)? The
Greeks simply didn’t have variables,
and one wonders if their numeration
system didn’t have something to do
with that. Certainly that made alge-
bra more difficult (though they man-
aged quite well in spite of it all!). In
this vein, it’s interesting to note that
Greek mathematical reasoning, even
about number theory, was mainly ge-
ometric.

Our own (Hindu-Arabic) numer-
ation system uses a quite different
principle: place-value. In a place-
value system we use the same sym-
bol 2 to mean two or twenty or two
hundred or two thousand, depending

on where it occurs. In such a system, addition and multiplication tables are simpler and easier to
remember than those in additive systems, like the Greek and Roman systems. Systems like ours
require more mathematical insight to construct, but need less memorizing in practice.

In a place-value system, a compound numeral is organized by position—usually in columns.11

One column (the right-most column in our system) represents units. The next column represents a
multiple of the number used as the base of the system. The next represents a multiple of the base
times the base, and so on. In our denary (or decimal) system, the base is 10. The Babylonians
used a base of 60. Others used other bases.12

The Babylonian and Mayan systems used some additive features, to generate the basic numerals
(corresponding to our digits) from some simple symbols. Let’s take a look at the Babylonian
cuneiform system—if only because its rather odd feature of being essentially “base 60” has left a
trace in our own culture, where 60 is a fundamental number in time and in measuring angles (60
seconds in a minute, 60 minutes in an hour, 6 times 60 degrees in a circle). The Babylonians had
two wedge-shaped symbols: representing one and representing ten. (These would be
pressed into a clay tablet, using the corner of a piece of wood—not so easy to draw with a pencil,
but quite convenient with their writing implement.) They used the additive principle for numbers

11Though the Mayans, for example, used a vertical notation, so the different place-values were marked by rows.
12A trace of a base 20 system in our own history may be found in terms like “score”, as in “four score and seven

years ago . . . ”, and “quatre-vingt”.
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up to 60, so that for example would represent 14, and would represent 22. But then
the remarkable new feature would reveal itself: starting with 60, the Babylonians used place-value.
That is, they would start a new column in their number, and values there would represent multiples
of 60. So, would represent 22 × 60 + 14 or 1334. This would continue with a new
column representing multiples of 60×60, and so on. Quite quickly very large numbers indeed could
be simply represented with this numeral system. It seems more than likely that the Babylonian
expertise in astronomy was related to their development of a system so well suited to recording
very large numbers.

In the figure at left are drawings of the front (left) and
back (right) of a clay tablet. The cuneiform characters
probably represent a simple Babylonian arithmetic lesson
(a “9 times” table). From the information above, you
should be able to figure out what the symbols mean.
Try the symbols in the left column first, starting from
the top of the front of the tablet and continuing on the
back. Then try the right column.

In Figure 7.1, you can see how the Mayans used a
similar mixture of place-value and additivity. They used
dots for units and horizontal lines for fives. Four was
represented by four dots in a horizontal row. Thirteen

was three dots over two lines. Nineteen was four dots over three lines, and was the highest basic
numeral (or “digit”) they needed: from then on they used a place-value system, much as the
Babylonians did. For example, to write the number twenty-two, they would put two dots in one
row (not column) and another single dot (representing one twenty) in a row above it.

These place-value systems had two very significant features. We have already seen how easily
they can represent large numbers, but also they permit simple algorithms for arithmetic (you
probably learnt such algorithms for multiplication and division in primary school!). But there was
one small problem, however. Consider a single symbol, such as in cuneiform. This could
easily be misinterpreted: for instance, is this 1, or is it 60 (1× 60 + 0)?

In practice, the Babylonians indicated 60 with a one-wedge in the sixties-column, leaving the
ones-column blank. Look at the tablet reproduced above: the cuneiform for 180 (three sixties plus
no ones) may be seen in row four in the right column on the back of the tablet. The Mayans did
the same sort of thing. To represent 20, they put a single dot in the 20s-row and left the ones-row
blank. But this could be ambiguous (is the units-column/row blank, or was the writer just sloppy?).

This wasn’t usually a problem; for example, the Babylonians recorded numbers in neat columns,
so an empty column usually wasn’t hard to spot, but there must have been times when such
misinterpretations were made.

In a place-value system, we need elementary numerals for units up to one less than the base.
In the decimal system, we need 1, 2, 3, 4, 5, 6, 7, 8, and 9. But the dangerous ambiguity of “blank
columns” led to one of the most important inventions in mathematics—the concept of zero. At
first, Babylonians just used a special mark to indicate that there was no numeral in a particular
column. Eventually the mark came to be seen as a special numeral, and then as a number.

There are now ten digits in the decimal system: the original nine and the new zero. The concept
of zero as a number was scandalous to many people. Zero was not seen as the cardinality of a set.
To say that it is the cardinality of the empty set seemed ridiculous. If there are no sheep in a
field, it did not seem sensible to say there are 0 sheep in the field.13 No such problem existed with

13Perhaps some mathematicians still regard 0 with suspicion, and so start the natural numbers with 1.
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Figure 7.1: Various Numeration Systems (variations)
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Roman numerals. This was one of the reasons the Hindu-Arabic place-value system was resisted in
Europe. Leonardo of Pisa14 tried to introduce the base-10 place-value system in 1202. In 1299 that
system of numeration was outlawed in Florence. It only became widespread after 1479. Eventually,
this anti-0ism prejudice disappeared, for the most part, and we’re quite comfortable with 0 among
our numbers.15

7.3.1 Place-value systems

There is some mathematics behind the place-value systems, which we shall look at a bit now.
The numerals representing the natural numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are the digits of the

denary (decimal) system. A place-value system that includes 0 and whose base is n must have n
digits (from 0 to n− 1).

The numeral for a large decimal number (say 27453) is a string of digits. The location (place) of
the digits determines their value, using the operations of addition and multiplication. The numeric
value of the right-most digit in the numeral is just the value of that digit. Each other digit has
a value that is 10 times as great as it would be if it were one column to the right. In this case,
the “3” (the numeral) just means 3 (the number). If the “5” were one column to the right, it
would mean 5, so it actually means 10 · 5 = 50. If the “4” were one column to the right it would
mean 40, so it actually means 10 · 40 = 400. Similarly, the “7” stands for 7000 and the “2” means
20000. So the number 27453 is 3 + (5 · 10) + (4 · 10 · 10) + (7 · 10 · 10 · 10) + (2 · 10 · 10 · 10 · 10),
or 3 + 50 + 400 + 7000 + 20000. In general, if the base of a place-value system of numeration is b
(where the digits go from 0 to b − 1) any number larger than b − 1 is represented by a string of
digits . . . d5d4d3d2d1d0, and the string stands for the number

d0 + d1 · b+ d2 · b2 + d3 · b3 + d4 · b4 + d5 · b5 + . . .

Note that this “goes backwards”: in the place-value notation of the number, the left-most digits
go with the largest powers, and the right-most digits go with the lowest. When you are evaluating
a number in a new base, I suggest you start from the right end, as in the expression above.

Binary (or base-2) numerals use a base b of 2. They use numerals for digits from 0 up to one
less than the base. That means that the only digits (elementary numerals) in the binary system are
0 and 1. These are the “binary digits”, often abbreviated “bits”. Any number is represented by a
string of zeros and ones . . . d4d3d2d1d0 whose meaning is d0+d1 ·2+d2 ·22+d3 ·23+d4 ·24+ . . .. To
translate numbers from any other base to binary, you could try to remember that (in the decimal
system) 22 = 4, 23 = 8, 24 = 16, 25 = 32, and so on, and then figure out how many 32’s, how many
16’s, how many 8’s, etc. would add up to the number.

For example, to convert 117 to binary, we notice that 27 = 128 won’t go into 117 (nor will
higher powers of 2). 26 = 64 goes, leaving a remainder of 117 − 64 = 53. Write down a 1 as the
left-most digit of our answer. 25 = 32 goes into 53, leaving a remainder of 21. Write a 1 to the
right of our first 1, so 11 are the left-most two digits. 24 goes into 21 with a remainder of 5. Write
a 1 to the right of our 11, so we have 111 as the left-most three digits. 23 = 8 won’t go into 5, so
write a 0. 22 = 4 goes, with a remainder of 1, so write another 1. Our first five digits are 11101.
21 = 2 won’t go into 1. Write a 0. Write the 1 in the ones column. We’re done. The number is
1110101 in binary.

14Also known as Leonardo Fibonacci—we’ll meet him again.
15A most readable account of the “history of zero”, including its first use, may be found in Amir Aczel’s Finding

Zero, Palgrave Macmillan 2015. He also successfully argues the case that our numerals originated in India, and later
spread to the Arab area, and then to the west. So the “Hindu-Arabic” numerals are properly only “Hindu”, or more
appropriately, since this is not a religious issue, “Indic numerals”.
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In order to distinguish numerals written in base b (as opposed to another base), we often use a
subscript to indicate the base. So our previous calculation showed that 11710 = 11101012 (117 in
base 10 equals 1110101 in base 2). Then we adopt the convention that we omit the subscript if the
numeral is in base 10.

We shall simplify this algorithm, as illustrated by the following examples. First, we shall spell it
out in words, then we shall write this in a convenient manner that makes the calculation somewhat
more streamlined.

To convert 117 (base 10) to binary, divide 117 by 2. We get 58 and a remainder of 1. We put
that 1 as the right-most digit of our answer. Divide 58 by 2. We get 29 and a remainder of 0. Put
that 0 in the next column to the left, giving 01. Divide 29 by 2, giving 14 and remainder of 1. Put
the 1 in the next column to the left, giving 101. Divide 14 by 2, giving 7 and a remainder of 0. Put
the 0 in the next column to the left, so we have 0101. Divide 7 by 2, giving 3 and a remainder of
1, so put a 1 in the next column to the left, giving 10101. Divide 3 by 2, giving 1 with 1 left over,
so a 1 goes into the next column, giving 110101. Divide 1 by 2, giving 0 with 1 left over, so put 1
into the next column. Since we are down to 0, we are finished, so our answer is 11101012. To check
that this is the right answer, notice that

1 + 0 · 2 + 1 · 22 + 0 · 23 + 1 · 24 + 1 · 25 + 1 · 26
= 1 + 0 · 2 + 1 · 4 + 0 · 8 + 1 · 16 + 1 · 32 + 1 · 64
= 1 + 4 + 16 + 32 + 64 = 117

Here’s an even easier way to set up and do the conversion. Again, we are converting 117 (base
10) into base 2. We start by setting up a simple division of 2 into 117, which goes 58 times with
remainder 1:

2 117

58 1

Next we divide 2 into 58, which goes 29 times with remainder 0: we just write that immediately
below the previous division:

2 117

58 1
29 0

We continue in this way, till we arrive at 2 into 1, which goes 0, remainder 1. In general, this
method consists of repeated divisions, till we get the answer 0 with some remainder.

2 117

58 1
29 0
14 1
7 0
3 1
1 1
0 1
↑

Our final binary numeral is read from the bottom up as the remainders we obtained, in this
case 11101012 . (As we already knew!—look at this method and convince yourself it’s just the same
as we did in the previous paragraph, which is also what we first did. All that’s changing is the
smoothness of the presentation of the algorithm.)
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Example: convert 2763 (base 10) to base 3 (ternary). We use the same method, but using 3
instead of 2.

3 2763

921 0
307 0
102 1
34 0
11 1
3 2
1 0
0 1

Note: Don’t stop until you get a 0 as a quotient. Write the ternary equivalent of 2763 by reading
the remainders from the bottom up: 102101003 . Check your answer by converting back to base 10:

0 + 0 · 3 + 1 · 32 + 0 · 33 + 1 · 34 + 2 · 35 + 0 · 36 + 1 · 37

= 9 + 81 + 486 + 2187 = 2763

as required.

7.3.2 Exercise on change-of-base

1. Convert the following to bases 2, 3 and 5 (so each number represents three problems!):

(a) 5239 (b) 128 (c) 357

(d) 1234 (e) 486 (f) 75

2. Convert the following to base 10:

(a) 11010011012 (b) 12021023 (c) 423015

(d) 4107 (e) 10011012 (f) 1202103

(g) 430315 (h) 567 (i) 110101000102

3. In many ways, 12 is a better choice of base than 10. You can divide 12 into halves, quarters,
thirds, and sixths, whereas 10 only divides into halves and fifths. You can divide 144 (122)
into halves, thirds, quarters, sixths, eighths, ninths, twelfths, twenty-fourths, thirty-sixths,
forty-eighths, and seventy-secondths, but 100 only divides into halves, quarters, fifths, tenths,
twentieths, twenty-fifths, and fiftieths. In base 12, we need digits for the numbers that we call
10 and 11 in the decimal system; it is traditional to use letters, so use A and B for these new
digits representing the numbers ten and eleven (so your digits go 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B).
Convert the following numbers to base 12, and check your answers.

(a) 34 (b) 1024 (c) 16

(d) 17 (e) 298 (f) 1066

4. And some from Babylon:

(a) Convert to base 10.

(b) Convert 112462 to Babylonian numerals.



7.4. SOME COMMON TYPES OF NUMBERS 179

7.4 Some Common Types of Numbers

Let’s return to the question “what is a number?”. We’ve discussed this for the natural numbers
N = {0, 1, 2, 3, . . .}, and even seen how different cultures represent these as numerals. Let’s start
from N and consider the other numbers you are familiar with, such as 22

7 , π, 3.1416. (By the way,
those are three different, unequal, numbers—right?—check on your calculator, if you’re not sure,
though your calculator will only give you an approximation of π.)

These are all real numbers, but of different types. 22
7 and 3.1416 are rational numbers, whereas

π is irrational (it is also transcendental). We shall briefly examine the nature of these numbers,
from the point of view of starting with N and then adding new types of numbers to that set, getting
larger and larger collections as we do. (To be honest, we shall “fudge” things a bit when we get to
the reals, as that is an extension of a more subtle nature than the others. But I hope the flavour
of the reals will be a bit clearer, even if the details are partially hidden.) We shall end the chapter
with an extension of the reals to include “imaginary” numbers, such as

√
−1.

7.4.1 The integers

We start by adding “negative numbers” to the natural numbers.16 One way to motivate this might
be to ask “what is the solution to the equation 5+x = 0, or even 5+x = 3?”. Notice that we have
no problems solving an equation 5 + x = 7 using the natural numbers: x = 2 works just fine. The
problem with the first two equations (from our advanced standpoint!) is that the solutions are not
values x ≥ 0, and so are not natural numbers. Formally, what we do is we add additive inverses
to N.

A brief digression: notice that 0 has a very special property with respect to +. For any number
n, we have n+0 = 0+n = n. This property is usually described by saying 0 is an additive unit or
an additive identity. It is a “neutral” element for addition: adding it has no effect on the value of
the number to which it is added.

Then we say the additive inverse of a number n is a number n′ with the property that
n + n′ = n′ + n = 0. So adding an additive inverse to a number gives you the additive unit. We
can show that if a number has an additive inverse, then it has only one such—additive inverses are
unique (if they exist).17 In the set N, only one element has an additive inverse, namely the number
0 (which is its own inverse). Notice that if n′ is the additive inverse of n, then n must also be the
additive inverse of n′.

The set of integers Z is obtained from N by adding additive inverses for every positive natural
number. We denote the additive inverse of n by −n in the usual way, so that

Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

We can define addition on Z in a straightforward way.18 Then it’s not hard to see that Z obeys the

16There was a lot of controversy about the idea of negative numbers, just as there was about 0. Many people
refused to accept that a “negative number” was a number at all—and probably many folks still only accept them
out of habit (or because they don’t think clearly about anything). Negative numbers are a big step in the history of
thought (as was 0), and it was not universally accepted as an obvious step. In fact, each extension of the notion of
number had to overcome some resistance, and the terminology such numbers have (negative, irrational, imaginary)
reflects that resistance. But then, even 1 had its detractors: if “I have a number of cars” means I have more than 1,
then can 1 actually be a number?

17Here is how: suppose a number n has two additive inverses, n′ and n′′. Then n+ n′ = 0 = n+ n′′. Now add n′

to each side of these equations: n′ +n+n′ = n′ +0 = n′ +n+n′′. Since n′ +n = 0, we get n′ = n′ = n′′, or n′ = n′′.
In other words, if n has two additive inverses, then in fact they must be equal, and so n really only has one.

18Here’s how: if m,n are natural numbers with m ≥ n, we define (−m) + (−n) = −(m + n), m + (−n) = m − n

and (−m) + n = −(m− n).
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usual commutative and associative laws for addition, and that 0 is still the additive unit. Notice
that n must be the additive inverse of −n for any n, and so −(−n) = n.

What about multiplication? What is the product of a positive and a negative integer? The
product of two negative integers? The key here is that we define n · (−m) := −(n ·m) for n,m ∈ N.
This really is a consequence of our wanting to preserve the distributive law (which will now be
true). Here is an illustration that shows if the distributive law is true, then n · (−m) = −(n ·m)
must be true. Start with m + (−m) = 0 and multiply both sides by n. On the left side, we get
n(m+(−m)) = nm+n(−m). On the right we get n0 = 0, so we have nm+n(−m) = 0, which shows
that n(−m) is the additive inverse of nm, i.e. −(nm) = n(−m), as claimed. If you reverse this
argument, you will see that taking the definition n(−m) = −(nm) guarantees that the distributive
law is preserved, so this definition is equivalent to preserving the distributive law.

From n(−m) = −(nm) (and by commutativity (−n)m = −(nm) also) we get that (−n)·(−m) =
−(n(−m)) = −(−(nm)) = nm, so the product of two negative numbers is the positive number
obtained by multiplying the corresponding positive numbers.

What is the cardinality of the set Z? Since it has “twice as many elements as N”, you might
expect its cardinality is ℵ0, by analogy with the results we obtained earlier (e.g. that the cardinality
of the even natural numbers is the same as the cardinality of all natural numbers), and indeed that
is so. If we re-write Z = {0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . .}, you can see how we can find a
one-to-one correspondence between Z and N. Map 0 to 0, map every positive number n ∈ Z to
2n − 1 (so 1 ∈ Z maps to 1 ∈ N, 2 ∈ Z maps to 3 ∈ N, etc.) and map every negative number
−n ∈ Z to 2n, (so −1 ∈ Z maps to 2 ∈ N, −2 ∈ Z maps to 4 ∈ N, etc.).

7.4.2 The rational numbers

In passing from the natural numbers N to the integers Z, we added additive inverses for all numbers
that didn’t already have them (only 0 had an additive inverse already, being its own inverse). Now
we shall do the same for multiplication.

First notice that 1 has the property of being a multiplicative unit or identity: for all numbers
a, a · 1 = 1 · a = a (1 is a neutral element with respect to multiplication: multiplying by it has no
effect on any number).

We say the multiplicative inverse of a number a is a number a′ with the property that
a ·a′ = a′ ·a = 1. So multiplying a number by its multiplicative inverse gives you the multiplicative
unit. As with additive inverses, one can show that if a number has a multiplicative inverse, then it
has only one such—multiplicative inverses are unique, if they exist. In the set Z, only two elements
have multiplicative inverses: 1 and −1 (each is its own inverse). There is one number that cannot
have a multiplicative inverse: that is 0. This is because there can be no number a with the property
a · 0 = 1 (since a · 0 = 0 is true for any number a). Notice (similar to additive inverses) that if a′ is
the multiplicative inverse of a, then a is the multiplicative inverse of a′.

The multiplicative inverse for a number a is often denoted19 a−1 or (maybe more familiar) 1
a .

Our comments above then would say there can be no number 1
0 , and

1
1/a = a = (a−1)−1.

We mentioned that adding negative numbers could be seen as a way to add solutions to equations
like 5 + x = 0 or 5 + x = 3. In a similar way, adding multiplicative inverses can be seen as adding
solutions to equations like 5x = 1 or even 5x = 3. A solution to 5x = 3 will take the form
x = 3 · 15 = 3

5 , a “fraction”, so that suggests we extend the integers by including all fractions (like
3
5) and not just multiplicative inverses (like 1

5 ).

19This is an exponent, about which we’ll have something to say soon.



7.4. SOME COMMON TYPES OF NUMBERS 181

So, we start with the integers, and formally we shall extend them to include fractions in a way
that doesn’t assume we already know what fractions are. To emphasise the formal nature of this
definition, we shall write the “new” numbers just as pairs 〈m,n〉, which don’t have any particular
connotation, other than what we give them via our definitions. However, to keep a grip on the
reality these definitions are meant to capture, you may think of such a pair 〈m,n〉 as being the
fraction m

n . With these thoughts in mind, we make the following definition.

Definition: A rational number20 is an ordered pair 〈m,n〉 of integers, n 6= 0. The
first member of the ordered pair is called the numerator and the second member is
called the denominator. A rational number 〈m,n〉 is expressed in the form m

n or m/n
where m,n are integers, m is the numerator and n is the denominator, and n 6= 0.

Every set must come equipped with a notion of equality; what does it mean for two rational numbers
to be equal? It is not necessary for the integers involved to be the same (consider 1

2 and 2
4); instead

we have this definition:

Two fractions 〈m,n〉, 〈p, q〉 are equal if and only if mq = np.

For example, 〈6, 8〉 = 〈3, 4〉, because 6 · 4 = 8 · 3 = 24. This is (of course!) just the usual notion of
equality of fractions, by “cross-multiplying”. Check for yourself that 〈1, 2〉 = 〈2, 4〉.

We denote the set of rational numbers by Q.
The integers are included in the rationals, by associating the rational number a

1 with the integer
a. We often identify the rational a

1 with a, treating integers as rational; in other words, we frequently
omit the denominator 1. This identification is well behaved with respect to the usual operations of
arithmetic (meaning, if you add two fractions corresponding to integers, their sum corresponds to
the integer you get by adding the original integers: a

1 +
p
1 = a+p

1 , and similarly for multiplication).
Addition and multiplication of general rationals are easily defined by the equations

m

n
+
p

q
=
mq + np

nq

m

n
· p
q
=
mp

nq

One can then verify that all the laws of arithmetic still hold for the rationals.
Since there are many pairs which are all equal to each other, we often choose one form as being

the simplest form or reduced form of the fraction.

Definition: A fraction m
n is said to be in reduced form if the greatest common integral

divisor of m and n is 1, (i.e., if m and n are relatively prime) and if n is positive.

Two numbers are relatively prime if there is no number that exactly divides them both other than
1 or −1: for example, 6 and 8 are not relatively prime, since 2 exactly divides them both, but 3
and 4 are relatively prime, since no number (other than 1 or −1) divides them both. So 6

8 is not in
reduced form, but 3

4 is.
We extend the concept of division using rational numbers. The fraction a

b can be thought of as
an operation of dividing a by b.21 We say a

b = x if and only if a = b · x. By this rule, a
a = 1 for any

integer a. We define division of two rational numbers as:

m/n

p/q
=
mq

np

20“Rational” merely means “having the form of a ratio”, so fractions are called “rational numbers”. The word
“rational” only acquired its secondary meaning (“logical, coherent”) later, and thereby hangs a tale which shall have
to await another time.

21A curious thing is happening here: we are identifying a process (division) with the result of that process (the
fraction). a

b
is both a verb and a noun!
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where, of course, none of n, p, q may = 0.
Since Z has additive inverses, so does Q. Subtraction of two rational numbers is given by

m
n −

p
q = mq−np

nq .
This all gives Q the structure algebraists call a field: it has addition and multiplication, an

additive unit 0, a multiplicative unit 1, every element has an additive inverse, every element other
than 0 has a multiplicative inverse, and the various commutative, associative, and distributive laws
hold. It would seem Q is an excellent domain for all our usual arithmetical and mathematical
calculations. What else could we want? . . .

Before we leave Q, we should recall that we have already considered its cardinality: although
Q seems very much larger than N (at least it has lots more elements), in fact its cardinality is the
same: ℵ0. But although the number of elements is the same, Q has a property neither N nor Z has:
density. This means that between any two unequal rational numbers there is a rational number
not equal to either one (take the average, for example), and so, in fact, between any two unequal
rationals, there must be an infinity (ℵ0) of rationals. There is no such thing as “the next rational
number” (in the usual ordering where, for n, q positive, m

n < p
q if and only if mq < np).

7.4.3 Interlude: exponents

We used the notation a−1 for 1
a before, and you may have wondered at this use of exponents (it

might even remind you of something your high school algebra teacher told you about). Why do we
use negative exponents in this way? Well, the answer is similar to our exploration of multiplying
negative numbers when we were discussing the integers: we want the usual properties of arithmetic
to be valid, and that wish forces certain things for us, automatically. Let’s look at the use of various
exponents from this viewpoint.

We start with the definition that for a positive natural number n > 0 and (any) number a, by
an we mean the product of a with itself n times. So a1 = a, a2 = a · a, a3 = a · a · a, and in general,
an+1 = an · a. One property follows from this definition: if n,m > 0 are positive natural numbers,
then an · am = an+m (just count how many as there are, all multiplied together). So, we’d like this
property to remain true when we define an for exponents n other than positive natural numbers.

Let’s start with 0: what should a0 mean? Well, we know that n + 0 = n, and if our property
is to remain true, then an · a0 = an+0 = an, so a0 has to be a number which has no effect when
multiplying: in other words, a0 has to = 1. So, we may define a0 = 1,22 and now we have preserved
our property so that it’s true for any natural number n, including 0.

What about negative numbers? What should a−n mean? We know that (for any n), (−n)+n =
0, so if we want to preserve our property, we must have a−n · an = a(−n)+n = a0 = 1, and this
means a−n must be the multiplicative inverse 1

an of an. In the special case n = 1 we get a−1 = 1
a .

(This only makes sense if a 6= 0, since division by 0 is impossible, as we saw before: 0 cannot have
a multiplicative inverse.)

So, those definitions are not arbitrary, they come from a simple wish, namely that the property
an · am = an+m should remain true for all n,m. We can go even further, by wondering what a

1
2

might mean (and similarly for other fractions). The same idea gives us the answer. We know that
1
2 + 1

2 = 1, and so we would want a
1
2 · a 1

2 = a
1
2
+ 1

2 = a1 = a, and so a
1
2 must be a number b with

the property that b · b = b2 = a, in other words, b =
√
a is the square root of a. So a

1
2 =
√
a. In a

similar manner, we can see that a
1
3 = 3
√
a, a

1
4 = 4
√
a, and so on: fractional exponents correspond to

22There is one case which might seem a bit odd, namely 00, since for positive n, 0n = 0, and 00 = 1 seems a bit
inconsistent with that. However, since 0x is not even defined for negative x, this isn’t quite as odd as it might seem,
and we’ll keep the definition 00 = 1 for the time being.
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appropriate roots. Of course, these numbers (like
√
a ) are no longer in the form of simple fractions,

so we should look at them a bit closer (in the next section).

7.4.4 Interlude: Pythagoras’ Theorem

In high school you may have learned Pythagoras’ Theorem, which states that in a right angle
triangle, the square on the hypotenuse (the longest side, opposite the right angle) is equal in area
to the sum of the areas of the squares on the other two sides: a2 + b2 = c2. There are many
proofs of this famous theorem (see, for example, http://www.cut-the-knot.org/pythagoras/);
including several nice geometric, pictorial proofs which show this equation very clearly using clever
rearrangements of tiles.

bb

aa

aa b b

b

c

c

Here is one such, which also illustrates
the truth of another famous fact: (a +
b)2 = a2+b2+2ab, which you might also
remember from high school. The point
of this illustration is that Pythagoras’
Theorem follows just by looking at the
figure in the right way. Let’s see how.
Look first at the square on the left: its
sides are each a+ b, but the way it has
been divided, it’s clear that its area is

also given by two inner squares (a2 + b2) plus two inner rectangles (+2ab). (In other words, the
area of the outer square is (a+ b)2 = a2 + b2 +2ab.) Now, look at the square on the right: it is the
same square, with sides a+ b, but it has been differently divided, into four right angle triangles and
one square. Each triangle is half of one of the rectangles from the left square (so has area 1

2ab),
and the square inside has its side length given by the hypotenuse of the right angle triangle (so
has area c2), (so this time the area of the outer square may be seen to be c2 + 4(12ab) = c2 + 2ab).
Subtract the two rectangles from the left square, subtract the four triangles from the right one,
and you have the same result, since you’ve subtracted the same area from the same larger area.
What’s left shows that a2 + b2 = c2. Or more formally, compare the two squares, and you will see
that a2 + b2 + 2ab = c2 + 2ab, and hence a2 + b2 = c2. So either way we’ve proven Pythagoras’
Theorem.23

7.4.5 Irrational numbers

The Greeks had two beliefs about numbers: that numbers were either natural numbers (other
than 0) or proportions of natural numbers (meaning essentially rationals), and that numbers corre-
sponded to lengths of line segments. Those beliefs came against a serious contradiction the day one
of them proved that there were lengths of line segments which could not be described as proportions
of integer lengths,24 or as we might say it, numbers that were not rational numbers. Here is the
simplest such example.

A diagonal line from one corner to the opposite corner of a square, divides the square into two
right triangles. If the side of the square is 1 unit long, then by Pythagoras’ Theorem, the diagonal

23Or rather, we have a good reason to believe it’s true, at any rate—whether such a picture actually constitutes a
“proof” is a matter for discussion!

24There is a story that the person who first discovered this uncomfortable fact was actually executed by his fellows;
if so, this is a bad case of shooting the messenger rather than listening to the message. The fact that “irrational” has
such a negative connotation still is a hangover from the reaction to the existence of such numbers, however.
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must be
√
2 (the square root of 2) units long, meaning that if you squared the length, you would

get 2. (Think about this: we want 12 + 12 = c2 where c is the length of that diagonal, but this
means 2 = c2 and so the diagonal length c =

√
2.) The square root of 2 is a number somewhat

less than 3
2 and more than 5

4 , as you can check by squaring 3
2 to get 9

4 and by squaring 5
4 to get 25

16
and then checking that one is less than 2, and the other is greater than 2.25 We can continually
subdivide the interval between these two rational numbers into smaller and smaller intervals ad
infinitum. It would seem that sooner or later we’d come up with the rational number that exactly
expresses the square root of two. But such is not the case.

For, we can prove that the square root of 2 cannot be a rational number. The theorem that
the square root of 2 is irrational26 may be expressed by saying that the side and the diagonal
of a square are incommensurate: no matter how finely we subdivide a measuring stick, if it can
accurately measure the side, it cannot accurately measure the diagonal, and vice versa.

Theorem: The square root of two,
√
2, is an irrational number.

Proof: Before we start, we take a moment to point out a rather special property of 2: if 2
divides exactly into a product mn, then in fact 2 must either divide exactly into m or divide
exactly into n. Think about that for a moment: it says that if a product mn is even, at least one
of the factors, m or n (or both) must be even. If this isn’t obvious to you, consider the product of
two odd numbers ((2p + 1)(2q + 1) = 4pq + 2p + 2q + 1): it must be odd as well. This property is
key to the proof, in fact.27

The theorem says that there is no rational number whose square is two. Since this is a negative
conclusion, it suggests that we use proof by contradiction (our old friend, the (¬I) rule). In other
words, we shall assume it is rational, and derive a contradiction. So, assume that there is a rational
number equal to

√
2: i.e. there are integers a and b such that

2 =
(a

b

)2
=
a2

b2

We may also assume that a
b is a fraction in reduced form (i.e., a and b are relatively prime), for if

it is not, then we replace a, b with appropriate integers so that the fraction is in reduced form.28

Multiplying both sides of the equation 2 = a2

b2
by b2, we get 2b2 = a2. But 2b2 is an even number,

so a2 must also be even. However a2 = a · a and so a must be even, by our remark above about the
special property of 2. Since a is even, there is some number k such that a = 2k. Substituting into
2b2 = a2, we get 2b2 = (2k)2 = 4k2. Dividing both sides by 2 gives b2 = 2k2. Reasoning as above,
b2 must be even and hence b is even. So we have shown that a and b must have a common factor
of 2. But we assumed that a and b are relatively prime. This is our contradiction, and so there is
no rational number whose square is two. (qed)29

Think about what the irrationality of
√
2 means. It means that there is a number somewhere

between (e.g.) 7
5 and 71

50 , and no matter how finely we divide the interval, we’ll never find a rational
number which is exactly equal to that number.

Similar proofs about roots (square roots, cube roots, fourth roots, etc.) of other numbers might
lead one to suspect that there are many irrational numbers: are there more irrational than rational

25Even “tighter”: somewhere between 7
5

and 71
50
. Find even tighter approximations yourself. Check them by

squaring them and verifying that 2 is between the results of squaring your approximations.
26Irrational merely means “not rational”, i.e. not a fraction of integers.
27Later (next chapter) we shall see that lots of numbers have this property, and so their square roots are not

rational either. In fact, if the square root of an integer is not an integer, then it is not rational.
28So in particular, a, b are not both even.
29Quod erat demonstrandum: that which was to be proven, or in other words, we’re done here.
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numbers? In fact, a simple cardinality comparison shows there are infinitely many more irrationals
than rationals, since the cardinality of the rationals is ℵ0, but the cardinality of the rationals and
irrationals together (the real numbers) is strictly greater, being 2ℵ0 . Since (we mentioned this
before) the sum of two cardinals equals the larger one, the cardinality of the rationals and the
irrationals together must equal the greater cardinality of the two, and since that total (being the
cardinality of the reals) is 2ℵ0 , the cardinality of the irrationals must also be 2ℵ0 .

7.4.6 The real numbers

In our discussion of irrational numbers, we rather pulled a fast one—we assumed that there were
numbers, such as

√
2, which are not rational. An alternate view might have been that

√
2 actually

doesn’t exist, and it was that prospect that so bothered the Greek mathematicians. The eventual
resolution was that there is indeed a larger set of numbers which includes both rationals and
irrationals, which set we now call the real numbers, denoted R. The intuition is that this set
corresponds to line lengths, so one of the Greek beliefs at least remained. But what does this really
mean?

This is not an easy question, and in a sense, it wasn’t really dealt with successfully until the
nineteenth century. The problem is that the set of reals embodies the notion of “continuity”, and
getting a good grasp on that proved elusive. Two standard definitions of the reals were arrived at
eventually, both essentially infinitary in nature; we shall briefly consider them both.

The first view is that reals amount to partitions of rationals. By a partition of rationals I mean
a pair of sets L,U (so we are considering “binary partitions”), with the properties that (1) every
element of L is less than any element of U (x < y for all x ∈ L, y ∈ U), so these are ordered
partitions, and (2) together they include all the rationals (L ∪ U = Q). Notice that (1) implies
L,U are disjoint, meaning they have no elements in common (L ∩ U = ∅), and so with (2) we see
that L and U “split” Q in two parts, one “lower” than the other. The idea we have in mind is
that such a split defines a “real number” at the point where the two parts meet. That point might
already be a rational number: in some partitions, either L will have a greatest element or U will
have a least element: these are the partitions corresponding to rational numbers. (In fact, to the
rational number that is the greatest element of L or the least element of U—one cannot have both
in a partition, since that would mean the same rational would appear in L and U , contradicting
our assumption (1), so the rational corresponding to the partition is unambiguously defined in this
case).

In other partitions, L will not have a greatest, nor will U have a least, element, and such
partitions will correspond to irrationals. The idea here may be illustrated by the example of

√
2:

this will correspond to the partition where L = {x|x < 0 ∨ (x ≥ 0 ∧ x2 < 2)}, and U is the
complement of L. In this case

√
2 is exactly the number that “squeezes in between” L and U . The

appropriate definition of equality of such partitions is reasonably straightforward, as long as you
keep the idea in mind that the partition is intended to represent the real number that is “at the
place where L meets U”.

The second view is that a real number is the sum of an infinite sequence of rational numbers.
Not all infinite sequences may be taken; roughly speaking, we want those infinite sums which
actually “converge” or give a meaningful approximation to a finite number. It may be helpful if
you think of the sum of an infinite sequence in the following simple manner.

Any rational or irrational number can be represented by an integer followed by a decimal point
followed by an infinite string of digits. Each digit after the decimal point represents a multiple of a
power of the reciprocal of the base (10) of the number system, in other words, a rational number.
So for example, 34.1234 means 3 · 10 + 4 + 1 · 1

10 + 2 · 1
100 + 3 · 1

1000 + 4 · 1
10000 .
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In an infinite decimal fraction there are infinitely many (ℵ0) digits in the string after the decimal
point. Any real number can be expressed as an infinite decimal. Integers like 3 can be represented
as 3.0000000 . . . or even as 2.99999 . . . (the ellipsis indicates that the string goes on forever).

When rational numbers are represented as real numbers there is always a string of digits af-
ter the decimal point that repeats infinitely. For example, 13/30 = 0.43333 . . . and 71/105 =
0.6761904761904 . . .; in the first of these, the 3 repeats endlessly, in the second, the 761904 repeats
endlessly. There may (as in these examples) or may not be an initial string of digits that is not part
of the repeating pattern, but eventually one only has the repeating pattern. On the other hand,
irrational numbers do not contain an infinitely repeating string. There may be some repetitions in
the string, but eventually the pattern changes.

The point is that any infinite decimal corresponds to an infinite sum in the same way finite
decimals correspond to finite sums. So, for instance, π = 3.1415926 . . . = 3 + 1

10 + 4
100 + 1

1000 +
5

10000 + 9
100000 + 2

1000000 + 6
10000000 + . . ..

Irrational real numbers may be further divided into two number classes. Those like the square
root of two are called algebraic irrationals. An algebraic number is any real number x that satisfies
some polynomial (algebraic) equation of the form anx

n+an−1x
n−1+an−2x

n−2+ . . .+a1x+a0 = 0,
where all the coefficients ai are rational numbers.

√
2 satisfies the equation x2− 2 = 0, and so it is

an algebraic irrational. Numbers like π and e (the base of the natural logarithms) and many others
are transcendental irrationals. There is no algebraic equation of the above form that is satisfied by
π or e. Although not a lot of transcendental numbers are known by name, there must be 2ℵ0 of
them, since there are 2ℵ0 real numbers and only ℵ0 algebraic numbers:30 so “most” numbers are
transcendental.

7.4.7 The complex numbers

Our extensions of the natural numbers so far have all been related to extending the sorts of equations
we can solve. For instance, integers allowed us to solve equations like 5+x = 3 and rationals allowed
solutions to 5x = 3; (algebraic) irrationals allowed solutions to equations like x2 − 2 = 0; but what
about an equation like x2 + 1 = 0?

Among the real numbers, there is no number x such that x2 = −1. You may remember learning
to solve quadratic equations (equations of the form ax2 + bx + c = 0) by substituting a, b, and c

into the (quadratic) formula x = −b±
√
b2−4ac
2a . When b2 − 4ac was negative, the formula required

taking the square root of a negative number. That was impossible as long as our solutions (values
of x) had to be real numbers.

It turns out we can extend the set of real numbers in a manner not entirely unlike the process of
adding multiplicative inverses to create the rationals, and in this new extension, all such equations
will now have solutions (so in particular, taking square roots of negative numbers will become

30Why only ℵ0 algebraic numbers? Well, here is a sketch of how we might count them: first, notice that a
polynomial equation of degree n (the highest power of x) is determined by n+1 rational numbers, the coefficients of
the polynomial. Since the cardinality of Q is ℵ0, the number of polynomial equations of degree n is ℵn+1

0 , the product
of ℵ0 times itself n+ 1 times. But a finite product of infinite cardinals is the largest in the product, so this product
is still just ℵ0. Now, there are a countable number of possible values of n, so to get the total number of polynomial
equations (of all degrees n), we just add the number for each degree—but this is ℵ0 many ℵ0s added together, or just
ℵ0 · ℵ0 = ℵ0: there are only ℵ0 polynomial equations. Now, each of these equations has only has a finite number of
solutions; to convince yourself this is so, consider that if a polynomial equation has solutions x = a, b, c, etc., then the
polynomial must be equal to K(x−a)(x− b)(x− c), (etc.), where K is the coefficient of the highest power, and where
“multiple solutions” are repeated appropriately. The idea here is that finding solutions to p(x) = 0 (for a polynomial
p(x)) is equivalent to factoring the polynomial and setting the factors equal to 0. Each factor (x − a) = 0 gives a
solution x = a, and vice versa. So, we have ℵ0 many equations, each with a finite number of solutions, so in all we
have ℵ0 · ℵ0 many solutions, or ℵ0 many algebraic numbers.
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possible in this extension of the reals). The trick is that we add one new number i (which should
be thought of as

√
−1), and then form other new numbers by adding and subtracting. One can

multiply i by a real number b, giving the complex number bi, or one can add a real number a to
i, giving a + i, or one can form a complex number by adding a real number a to the product bi.
So a + bi is a general expression we could form using reals and i. Notice that when a = 0, the
form a+ bi is equivalent to the form bi. When b = 1, the form is equivalent to a + i. So a + bi is
the generic form of any complex number. We’ll see soon that this generic form is sufficient to also
allow for all the arithmetic operations.

So, just as rational numbers were introduced as ordered pairs of integers, representing fractions,
and addition and multiplication were defined for these ordered pairs, we may define complex
numbers as ordered pairs of real numbers 〈a, b〉. The set of complex numbers is denoted C. Real
numbers are a subset of C, the set of complex numbers: the complex number 〈n, 0〉 is identified
with the real number n. We think of (and represent) the pair 〈a, b〉 as a+bi, so that i is represented
by the pair 〈0, 1〉. i is called an imaginary number.31 Two complex numbers are equal if and only
if they have the same components: 〈a, b〉 = 〈c, d〉 if and only if a = c and b = d.

Complex numbers are added and multiplied by simple formulas. Those formulas are given below,
but it is best to remember a guiding principle here: the idea is that i2 = −1 and the ordinary rules
of algebra hold for complex numbers. The definitions are taken so that this will be true, and this
forces the definitions to be what they are. So for example (a+ bi) + (c+ di) = (a+ c) + (b+ d)i by
the usual algebra, and so we define addition of complex numbers as 〈a, b〉 + 〈c, d〉 = 〈a+ c, b+ d〉.
Likewise (a+ bi)(c+ di) = ac+ bidi+ adi+ bic = ac+ bdi2+(ad+ bc)i = ac− bd+(ad+ bc)i (since
i2 = −1), and so we are forced to the definition that 〈a, b〉〈c, d〉 = 〈ac − bd, ad + bc〉. The thing
about this definition is that as a result, 〈0, 1〉〈0, 1〉 = 〈0− 1, 0 + 0〉 = 〈−1, 0〉, and identifying 〈0, 1〉
as i and 〈−1, 0〉 as −1 (remember any 〈n, 0〉 is identified with the real number n), we have i2 = −1
as a result of this formal definition. Actually, in C, −1 has two square roots: i and −i (check this:
(−i)(−i) = (−1)(−1)(i)(i) = i2 = −1). In fact, in C, every number (real and complex) has two
square roots, three cube roots, four fourth roots, etc.

This is a big cheat, isn’t it?! The reason for the pairs notation is merely to verify that one can
define the complex numbers without having to officially assume the existence of a number i with
the property that i2 = −1, so that even a sceptic can accept the definition; then one turns around
and says “well, now you have such a number whose square is −1, represented by 〈0, 1〉”. Once we’re
convinced, we drop the pretense and just use the a+ bi notation, which is much more convenient.

It is possible to add, subtract, multiply and divide complex numbers: they form a field (just
as Q and R do), with all the usual algebraic properties you know and love from high school. They
have one additional property that is very useful, and is usually expressed this way:

The Fundamental Theorem of Algebra: Every algebraic equation of any degree n
with real or complex coefficients, anx

n + an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0 = 0 has
solutions in the complex numbers, and so has in fact n solutions.

It’s worth pausing a moment to consider how remarkable this is: we formed the complex numbers
by adding a solution to one equation (x2+1 = 0) to the reals, and ended up with a number system
that allows solutions to all polynomial equations, of any degree. We got a lot of bang for that buck!
By the way, the reason we get n solutions, just from knowing there is one, is by noticing that once

31Once again, that negative terminology! Of course i isn’t actually “imaginary” in the sense that unicorns are:
it is an actual number with practical uses (in the maths of electric currents, for example), and is perfectly well
defined—by the trick of the pairs of reals, for example. But initially there was serious resistance to these numbers,
and the terminology reflects that. By the way, once you get used to them, complex numbers aren’t really “complex”
either.
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we have one solution x = a, we can divide by the polynomial x− a to get a polynomial of degree
n− 1, which in turn must have a solution, etc. Eventually we collect all n solutions to the original
equation this way. (Some solutions are “repeated” more than once, to make up the total of n.)

Complex numbers are not just some mathematicians’ fantasy. After they were invented they
cropped up again and again in physics and engineering. They are also a central feature in fractal
graphics (pictures which are some of the most beautiful results of pure mathematics).

7.5 Answers to exercises

Exercise 7.3.2

1. (a) = 10100011101112 = 210120013 = 1314245 (b) = 100000002 = 112023 = 10035 (c) = 1011001012 =
1110203 = 24125 (d) = 100110100102 = 12002013 = 144145 (e) = 1111001102 = 2000003 = 34215
(f) = 10010112 = 22103 = 3005

2. (a) = 845 (b) = 1280 (c) = 2826 (d) = 203 (e) = 77 (f) = 426 (g) = 2891 (h) = 41
(i) = 1698

3. (a) = 2A (b) = 714 (c) = 14 (d) = 15 (e) = 20A (f) = 74A

4. Each of these converts to the other. Here are the details:

(a) = 31× 602 + 14× 60 + 22

= 31× 3600 + 14× 60 + 22

= 111600 + 840 + 22 = 112462.

(b) 60 112462

1874 22
31 14
0 31

↑

So, reading the remainders up from the bottom, the answer is 31 14 22, or in Babylonian numerals:

.

Appendix:

A

B C
D

E

Here is a rather nice “graphical” proof that
√
2 is irrational, also based on the idea that

one cannot have an infinite descending sequence of positive integers. We start with an

isosceles right-angled triangle with integer-length sides: ∆ABC, as shown. Note that

this is only possible if
√
2 is rational (exercise: show why this is true).

“Fold” the triangle so that side AC lies along side AB, creating an angle bisector AD

(which meets side BC at point D), and the length AE = AC on side AB. This creates another isosceles right-

angled triangle ∆BED, with positive integer-length sides, which is strictly smaller than the one we started

with, meaning we can construct an infinite descending sequence of such positive integer-length triangles.

This is obviously an impossibility, so
√
2 cannot be rational in the first place.

If you doubt this, first notice that ∠BED is a right angle, that ∠EDB = ∠EAC = ∠EBD, and so that EB = ED =

DC. Moreover, these new lengths are all positive integers as well: for example, EB = AB − AE = AB − AC is an

integer, and BD = BC −DC = BC − EB is an integer (since the difference of integers is an integer).



Chapter 8

Number Theory

In this chapter, we’ll explore some of the basic structure of the positive natural numbers N+ =
{1, 2, 3, . . .}, culminating with the Fundamental Theorem of Arithmetic, the result that establishes
a canonical representation of numbers in terms of “prime numbers”, which are the basic building
blocks for the system of numbers as a whole. Throughout this chapter, “number” will (unless
otherwise stated) always mean “natural number”, so we are not going to deal with negative numbers,
fractional (rational) numbers, etc. Essentially all the content of this chapter derives from classical
Greek mathematics (e.g. most of it may be found in Euclid); in keeping with the spirit of that time,
we shall generally ignore 0, though on occasion we’ll consider how the situation may be modified
to include it.

8.1 Prime Numbers

8.1.1 Division

When considering only the natural numbers, although addition and multiplication are always well
defined, subtraction and division are not. Often a division (for example 10/3) is not possible (that
was the reason for extending the numbers to include the rationals). Sometimes, however, a division
is possible (for example 10/5 = 2).

Where an exact division is possible (b/a in N), we say that a divides b, and symbolize this
relation as a|b. We say a is a divisor of b.

Given two positive numbers a and b, a divides b (symbolized a|b) if and only if there
is some number x such that ax = b. In symbols:

a|b↔ ∃x(ax = b)

If a|b, then we say that a is a divisor of b, and that b is a multiple of a.

We write a 6 | b to mean a does not divide b.
Remark: This definition also works for 0, but is not very interesting: if 0 is allowed, then we can
say a|0 for any a, because a0 = 0; moreover, 0 6 | a for any a 6= 0, since 0x can only equal 0. The
definition also works perfectly well if we apply it to Z, the set of all integers. In fact, if a positive
number a divides a positive number b, then ±a | ± b, and vice versa, so by restricting to natural
numbers, all we are missing is the + and − signs. So there’s nothing important lost by restricting
to positive natural numbers.

189



190 CHAPTER 8. NUMBER THEORY

The definition of divisibility becomes rather trivial, however, if extended to the rationals or the
reals, since there everything divides everything (apart from the forbidden division by 0).

Some properties of the | operator are easily proved.

• For any a, a|a. (We must find an x so that ax = a in N: just take x = 1.)

• 1|a. (We must find an x so that 1x = a in N: just take x = a.)

Note: as a consequence of this and the previous fact, every number has at least two divisors: 1
and the number itself, with one exception (what exception?—well, the one exception is when
“1 and the number itself” describes only one number, not two, namely the number 1: 1 has
only one divisor).

Notice the structure of proof here: when we want to prove something about a|b we translate the
statement into a problem about finding a number expressing that b is a multiple of a, according
to the definition of a|b, and then see what we can do about finding the multiplier. Here is another
example, with a bit more content.

• For any a, b, c, if a|b and a|c, then a|(b+ c).
Proof: We must find an x so that ax = b+ c, given that there is a y so that ay = b and there
is a z so that az = c, for x, y, z ∈ N. (Note that y = b/a and z = c/a.) We can start with
b + c and see what it equals, from this information: b + c = ay + az = a(y + z), so we can
take x = y + z. So we’re done: a|(b+ c) does follow from a|b and a|c.

• For any a, b, c, if a|b and a|c, then a|(b− c).
See if you can prove this yourself, using the previous proof as a model.

8.1.2 Prime numbers

The “fundamental building blocks” of the positive natural numbers are the prime numbers, in
the sense that every number can be represented as a product of prime numbers in exactly one way.
To prove this statement will be our main goal in this chapter, though we shall take a number of
detours on the way. Let’s start by defining what prime numbers are.

A prime number is any natural number that has exactly two distinct divisors, 1 and
the number itself.
A composite number is any positive natural number that has more than two distinct
divisors.

So there are four types of natural numbers: 0, 1 (which we could call the unit), prime numbers,
and composite numbers. 1 is neither prime nor composite; all natural numbers > 1 are either prime
or composite. 0 is a rather special case, since although (apart from not being positive!) it seems to
fit the definition of a composite number, it is really not composite in the intended sense. It is best
to omit 0 from this discussion of primes and composites, and you will see that is just what we do
for most of this chapter.

How many primes are there?

Let’s look at the distribution of prime numbers. Given a number, it’s not a hard matter (in
principle!: with large numbers, this could take a lot of calculation!) to determine if it’s prime or
not. All you have to do is start trying to divide smaller numbers into it, and if you never succeed,
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then the number you are testing is prime. There is a minor shortcut: you need only test numbers
up to the square root of the number you are testing, since every potential divisor comes paired with
the other multiple making up the number, and if one is greater than the square root, the other
must be less. And you only need to test prime numbers, since if any prime doesn’t divide some
number, neither does any multiple of the prime. For example, suppose we wanted to test 29. We
try to divide 2, 3, 5 into 29; no need to go higher, since the square root of 29 is between 5 and 6,
so we can stop at 5, and no need to test 4 since we already know 2 doesn’t divide into 29, so 4
cannot either. (Do it: you’ll find that none of 2, 3, 5 do divide exactly into 29, and so 29 is a prime
number.) In this manner, you can test numbers, and here is what you’ll find.1 I have marked the
primes in boldface, the others are in ordinary text.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 . . .

There are some things to notice about this printout: one is that although the primes seem to
become a bit “sparse” as the numbers get larger, they never cease. So it’s natural to ask (as did
the ancient Greeks) if this continues: are there only a finite number of primes, or does the list of
primes continue without ever ending. The answer is that they never stop. And the proof of this fact
is one of the prettiest little proofs around. We shall present it here, just as it appears in Euclid’s
Elements (well, I have translated it!). First, to set the scene, we need a few remarks, including an
important result, the Prime Factorization Theorem:

Lemma: For any prime p and any number n, if p|n, then p 6 | (n+ 1). (If p divides n, then it does
not divide n+ 1.)

Proof: By our previous remarks about divisibility, if p|(n+ 1) and p|n, then p|(n+ 1− n), i.e. p|1.
But no prime can divide 1 (only 1 divides 1). (qed)

Theorem: (Prime factorization) Any composite number may be represented as a product of
primes.

1Just for fun, here are the rest of the primes up to 1000: 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,
491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643,
647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
983, 991, 997.
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This is an important property of prime numbers in its own right, deserving of its own name. The
proof also establishes an algorithm for producing the prime factorization of any number.

Start with the number n you wish to factor. Try to divide 2 into n: if you succeed, then replace
n in this algorithm by the quotient n/2 (that will be a natural number), and start over (try to
divide 2 into this new number); if you fail, then try to divide the next prime (3) into your number.
Continue in this way either (a) until you find a prime that divides exactly into your number, in
which case replace your number with the quotient obtained by dividing it by the prime divisor
you just found and continue testing with that prime, or (b) until you reach its square root, at
which point you have established your number (or the appropriate quotient thereof) is a prime. All
the primes which did divide into your number, or into the reduced numbers, make up the prime
factorization (notice that some primes may appear multiple times). (qed)

2574

2 1287

3 429

3 143

11 13

An illustration might make this clearer: we shall find the prime factor-
ization of 2574. The procedure is often written as a tree, as illustrated.
Trying to divide 2 into 2574 succeeds, and gives the quotient 1287. Start-
ing over with 1287, we try dividing 2 into it (that fails), then 3 into it:
that succeeds, giving a quotient 429. Starting over (we can skip 2 as that
failed before), we try dividing 3 (again) into 429: that succeeds again,
giving a quotient 143. Again we try 3 into this: it fails. We try succes-
sive primes (5, then 7, then 11): 5 and 7 fail, but 11 succeeds, giving a
quotient of 13. That is a prime (or, if you prefer, try dividing 11 into

13, which fails, then try the next prime, 13, into 13, which succeeds, giving a quotient 1, and no
prime divides into 1). List the primes which did divide into our number and into its reductions:
2, 3, 3, 11, 13. Their product is 2574 (check!), so the prime factorization is 2× 32 × 11× 13.

This proof is actually quite simple, if you focus on the idea behind it: given any number > 1,
it is either composite or prime. If composite, it has factors (which are smaller than it is). Each
of those factors in turn is either composite or prime, and if composite, has factors smaller in turn.
Just decompose any composites to get smaller factors; eventually you must terminate with primes
(since you cannot count down from any natural number without eventually stopping—there are
only a finite number of numbers smaller than any specific number).

Theorem: (The infinitude of primes) Given any finite set of primes, there must be some prime
number not in that set. In other words, the set of prime numbers cannot be finite, and so is infinite.

Proof: Take any (finite) set of primes (imagine it is of the form {p, q, r}), and form their product:
pqr. Add 1 to that product: pqr+1. Form the prime decomposition of the resulting number. None
of the primes in your original set can occur in that prime decomposition, since each of them divides
their product (e.g. p|pqr), and hence cannot divide pqr + 1. So the prime decomposition of your
resulting number pqr + 1 must be made up of primes not in your original set. It might be prime
itself, or it might be a product of primes, but such primes are not in your set, so either way, you
have found primes not in the original set. So that set did not include all the primes. (qed)

Remark: It is worth remarking that this proof is actually constructive: given any finite set of
numbers, it gives an algorithm (via the algorithm used to prove Prime Factorization) to get primes
which do not divide any of the numbers in your set: just multiply your numbers together, add
one, and then look at the prime factorization of the result—it must contain primes which don’t
divide any of the numbers you started with. Some authors give a proof by contradiction of this
theorem, missing part of the point of Euclid’s proof. I have also kept one rather amusing stylistic
device of Euclid’s proof, using 3 as a standard representative of “any finite number”, by taking the
form of the finite collection of primes the theorem talks about to be {p, q, r}. Of course, any finite
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collection may be treated in the same manner.

Look again at the table showing the primes distributed among the natural numbers up to
420. The primes seem to be scattered almost randomly throughout the list, though some hints of
patterns tantalize us (look at sequences like 7, 23, 37, 53, 67, 83, 97, 113, 127), but patterns are
less obvious (or simply do not exist) as we get into higher and higher numbers. Is there a pattern
in the sizes of the gaps2 between successive primes? There is only one pair of primes (2 and 3) that
have a gap of 1 between them, because 2 is the only even prime. Some pairs of primes have a gap
of only 2, even near the end of our list (347 and 349). Pairs of primes that differ by 2 are called
“twin primes”. Will there continue to be twin primes even among the very large numbers? Here is
a guess at the answer:

Conjecture: There are infinitely many twin primes.

This conjecture was proposed in 1923 by Hardy and Littlewood,3 but has never been proved or
disproved. We don’t know. It’s an open question. So far . . .

Look again at the distribution of primes. There are 4 primes among the first 10 numbers (40%
of the first 10 numbers are primes). There are 8 among the first 20 numbers (still 40%). There are
only 10 primes less than 30 (33%); 12 primes less than 40 (30%); 24 primes less than 100 (24%);
44 primes less than 200 (22%); and so on. Among the first 100 numbers, 24% are prime; 20% of
the next 100; 16% of the next 100; 15% of the next 100. The primes thin out as they get larger. Is
there a pattern here?

The answer is “yes”, and it is one of the major results of number theory: the Prime Number
Theorem, which states that the proportion of primes less than n is approximately 1/ ln(n) (the
reciprocal of the natural logarithm of n). So, roughly 161

2% of numbers up to 1000 are primes,
and the reciprocal of ln(1000) is roughly 141

2%, which isn’t too far off, and this approximation will
improve for larger numbers. More precisely, if we denote the number of primes less than or equal
to n by π(n), the Prime Number Theorem says that the following limit equals 1:

lim
n−→∞

π(n)/n

1/ ln(n)
= 1

meaning that the value of this fraction is close to 1 for large numbers n, and gets even closer
to 1 as n gets larger (“goes to infinity”). This result is at the start of a remarkable journey
through a significant part of mathematics—you can find more by looking up books or articles on
the Riemann Hypothesis, a famous open problem whose solution is actually worth one million
dollars to the person who finally “cracks” it.

We saw that the primes “thin out” as we look at larger numbers. The biggest gap between
successive primes in our sample is 14 (the first such gap is from 113 to 127). Is there a limit to how
large the gap can be between successive primes? No:

Proposition: There is no limit to the size of the gap between successive primes.

2I shall define the gap between numbers m,n to be the difference between them: m−n if m is the larger number.
So the gap between 5 and 6 is 1, and the gap between 10 and 15 is 5, for example. The number of numbers between
m and n is 1 less than the gap between them: there is no number between 5 and 6, and there are 4 numbers between
10 and 15.

3Godfrey H. Hardy was a famous British mathematician and cricket fanatic: near the end of his life he wrote a
remarkably personal and touching memoir A Mathematician’s Apology, which I recommend. His longtime collaborator
J.E. Littlewood also produced a memoir A Mathematician’s Miscellany in the form of a collection of academic
anecdotes, not as personal, but often amusing.
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Proof: We shall display an algorithm which constructs a sequence of as many consecutive
composite numbers as we like. The construction involves the concept of the factorial function,4

written n!. n! is defined as follows: 0! = 1, 1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, and so
on, so that n! = 1 · 2 · 3 · · · n. To find the factorial of any natural number > 0, multiply the
number by every positive natural number less than or equal to itself. 27! = 1 · 2 · 3 · 4 · · · 27 =
10888869450418352000000000000, which is a very large number indeed.

Before we define our algorithm, let’s consider an example. Suppose we want to find a string
of four consecutive composite numbers. Then we start with 4, and add 1 (to get 5), then form
5! = 120: the four guaranteed consecutive numbers start with this plus 2, so are 122, 123, 124, 125,
for the following simple reason. By construction, 120 is divisible by 2, 3, 4, 5 (since we multiplied
those to get 120). Therefore 120 + 2 is divisible by 2 (both 120 and 2 are), 120 + 3 is divisible by
3 (both 120 and 3 are), 120 + 4 is divisible by 4 (both 120 and 4 are), and 120 + 5 is divisible by 5
(both 120 and 5 are).

Think about this a moment: you should convince yourself that a similar trick will always work.5

If you want n consecutive composite numbers, form (n + 1)!, add two (to get (n + 1)! + 2), and
start there. That number will be the first in a string of n consecutive composites.

Another example: if you wanted 13 consecutive composites (making a gap of at least 14 between
primes), then form 14! + 2 and start there. Now, 14! = 1 · 2 · 3 · · · 14 = 87178291200, so we start at
87178291202, and then the numbers from 87178291202 to 87178291214 will all be composite.

So, we have an algorithm which works for any number, so we can construct a gap of any size,
without limit, between successive primes. (qed)

Confession: this algorithm doesn’t exactly give the “optimal” answer (there may well be a string
of 13 consecutive composites using much smaller numbers!); what it does do is give us a guaranteed
answer, where no further searching is necessary. For instance, if you wanted 5 consecutive com-
posites, the algorithm would produce (6! + 2 = 722) 722, 723, 724, 725, 726, but from the table we
can see that 24, 25, 26, 27, 28 would also do. But that list is harder to produce without an actual
search.

Some folks have asked “why can’t we start with (n+1)!+1?”; well, the answer is simple: because
sometimes it doesn’t work, because sometimes that is a prime number (for example 3!+1 = 7 which
is prime). Sometimes it does work; for example, a famous result (often called “Wilson’s Theorem”)
says that for any prime p, p is a divisor of (p − 1)! + 1 (so that (p − 1)! + 1 is always composite,
for any odd prime number p). For example, 6! + 1 is divisible by 7, and 10! + 1 is divisible by 11
(check for yourself).

If you try calculating n! for bigger and bigger values of n, you’ll see that n! gets very large
very fast. You might be curious about how big a number 1000! is. It has 2566 digits, and would
take about a page to print. Most hand calculators cannot calculate numbers this large. The
approximate value of 1000! (in scientific notation) is 4.02387× 102565. According to Carl Sagan (in
his book Cosmos) the total number of elementary particles—protons and neutrons and electrons—
in the observable universe is about 1080. If the universe were packed solid with neutrons, say, so
there were no empty space anywhere, there would still be only about 10128 particles in it. 1000!
is a number that is about 102485 times as big as the total number of elementary particles in the
universe, and about 102440 times as big as the number of neutrons that would fill the universe. It
is a large number.

We can calculate it and add 2 to that huge number. The result, and the next 998 numbers after

4Usually pronounced “n factorial”, though some people like to say “n bang” or “n shriek”.
5Think about it another moment: can you see a more efficient way, which would involve multiplying fewer numbers?

I’ll mention such an improvement a bit later.
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it, will all be composite. There will be a gap of at least 1000 between successive primes.
Of course, we could use a smaller number than 1000! to get a gap of at least 1000 between

successive primes. One rather more intelligent (well, more efficient, at least) algorithm would
be to multiply together all the primes less than 1000 (rather than all the numbers), and add 2
to the result: that and the next 998 numbers will all be composite. We don’t need to check all
numbers, merely the primes, to verify that a number is composite. If we used this “simpler” method
to get 4 consecutive composite numbers (as we did in our first example), instead of multiplying
5! = 1 · 2 · 3 · 4 · 5, we’d just multiply 2 · 3 · 5 (the primes in that list), to get 30, and then add 2
to get 32, and our claim would be that 32, 33, 34, 35 are all composite. Somewhat more “efficient”
than our previous answer (122, 123, 124, 125).

A remarkable result (originally conjectured by Joseph Bertrand in 1845 and proved a few years
later by Pafnuty Chebyshev) that indicates we are never too far from a prime is that for any n,
there is always a prime number between n and 2n.

There are many facts known about prime numbers, and primes are entangled with some of the
most challenging areas of mathematics. There are also many conjectured facts which have resisted
proof, facts that we’re pretty sure must be true (and for which we’ve run computer calculations to
verify as many instances as possible), but for which we (meaning the mathematical community)
have not yet found any proof. We saw one such conjecture above, that there are infinitely many
twin primes. Here is a very famous conjecture going back centuries:

Conjecture: Every even number > 2 is the sum of two primes.

For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 12 = 5 + 7, 14 = 3 + 11 = 7 + 7, 16 =
5 + 11, . . .. This is known as the Goldbach Conjecture (there is even a novel about this, Uncle
Petros and Goldbach’s Conjecture by Apostolos Doxiadis, published in 2000—the publisher offered
two million dollars if anyone could solve this within two years of the publication of the novel (by
2002): the money was pretty safe, though, as no one has managed to do so since the late eighteenth
century, when Goldbach suggested the conjecture, and sure enough, no one claimed the cash!). A
lot is actually known about this: for instance, computer checks have shown this is true for a lot
of “small” values (at least up to 6 × 1017, for instance), and it has been proven that every even
number > 2 can be written as a sum of at most 6 primes, and that there is some (large) number
N for which it’s known that every even number > N is the sum of two numbers, one of which is
prime, and the other is the product of at most two primes. Close, but still no cherry! Goldbach’s
Conjecture is probably true, if these results are anything to go by, but we still have no proof of that
claim. And it’s deductive proof that counts in mathematics.

8.1.3 Perfect numbers and Mersenne primes

There is a famous class of prime numbers, called the Mersenne primes after Marin Mersenne (1588-
1648) who first pointed out a number of primes of the form 2n − 1. In fact, he claimed that for
the values of n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, 2n − 1 would be prime, and not for any
other values of n < 257. He wasn’t entirely correct, although it took several centuries to settle
this completely. It was eventually shown that for n = 67 and 257 you don’t get primes, and for
n = 61, 89, 107 you do. Many more Mersenne primes have been discovered since.6

There are two significant facts about Mersenne primes. The first connects Mersenne primes to
primes in general:

6These days, newly discovered primes tend to be Mersenne primes, and it’s possible to join in the hunt for
new primes by running a background computer task—check this at http://www.mersenne.org/prime.htm if you’re
curious.
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If 2n − 1 is a prime number then n is also a prime number.

It’s important to note that the converse isn’t true: there are many prime numbers n for which
2n − 1 is not prime (we gave the examples of n = 67 and 257 above).

The second fact relates Mersenne primes to what are called perfect numbers: a number is
perfect if it equals the sum of its proper divisors (divisors less than itself). For instance, 6 is
perfect, since 6 = 1+ 2+ 3 (and 1, 2, 3 are the proper divisors of 6). 28 is the next perfect number:
28 = 1 + 2 + 4 + 7 + 14. The connection with Mersenne numbers is this:

If 2n − 1 is a prime number then 2n−1(2n − 1) is a perfect number.

For instance, if n = 3, notice that 23−1 = 7 is (a Mersenne) prime, and 2n−1(2n−1) = 22(23−1) =
4 · 7 = 28 is perfect. (Check that n = 2 gives the perfect number 6.)

Here is a table of the first 8 perfect numbers (and the corresponding Mersenne primes) generated
by this principle.

n 2n − 1 2n−1(2n − 1)

2 3 6
3 7 28
5 31 496
7 127 8128

13 8191 33 550 336
17 13 1071 8 589 869 056
19 524 287 137 438 691 328
31 2 147 483 647 2 305 843 008 139 952 128

(These numbers get very large indeed!) There are several questions about perfect numbers one
might ask. For example, the ones generated by Mersenne primes are all even; are there any even
ones which don’t come from Mersenne primes by this formula? The answer is “no”: it’s been proven
that this formula generates all the even perfect numbers. What about odd perfect numbers? Are
there any? So far none have ever been found, and if there are any, they must be very large (bigger
than about 1050, since it’s been shown that there are no odd perfect numbers less than that—I
wouldn’t bet any money on the existence of odd perfect numbers!).

8.1.4 Exercises on divisibility and primes

Prove the following facts about positive natural numbers.

1. Suppose a = bq + r: prove that if d|b and d|r then d|a. Also prove that if d|a and d|b then
d|r.

2. Find all the divisors of 23 · 54.

3. The divisors of 1 more than a product of primes are always “new” primes: what “new” primes
do you get from 2 · 11 · 13 + 1?

4. Find7 the prime divisors of 2 · 3 · 5 · 7 + 1.

5. Find the prime factors of 1 · 2 · 3 · 4 · 5 · 6 · 7 + 1 (= 7! + 1, not to be confused with 8!). Is
7! + 1 prime? Check that 7!, 7! + 2, 7! + 3, 7! + 4, 7! + 5, 7! + 6, 7! + 7 are all composite.

7Remember that in looking for divisors of a number n, you need look no further than
√
n, since any larger factors

must be turned up by their “smaller mates”.
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6. Construct a number that has the property that the 7 numbers that follow it are all composite.

7. If d|a and d|b, prove that d|a+ b and d2|ab.

8. If a prime p divides a + b, must it divide a (or b)? (This is the converse of the first part of
the previous exercise: is it true?)

9. Some primes can be written in the form n2 + 1 for some natural number n. For example,
22+1 = 5, and 42+1 = 17. Find three more primes of the form n2+1. (The conjecture that
there are infinitely many such primes has never been proved or disproved.)

10. Some primes are one less than a square: they can be written in the form n2 − 1 for some
natural number n. For example, 22 − 1 = 3. Can you find other primes of the form n2 − 1?
Make a conjecture and prove it.

8.2 Mathematical Induction

8.2.1 Playing with numbers

Mathematics is not just calculation or computation. Mathematicians enjoy mathematics as one
might enjoy performing difficult music or playing a sophisticated game—for the beauty and the
pleasure of the pursuit itself. Most mathematicians dislike calculation and computation just as
much as any high school student. One reason for doing mathematics is to find ways not to do
calculations—this was actually one of my main motivations, in fact.

In the development of a science, one: (1) gathers data and looks for patterns in the data; (2)
creates classifications and definitions; (3) proposes general (abstract) conjectures and hypotheses;
(4) confirms or proves the conjectures: not all that different from what one does in mathematics.

Ancient Greeks seem to have been the first people to study numbers, to explore their properties
and discover new patterns, and most importantly, to seek proofs of their conjectures. We start this
section with some simple examples of the sorts of number patterns they enjoyed.

For example, the Greeks discovered that they could arrange sets of pebbles in different kinds of
patterns depending on the size of the set. Some sets made squares, as:

Whether a set of pebbles can be arranged into a square pattern depends on the cardinality of
the set of pebbles: the number of pebbles in the set. The cardinalities of sets of pebbles that could
make squares they called the “square numbers” (from whence comes our usage “5 squared”).

Other sets could be arranged into different patterns. Triangles, for example:

and the numbers associated with these sets they called “triangular numbers”.



198 CHAPTER 8. NUMBER THEORY

Finding patterns in the pebbles is abstraction. Extending the process of abstraction leads to
the idea of patterns in the numbers themselves. Playing with the pebbles ushers in mathematical
questions. Is there a biggest square number? A biggest triangular number? A biggest number? Is
there a number bigger than 1 that is both square and triangular? Is there a square number between
16 and 25?

One can arrange square or triangular numbers in a sequence from small to large (as in the
diagrams above) and think about the relation between successive numbers. How many pebbles do
we have to add to a square number to get the next square number? How many are added to a
triangular number to get the next triangular number?8 What is the sequence of numbers of added
pebbles?

Before we go further, you might like to try your hand at this. Imagine it’s a pleasant evening,
you’re sitting in an Athenian café, playing with pebbles on the sand at your feet, a glass of retsina
beside you. See what patterns you can find.

• Write the number of pebbles in each square number in the diagrams above, in sequence. Do
the same for the triangular numbers.

• Describe (in words) the sequences you wrote down, and try to predict the next few entries.

• Formulate a conjecture or hypothesis about the relation between successive square numbers.
What does one add to a square number to get the next square number? Can you create a
formula which will tell you what the nth square number is? Test your formula on the 5th

square number.

• Formulate a conjecture or hypothesis about the relation between successive triangular num-
bers. What does one add to a triangular number to get the next triangular number? Can you
create a formula which will tell you what the nth triangular number is? Test your formula on
the 5th triangular number.

• Are you sure that your conjectures will hold as the numbers get bigger? Can you prove that
your conjectures are true for all square and triangular numbers? How? (This is the question
to which we shall turn now.)

• Square patterns could be relaxed a bit to form “rectangular numbers”; convince yourself that
these are just what we’ve been calling “composite numbers” (apart from 1, which isn’t much
of a rectangle!).

8.2.2 Mathematical induction

The natural numbers have many properties, but the one which is most characteristic, the one that
virtually characterizes the natural numbers, is called mathematical induction.9 This should not
be confused with scientific induction, also known as empirical induction, and I shall say more about
that soon, but first, just what is mathematical induction?

Mathematical induction is based on the observation that if you wish to reach a natural number,
by counting, you only need one operation (“+1”) and a starting place (0). In other words, if you
start at 0 and repeatedly add 1, then eventually you will reach whatever natural number you wish,

8I have given you a big hint in the shading of pebbles!
9Some writers—not too many!—like to call this “perfect induction”, contrasting it with the “imperfect” scientific

induction. The distinction between these two types of induction is indeed important, but I think the name “perfect
induction” is redundant: after all, mathematics is by its nature obviously perfect(!).
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be it 5 or 1050 (although it may take a little time). This may be used as a principle of proof.
Suppose P (x) is some statement about numbers x, and suppose you want to know that P (n) is
true for all natural numbers n: it would suffice to show your statement P is true for the number
0, and that whenever P is true for some number, it is also true for the next number (obtained by
adding 1). For then, whatever number you choose, you can verify your statement at your chosen
value by verifying it for all the numbers up to and including your number, starting with 0.

For example, suppose you had proved the premises of mathematical induction for a particular
statement P , and now want to conclude P (n) for some particular n, as mathematical induction
concludes you may; suppose you wanted to verify your statement was true for n = 5, say. You
could start by saying “P (0) is true” X. Add 1: Since P (n) −→ P (n+1), this guarantees P (0+1), so
P (1) is true X. Again, add 1: a similar use of P (n) −→ P (n+1) tells you P (2) is true X. Continue
in this way, and in 3 more steps you’ll reach P (5), at which point you know your statement is true
indeed for n = 5, as you wanted. What made this work was (a) you had a starting point where
you knew the statement was true, and (b) you had a way to verify the statement for a particular
number, knowing it true for the previous number. This is mathematical induction. (It’s really just
counting!)

The principle of mathematical induction is:
If a statement about natural numbers can be proved to be true for the number 0, and
if it can be proved that, whenever the statement is true for an arbitrarily-chosen natural
number n it must be true for n+ 1,
then it must be true for all n ∈ N.

We can state this principle symbolically as follows. Suppose P (x) is a statement (predicate) (about
numbers x). Then mathematical induction is this (where the universe of discourse is N):

P (0),∀n[P (n) −→ P (n+ 1)] ⊢ ∀nP (n)

A note concerning terminology: In proving something by mathematical induction, we have two
things to prove: the case where n = 0, and the conditional statement that the case for n implies
the case for n+1. We often refer to the n = 0 case as the base case, and the conditional statement
is often called the induction step.

The term “mathematical induction” might seem to be confusing, being so similar to the term
“scientific induction”, and indeed, in every-day English, “induction” usually means “scientific in-
duction”. The difference between these two types of induction is striking: scientific induction only
gives a plausibility argument. The fact that the sun has risen every morning within human memory
suggests that it is very likely that it will rise tomorrow, but that isn’t guaranteed fact, with the
same certainty that mathematics strives for. After all, maybe tonight the Romulans will launch a
murderous attack on our solar system, destroying the sun and all the planets, so that tomorrow
the sun won’t rise. To be sure, there’s no point in worrying about this, but how could one say this
is impossible? Merely the observation that something “always” seems to happen cannot be taken
as proof that it will in fact always happen. Such likelihood is the nature of scientific “truth”, but
it fails the test of rigour required by mathematical proof.

Mathematical induction, on the other hand, is a rigorous method of proof, leaving nothing to
doubt or chance. It depends on a defining characteristic property of the natural numbers (that
one can count to any number one wishes, and that there is no number that cannot be reached
by such counting). Although it seems to argue from the particular (a proof about the particular
number 0 and about an arbitrary other particular number n and its successor) to the general (a
statement that applies to all natural numbers), in fact that is only in appearance. The point is
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that the arbitrary number n isn’t really a “particular” number, but a variable, which can represent
any number, so that one deductive step actually represents an infinity of particular steps, enough
to justify the conclusion for any particular number, and so enough to justify the conclusion for
all numbers. Unlike scientific induction, the reasoning is deductive. That is, if the premises (the
statement about 0 and the conditional statement about n and n+1) are true, the conclusion cannot
be false. The truth of the conclusion is guaranteed by the truth of the premises.

Before we look at examples, there is one comment we might make. Mathematical induction
requires a starting point, which we’ve taken to be 0. But in fact, if you think about it a bit, we
could use any other starting point (e.g. 1 or 2, or whatever number you like), and then induction
would give you the truth of your statement P , starting at the number you chose to start with. We’ll
often do that, starting at some other number than 0, using a different base case, such as 1; we’ll
appropriately adjust our conclusion to claim the truth of our proposition only starting at the value
we used.

An example of mathematical induction

Let’s look at an example. You probably noticed that the triangular numbers are the sums of the
numbers in the sequence 1, 2, 3, 4, . . .. That is, the first triangular number is 1, which is the “sum”
of the first 1 term(s). The second triangular number (3) is the sum of the first 2 terms (1 + 2).
The third (6) is the sum of the first 3 terms (1 + 2 + 3), and so on. The nth triangular number is
the sum of the first n natural numbers.10 Now, the question is, what do these numbers add up to?
What formula can we derive for the sum, and so what formula can we derive for the nth triangular
number?

There are two ways you could answer this. You could guess the result (you may have already
done so), or you could try to find a clever way to figure it out. We shall do both, but in the first
case, we’ll prove our guess is correct by induction.11

Let’s use some notation here. We shall write T (n) for the nth triangular number, so, by looking
at the pebble pictures, we have T (1) = 1, T (2) = 3, T (3) = 6, T (4) = 10, T (5) = 15, etc. One
thing that is obvious from the pebble pictures is that T (n + 1) = T (n) + (n + 1); in words, to
get “the next” triangular number (T (n+ 1)), you add “the next” number (n+ 1) to “the current”
triangular number (T (n)).

So we shall take this as our definition of the triangular numbers:

T (1) = 1 and T (n+ 1) = T (n) + (n+ 1)

Notice that 1 · 2 = 2, 2 · 3 = 6, 3 · 4 = 12, 4 · 5 = 20, 5 · 6 = 30, and half these products
gives 1, 3, 6, 10, 15, exactly the triangular numbers. This suggests (try a few other cases if you’re
not convinced!) that the nth triangular number is given by T (n) = 1

2n(n + 1). (What an odd
formula!—we’ll see a way to generate this naturally soon.)

But now that we have a conjectured formula, can we prove it? Yes, with mathematical induction.
We take as our statement P (n) the claim “T (n) = 1

2n(n+ 1)”. We start with the case n = 1: the
statement, P (1), we must prove is T (1) = 1

2 · 1 · 2 = 1, which is (by definition) true.

10Here is a “philosophical” remark (which is actually mathematically correct too). If you “add” no numbers, your
sum should be the number which does nothing when you add it to other numbers: namely, the sum of 0 numbers is
0. (Check if you understand the point: the product of 0 numbers should be 1, the number which does nothing when
you multiply by it.) So, we define the empty sum to be 0 (and the empty product to be 1); this would suggest that

the 0th triangular number is 0. Which it is!
11Unless otherwise stated, “induction” will always refer to “mathematical induction” from now on.
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Comment: if you prefer, you could start at 0—that means you’d have to verify T (0) = 1
2 · 0 · 1 = 0,

which is true.
Next we do the “induction step”, meaning we assume the statement is true for n and use that

to prove it for n + 1. So, assume that T (n) = 1
2n(n + 1). Now prove T (n + 1) = 1

2(n + 1)(n + 2);
this is what the statement P (n + 1) becomes when you translate it (meaning, you replace n with
n + 1 wherever you see it—in this process, the expression n + 1 itself becomes (n + 1) + 1 or just
n+ 2). So here goes:

T (n+ 1) = T (n) + (n+ 1) (the basic property of the triangular numbers)

= 1
2n(n+ 1) + (n+ 1) (the induction assumption)

= (12n+ 1)(n + 1) (by distributivity)

= 1
2(n+ 2)(n + 1) (by distributivity)

= 1
2(n+ 1)(n + 2) (by commutativity)

The only tricky step was where we took that 1
2 outside the bracket—the hint that this might be

a good idea came from the form of the result we wanted: 1
2(n + 1)(n + 2). That suggested the

fraction 1
2 ought to be outside the bracket, not inside. So we took it outside, and made whatever

adjustment needed inside. The nice thing about induction is you know what you want to prove,
so you can use that expectation to give you hints about what algebraic steps might be helpful: in
this case, the use of distributivity to first get the factor (n+ 1), and second, the factor 1

2 .
So what’s our conclusion?: That the statement (formula) P (n) is true for all n ≥ 1 (for all n if

we chose to start at n = 0); in other words, T (n) = 1
2n(n+ 1).

By the way: we could have set this problem up another way: it is clear (is it?) from the way
the triangular numbers are defined that

T (n) = 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n

and so we have just shown that 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n = 1
2n(n+ 1).

Remark: Mathematical induction provides a very useful way to prove a result, but it has one
serious drawback: it gives no hints as to how to get the result in the first place. If we hadn’t
“guessed” the formula for T (n) = 1

2n(n+1), induction wouldn’t have been of much use. So usually
induction is used when some other method suggests the result wanted, but does so without a
rigorous proof.

In the case of the present example, there is another method we could have used to get the
formula, using a simple diagrammatic trick, in fact. Take the triangular figure from which the
triangular numbers get their name, and double the triangle.

As you can see, this now forms a rectangle, whose sides are n by n + 1. Since this is twice the
appropriate triangle, we can see that the original triangle has 1

2n(n+ 1) dots.
This pictorial proof can be presented algebraically as well. We start with

T (n) = 1 + 2 + 3 + · · ·+ (n− 2) + (n− 1) + n
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and then reverse this expression, giving

T (n) = n+ (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1

Add these “vertically”:

T (n) + T (n) = (1 + n) + (2 + n− 1) + (3 + n− 2) + · · ·+ (n − 2 + 3)+ (n− 1 + 2) + (n+ 1)
2T (n) = (n+ 1) + (n+ 1) + (n + 1) + · · ·+ (n+ 1) + (n+ 1) + (n+ 1)
2T (n) = n · (n+1)

and then dividing by 2 gives the desired formula T (n) = 1
2n(n+ 1).

Another example of induction

Look at the square numbers again: each is obtained from the previous by adding a new odd
number, so that the sequence may be thought of as 1, 4 = 1 + 3, 9 = 1+ 3+ 5, 16 = 1 + 3+ 5+ 7,
25 = 1 + 3 + 5 + 7 + 9, etc. (This should be evident from the black dots in the diagram we
had before.) So if we denote the nth square number by S(n), then we have the formula S(n) =
1 + 3 + 5 + 7+ · · ·+ (2n− 1). Check this: if n = 1 then 2n− 1 = 1, so we add odd numbers up to
1, i.e. S(1) = 1. If n = 2 then 2n − 1 = 3, and so we add odd numbers up to 3, i.e. S(2) = 1 + 3.
Verify that we’ve got S(3) and S(4) right. The definition of S(n) has as an immediate consequence
that S(n + 1) = S(n) + (2n + 1): the “next” square number S(n + 1) is equal to the current one
S(n) plus the “next” odd number 2n + 1. (Do you see why 2n + 1 is the next odd number after
2n− 1?)

The picture of square numbers then suggests that S(n) = n2, and this is what we shall prove
by induction. We shall start with n = 1, and so we must “prove” S(1) = 12 = 1; but this is
immediate.12

For the induction step, we assume the n case: that S(n) = n2, and we aim to prove the n + 1
case from that assumption: that S(n + 1) = (n + 1)2. Here’s how this might go:

S(n+ 1) = S(n) + (2n+ 1) (the basic property of the square numbers)

= n2 + (2n+ 1) (the induction assumption)

= (n+ 1)2 (by factoring the expression)

So we have proved the base case, and the induction step, and hence we have proved the formula
S(n) = n2 for all n ≥ 1.13

Yet another example

Here is an example, without all the chit-chat, so you can see the structure of the method more
clearly. (It’s really just the triangular numbers example again, but doubled; can you see that?)

Show that 2 + 4 + 6 + · · ·+ 2n = n(n+ 1) by mathematical induction.

First verify case n = 1: 2 = 1(1 + 1) is clearly true.

Next: Assume case n:
2 + 4 + 6 + · · · + 2n = n(n+ 1)

12You could start with n = 0, using the same convention as we mentioned with the triangular numbers: if n = 0,
S(0) = 0, so the base case is ok.

13Or for all n, if you are happy with the base case being n = 0.
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and prove case n+ 1:
2 + 4 + 6 + · · ·+ 2(n+ 1) =? (n + 1)(n + 2)

This follows from the following calculation:
2 + 4 + 6 + · · ·+ 2(n+ 1)

= (2 + 4 + 6 + · · ·+ 2n) + 2(n+ 1) (notice the previous case is part of the current one)

= n(n+ 1) + 2(n + 1) (use the assumed formula)

= (n+ 1)(n + 2) (take out the common factor)

(qed)

Sigma notation

Although it is not essential for our use, you might like to know that there is a nice notation for
sums of this sort. If ak is an expression which contains a variable k, representing a natural number,
such as ak = 2k − 1, then we denote a sum of such expressions as follows:

n
∑

k=1

ak = a1 + a2 + a3 + · · ·+ an

For example, if ak = 2k − 1, then notice that if k = 1, ak = a1 = 2 · 1 − 1 = 1, and similarly (if
k = 2) a2 = 3, (if k = 3) a3 = 5, and so on. So the sum of the first n odd numbers would be
written as

n
∑

k=1

(2k − 1) = 1 + 3 + 5 + · · · + (2n− 1)

Similarly, the sum of the first n positive integers would be written as

n
∑

k=1

k = 1 + 2 + 3 + · · ·+ n

With this notation, our results about the triangular and square numbers could be written as

n
∑

k=1

k = 1
2n(n+ 1) and

n
∑

k=1

(2k − 1) = n2

8.2.3 Exercises on induction

Use Mathematical Induction to prove the following facts about positive natural numbers.14

1. Prove that for all n: 1 + 4 + 7 + · · ·+ (3n − 2) = 1
2n(3n− 1).

2. Prove that for all n: 3 + 7 + 11 + · · ·+ (4n− 1) = n(2n+ 1).

3. Prove that for all n: 1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n+ 1) = 1
3n(n+ 1)(n + 2).

4. Prove that for all n:
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · + 1

n(n+ 1)
=

n

n+ 1
.

14For simplicity’s sake, you may assume all these are for n ≥ 1, unless otherwise stated; in many of these, one could
start with n = 0; I’ll let you explore that possibility.
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5. Prove that for all n: 1 + 2 + 22 + 23 + · · ·+ 2n = 2n+1 − 1

6. Prove that for all n, if a set X has n elements, then P(X) has 2n elements.

7. Prove that for all n: 2 divides 3n − 1.

8. Prove that for all n: 5 divides 8n − 3n.

9. Prove that for all n: 4 divides 6n − 2n.

10. Prove that for all n: 7 divides 15n − 8n. (Do you see a pattern here? Can you guess a
conjecture about such divisibility statements?)

11. Prove that for all n ≥ 2: 6 divides n3 − n.
(Hint: You might want to use the fact that n(n+ 1) is always even.)

12. Prove that for all n: 1 + x+ x2 + x3 + . . .+ xn =
xn+1 − 1

x− 1
(provided x 6= 1).

13. Prove that for all n > 3: n2 > 2n + 1

14. Prove that for all n > 4: 2n > n2 (Hint: You may want to use #13 to help with #14.)

15. Look at the following facts:

1 = 13

3 + 5 = 23

7 + 9 + 11 = 33

13 + 15 + 17 + 19 = 43

21 + 23 + 25 + 27 + 29 = 53

etc.

Adding the left hand sides gives the sum of the first T (n) odd numbers, which is S(T (n)) =

T (n)2 =
(

1
2n(n+ 1)

)2
= 1

4n
2(n + 1)2, and adding the right hand sides gives 13 + 23 + 33 +

· · · + n3, so we are led to the equation

13 + 23 + 33 + · · ·+ n3 = 1
4n

2(n+ 1)2

prove this equation by induction.

16. Prove (for n ≥ 1) 13 + 33 + 53 + · · ·+ (2n − 1)3 = n2(2n2 − 1).

17. Look at the sequence of squares. We can try to calculate the sums of the first n squares. The
sequence of sums is 12 = 1, 12 + 22 = 5, 12 + 22 + 32 = 14, 12 + 22 + 32 + 42 = 30, and so on.
Use mathematical induction to prove the conjecture that

12 + 22 + 32 + · · ·+ n2 = 1
6n(n+ 1)(2n + 1)

18. Use mathematical induction to prove that the largest binary (base 2) number that can be
represented by n binary digits (bits) is 2n − 1.

19. Use mathematical induction to prove that the largest n-digit decimal number is 10n − 1.
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20. Prove that the sum of the interior angles of an n-sided convex polygon15 is 180(n−2) degrees
(or (n− 2)π radians, if you know what they are), for n ≥ 3.

21. Prove (for n ≥ 1) 1√
1
+ 1√

2
+ 1√

3
+ · · ·+ 1√

n
< 2
√
n.

Optional Extras

22. If a group of n people all want to shake hands with one another (without repetition), prove
that (for all n ≥ 2) the number of handshakes necessary is 1

2n(n− 1).
(Hint: if n = 2, then there is just one handshake between the two people; if a third joins them (so

n = 3), then the new person will shake hands with each of the other two, making the new total number

of necessary handshakes = 3. Check this fits the formula given, and see if it tells you how to go from

a group of size n to a group of size n+ 1.)

23. Suppose an ATM machine has $20 and $50 bills (only, but it has lots of them—an unlimited
supply). Show that for any n ≥ 4, the machine can give an exact payment of $10n using just
$20s and $50s.
(Hint: For the induction step, you might want to consider two cases: if the previous payout was all in

$20s or not.)

24. (Fibonacci Numbers) Define the following number sequence:16

f0 = 1 , f1 = 1 , fn+2 = fn + fn+1 for n ≥ 0

(so the sequence begins 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .). Show that the following are true:

f1 + f3 + f5 + . . . + f2n−1 = f2n

f2 + f4 + f6 + . . . + f2n = f2n+1 − 1

f20 + f21 + f22 + . . .+ f2n = fnfn+1

fn < 2n [This is a bit tricky, and is easier if you try instead to prove that fk < 2k ∀k ≤ n.]

25. 12 + 32 + 52 + · · · + (2n − 1)2 = 1
3n(2n− 1)(2n + 1).

26. 2 + 9 + 16 + · · · + (7n− 5) = 1
2n(7n− 3).

27.
1

1 · 3 +
1

3 · 5 +
1

5 · 7 + · · ·+ 1

(2n − 1)(2n + 1)
=

n

2n+ 1
.

28. For each of the following, what can you conclude from the information given about a propo-
sition P (n)?
For example, if you are told that P (7) ∧ ∀n(P (n) −→ P (n + 1)), then you could conclude
∀n ≥ 7 P (n).
(a) P (4) ∧ ∀n(P (n) −→ P (n+ 1)) (b) ¬P (10) ∧ ∀n(P (n) −→ P (n+ 1))

(c) P (1) ∧ ¬∀n(P (n) −→ P (n+ 1)) (d) P (1) ∧ P (2) ∧ · · · ∧ P (1000)
(e) P (1) ∧ ∀n(P (n) −→ P (n+ 2)) (f) P (40) ∧ ∀n(P (n) −→ P (n− 1))

(g) P (1) ∧ P (2) ∧ ∀n(P (n) −→ P (n+ 2)) (h) P (1) ∧ P (2) ∧ ∀n(P (n) ∧ P (n+ 1) −→ P (n+ 2))

(i) P (1) ∧ ∀n(P (n) −→ P (5n)) (j) P (1) ∧ ∀n((P (n) −→ P (5n)) ∧ (P (n) −→ P (n− 1)))

15In a convex polygon, every interior angle is less than 180 degrees (i.e. π radians). This exercise can be modified
to also allow for non-convex polygons, without altering the formula. Try that if you feel up to it.

16This sequence answers a famous question of Leonardo Fibonacci (c.1170-1250): Beginning with a single pair of
newborn rabbits, if every month each productive pair bears a new pair, which becomes productive when they are 2
months old, how many rabbits will there be after n months? fn is the number of pairs of rabbits in month n, assuming
rabbits are immortal. There is a wealth of information about and pattern derived from these simple numbers—an
interesting example may be found on the course webpage (“Fibonacci & Phyllotaxis”). Google for other connections
with life, the universe, and everything.
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8.3 The Fundamental Theorem of Arithmetic

We saw previously (the Prime Factorization Theorem) that every natural number > 1 is either a
prime, or a product of primes. We shall regard a prime number as a product of primes, by allowing
“products” of just one number, so with this usage, we can say every number > 1 is a product of
primes. The question we turn to now is whether this can be done in more than one way. Is it
possible to have two different products of primes, where either the number of primes or some of
the actual primes themselves are not the same? Or does

p1p2p3 · · · pj = q1q2q3 · · · qk

where all the ps and qs are prime, mean that j = k and exactly the same primes appear in the two
lists p1, p2, p3, . . . , pj , and q1, q2, q3, . . . , qk? It turns out the answer is that there is one and only
one way to factor any number into prime factors:

Theorem: Any natural number n > 1 can be represented as a product of primes in one and only
one way.

Remarks:

1. A minor detail: 1 can also be represented as a product of primes, if we allow the empty
product. Note that we do not want to alter the definition of “prime” to include 1 as a prime,
as that would destroy the truth of the theorem (as it would allow arbitrarily many extra
factors 1).

2. Our proof will use the following two important properties of natural numbers: first, that any
non-empty set of natural numbers always has a smallest (or least) element,17

3. and second, that if a particular number m has only one prime factorization, then that fac-
torization must contain all the prime factors of m. For if p were a prime factor of m, then
m = pk for some k, and factoring k into primes k := q1q2 . . . qj, we get a prime factorization of
m := pq1q2 . . . qj. Since m only has one such, this must have been the original factorization,
which therefore contained p.

Proof of the Theorem:18 The proof we give here will be by contradiction. We start by assuming
that there are some numbers which do admit of two (or more) different prime factorizations, and
so we can choose the smallest such number: let’s call that number n. (Note that n itself must be
composite, and not prime.) So, we can assume, for any number m < n, that m has only one prime
factorization, which contains all the prime factors of m.

Since we are supposing that n has two (or more) different prime factorizations, let’s represent
them as follows:

n = p1p2p3 . . . pj = q1q2q3 . . . qk

where p1, p2, p3, . . . , pj, q1, q2, q3, . . . , qk are all primes. Note that no prime can occur in both prod-
ucts, for if it did we could cancel it out, getting a smaller number than n with more than one
representation as a product of primes, contradicting our assumption that n was the smallest such
number. Note also this means none of the numbers n, p1, p2, p3, . . . , pj , q1, q2, q3, . . . , qk can be even.

17This “simple” fact is in fact equivalent to mathematical induction. See section 8.5.
18This proof seems to have been first presented by H. Hasse in 1928; the presentation here comes from Davenport,

H. The Higher Arithmetic: An Introduction to the Theory of Numbers, Cambridge University Press, shown me by my
friend and colleague Bill Boshuck.
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We can suppose that the primes are listed in increasing order (with whatever repetitions are nec-
essary), and that p1 is the smallest prime so listed. Note that each product has at least two factors
(since n is composite), so that p1 and q1 cannot be greater than

√
n, and hence p1 <

√
n and so

p1q1 < n. Consider n − p1q1: it is smaller than n and larger than 1 (since, being the difference of
odd numbers, it is even), so admits only one prime factorization. But clearly p1 and q1 are factors
(remember that if d|a and d|b, then d|(a− b) as well), so that factorization must look like

n− p1q1 = p1q1r1 . . . rℓ

for primes r1, . . . , rℓ . This implies p1q1 is also a factor of n (because if d|(a− b) and d|b, then d|a
as well); i.e. p1q1 is a factor of p1p2p3 . . . pj . Cancelling p1 shows that q1 is a factor of p2p3 . . . pj ;
since p2p3 . . . pj < n it has a unique factorization, consisting of all its factors, and so q1 is one of
those factors. But this contradicts the fact that q1 is supposed to be a prime not occurring among
p2, p3, . . . , pj .

So this contradiction shows there cannot be any number n > 1 with more than one prime
factorization. (qed)

Remark:19 There is a noticeable fact about this proof: it is more complicated than the proof that
any number admits (at least one) prime factorization. (For that, we only had to use the definition
of composite number as being not prime, and prime numbers as admitting only one factorization
at all, namely 1 × the number itself.) This proof uses subtleties about divisors and subtraction,
for example. There is a good reason for that: without such properties, the result is simply false.
Here is an illustration of this fact.

We shall restrict ourselves to a subsystem of the natural numbers, namely, the numbers

1, 5, 9, 13, 17, 21, 25, 29, . . .

which are all of the form 1 + a multiple of 4 (i.e. numbers of the form 4k + 1: we say these
numbers are “≡ 1 mod 4”). You can multiply such numbers together, and get products which
are still in our subsystem (still ≡ 1 mod 4). This system has “pseudo-primes”: numbers which
admit only the trivial factorization in this system. Check that among the numbers listed above,
1, 5, 9, 13, 17, 21, 29 are all pseudo-prime, but 25 is composite (since it = 5×5).20 In this system the
usual proof that every number can be factored as a product of pseudo-primes is valid, but in this
system, not all such factorizations are unique. For example, 693 is composite, and may be factored
as 9×77 or as 21×33, and 9, 21, 33, 77 are all pseudo-prime. (Of course, in the full number system,
these two factorizations may be broken down further into real primes, and then we do get a unique
factorization—but that further breakdown takes us outside the collection of numbers ≡ 1 mod 4).

What is the point? What has gone wrong? Well, it’s simple: in the subsystem of numbers ≡ 1
mod 4, although you can multiply easily enough, what you cannot do is add or subtract! For
example, 1 + 5 = 6 and 6 is no longer in our subsystem. In other words, this subsystem is not
“closed under” addition and subtraction. This blocks the proof above from working (and indeed,
blocks any other proof from working, since the unique prime factorization theorem is not true in this
system). So any proof of unique prime factorization is bound to use more than just the definitions
of prime, composite, and multiplication.

19This example is due to Hilbert, about whom we shall hear more in Chapter 9.
20If you are tempted to say “Hey! 21 isn’t (pseudo-)prime, it is composite! It is 3× 7”, then remember that 3 and

7 are not numbers in this system, and in this system, 21 only has itself and 1 as divisors.
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FWIW: I don’t know of any proof of the Fundamental Theorem of Arithmetic which is any
simpler than the one given here—but you can judge for yourself: on the course webpage you can
find a description of a proof based on Euclid’s original ideas, (with some helpful comments thrown
in as well), as it appeared in the text written by the previous teacher of this course.

8.3.1 Special numbers

Prime numbers are defined in terms of the numbers that divide into them: a number is prime
if only 1 and itself are divisors. One may say this is a definition that “looks down” (at smaller
numbers). There is another way to characterize primes, however, one that “looks up” (at larger
numbers, more specifically, at the numbers into which the prime divides).

Definition: A natural number n > 1 is special if (and only if) it satisfies the following
property: whenever it divides a product (n|ab), it must divide at least one factor (n|a
or n|b). In other words:

n is special ↔ ∀a∀b [n|ab −→ (n|a ∨ n|b) ]

Our point is that primes are special, and vice versa, so that this definition provides another way to
characterize primes.21

Lemma: For any natural numbers a, b > 1, suppose the prime factorizations of a and b are given
by

a = p1p2 · · · pm and b = q1q2 · · · qn
then the prime factorization of ab is the product of these prime factorizations:

ab = p1p2 · · · pm q1q2 · · · qn

Proof: Clearly ab = p1p2 · · · pm q1q2 · · · qn is a prime factorization of ab, and since prime factoriza-
tions are unique, it is the prime factorization of ab. Notice that this also tells you that if you are
given the prime factorization of ab, the prime factorizations of a and b must be given by the same
primes, just redistributed, some to a and some to b.

Theorem: If a prime p divides ab, then it must either divide a or it must divide b. In other words,
primes are special.

Proof: Suppose p divides ab: that means p appears in the prime factorization of ab, and hence in
particular p must appear in one of the prime factorizations, either for a or for b, which means it
divides either a or b. (qed)

Theorem: If n is special, it must be a prime.

Proof: This is easiest to see if we take the contrapositive and prove that if n is not prime, then it
cannot be special. So suppose n is not prime, and so it is composite: n = ab. Notice that both a, b
are > 1 and < n, and so n cannot divide either a or b. But this contradicts the property of being
special, so n is not special. (qed)

An example might help here: consider the number 6. It is composite: 6 = 2 · 3. But 6 6 | 2 and
6 6 | 3. So 6 is not special.

21But only in a setting, such as the natural numbers, where the Fundamental Theorem of Arithmetic is valid. In
fact, in the system of numbers ≡ 1 mod 4, we saw that 21 is a (pseudo-)prime, but it is not special, since it divides
693 = 9× 77, but it does not divide either 9 or 77.
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Remarks

1. If a number p is special, then it has an apparently stronger property than explicitly given by
the definition of being special: if p divides a product abc · · ·, then it must divide at least one
of the factors.22 The proof of this is straightforward (can you prove it without looking at the
next sentence?). For, if p divides abc · · ·, then p divides a(bc · · ·), so by the property of being
special, p divides a or bc · · ·. If it divides a, we’re done, and if not then it divides b(c · · ·), so
(by being special), p divides b or p divides c · · ·. If it divides b, we’re done, and if not . . . well,
I hope you get the idea: we just keep using the binary property over and over till we exhaust
the factors. At some point, we’ll have found one (at least) that p divides.

2. If we knew that primes are special, then the proof of the Fundamental Theorem would be
even simpler: we could argue as follows. Suppose a number had two prime factorizations:
n = pqr . . . = p′q′r′ . . .. Since p|n, p|p′q′r′ . . ., and so p must divide (and hence equal) one of
the primes p′, q′, r′, . . .. But then we could divide both factorizations by p, and get a smaller
number with two prime factorizations. In this way, we get the same contradiction as before,
and so prime factorizations must be unique.

On the other hand, we saw above that the Fundamental Theorem implies that primes are
special. So, what this shows is that the fact that primes are special is equivalent to the
Fundamental Theorem of Arithmetic.

3. If you turn back to our proof that
√
2 is irrational, you will see that this only depended on

the fact that 2 is special. This means that
√
p is irrational for any prime, and indeed, it then

follows that the only way a composite number can have a rational square root is if in the
prime factorization of the number, every prime appears an even number of times. Hence if a
number is not a perfect square, its square root must be irrational:

Proposition: For any natural number n,
√
n must either be a natural number or

an irrational number.

Exercise: using the proof that
√
2 is irrational as a model, try to prove that

√
3 is irrational. Can

you modify the proof to prove
√
6 is irrational? What about

√
9? Be sure your proof for

√
6 doesn’t

equally work for
√
9. (Why?)

(If you feel up to it, you could also try to modify your proof to show that any root (cube root, fourth

root, etc.) of a natural number is either a natural number or is irrational, but never a non-integral rational

number.)

8.4 Answers to the exercises

Exercises 8.1.4

1. (i) b = dx and r = dy so a = bq + r = dxq + dy = d(xq + y), so d|a. (ii) a = dx and b = dy
so r = a− bq = dx− dyq = d(x− yq) so d|r.

22Why do I say this is stronger? Because the definition only said this for binary products, but in fact it is true for
any finite product, no matter how many factors there are.
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2. Divisors: 1, 2, 4, 8, 5, 25, 125, 625, 10, 50, 250, 1250, 20, 100, 500, 2500, 40, 200, 1000, 5000
(The FTA tells you the only primes that can make up factors are 2 and 5, and you can only
use up to three 2s and up to four 5s.)

3. 2 · 11 · 13 + 1 = 287 = 7 · 41, so the new primes are 7 and 41.

4. 2 · 3 · 5 · 7 + 1 = 211 which is prime itself.

5. 7! + 1 = 5041 = 712. I will leave it to you to check the rest.

6. Start with 8! + 2 = 40322: it and the next 6 numbers (making 7 in all) are all composite.
(So the answer is 40321, since it’s the 7 numbers after it that are composite. Actually, it’s
composite too, as are all the numbers from 40289 to 40343, which are both prime.)

7. If a = dx, b = dy, then a+ b = d(x+ y) and ab = d2xy, as required.

8. No. For example, 3|4 + 5, but 3 does not divide either 4 or 5.

9. and 10. I’ll leave these to you.

Exercises 8.2.3

1. 1 = 1
2 · 1 · (3− 1) ; 1 + 4+ · · ·+ (3n− 2) + (3n+1) = 1

2n(3n− 1) + 3n+1 = 3
2n

2 + 5
2n+1 =

1
2(n + 1)(3n + 2).

2. 3 = 1(2+1) ; 3+7+· · ·+(4n−1)+(4n+3) = n(2n+1)+(4n+3) = 2n2+5n+3 = (n+1)(2n+3).

3. 1 ·2 = 1
3 ·1 ·2 ·3 ; 1 ·2+2 ·3+3 ·4+ · · ·+(n+1)(n+2) = 1

3n(n+1)(n+2)+(n+1)(n+2) =
(13n+ 1)(n+ 1)(n + 2) = 1

3(n + 1)(n + 2)(n + 3).

4. 1
1·2 = 1

2 ;
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

n(n+ 1)
+

1

(n+ 1)(n + 2)
=

n

n+ 1
+

1

(n + 1)(n + 2)
=

n(n+ 2) + 1

(n+ 1)(n + 2)
=

(n+ 1)2

(n+ 1)(n + 2)
=
n+ 1

n+ 2
.

5. (We can start at n = 0 here if we like:) 1 = 21 − 1 (you can also start at n = 1). 1 + 2 +
22 + 23 + · · · + 2n + 2n+1 = 2n+1 − 1 + 2n+1 = 2 · 2n+1 − 1 = 2n+2 − 1.

6. If #X = 1, X = {x}, and P(X) = {∅, {x}} has 21 = 2 elements. If #X = n+1, X = Y ∪{x}
where #Y = n; then P(X) = P(Y ) ∪ {A ∪ {x} | A ⊆ Y }, which has twice as many elements
as P(Y ): so it has 2 · 2n = 2n+1 elements.

7. 2|0; 3n+1 − 1 = (2 + 1) · 3n − 1 = 2 · 3n + (3n − 1) and 2 divides each of these.

8. 5|81 − 31 = 5 ; 8n+1 − 3n+1 = 8 · 8n − 3n+1 = (5+ 3)8n − 3 · 3n = 5 · 8n + 3 · (8n − 3n) and 5
divides each of these terms.

9. and 10. are almost “identical” (just replace the appropriate numerical values): what all three
problems have in common is that the difference in case n = 1 gives the divisor. So, if a−b = c,
then c|an − bn for all n.

11. 6|(23−2); (n+1)3−(n+1) = n3+3n2+3n+1−n−1 = (n3−n)+3(n2+n) = (n3−n)+3n(n+1)
and 6 divides each of these (6 divides 3n(n+ 1) because 2 divides (n(n+ 1))).
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12. 1 = x−1
x−1 ; 1 + x + x2 + x3 + . . . + xn + xn+1 = xn+1−1

x−1 + xn+1 = xn+1−1
x−1 + xn+1(x−1)

x−1 =
xn+1−1+xn+2−xn+1

x−1 = xn+2−1
x−1

13. 42 > 2 · 4 + 1; (n + 1)2 = n2 + 2n + 1 > 2 + 2n + 1 = 2n + 3 = 2(n + 1) + 1 (n2 > 2 since
n > 2)

14. 25 > 52; 2n+1 = 2n + 2n > n2 + n2 > n2 + 2n+ 1 = (n+ 1)2

15. 13 = 1
41

222 = 1 ;
13 + 23 + 33 + . . . n3 + (n + 1)3 = 1

4n
2(n + 1)2 + (n + 1)3 = (n + 1)2(14n

2 + n + 1) =
1
4(n + 1)2(n2 + 4n+ 4) = 1

4 (n+ 1)2(n+ 2)2

16. 13 = 12(2 · 12 − 1) = 1 · 1;
13 + 33 +53 + · · ·+ (2(n+1)− 1)3 = n2(2n2 − 1) + (2n+1)3 = 2n4 + 8n3 +11n2 + 6n+ 1 =
(n + 1)2(2(n + 1)2 − 1); (you just have to multiply these out and see that they are equal as
claimed).

17. 12 = 1
61(1 + 1)(2 + 1) = 1 ;

12 +22 + . . .+ n2 + (n+ 1)2 = 1
6n(n+1)(2n+1) + (n+ 1)2 = (n+1)(16n(2n+ 1) + n+1) =

1
6(n + 1)(2n2 + 7n+ 6) = 1

6 (n+ 1)(n + 2)(2n + 3)

18. The largest binary number with n digits is 1 + 2+ 22 +23 + . . .+2n−1 (= 1111 . . . 12, with n
1s). So the induction goes thus: 1 = 21− 1 ; 1+ 2+22 +23 + . . .+2n−1+2n = 2n− 1+2n =
2 · 2n − 1 = 2n+1 − 1.
(Note that Mersenne primes are of this form.)

19. The proof for base 10 is similar: the largest number with n digits (all 9s) is 9 + 9 · 10 + 9 ·
102 + 9 · 103 + . . .+ 9 · 10n−1. So the induction goes thus: 9 = 101 − 1 ; 9 + 9 · 10 + 9 · 102 +
9 · 103 + . . .+ 9 · 10n−1 + 9 · 10n = 10n − 1 + 9 · 10n = (1 + 9)10n − 1 = 10n+1 − 1.

20. n = 3: The angles of a triangle add to 180 degrees. Assuming the result for n, we must prove
that an n+ 1-sided convex polygon has the sum of interior angles = 180(n− 1) degrees. But
consider the following picture, where we take an n + 1-gon and imagine replacing two sides
by a single side joining their endpoints, thus creating an n-gon inside the n + 1-gon. The
n-gon’s angles add up to 180(n − 2) degrees, and the additional triangle adds a further 180
degrees, giving a total for the n+ 1-gon equal to 180(n − 1) degrees.

n-gon

n+ 1-gon

21. 1√
1
< 2
√
1; 1√

1
+ 1√

2
+ 1√

3
+ · · · + 1√

n+1
< 2
√
n + 1√

n+1
< 2
√
n+ 1. The tricky part is

showing the last step: 2
√
n+ 1√

n+1
< 2
√
n+ 1. Here is the calculation, easiest to understand

backwards (i.e. we start with what we want, play with it a bit, ending with something
obviously true, then imagine reversing our steps; here the last statement is obviously true, so
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just read from the bottom up, and we get the required result).

2
√
n+

1√
n+ 1

< 2
√
n+ 1

2
√
n
√
n+ 1 + 1 < 2n+ 2

2
√
n
√
n+ 1 < 2n+ 1√

n
√
n+ 1 < n+ 1

2

n(n+ 1) < (n+ 1

2
)2

n2 + n < n2 + n+ 1

4

The final exercise:

Prove that
√
3 is an irrational number.

Proof: The key property used is that 3, being prime, is special. As with the similar proof for
√
2,

we prove the result by contradiction. So, assume that there is a rational number equal to
√
3: i.e.

there are integers a and b such that

3 =
(a

b

)2
=
a2

b2

we may also assume that a
b is a fraction in reduced form (i.e., a and b are relatively prime), for if

it is not, then we replace a, b with appropriate integers so that the fraction is in reduced form, (so

in particular, a, b are not both multiples of 3). Multiplying both sides of the equation 3 = a2

b2 by b2,
we get 3b2 = a2. But 3b2 is a multiple of 3, so a2 must also be a multiple of 3. However a2 = a · a
and so a must be a multiple of 3, since 3 is special. Since a is a multiple of 3, there is some number
k such that a = 3k. Substituting into 3b2 = a2, we get 3b2 = (3k)2 = 9k2. Dividing both sides by
3 gives b2 = 3k2. Reasoning as above, b2 must be a multiple of 3 and hence b is also a multiple of
3. So we have shown that a and b must have a common factor of 3, contradicting our assumption
that a and b are relatively prime. So there is no rational number whose square is three. (qed)

Compare this proof to the proof in Chapter 7 that
√
2 is irrational—it is virtually identical, merely

replacing 2 with 3. In a similar fashion, we can show that
√
p is irrational for any prime p. I’ll

leave it to you to try this for other numbers which are not perfect squares; for example, try to
prove

√
6 is irrational—you will want to consider that 6 = 2×3. Notice that you have to be a little

subtle: since 6 is not special, you cannot simply say that if 6|a2 then 6|a. You must use another
argument: instead of using 6, you can use a prime factor of 6, provided that prime factor appears
an odd number of times in the prime factorization of the number 6 (e.g. you could use 2 or 3). (If a
number’s prime factorization only has even powers of primes, then the number is a perfect square,
like 9 is, so its square root is rational.)

Here is an illustration, contrasting
√
12 which is irrational, with

√
36 which is rational.

Proof that
√
12 is irrational. Suppose

√
12 = a

b
, a, b in lowest terms. Then 12b2 = a2, so 12 | a2, and hence 3 | a2, so 3 | a.

Since then a = 3x for some x, a2 = 9x2 = 12b2, so 3x2 = 4b2, so 3 | b2 and hence 3 | b, giving the contradiction we wanted.

Why does this fail for
√
36? Follow the same pattern:

√
36 = a

b
, a, b in lowest terms. Then 36b2 = a2, so 36 | a2, and hence

3 | a2, so 3 | a. Then a = 3x for some x, a2 = 9x2 = 36b2, or just that x2 = 4b2; we do not get 3 | b. So we fail to get our
contradiction.

The point? This failure would happen whenever the number involved is a perfect square, so that its prime factorization

consists only of even powers of primes. The proof for
√
12 depended on having an odd power of a prime (namely 3) in the

prime factorization of 12.
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8.5 Historical Remark: The method of infinite descent

Before the nineteenth century, mathematical induction was more familiarly known as “the method
of infinite descent”, and was worded a little differently: for any property P (n) of natural numbers
n, P (n) is true for all n if, for any n, P (n) is false only if there is some smaller number m < n for
which P (m) is also false.23 In symbols:

∀n(¬P (n) −→ ∃m < n ¬P (m)) −→ ∀nP (n)

Think a bit about this: try to convince yourself it is equivalent to the principle of induction.

Infinite descent is not obviously equivalent to induction as we’ve stated it—a seemingly stronger
version of induction is necessary, but one which is actually equivalent to the usual version. “Strong
induction”, as it’s often called, is the following: for any property P (n), if for all n, P (n) is true
whenever P (m) is true for all m < n, then P (n) must be true for all n:

∀n(∀m < nP (m) −→ P (n)) −→ ∀nP (n)

It’s not too hard to show this is equivalent to the usual principle of induction, and it’s easy to show
strong induction is equivalent to infinite descent. An example where strong induction is helpful
was seen in exercise 8.2.3 #24. See the hint there: that hint also shows how one recasts a proof
using strong induction as a proof using ordinary induction, by replacing the aim of proving P (n)
with the aim of proving ∀m ≤ n P (m).

From the equivalence of infinite descent (or strong induction) and ordinary induction, we can
also see that induction is equivalent to the statement that every non-empty set S of natural numbers
has a least element (this statement is usually called “the well-orderedness” of the natural numbers).
First, it’s easy to show that infinite descent implies well-orderedness: take P (n) to mean n /∈ S,
so ¬P (n) means n ∈ S. Then if S has no least element, ∀n(¬P (n) −→ ∃m < n ¬P (m)), and
hence ∀nP (n), i.e. S is empty. On the other hand, well-orderedness implies ordinary induction:
suppose that well-orderedness is true yet mathematical induction fails, i.e. that P (0) ∧ ∀n(P (n)
−→ P (n + 1)), and yet ∀nP (n) is false. Let S be the set of n for which ¬P (n), and notice S is
not empty by assumption. So let m be the least element of S: m cannot be 0, since P (0), so let
n = m − 1: n /∈ S must be true (since m is the least element of S), and hence P (n). But then
P (n+1), i.e. P (m), which contradicts m ∈ S. So ∀nP (n) must be true, and so induction is valid.

With this perspective, we can redo the proof we gave of the Fundamental Theorem of Arithmetic
to avoid the method of contradiction, and to use strong induction, or equivalently infinite descent,
instead. If you feel up to it, give this a try. From this you can see that the FTA really uses all the
essential structure of the natural numbers.

23You may be able to see why this principle is “obviously true”: the fact that any number where P fails to be true
produces a smaller number where P also fails to be true means that if P is ever false, you’d start an “infinite descent”,
counting down from one failure to ever smaller ones—but that would mean counting down from one number without
ever stopping. That is impossible, as eventually you’d want to use negative numbers, and N has none of those. That
contradiction means P can never be false, so is always true.
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Chapter 9

The Axiomatic Method

Introduction

The main object of mathematics is the study of structure. Structure manifests itself in many ways
and in many places: in number patterns, in geometric forms, in computation, in music, painting,
architecture, sculpture, and other arts, in literature (both prose and poetry), in language, in logic,
. . . , to name but a few, and all of these are the subject of mathematical investigation. You may
have thought before this course that maths dealt with just numbers, algebra, and geometry—you
now know it also deals with logic, aka “the laws of thought”, and I hope we’ll have time to see
some mathematical approaches to linguistics and maybe even music. There are many many other
applications—it’s probably safe to say nothing is maths-proof!

One thing that strikes a mathematician particularly forcefully is when s/he1 notices “the same
pattern” occurring in several, seemingly unrelated, situations. The usual reaction is to try to
understand “what’s really going on here”: in other words, to get at the underlying structural
pattern that is being displayed in the various situations. One example we have already seen in this
course may serve as an example: the deduction rules for logic seem to be similar to basic relations
among simple sets, and this connection seems to go very deep, as illustrated by the similarity
between the deMorgan equivalences ¬(A ∨B) ≡ ¬A ∧ ¬B and (A ∪B)c = Ac ∩Bc, etc.

One way to analyse the underlying pattern is to isolate key properties of the pattern, and see
what structure follows from those properties. This leads a mathematician to define a structure in
terms of its fundamental notions: basic terms are defined, and basic relationships between these
terms are postulated (these are usually called axioms). Then one would verify that the original
situations are models of these axioms. Usually one then wants to see what other models there are,
and if any interesting general story can be told about the totality of such models.

It is probably safe to say that this “axiomatic approach” to mathematics, begun in the 19th

century, but really only strongly exploited from the early 20th century on, has become the primary
tool of research (theoretical) mathematics. However, in several “popular” accounts of modern
mathematics, the nature of the axiomatic method is distorted, I think: the suggestion is made that
the language and axioms of a mathematical theory are “without meaning”, that formal mathematics
is something like a game, where one only follows arbitrary “rules”, operating with meaningless
symbols. I want to make it clear that I disagree with this sentiment in the strongest terms, and most
mathematicians I’ve spoken to about the subject feel pretty much the same way. Moreover, it simply
does not reflect how we actually do mathematics. I suspect that most writers of such statements are
not practicing mathematicians, but are merely observers—I have known very few mathematicians

1I’ll use the masculine form for both from now on—it is a curious fact at present that most mathematicians are
men, although there seems to be no good “innate” reason for this (there are several possible “societal” ones). Pity.

215
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who really merely manipulate symbols without some idea of their intended meaning.
Although an axiom system is often treated abstractly, and although one is not to use “facts” not

explicitly stated in (or derived from) the axioms, there is nothing “arbitrary” about important ax-
iom systems. They are intended to illuminate real patterns in real situations, and their importance
comes from that fact. If one isn’t to use “outside facts”, it’s not because one is “playing a game”,
but because one wants to be sure to capture what is common to all the situations one has in mind,
and not to allow one situation to dominate in an unwanted way. Frequently, a mathematician will
add further axioms that are true only in some particular models he’s interested in, if that suits his
purpose. As long as one keeps clear what assumptions are being made, this is harmless, and may
even be helpful.

As a start, we shall look at some history. The first axiomatic presentation of a mathematical
structure is Euclid’s geometry. His axioms don’t measure up to today’s standards of rigour, but
they did set a style and precedent that were an inspiration for later work. Euclid’s axioms were
intended to reflect reality in a literal sense: his geometry was intended to be the geometry of the
universe in which we live. But one of his axioms was controversial from the start, and investigating
it led in the nineteenth century to an unexpected “crisis”, when non-Euclidean geometries were
discovered. This threw the mathematical world into confusion, and was one of the factors that led
to a more careful examination of the fundamental principles on which the subject rested, and to a
more central role for the axiomatic approach to mathematics.

Then we shall look in some detail at a few structures related to sets and logic, beginning with
what are called Boolean algebras. A slightly more general structure, Heyting algebras, will be
useful if we want to consider a logic without the double-negation rule (¬¬ E): ¬¬A ⊢ A, and
this also happens to capture the structure of some more “special” sets, structure not captured by
Boolean algebras. An even more general logical structure will allow us also to capture the structure
of English (and French, and Italian, etc.) grammar (next chapter).

9.1 Euclidean Geometry

An axiomatic system begins with definitions of terms plus a set of axioms. One constructs valid
deductive arguments using the definitions and axioms as premises. If the axioms are true, then
every conclusion derived from them must be true as well.

The earliest axiomatic mathematics is the 13 books of Euclid’s Elements. The Elements begins
with 23 definitions, five “postulates”, and five “common notions”. The “postulates” and “common
notions” (now usually simply called “axioms”) were considered to be “self-evident truths”, so
obviously true as to need no proof. If the postulates and common notions are true, then every
conclusion derived from them by valid deductive argument must be true.

Euclid’s five postulates of plane geometry were:

P1. A straight line may be drawn between any two points.

P2. Any straight line may be extended indefinitely.

P3. A circle may be drawn with any point as centre and any radius.

P4. All right angles are equal.

P5. If two straight lines lying in a plane are crossed by another straight line, and if the sum of the
internal angles on one side is less than two right angles, then the straight lines will meet if
extended sufficiently on the side on which the sum of the angles is less than two right angles.
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9.1.1 A Problem with Euclid’s Postulates

L1

A

B

L3

L2

Postulates P1 through P4 are easy to understand. They may even
be “self-evident”. However, postulate P5 is much more compli-
cated than the others. In the diagram, the lines labelled L1 and
L2 are the original “two straight lines lying in a plane”. Line L3

is “another straight line” that crosses them. Angles A and B are
the “internal angles on one side” of line L3. The postulate says
that if the sum of angles A + B is less than twice the size of a

right angle (180◦), then if we extend lines L1 and L2 indefinitely, they’ll meet somewhere off to the
right. The definition of “parallel lines” says “parallel straight lines are straight lines which, being
in the same plane and produced indefinitely in both directions, do not meet one another in either
direction”. So L1, L2 as shown are not parallel. The effect of P5 is to say that if L1, L2 are parallel,
then the sum of the angles A,B must be exactly two right angles.

Even when the meaning of the postulate is clear, its truth is not self-evident. In the diagram,
L1 and L2 are clearly inclined toward each other. But what if the sum of angles A+B were only
very slightly less than two right angles, so that the lines would have to be drawn millions of miles
long before they met? Would they meet?

For two thousand years, geometers tried to derive the parallel postulate from the other postu-
lates. They failed, but they did prove that the parallel postulate was logically equivalent to other
statements. Some statements that are equivalent to P5 are:

P5-1. If a straight line intersects one of two parallel lines, it will intersect the other.

P5-2. Straight lines parallel to the same straight line are parallel to each other.

P5-3. Two straight lines that intersect one another cannot be parallel to the same line.

P5-4. Given a line L and a point P in a plane, where P is not on L, there is one and only one line
through P which is parallel to L.

If we could prove any of these, then (by equivalence) we would have proved postulate P5. They
failed to find a proof using direct methods. They tried proof by contradiction: if one derives a
contradiction from the assumption that postulate P5 is false, then one will have proved that the
postulate is true.

Occasionally somebody would claim to have proved a contradiction, but either the “proof” was
invalid or the “contradiction” was not really a contradiction. On several occasions, one or another
mathematician came close to realizing that in fact ¬P5 could not be proved inconsistent with the
other postulates, and so there might actually be other geometries, but they (and the world!) were
not ready to accept so radical a notion (yet!).

9.1.2 Different geometries

For the fact is, if there is no contradiction, we could invent new plane geometries by replacing
Euclid’s fifth postulate with its denial. Lobachevskian geometry replaces postulate P5-4 with
“Given a line L and a point P in a plane, where P is not on L, there is more than one line through
P which is parallel to L”. Riemannian geometry uses the statement “Given a line L and a point
P in a plane, where P is not on L, there is no line through P which is parallel to L”.

Each of these statements was proved to be logically independent of the other postulates. A
statement is logically independent of other statements if it can be false when the other statements



218 CHAPTER 9. THE AXIOMATIC METHOD

are all true. That entails that none of them can be proved by deductive argument using the other
postulates as premises. It was also shown that if Euclidean geometry is consistent then Riemannian
geometry and Lobachevskian geometry are consistent too. By all purely mathematical and logical
standards, Riemannian and Lobachevskian geometries are “just as good” as Euclid’s.

A geometry (one of the many different geometries) came to be seen as one particular set of
undefined terms and basic postulates. The postulates specify the relations between the terms.

Why “undefined terms”? Euclid’s definitions of “point”, “line”, “surface”, and so on are not
very clear anyway. What does it mean to define “point” as “that which has no part”, or “line”
as “breadthless length”, as Euclid did? These definitions require us to go on to define “part” and
“breadth” and “length”. The words used in those definitions require definition also. We’re always
going to have undefined terms. Why not stop at “point” and “line”, and leave them undefined?

So now one views Euclid’s definitions in a more “abstract” way (they have also been “tightened
up”, since he actually used intuitive principles which were not part of the explicit axioms he stated).
The postulates were sanitized to use undefined terms. For example, Euclid’s first postulate says,
“A straight line may be drawn between any two points”, which is equivalent to “Given any two
points, there is at least one straight line that contains them”. To keep this abstract, we shouldn’t
talk about “straight line”, because people may interpret that to mean something like the path of
a ray of light or the streak of ink left by a pen following a ruler. Abstract geometry is not about
the paths of rays of light or streaks of ink. Using an undefined word like luggle would be better.
Similarly with “point”, where we might say puggle instead. The relation “contains” is tied to the
intuitive interpretation of “point” and “line” so we use another undefined word (e.g., cuggle). Now
we can restate the postulate as “Given any two puggles there is at least one luggle such that both
puggles have a cuggle relation to that luggle”. Better yet, we can replace the verbal formulation
with a symbolic one, like:

∀x∀y((P (x) ∧ P (y)) −→ ∃z(L(z) ∧ (C(x, z) ∧ C(y, z))))

The parallel postulate P5-4 can be replaced with “Given any luggle L1 and a puggle P1 that does
not have the cuggle relation to L1, there is one and only one luggle L2 that has the cuggle relation
to P1 such that, no matter how much we exuggle2 L1 and L2, there will never be a puggle that has
the relation cuggle to both L1 and L2”.

What does it mean to say that something is a puggle? What does it mean to say that some x
has the property L or that there is a C relation between two things? At this level of abstraction, it
doesn’t matter: these things have the meaning given by the axioms which are stated about them,
no more, no less. We can say that the theorems (the statements we can prove from the axioms) of a
geometry are true of any things, properties, operations and relations that satisfy the postulates. If
we can interpret the basic notions so that the postulates state truths about some set of things, then
the theorems will also be true of that set of things under that interpretation. The mathematician
can concentrate on deriving theorems without caring about what sort of things he is dealing with.
He can also focus on the properties of the system, in abstraction from questions about the things
the system describes.

David Hilbert created such an abstract axiomatic geometry. In the process, he showed that
some of Euclid’s proofs were invalid. Euclid had assumed things that were not “contained” in the
premises (axioms and postulates) he was supposed to be using.

One can interpret Hilbert’s abstract geometry in terms of Euclidean lines and points. Under
that interpretation it is a cleaned-up and corrected version of Euclid’s geometry. One can also
interpret it differently (e.g., if we interpreted puggle (i.e. P (x)) to mean line and luggle (i.e. L(x))

2We do not say “extend”, since that is likely to be given intuitive meaning beyond what the axioms specify.
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to mean point) to give different geometries. Similar abstraction and interpretation could be done
with the non-Euclidean geometries. You are probably familiar with the fact that on the globe, the
shortest path between two points is a great circle (a circle whose center coincides with the center
of the sphere), and so it may not be a surprise that in spherical geometry, the appropriate notion
that replaces “straight line” in plane geometry is “great circle”. (The usual airplane routes, for
example, from Montreal to Paris, are along great circles.) So in spherical geometry, luggle (i.e.
L(x)) would be interpreted as “great circle”.

In these alternative geometries, some familiar “facts” are rather different from what one learnt
about plane (Euclidean) geometry. For instance, in plane geometry the angles of a triangle add up
to 180◦,3 but in spherical geometry, they add up to more, and not always to the same sum: consider
for example a triangle on the surface of the globe made up of two lines of longitude (meeting at
the north pole) and part of the equator: the angles at the equator are each 90◦, and the angle at
the north pole could be anything up to 360◦.

In this way, we can create all sorts of abstract “geometries” unrelated to anything that had
been done before. Following the success of this way of viewing geometry, the use of axiomatic pre-
sentations of mathematical structures became more common in the late nineteenth, early twentieth
century, so that it is now the normal way mathematicians view the structures they work with.

9.1.3 Axiomatic systems

Modern pure (or abstract) mathematics usually concerns itself with the investigation of axiomatic
systems, systems which are intended to focus on important properties of situations where patterns
are worth close study.

An axiomatic system consists of several features. One must have a language, meaning a set of
predicate and function symbols, including constants, (which may be typed, in the sense we discussed
previously), and a set of axioms, or premises one always assumes in derivations. These axioms
establish the fundamental relationships between the basic constants and predicates. Sometimes we
refer to the collection of theorems (logical consequences) of an axiomatic system as a theory (in the
given language); it is one of the peculiarities of language that mathematicians use the word theory to
refer to a body of definitely proven truths, almost the opposite of everyday English. (The scientific
use of the word is closer to the mathematical usage, a fact that causes a lot of misunderstanding
in the general public, seen most forcefully when political or religious doctrine is involved, as with
the “debates” over evolution.)

Our presentation of propositional logic was virtually as an axiomatic system—ignore all the
motivational prose, focus on just the formation and derivation rules, and you have the essence of
an axiomatic system. In such a context, we would be best dropping the word “true”, and stick to
saying “provable”.

A couple of “toy” axiomatic systems may be found on the course website—play around with
them to get the feel of how one may derive abstract statements, just by using the usual rules of
logic and the axioms as premises. We shall now turn to an axiomatic system which has deep links
with much of what we’ve done so far this semester.

3In fact, this “fact” is equivalent to the parallel postulate P5. Pythagoras’ theorem is another “fact” that’s
equivalent to P5.



220 CHAPTER 9. THE AXIOMATIC METHOD

9.2 Boolean and Heyting Algebras

9.2.1 Boolean algebras

As an example of how the axiomatic method often (usually) works in practice, we shall present
a structure which has the main features shared by propositional logic and simple sets. We start
by recalling that those structures did have a lot in common—a feature we remarked upon, and
actually used, in showing some equalities in sets, by using the similar structure in logic as reflected
in the set definitions. Recall, for example, that we proved (A ∪B) ∪C = A ∪ (B ∪C) by invoking
the fact that (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) (Exercises 6.4.7). Exactly what the salient features of these
two structures are is a matter of taste and experience—one possibility is explored in this section
(and some “hints” at other possible axiomatizations will appear in the comments and exercises).

Our language will admit one sort of entity (which we shall not name, but feel free to think of
them as “sets” if you wish, as long as you don’t use anything you know about sets other than what
is asserted here!). We shall have two constants 0, 1, a unary operation − (which produces −x) and
two binary operations +, · (which produce x + y, x · y). And finally, we shall have the following
axioms, which are supposed true for all x, y, z:

[B1a] x+ y = y + x [B1b] x · y = y · x (commutativity)
[B2a] x+ (y + z) = (x+ y) + z [B2b] x · (y · z) = (x · y) · z (associativity)
[B3a] x+ (y · z) = (x+ y) · (x+ z) [B3b] x · (y + z) = (x · y) + (x · z) (distributivity)
[B4a] x+ (x · y) = x [B4b] x · (x+ y) = x (absorption)
[B5a] x+ (−x) = 1 [B5b] x · (−x) = 0 (complements)

If these axioms seem weird to you, keep in mind the two intended interpretations (which are the
ones that caused one4 to come up with the notion of Boolean algebra in the first place). In Set
Theory, equality is ordinary equality of sets; in Propositional Logic, equality is interpreted as
provable equivalence, so eg. x = y would become ⊢ X ↔ Y , where X and Y are the interpretations
of x, y respectively.

Boolean Algebra Set Theory Propositional Logic

1 U ⊤
0 ∅ ⊥
−x Ac ¬P
x+ y A ∪B P ∨Q
x · y A ∩B P ∧Q

The next step in developing an axiomatic system, after “deciding” on the axioms (usually this
is a “work-in-progress” for a while, seeing how well the axioms capture the intended structure—
even trying to best understand what is really “intended”—and modifying them as needed) is to
see if they capture other essential aspects of the desired structure. In other words, to explore the
consequences of the axioms. We’ll do some of that now. But first, we must check that all the
axioms actually are true in the intended interpretations.

You should be able to do the following exercises.

4Naturally enough, Boolean algebras were first conceived of by George Boole, but he used a slightly different
notion of “+” than we do, and so had somewhat different axioms. His formulation is essentially that given in BAFact
5. Here are some relevant webpages: http://www.maa.org/devlin/devlin_01_04.html, http://www.gutenberg.

org/files/15114/15114-pdf.pdf, as linked on the course webpage.
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Exercise BA0: Prove all the basic axioms are true in each of the intended models.

Exercise BA1a: Prove that for all x, x+ 0 = x and x · 1 = x.

Exercise BA1b (Characterizing negation): If x+ y = 1 and x · y = 0, then y = −x.
You will find this helpful in doing exercise BA2.4 and BA2.5 next.

Exercise BA2: Prove the following equations are consequences of the axioms for Boolean algebras

1. x+ x = x x · x = x 2. x+ 1 = 1 x · 0 = 0

3. −0 = 1 − 1 = 0 4. −(x+ y) = −x · −y − (x · y) = −x+−y
5. −− x = x

BAFact 1 (Duality) Notice that any equation involving the operations and constants of Boolean
algebra may be “dualized”: interchange + and · and interchange 0 and 1, to get another
equation. If either one is true, then so is the other one. So, you only need to verify half the
equations in most of the Exercises, the other half following by duality.

This is because each axiom comes in two versions, one dual to the other, so any proof using
some of the axioms will yield a proof of the dual result using the dual axioms.

Once the basic structure of an axiom system is “clear”, one usually wants to make sure that
the system has all the structure one associates with the intended models, including structure
that may not be explicit in the axioms. In our cases, logic and sets have more structure
than we’ve seen so far: in logic, the notion of entailment (p ⊢ q) is fundamental, and in sets,
the notion of subset (A ⊆ B) is also fundamental, neither of which appear in the axioms or
structure above. Do we have to extend our axiomatisation to include this? In some situations,
such extensions prove necessary, but not here: this structure can be defined in any Boolean
algebra, only using the structure we already have.

Exercise BA3: Define an order on a Boolean algebra as follows:

x ≤ y if and only if x = x · y

Interpret this order in the two main models: what does it mean in each?

Prove the following:

1. x ≤ y iff5 y = x+ y

2. ≤ has the usual properties of a “partial order”: for all x, y, z: x ≤ x, (x ≤ y ∧ y ≤ x)
−→ x = x, (x ≤ y ∧ y ≤ z) −→ x ≤ z. (We say the order is “reflexive”, “antisymmetric”,
and “transitive”.)

3. 0 ≤ x and x ≤ 1 for all x. (So 0 is the least element and 1 the greatest element of the
Boolean algebra.)

4. x + y is the smallest element z satisfying x ≤ z and y ≤ z (we call such an element a
least upper bound).

5. x · y is the largest element z satisfying z ≤ x and z ≤ y (we call such an element a
greatest lower bound).

5Recall that “iff” means “if and only if”.
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Note that under duality, ≤ becomes ≥: x ≥ y iff x = x+ y iff y = x · y iff y ≤ x.
After setting out the basic properties of the desired structure one’s axioms are intended to
capture, one then wants to see if there are other models (and perhaps even to see the relevance
of those models to the general theory being developed). Here are two simple models of our
theory.

Exercise BA4: Show that the set {0, 1} is a Boolean algebra, in the only6 way possible, given the
equations in Exercise BA2. Explicitly write out what 0 + 0, 0 + 1, 1 + 1, 0 · 0, 0 · 1, 1 · 1, −0,
and −1 are. Verify all the axioms. (This Boolean algebra is often called 2.)

Exercise BA5: Show that for any positive square-free integer n (i.e. n has no divisors of the
form k2), the set of positive divisors of n forms a Boolean algebra, with order relation a ≤ b
iff a|b. Identify what 0, 1, −a, a + b, and a · b are in this Boolean algebra, and verify that
the order defined in Exercise BA3 coincides with the order given by a|b (in other words, show
that a|b iff b = a+ b for the definition of a+ b you give here).

We could go further with this; here are a few possible extensions. Often one can find a model
(or small class of models) that in some way characterize all models: {0, 1} and sets P(X) have
that property. Also, often the axiomatised structure can be “re-axiomatised” in an alternative way,
which emphasises slightly different aspects of the intended interpretation, illuminating the structure
in a different way. For example, Boolean algebras can be presented using the order relation. And
we end our treatment of Boolean algebras by pointing out that Boole himself had a slightly different
axiomatisation, based on exclusive “or” rather than the inclusive “or” (disjunction) we have used in
this course. In the next section we shall see another way an axiomatic system may be modified, in
order to capture a similar but different sort of model: Heyting algebras are given by a modification
of the axioms for Boolean algebras, and they model logic without the double negation rule (¬¬E)
in the same way Boolean algebras model ordinary (classical) logic.

The following “facts” are intended as “enrichment” material: you will not be examined on
their contents, but they should help better understand some of the structure of Boolean algebras.
Needless to say, this is only the tip of an iceberg . . .

BAFact 2: The two-element Boolean algebra {0, 1} (Exercise BA4) has a special property: any
equation using the constants and operations of Boolean algebras which is true in {0, 1} is also
true in all Boolean algebras. (This means you can use truth tables to verify equations true
in all Boolean algebras.)

BAFact 3: Every Boolean algebra may be “represented” as an algebra of subsets; in fact, every
finite Boolean algebra may be “represented” as one of the form P(X) for some set X. Find
an X so that the two-element Boolean algebra {0, 1} is (i.e. may be interpreted as) P(X).

BAFact 4: Boolean algebras may also be defined in terms of the order relation ≤ (Exercise BA3):
we suppose we have an order ≤ which is reflexive (a ≤ a for all a), antisymmetric (a ≤ b
and b ≤ a implies a = b, for all a, b), and transitive (a ≤ b and b ≤ c implies a ≤ c, for all
a, b, c), with the properties that every pair of elements a, b has a least upper bound a⊔ b and
a greatest lower bound a⊓ b; that there is a least element 0 (so 0 ≤ a for all a) and a greatest
element 1 (so a ≤ 1 for all a); the structure so far is often called a bounded lattice.

6Actually, there is another (somewhat perverse!) way this set may be given Boolean algebra structure, but the
result is isomorphic to the obvious way given in the solutions. Can you see what that other way is?



9.2. BOOLEAN AND HEYTING ALGEBRAS 223

We saw in Exercise BA3 that every Boolean algebra is naturally a bounded lattice. To capture
the full structure of a Boolean algebra, we require further that each of the two operations
⊓,⊔ are distributive with each other (so we have equations a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) and
a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)); and that every element a has a unique complement a⊥ (so
a⊓ a⊥ = 0 and a⊔ a⊥ = 1). These additional properties are summarized by saying we have a
bounded distributive complemented lattice; our claim is this is equivalent to being a Boolean
algebra.

You might like to show that the definition of ≤ from Exercise BA3 shows how to go between
this definition of a Boolean algebra and our original one; with this translation, ⊔,⊓ correspond
to +, · and a⊥ corresponds to −a. The point of this is that we can replace the original axioms
of Boolean algebras with more order-specific axioms, which for some models are easier to
verify.

BAFact 5: Boolean algebras have another description, in terms of what are called “rings”. A
(commutative) ring (with 1) is a set with operations ⊕ and · which are commutative and
associative, which have units 0 (for ⊕, so a ⊕ 0 = a for all a) and 1 (for · , so a · 1 = a for
all a), for which the distributive law a · (b ⊕ c) = (a · b) ⊕ (a · c) holds (for all a, b, c), and for
which every element a has an additive inverse −a (so a ⊕ (−a) = 0).

The key idea here is that a Boolean algebra has an operation ⊕, given by a ⊕ b = (a · −b) +
(b · −a). (What does this correspond to in the Boolean algebra of sets?) It is with respect
to this modified form of “plus” that the elements of a Boolean algebra form a ring (using the
usual ·). Rings formed this way have an extra property; they are “idempotent”: a · a = a
for every a. In fact, rings with this property are exactly Boolean algebras: we recapture the
Boolean operation + with the equation: a + b = a ⊕ b ⊕ (a · b). Notice, by the way, that
regarding · as “and”, and + as (inclusive) “or”, then ⊕ is exclusive “or”.

9.2.2 Heyting algebras

In the early 20th century, some philosophically-minded mathematicians and logicians began to query
the notion that for any formula P , P ∨¬P is true. The suggestion was that for one to know P ∨¬P ,
you ought to know which was true. Similarly, if one claims that ∃nP (n) is true, they ought to be
able to tell you which n it is that justifies the claim. (This view of logic has become particularly
relevant now, as it is related to the computational aspects of logic and hence to computer science.)

The resulting “intuitionist” logic is easy for us to formulate, because it has the same language as
the logic we studied (which is now called “classical”), but omits just one of the derivation rules we
used, namely the (¬¬ E) rule (the only rule to explicitly use ¬¬P ≡ P ). Many of the derived rules
we had will also disappear, since they used the (¬¬ E) rule (for example, some of the deMorgan
equivalences use it for one of the directions). In the resulting logic (without additional axioms or
rules), it will be true that the only way to prove P ∨Q is to prove either P or Q first, and the only
way to prove ∃nP (n) in intuitionistic arithmetic is to identify an actual numeral n and prove P (n).

Fact: A statement P is provable in classical propositional logic if and only if ¬¬P is provable
in intuitionist propositional logic. (And hence formulas of the form ¬¬P are provable in the one
system iff they are provable in the other. In general, if P is provable intuitionistically, it’s provable
classically, but possibly not the other way round.)

(This is not true for predicate logic, but there is a translation of classical predicate logic into
intuitionist predicate logic which allows a somewhat similar result to be stated.)

So, the question is: what algebraic system handles propositional intuitionist logic the way
Boolean algebras handle classical propositional logic? The answer is Heyting algebras: using the
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notions introduced in BAFact 4 above, we can say a Heyting algebra is a bounded lattice (just
as Boolean algebras are), which also has “relative pseudo-complements”: for any x, y, there is an
element (x⇒ y) with the property that it is the largest element z satisfying x⊓z ≤ y. So x⊓z ≤ y
iff z ≤ (x ⇒ y). The notation suggests that x ⇒ y corresponds to the logical formula P −→ Q,
and that is indeed exactly what it does, but of course in intuitionist logic.

HAFact 1: In a Heyting algebra, each element x has a “pseudo-complement” ¬x = (x⇒ 0). (We
say an element z is a pseudo-complement of x if it is the greatest element with the property
x⊓z = 0.) An element of a Heyting algebra is called “regular” if it satisfies x = ¬¬x. Not too
surprisingly, a Heyting algebra in which every element is regular is a Boolean algebra, and
every Boolean algebra is a Heyting algebra (in which every element is regular). (Exercise:
show that the bounded lattice structure of Boolean algebras gives the same structure required
by a Heyting algebra: in other words, ⊔,⊓ are given by +, · in Boolean algebras. What are
(x⇒ y) and ¬x in Boolean algebras?)

HAFact 2: Heyting algebras share some (but not all) properties of Boolean algebras; for example,
one distributive law holds, a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c), but not the other. Each deMorgan
equivalence holds in one direction, but not the other; for example, ¬P ∨ ¬Q ⊢ ¬(P ∧Q) is
true intuitionistically (and so when interpreted in Heyting algebras), since its proof doesn’t
use the (¬¬ E) rule (Exercise!), but the reverse direction does use that rule, so is only true
classically (i.e. in Boolean algebras). So, Heyting algebras satisfy ¬x ⊔ ¬y ≤ ¬(x ⊓ y), but
not the reverse.

HAFact 3: There are set models of Heyting algebras, which are not also Boolean algebras, but we
have to “select” carefully which sets to use, usually using a “topological” criterion to select
the sets. (Sorry—I won’t define that term here!) Here is an example: take all “open” subsets
of the real numbers, where an open set is a set with the property that for each element x in
the set, there is an open interval containing x which is also in the set. This is not a Boolean
algebra (since the complement of an open set isn’t usually open—think of the complement of
an open interval, for instance). But open sets do have open pseudo-complements (the interior
of the usual set complement), and we do have a Heyting algebra.

9.2.3 Solutions to the exercises

Exercise BA0.

I leave this to you! You may use Venn diagrams for the set theory equations, and truth tables (or
tableaux) for the propositional logic equivalences.

Exercise BA1a.

x = x · (x+ (−x)) = x · 1 (and dual)

Exercise BA1b.

Remark: If x + y = 1 and x · y = 0, then y = −x (in words: “If you add two elements and get 1
and multiplying them gives you 0, then the elements must be ‘negatives’.”) Since this is true for x
and −x, this property characterizes negation in terms of two equations it must satisfy. This is an
important fact about negation. In BA3 we shall see similar characterizations of +, ·, 0, 1 in terms
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of inequalities they must satisfy, so all the structure of Boolean algebras may be described in terms
of properties the various operators satisfy.

Proof: y = y + 0 = y + (x · (−x)) = (y + x) · (y + (−x)) = 1 · (y + (−x)) = y + (−x) =
(−x+ y) · (−x+ x) = (x · y) + (−x) = −x

Exercise BA2.

1. x = x · (x+ 0) = x · x (and dual)

2. x+ 1 = x+ (x+ (−x)) = x+ (−x) = 1 (and dual)

3. −0 = 0 + (−0) = 1

4. We use BA1b:

(x+ y) + ((−x) · (−y)) = x+ ((y + (−x)) · (y + (−y))) = x+ (−x) + y = 1 and
(x+ y) · ((−x) · (−y)) = ((x · (−x)) + (y · (−x))) · (−y) = y · (−x · (−y)) = y · (−y) · (−x) = 0.

So −(x+ y) = (−x) · (−y). (The dual is dual!)

5. (Use BA1b and commutativity.)

Exercise BA3.

1. Suppose x = x · y: then x+ y = x · y + y = y.

And suppose y = x+ y: then x · y = x · (x+ y) = x

2. In order: x = x · x; if x = x · y and y = y · x, then x = x · y = y · x = y; if x = x · y and
y = y · z then x = x · (y · z) = (x · y) · z = x · z.

3. 0 = 0 · x and x = x · 1

4. This essentially means [z = x + z and z = y + z] iff z = x + y + z. Suppose z = x + z and
z = y + z: then z = x + z = x + (y + z). On the other hand, suppose z = x + y + z: then
x+ z = x+ x+ y + z = x+ y + z = z and similarly y + z = z.

5. is dual to 4.

Exercise BA4.

Notice that 0 + 0 = 0, 0 + 1 = 1 + 1 = 1, 0 · 0 = 0 · 1 = 0, 1 · 1 = 1, −0 = 1, −1 = 0; verifying this
satisfies the 10 axioms is a simple matter I’ll leave to you.

Exercise BA5.

Again, just the basics: 0 is the number 1. 1 is the number n. −a is the number n/a (it is an integer
since a|n). a + b is the least common multiple of a, b; a · b is the highest common factor of a, b.
And so a = a · b means a|b, so the order is the same with the Boolean algebra definition as with
the definition of this exercise.
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9.3 Groups

Next we shall look at some more “mathematical” (or “algebraic”) systems, specifically at permu-
tations and groups.

Algebra is usually taught as if it were just symbolic arithmetic. That is, one learns to use letters
as variables to stand for numbers. Modern algebra is more abstract. The things the variables
stand for don’t have to be numbers. We can explore arithmetic operations and relations without
thinking about numeric interpretations. The freedom that results from seeing mathematics as the
construction of postulational systems allows us to construct algebras of a quite general nature.

An algebraic structure or algebraic system (or simply “an algebra”) is a system consisting of
a set of elements or objects, together with operations on and relations between those objects.
Ordinary arithmetic on integers is one algebra. Changing the set of objects to rational numbers
gives a different (but similar) algebra. Defining different arithmetic operators or relations gives
other algebras. Mathematicians explore the properties of various abstract algebras, including the
properties that many different algebras share.

Although an algebraic system can be freely invented with no particular interpretation, it is
more common, and more useful, to construct an algebraic system based on something significant.
We can then illustrate how one explores the properties of the system that results.

One very important structure is the structure of operations; we shall start with a concrete
example, permutations, which are operations on sets which merely alter the order of the elements.

9.3.1 Permutations

To make sense of this, we shall consider ordered sets, or ordered lists, rather than (ordinary) sets.
If an ordered set has n elements, we often call it an “n-tuple” (for example, a “2-tuple” is just an
ordered pair).

Since order matters, two ordered lists are distinct if the elements are listed in different orders.
Each distinct way of ordering the n elements of an n-tuple is called a permutation of those elements.
“Permutation” is also the word for the operation of permuting the elements of an ordered n-tuple
into a different ordering.

How many permutations of two elements a and b can we distinguish? The elements can be put
into ordered pairs as 〈a, b〉 or as 〈b, a〉. If there are three elements a, b and c, they can be ordered in
six distinct ways, so there are six permutations of three elements: 〈a, b, c〉, 〈a, c, b〉, 〈b, a, c〉, 〈b, c, a〉,
〈c, a, b〉, and 〈c, b, a〉.

We develop a notation. Let’s say that (21) specifies a permutation of an ordered pair that puts
the first element into the second place and the second element into the first place. Let’s call that
permutation A: A = (21). When we apply the permutation A to the ordered pair 〈a, b〉, we get
〈b, a〉; we write this with function notation: A〈a, b〉 = 〈b, a〉. Another permutation on ordered pairs
would be (12), denoted 1. This puts the first item in the pair into the first position, and puts the
second item into the second position—in other words, it does nothing(!). We call this the identity
permutation; it leaves the order unchanged: 1〈a, b〉 = 〈a, b〉.

This is an example of reification (“thingification”). We started with ordered pairs and treated
them as things. Then we treated operations on ordered pairs as things, and gave the operations
names, calling them 1 and A.

Working on triples (3-tuples) is more interesting. There are 6 permutations of triples, cor-
responding to the 6 different ways one can reorder a triple. Let’s use the same notation as for
permutations on pairs, where we indicate where each element of a triple is moved to (so, for in-
stance, the permutation A = (132) means move the first element to the first position, the second
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element to the third position, and the third element to the second position). We can list all the per-
mutations of 3-tuples as: 1 = (123), A = (132), B = (213), C = (231), D = (312) and E = (321). If
we apply the E permutation to 〈a, b, c〉 we get 〈c, b, a〉. If we apply the E permutation to 〈c, b, a〉 we
get 〈a, b, c〉. So applying the E permutation twice is like applying the identity permutation. Also,
C〈a, b, c〉 = 〈c, a, b〉; C〈c, a, b〉 = 〈b, c, a〉, so, by applying C twice to 〈a, b, c〉 we get 〈b, c, a〉, which is
the same thing we’d get by applying D to 〈a, b, c〉. We can describe this as CC〈a, b, c〉 = D〈a, b, c〉.

What happens if you apply E to the result of applying A to 〈a, b, c〉? Applying A to 〈a, b, c〉
gives you 〈a, c, b〉. Applying E to 〈a, c, b〉 gives 〈b, c, a〉. This is just what you’d get from D〈a, b, c〉.
So EA〈a, b, c〉 = D〈a, b, c〉.

The point here is that applying a permutation to the result of applying a permutation to a triple
is an operation (as addition and multiplication are operations): it assigns a new permutation to two
given permutations. We call this operation “composition” of permutations. We use the ◦ symbol
to represent composition of permutations,7 so F ◦G is defined by (F ◦G)〈a, b, c〉 = FG〈a, b, c〉 for
any triple 〈a, b, c〉. We define equality of permutations by F = G if F 〈a, b, c〉 = G〈a, b, c〉 for any
triple 〈a, b, c〉. Then, for example, in the previous paragraph we showed that E ◦A = D.

We could summarize the statements about the results of all possible compositions of permu-
tations on triples in a table, rather like a multiplication table. In this way, we would define the
behavior of the composition operation, and in effect create an algebraic system consisting of six
elements 1, A, B, C, D, and E, and the operation ◦. Its creation was motivated by the notion of
permutations of ordered triples, but now that we’ve got it, we can study it on its own, unrelated
to its origins.

We said that our operator symbol ◦ was “like + or × in ordinary arithmetic”. How much
(or little) does it resemble those common arithmetic operators? For example, is our ◦ operator
associative? Now we’re treating the operation ◦ as a thing! If you are feeling energetic, you could
write down all possible three-fold products and verify that ◦ is associative. But there is a good
conceptual reason for believing that it is, which would save you the trouble: permutations are
functions on ordered triples, and ◦ is ordinary composition of functions, which you already know
is associative. This consideration should convince you that another common property is not true
of ◦: it is not likely to be commutative, since ordinary function composition isn’t commutative.

Another property ◦ shares with multiplication is the existence of a unit: 1 has the property
that 1 ◦F = F = F ◦ 1 for any permutation F . And every permutation has an inverse: just reverse
the rearrangement corresponding to the permutation.

We could do the same thing for any length of ordered n-tuples; indeed, we could do this for
infinite ordered sets as well: a permutation is a rearrangement of the elements in an ordered set
(a one-to-one correspondence of the set with itself, in effect), and as such may be treated like a
function; permutations may be composed, just as functions may be composed. There is an identity
permutation 1, and every permutation has an inverse. These are properties true of the collection
of permutations on any ordered set, and are true of “reversible operations” in general, and so are
probably worth abstracting to an algebraic system. Such structures are called groups.

9.3.2 Groups

Definition: A group is an algebraic system 〈G, ◦〉 consisting of a nonempty set G of “elements”
and one binary operation ◦ on G satisfying the following four axioms:

7Actually, frequently one drops the use of the symbol ◦, simply using juxtaposition, just as we do with multipli-
cation in high school algebra (where ab represents the product a · b). You can see why by looking at the previous
paragraphs.



228 CHAPTER 9. THE AXIOMATIC METHOD

G1: To every pair of elements a and b of G, given in the stated order, there corresponds a definite
unique element of G, denoted by a ◦ b.8

G2: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).9

G3: There exists an element ι in G such that, for any a in G, a ◦ ι = ι ◦ a = a. The element ι is
called an identity element of the group. We can prove that a group will never contain more
than one identity element.

G4: For each element a of G there is an element a′ of G such that a ◦ a′ = a′ ◦ a = ι. The element
a′ is called the inverse of a. We can prove that an element a of a group possesses only one
inverse element.

If the following axiom is also satisfied,10 the group is called a commutative or Abelian group.

G5: For all a, b ∈ G, a ◦ b = b ◦ a. This is the commutative law for the operation ◦.

A group for which axiom G5 does not hold is called a non-Abelian group. If the set G of a group
contains only a finite number of distinct elements, the group is called a finite group; otherwise it is
called an infinite group.

Permutations of n-tuples (for n ∈ N) are examples of finite groups. Another way of saying this
is to say that they are interpretations of the axioms that define a finite group. The identity element
in each case is the element we called 1.

We can check that composition of permutations on pairs represents an Abelian group, but
composition of permutations on triples does not. So permutations on ordered pairs is an Abelian
group, but permutations on ordered triples is non-Abelian (as is the set of permutations (with
composition) on any finite set of cardinality greater than 2).

9.3.3 Exercise on groups

1. Prove that a group can never have more than one identity element.

2. Prove that an element of a group cannot have more than one inverse.

3. Consider a set of two objects {E,O} (think of E as standing for “even” and O as standing
for “odd”). Make a table for an operation ◦ on {E,O}, where the “product” is odd or even
depending on whether the sum of the two operands is odd or even. For example, the sum of
two even numbers is an even number, so E ◦ E = E, and the sum of an even plus an odd
number is odd, so E ◦ O = O. Does this table specify a group (i.e., does 〈{E,O}, ◦〉 satisfy
the definition of “group”)? Is this like (isomorphic to) any group we have already considered?

4. (“Clock arithmetic”) Imagine a “clock” having the numbers 0, 1, 2, 3, 4, 5, 6 equally spaced
on its face. To find the sum of any two numbers in that set of numbers, we start at the first
number and move clockwise around the dial a number of spaces equal to the second number.
Thus, the “sum” of 2 + 3 is found by starting at 2 and moving clockwise three places (to 3,
then 4, then 5). The “sum” is 5. 4 + 5 is found by starting at the 4 position and moving
through 5, 6, 0, 1, 2, giving a “sum” of 2. Write out the table of clock-arithmetic “sums”
formed from the set {0, 1, 2, 3, 4, 5, 6}. Does this table define a group? Why or why not?

8This says that G is “closed” under the operation ◦: for any a, b ∈ G, a ◦ b ∈ G.
9This is the associative law for the operation ◦.

10That is, if the operation ◦ is commutative.
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5. Each of the following algebraic systems satisfies the definition of an infinite group. In each
example, name the identity element and specify the inverse x′ for each element x.

(a) 〈Z,+〉 (i.e., the set of integers and the operation of ordinary arithmetic addition).

(b) 〈Q−, ·〉 (i.e., the set of rational numbers excluding 0 and the operation of ordinary
arithmetic multiplication). Why was it necessary to exclude 0?

6. Explain why the following algebraic systems are not infinite groups:

(a) 〈Z, ·〉 (i.e., the set of integers and the operation of ordinary arithmetic multiplication).

(b) 〈N,+〉 (i.e., the set of natural numbers with ordinary addition).

In this exercise we saw that parts of our ordinary arithmetic systems can be studied as interpre-
tations of the abstract algebraic systems called groups. We can also dream up new “arithmetics”
that are groups.

We can go on to study the abstraction itself. We can derive theorems from the postulates, and
know that any system that satisfies the definition of a group will be such that all the theorems will
be true for that system. Many books and articles in scientific journals are devoted to the study of
groups. In fact, it has been a major field of active research in mathematics for most of the past
century.

One result of “group theory” is the “representation theorem”: every group is isomorphic to a
(sub)group of permutations on some set. So our motivating example of permutations was more
than merely motivation: it turns out that there are no other essentially different groups.

Beyond this, mathematicians study more complicated abstract algebraic systems like rings,
subrings, ideals, integral domains, ordered integral domains, and fields. These involve more than
one operator and additional postulates and properties. One or the other system will describe almost
any arithmetic system, including those that we invent with our new kinds of numbers. In studying
such abstract systems, we can study our ordinary arithmetic at a level behind the mere numbers,
and discover isomorphisms between arithmetic systems and other deductive structures.
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Chapter 10

Endgame

We shall end the course with one of the remaining topics. Constraints of time will probably mean
only one.

10.1 Gödel’s Incompleteness Theorems

Introduction

Late in the nineteenth century, early in the twentieth century, a number of logical and mathematical
paradoxes revealed that the logical or foundational underpinnings of the mathematical universe
had some structural cracks in the fabric, or so it seemed. (Some of the paradoxes are discussed in
Chapter 1.) It was hoped that perhaps the axiomatic method might help settle these worries, by
developing an axiom system for mathematics itself, and then proving the axioms to be adequate
for the job, in that all their logical consequences would account for all mathematical truth. This
was one of the most pressing mathematical questions at the time, in the view of a substantial
part of the mathematical community. At an international conference in Paris in 1900, David
Hilbert (one of the leading mathematicians of the day) posed 23 problems that he thought would
be the most significant mathematical challenges for the 20th century; the first on the list was
the “continuum hypothesis” (mentioned in Chapter 7), and the second was the consistency of the
axioms for arithmetic. Exactly what “axioms” he had in mind is not entirely clear, but before 1930
it’s probably not too unreasonable to imagine that most mathematicians who thought about the
problem would have agreed that the axioms of Peano, as presented in the 1910 Whitehead–Russell
system of Principia Mathematica, would have been acceptable. The hope was that they might
provide a firm foundation for mathematics via a consistent set of axioms, so that “truth” might be
understood as simply “provability” in a formal system. But this hope was to prove in vain! In 1931,
a young Austrian mathematical logician, Kurt Gödel, proved that this was simply not possible.

What is to be proved1

Gödel proved that first order arithmetic cannot be effectively, consistently, and completely axiom-
atized; that is, no effectively specified axiom system for first-order arithmetic can be both sound
(consistent) and complete. Gödel used the system Principia Mathematica, PM for short, but any
other suitable system S would do.

1Based on notes for COM3412, a course on Logic and Computation at the University of Exeter. There’s a link to
those notes on my webpage.
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To be definite, we’ll take the following system S:2 its language will include a constant 0, a
unary symbol s (so we can write terms like ssss0), the usual logical symbols and logical rules, and
the following axioms.

∀x(¬ sx = 0)
∀x∀x′(sx = sx′ −→ x = x′)
ϕ(0) ∧ ∀x(ϕ(x) −→ ϕ(sx)) −→ ∀xϕ(x)

for any well-formed formula ϕ(x) written in the language of S.
The essential idea is as follows.3 A system S for first-order arithmetic has a standard interpre-

tation: to every formula ϕ of S there is associated a proposition ⌈ϕ⌉ of arithmetic. 0 is interpreted
as the number 0, and s is “successor” or “1+”, i.e. sx is interpreted as the number following the
interpretation of x. So, for example, the first axiom above would be interpreted as the proposition
“0 6= n+1 for any natural number n”. It’s easy (in principle) to show that this system is sufficient
to express all the usual operations and statements about arithmetic. For instance we can define +
and × inductively:

n+ 0 = n n+ sm = s(n+m)
n× 0 = 0 n× sm = n×m+ n

and we can then prove theorems in S which correspond to the standard theorems of arithmetic,
like k × (m + n) = (k ×m) + (k × n), and many more. (For example, the system is sufficient to
prove formal versions of all the theorems we proved in class, such as the Fundamental Theorem of
Arithmetic.)

We say S is sound (or consistent) if whenever S proves a formula ϕ, the standard interpretation
⌈ϕ⌉ is actually true: S ⊢ ϕ implies ⌈ϕ⌉. We say S is complete if S proves all formulas which are
true under the standard interpretation: ⌈ϕ⌉ implies S ⊢ ϕ. (So S is sound and complete means it
proves exactly true statements, no more, no less.) Most mathematicians would regard it as a fact
that S is sound, although that could be taken as a statement of faith. Clearly, if it isn’t then we’ve
got lots of potential problems with our use of numbers and all that depends on them! However,
completeness is a totally different matter—although mathematicians before Gödel hoped a system
like S might be complete, they had no proof, nor any real reason to believe it (other than wishful
thinking!). Following Gödel’s theorem, we now know that it is not complete, for completeness
would imply arithmetic was inconsistent.

The tricky thing Gödel introduced was the construction of an alternative interpretation: to any
appropriate formula ϕ, he constructed a statement ϕ , a statement actually about the system S
itself, in such a way that ϕ is true if and only if ⌈ϕ⌉ is true. Moreover, he did this in a way
that allowed him to construct a formula g in S (and so formally g is just a formula of first-order
arithmetic, just about numbers) whose interpretation g is “g is not provable in S”. (g is often
called a Gödel formula for the system S.)

Here’s the point: g has both the standard interpretation ⌈g⌉ as well as the Gödelian interpre-
tation g ; ⌈g⌉ may be true or false. If it’s true, then g is also true, which means that g is not
provable in S: in short, we’ve got a formula which is true (in its standard interpretation) but is
not provable, so S is not complete. On the other hand, if ⌈g⌉ is false, then g is also false, which
means that g is provable: so we’ve got a formula that’s false (in the standard interpretation) but

2These axioms are usually called the Peano axioms for the natural numbers, after the Italian mathematician who
first proposed them.

3I must make a disclaimer: there are many informalities in my text; some points are over-simplified in an attempt
to make the gist easier to follow. One such is that in his original paper, Gödel actually needed a slightly more
complicated notion than consistency; that problem was quickly sorted out in the next few years, by J.B. Rosser, so
that ordinary consistency sufficed.
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provable; in other words, S isn’t sound. (It is reasonable in the case of our system S to say this
proves ⌈g⌉ is in fact true.)

The hard part of all this is getting things set up so the Gödelian interpretation is possible.
That’s the core of Gödel’s proof, and we’ll sketch the main details next.

10.1.1 Gödel’s interpretation

Here’s what Gödel has to say (with some informality in the translation!).

The formulas of a formal system (such as PM) may be viewed as finite sequences of
basic symbols . . . and one can state precisely which such sequences are well-formed
formulas. Similarly proofs are just finite sequences of formulas (with appropriately
specified properties). Since it is irrelevant just what symbols are used, we may use
natural numbers. So a formula will be a finite sequence of natural numbers, and a
proof scheme will be a finite sequence of such finite sequences of natural numbers. In
this way, meta-mathematical concepts or theorems become concepts or theorems about
natural numbers, which makes them (at least partially) expressible in the language of
PM . In particular, we can show that the concepts “formula”, “proof scheme”, “provable
formula” all become expressible in the system PM , so we can, for example, construct a
formula F (v) with one free variable v whose semantic interpretation is “v is a provable
formula”. We then construct an undecidable proposition of the system PM , that is, a
formula A for which neither A nor ¬A is provable, as follows.

Let’s call formulas of PM with exactly one free variable “class-symbols”. List the class-
symbols in some way, denoting the nth one by Rn. (This is all definable in PM .) Let A
be a class-symbol: by A(n) we denote the result of substituting n for the free variable
in A. The relation B ≡ A(n) is also expressible in PM . So, we can define a class K of
natural numbers as follows:

K = {n ∈ N | ¬provable(Rn(n))}

where provable(x) means x is a provable formula in PM . Since all these notions can
be defined in PM , so is K, and so there’s a class-symbol K so that K(n) states that
n ∈ K. But K must be identical to one of the Rq, for some number q, so

K ≡ Rq

Rq(q) is undecidable in PM , for if Rq(q) were provable, then it would be also true. But
in that case, by the definitions above, q ∈ K, and so ¬provable(Rq(q)), contradicting
our assumption. If on the other hand, ¬Rq(q) were provable, then q /∈ K, and so
provable(Rq(q)). This would mean Rq(q) and its negation would both be provable,
which is impossible.

(Note thatRq(q) is the Gödel formula gmentioned previously.) The rest of Gödel’s paper is devoted
to proving these claims.

10.1.2 Gödel numbering

We start by coding the symbols, formulas, and sequences of formulas of arithmetic as follows.

The symbol: 0 s = ¬ ∨ ∀ ( ) x ′

is coded as: 1 3 5 7 9 11 13 15 17 19
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Note that these symbols are sufficient for all the logic and arithmetic of S. For example, we can use
deMorgan equivalences to represent ∧, −→, ∃, and we can use variables x′, x′′, x′′′, x′′′′, . . . instead
of the more user-friendly x, y, z,m, n, . . . .

Strings of symbols are then encoded by using these numerical codes as exponents of successive
prime numbers, so, for example, ∀x(¬ sx = 0) would be encoded as 2113175137711313171751912315:

∀ x ( ¬ s x = 0 )
211 317 513 77 113 1317 175 191 2315

(this is a very large number, approximately 1.55 × 1070 ).
In the same way, sequences of such strings may be encoded. If G(ϕ) is the number coding the

formula ϕ, then a sequence ϕ1, ϕ2, ϕ3, . . . may be encoded by

2G(ϕ1) × 3G(ϕ2) × 5G(ϕ3) × . . . .

Note that we can distinguish between the codes of single formulas and the codes of strings of
formulas, since the latter are all perfect squares (since all codes G(ϕ) are even numbers), whereas
the former are never perfect squares (since all the basic codes give odd exponents). Note that given
any number, using the Fundamental Theorem of Arithmetic we can factor it into powers of primes,
and so we can see if it corresponds to a formula of arithmetic, or to a sequence of such formulas.
In other words, coded formulas or sequences of formulas can be decoded as well.

The key point now is that logical properties of formulas and sequences of formulas (such as a
formula being well-formed or a sequence of formulas being a proof of some formula) are translated
into arithmetical properties of its Gödel number (i.e. of the number which codes it). A simple
example: a formula starts with ¬ if and only if its Gödel number is divisible by 27 and is not
divisible by 28. What took most of the work in Gödel’s proof was establishing such correspondences
for logical properties such as “formula ϕ is provable from the axioms of S”. But by doing that,
he managed to make it possible for system S to talk about itself, in addition to talking about
arithmetic, and so he set the scene for the self-referential paradox that proves undecidability.

10.1.3 Some details

First, one constructs formulas which say such things as “x is a well-formed formula”, “x is a
substitution instance of one of the axioms of S”, “x is a pair of well-formed formulas, the second
of which follows from the first”, “y is a sequence of formulas which comprises a valid proof in S
of a formula ϕ”. The main objective is thus accomplished: one constructs a formula P (x, y) (of
system S) which says that x is the Gödel number of a formula ϕ(z) containing one free variable,
and that y is the Gödel number of a proof of the formula ϕ(x) obtained by substituting x for the
free variable z in ϕ(z).

[There is a technical point I should make here: for this to be possible, there must be effective algorithms

which make it possible to decide the corresponding properties of system S. For example, it must be possible

to effectively decide (regarding the logic) if a given sequence of (real) formulas constitutes a valid proof in S

of a given formula. To deal with this, Gödel had to more or less invent a field of mathematics dealing with

the question of exactly just what it means to be an effective algorithm.]

Next, one looks at the formula ∀y¬P (x, y). (It has just one free variable x, y being bound.)
This formula says in essence that the formula ϕ(x) cannot be proved in system S, where ϕ is the
formula whose Gödel number is x. Suppose the Gödel number of ∀y¬P (x, y) is g, and now consider
∀y¬P (g, y). Think about this a bit (the idea is discussed in the various references I’ve given you,
if you need a bit of help!). In essence it says that there is no y which is the code of a proof of
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ϕ(g), where ϕ is the formula whose code is g: i.e. ϕ is ∀y¬P (x, y) itself, and so ϕ(g) is ∀y¬P (g, y).
In other words, the formula is saying that it itself is not provable. It is the Gödel formula g I
mentioned at the start.

So, we can conclude (by the argument given at the start of these notes) that S isn’t both sound
and complete.

Coda 1: There is a further twist to this result: it not only shows that there is a sentence g
which is not provable, but also it follows from this that the consistency of system S is not provable
within system S itself (unless S is inconsistent, in which case anything and everything is provable
in the system!). Here’s why.

We have just shown that if S is consistent, then g is not provable, nor is ¬g. The coding we
developed is expressive enough for us to actually encode this statement into a formula of S. We
can code “S is consistent” by saying ¬provable(0 = 1), and so we might code the entire statement
something like this:

¬provable(0 = 1) −→ ¬provable(g) ∧ ¬provable(¬g)
Our point in the previous discussion is that this statement is in fact provable in S. But now suppose
that ¬provable(0 = 1) (i.e. “S is consistent”) is also provable in S. Then (by Modus Ponens, our old
friend (−→ E)) we would have also shown that ¬provable(g)∧¬provable(¬g), and hence ¬provable(g)
are provable. But the interpretation of g is just ¬provable(g), and (assuming the consistency of
S) we know that this then is not provable. This contradiction gives us our conclusion: if S is
consistent, then S cannot prove that fact: ¬provable(0 = 1) is not provable in S. This result is
often called “Gödel’s second incompleteness theorem”.

A simple extension of this result shows that S cannot prove the consistency of any other theory
strong enough to prove S’s consistency, so there really is no way out of this situation. If you want
to prove the consistency of a system like S, you really need something that truly goes beyond S,
in an essential way.

Coda 2 (Tarski’s theorem): A variant of this method (indeed, a simplification thereof) also
shows a result usually attributed to Tarski, namely that system S cannot have an internal notion
of truth, in the following sense: there cannot be a one-variable predicate true with the property
that for any sentence ϕ,

true( ϕ )↔ ϕ

holds in S. In other words, “truth” for arithmetic cannot be defined within arithmetic itself.
This result can be proved by a method (“diagonalization”) similar to the preceeding proof of
incompleteness, and like that result, holds more generally than merely within system S. In a sense,
Tarski’s result is simpler, requiring only the existence of a Gödel numbering and a logic including
negation. And just as Gödel’s result may be regarded as the internalization of “this sentence cannot
be proved”, Tarski’s result is the internalization of the original liar paradox “this statement is false”.

To show how to prove Tarski’s theorem, we shall modify the presentation from subsection 10.1.1,
imagining there is an enumeration of one-variable predicates (“class-symbols”) Rn, and a class L
(analogous to K)

L = {n ∈ N | ¬true( Rn(n) )}
of certain “untrue” predicates. As with K, L is a class in S (since true is assumed to be a predicate
of S), and so there must be a class-symbol (i.e. a predicate) L so that L(n) if and only if n ∈ L, as
well as a number q so that L ≡ Rq. But then we have a contradiction, for either Rq(q) is true or
¬Rq(q) is true. If Rq(q) is true, then q ∈ L by definition of L, and so ¬true( Rq(q) ), i.e. ¬Rq(q)
is true (a contradiction). The reverse direction is similar. So the existence of the true predicate is
impossible.
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10.1.4 So . . .

What does this mean? There are plenty of things it doesn’t mean (I’ve given a link on my webpage
dealing with this!), such as “mathematics is indeterminate, you cannot determine what’s true and
what’s not using mathematical methods”. Many folks have tried to use Gödel’s theorem to justify
claims such as “mathematicians are not using a knowably sound algorithm in order to ascertain
mathematical truth”, and that “relativity theory and Gödel’s theorems show that even in physics
and mathematics there’s no objective truth and rationality”. Gödel himself saw nothing of the
sort in his theorems—he was no post-modernist, seeing uncertainty and relativity everywhere. On
the contrary, he was a mathematical Platonist, believing that mathematical truth was grounded in
reality. And his proof showed that what we can know as true exceeds what we can represent by
formal methods. His methods were mathematical in the best sense (in the only sense?); they are
not mere philosophical hand-waving. They allow for no doubt about the truth of his conclusions:
you would have to deny the validity of logic itself (at which point, anything you say is cast into
doubt, including your denial itself!).

For further information, there are a number of links on the course webpage on various related
topics. You should definitely consult some of them.

10.1.5 Exercises

1. Using the definitions of +,× given for system S above, prove (by using mathematical induction
on n) that k + (m+ n) = (k +m) + n for any natural numbers k,m, n.

2. Similarly, show that k × (m+ n) = (k ×m) + (k × n) for any natural numbers k,m, n.

3. (Optional) Show associativity of × and commutativity of +,×.

4. Prove (by induction) that in system S, every element is either 0 or a successor (i.e. has the
form sx for some x).

10.1.6 Answers

The point of this exercise is to be careful about what equations you are allowed to use; you may
only use the equations that define + and × and the induction assumption in the induction step.

For instance, the equations defining + are:

m+ 0 = m, m+ (n+ 1) = (m+ n) + 1

These are true for all m,n (so you can replace m,n by any other expressions as needed—for
example, if I replace m with (k +m), then the first defining equation says (k +m) + 0 = (k +m),
which I shall use below).

So here’s the proof for question 1: note that we treat k,m as parameters, and only do the
induction on n.

Base case (n = 0):

k + (m+ 0) = k +m [by definition m+ 0 = m]

= (k +m) + 0 [by definition (k +m) + 0 = (k +m)]
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Induction step: Assume k+(m+n) = (k+m)+n and prove k+(m+(n+1)) = (k+m)+ (n+1).

k + (m+ (n+ 1)) = k + ((m+ n) + 1) [by definition m+ (n+ 1) = (m+ n) + 1]

= (k + (m+ n)) + 1 [by definition k + ((m+ n) + 1) = (k + (m+ n)) + 1]

= ((k +m) + n) + 1 [by induction assumption]

= (k +m) + (n+ 1) [by definition (k +m) + (n+ 1) = ((k +m) + n) + 1]

(Note again that I have replaced other expressions for the simple k,m in the defining equations for
+, as needed.) (qed)

I will leave you to do the second one yourself. As for the optional ones (if you choose): associativity
for × is straightforward, though it uses distributivity, but to prove commutativity for +,×, one
must be a bit more clever. For instance, you can use induction, but you will also have to use
induction again in both the base case and the induction step, amounting to a sort of “double
induction”.

And the last question? Here’s a hint: it is really easy! There is really nothing to prove; set up
the induction steps, and you’re done.
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10.2 Categorial Grammar

Introduction

We conclude the course with an application of some of the ideas we have seen to linguistics. Earlier
(in the previous chapter), we considered two structures presented axiomatically, each dealing with
the algebraic structure of logic: Boolean algebras, which correspond to classical propositional logic,
and Heyting algebras, which correspond to intuitionist propositional logic, which may be thought
of as propositional logic without the “double negation” rule (¬¬E). We also met with the notion of
partial order which underlies these structures (Exercise BA3). In this section, we shall use a certain
kind of partial order, called a pregroup, to analyse sentence structure in natural language; this will
illustrate how the structure of logic appears naturally in linguistics. As a further illustration of the
use of pregroups in grammar, we shall sketch an application to music.

Then we shall remark that there is an algebraic structure which shares some of the features
of orders, groups, and deductive logic, and shall axiomatize this common structure to obtain the
notion of a category. We shall consider some special kinds of categories, which capture the structure
of some curious logics, and end by showing that the pregroup analysis of sentence structure can
also be done using an appropriate categorical logic.
Disclaimer: In these notes I am aiming more at giving the “flavour” of the subject, sometimes at
the expense of precision.

You might like to review Chapter 9, particularly the section on groups.

10.2.1 Pre-orders, partial orders, and pregroups

A pre-order is a set of entities equipped with a relation ≤, which is reflexive and transitive:

x ≤ x
x ≤ y and y ≤ z implies x ≤ z

Note we do not assume any property concerning symmetry or antisymmetry: we may have x ≤ y
with, or without, also having y ≤ x, and it is possible for x ≤ y, y ≤ x, without then having x = y.
A pre-order is called a partial order if it also satisfies the antisymmetric axiom:

x ≤ y and y ≤ x implies x = y

Every Boolean algebra, and also every Heyting algebra, is a pre-order, with the canonical order
as defined in the previous chapter. Ordinary sets form a pre-order, with X ≤ Y meaning X ⊆ Y .
The natural numbers, and likewise the real numbers, is a pre-order with the standard order. These
are also partial orders, since each satisfies antisymmetry. However, you have already seen an
example of a pre-order that is not a partial order (that doesn’t satisfy antisymmetry): consider
ordinary sets, but now with the order given by cardinality. So define X ≤ Y to mean #X ≤ #Y ,
i.e. that the cardinality of X is less than or equal to the cardinality of Y . (Recall that by our earlier
definition of cardinality, this just means it is possible to construct a 1-1 correspondence between
X and a subset of Y , but not necessarily (though possibly) vice versa.) Note that if X ≤ Y and
Y ≤ X in this sense, then #X = #Y ; however, this does not mean X = Y , so antisymmetry is not
satisfied.

A pregroup4 is a partial order equipped with a binary operation, called “product” (which could
be denoted by some appropriate symbol such as · , but which we shall denote by juxtaposition,

4The name comes from the fact that this notion shares some of the properties of a partial order, and some of the
properties of a group.
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thus: xy), and two unary operations, called “left and right adjoints” (which we shall denote with
superscripts ℓ and r, thus: xℓ, xr), and a constant (denoted 1). The constant 1 is a unit for the
binary product operation, which is associative. This means we have the following equations (for all
x, y, z in the pregroup):

1x = x

x1 = x

x(yz) = (xy)z

(The observant reader will recognise these as the first three group axioms G1, G2, G3. We shall
not assume G4 nor G5: we replace G4 with the following assumption.) In addition, the order must
be compatible with the product operation, and the unary “left and right adjoints” must satisfy the
following inequalities for all a, x, y (using the given order):

If a ≤ b , then xay ≤ xby
xℓx ≤ 1

1 ≤ xxℓ

xxr ≤ 1

1 ≤ xrx

Exercise PG: Show that from these axioms the following are true in any pregroup.

1. Left and right adjoints are unique: for any x, if an object y has the properties yx ≤ 1 and
1 ≤ xy, then y = xℓ, and similarly if an object z satisfies xz ≤ 1 and 1 ≤ zx, then z = xr.

2. The adjoints are contravariant: for any x, y, if x ≤ y then yℓ ≤ xℓ and yr ≤ xr.

3. For any x, y, (xy)ℓ = yℓxℓ, and similarly (xy)r = yrxr. Furthermore xℓr = xrℓ = x.

4. 1ℓ = 1r = 1.

(These facts are established following essentially the same pattern as similar facts for groups and
Boolean algebras; the adjoints play a role not unlike group inverses and Boolean negation.)

There are mathematical examples of pregroups (which I might, time permitting, describe in
class), but for our main aim, what is really important is that they give a simple algebraic system
for “calculating sentences”, as described below. For this, the equations and inequalities above are
the main thing to remember, especially the “contraction” or “reduction” inequalities xℓx ≤ 1 and
xxr ≤ 1. In fact we shall not use the other (“expansion”) inequalities 1 ≤ xxℓ, 1 ≤ xrx; this is not
a coincidence, but a consequence of the fact that the pregroups we consider are in a sense “free”,
and for such pregroups Lambek showed the expansion inequalities can be avoided.

Note: It is also important to keep left and right clear in your mind (or to refer to the definition
frequently, if you are—as I am!—left/right challenged!), since pregroups are not commutative: xy
is not the same as yx. As a mnemonic, you might think that xℓ “cancels” x on the left, and xr

“cancels” x on the right:
xℓx ≤ 1 xxr ≤ 1

Non-commutativity is important for our application to linguistics, and amounts to the observation
that in (e.g.) English the phrase John works is not grammatically the same as *works John.5 Order
matters.

5It is traditional in linguistics to indicate non-sentences by an asterisk.
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10.2.2 Pregroups and natural language processing

In an article that appeared in 19586, Joachim Lambek used a logical syntax not unlike part of
propositional logic as a tool to analyse sentence generation in natural languages, such as English,
French, etc. Specifically, he was interested in obtaining an algorithm (or rule) for distinguishing
sentences from non-sentences in such languages.7 In the 1990s, he developed a new approach to
this question using pregroups. We shall outline how this works, but as his original article is fairly
readable,8 I suggest you look at that article, which is linked on my webpage. Over the years a lot
of research has been done on this style of linguistics; I have also linked two other articles you may
find useful, viz an introduction to a book on the subject (I am a coauthor of that introduction,
and a coeditor of the volume), as well as a more recent survey article9 by Lambek on his pregroup
approach to the question of sentence generation, an approach he regards as far more successful. It
is this more recent approach we shall look at now. (By the way, he once told me that he thought
the new approach via pregroups was also far easier, and would be a better introduction for a class
such as this one. We’ll look at the original approach later in the appendix to this section—I’d
appreciate any feedback you might have on the two approaches.)

Briefly, here’s the main idea. To every word in a language (I’ll use English for now) we associate
a “syntactic type”, which designates what part of speech (to use a more traditional phrase—though
the concepts aren’t entirely identical) the word has. (A word might actually have several syntactic
types, depending on context, and there might be relationships between the types—more of that
later.) To start with, we would want two atomic types, s (for sentences) and n (for nouns, including
class-nouns, such as milk or rice, and for names, such as John). We might want to refine this, for
example to distinguish between various types of sentences or types of nouns, but we’ll ignore this
option for the moment.

Then we can give other words compound types, built up from the atomic ones using the pregroup
operations. So we’d have types like nnℓ, nrs, nrssℓn, and so on. The idea then is to give types
to words in potential sentences, and his algorithm to determine whether your phrase is in fact a
sentence or not is to see if the product of the types of the words in your phrase can be reduced to
the type s.

For example, intransitive verbs such as works generally receive the type nrs (because they need
a noun in front to make a sentence), so a phrase like John works would be typed n(nrs), since John
is type n and works is type nrs, and their product is therefore n(nrs). To see this is a sentence, we
try to “reduce” this type to the simple type s, using the equations and inequalities of a pregroup:

n(nrs) = (nnr)s ≤ 1s = s

So we can conclude John works is a sentence, since the product of the types of the words in the
phrase is indeed ≤ s.

In a similar way, we can type most adjectives, like poor, as nnℓ, because they must precede a
noun to create another noun (or rather a noun phrase). For example, Poor John works would be

6The mathematics of sentence structure, by J. Lambek, American Mathematical Monthly (65) 1958.
7This is to be understood in a purely syntactic way: the meaning (or semantics) is not what is being considered

here, merely the way the words are combined. Chomsky’s famous example, Colorless green ideas sleep furiously is
a grammatically correct sentence, although it is nonsense semantically. *Furiously sleep ideas green colorless is not
grammatically correct, as well as being nonsense. Lambek’s analysis shows the first to be a sentence, and the second
not to be one.

8At least those parts that deal with the linguistics more than the underlying maths should not be beyond anyone
who’s managed to survive this course so far!

9Pregroups and natural language processing, J. Lambek, Mathematical Intelligencer, 2006.
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typed (nnℓ)n(nrs), and then we can calculate:

(nnℓ)n(nrs) = n(nℓn)(nrs) ≤ n1(nrs) = n(nrs) = (nnr)s ≤ 1s = s

and so Poor John works is also a sentence.
Notice how in these calculations we use the associativity and unit equations, and especially the

adjoint inequalities nnr ≤ 1 and nℓn ≤ 1. It is tempting to abbreviate this process by ignoring
associativity (i.e. dropping brackets) and the unit (dropping reference to 1), and focussing on the
adjoint inequalities (which are sometimes referred to as “cuts”, since they “cut” certain types from
the expression). In this way, we could represent the calculation for Poor John works thus:

nnℓ nnrs ≤ nnrs ≤ s

each inequality corresponding to a cut of some formulas. But we can go one step further, making
this both simpler (dropping the inequalities) and more explicit (showing what cuts are being made)
with the following notation. Under each word in the phrase, we give its type. Then we draw a
“typing graph” which links the types which may be cut: an xℓx will be linked by joining the xℓ

to the x, and similarly an xxr will be linked by joining the x to the xr. As long as no cut link
actually intersects another, and as long as the only unlinked type is s (which we shall indicate by
a vertical line so it is easily seen), then the phrase is a sentence. Here is Poor John works with its
typing graph:

Poor John works
n nℓ n nr s

The two cut links correspond to the adjoint inequalities nℓn ≤ 1 and nnr ≤ 1, and so indicate where
types may be eliminated, and after that is done, all that remains is the simple type s, indicating
that we have a sentence. Note that one cut is “inside” another: this means that in the sequence of
inequalities represented by this graph, the inside one must be done first before the outside one is
“legal” (i.e. before the n and the nr are next to each other, ready to cut). This is why one may
not have cut links intersect (since then one would not have the right types next to each other for
a cut).

You might like to do the (very simple!) exercise of typing and graphing John works to check
that you have the idea. (The typing graph will have just one cut link.) Notice that in the Poor
John works example, the structure of the analysis naturally groups Poor John together, as a new
noun phrase to be combined with works; in other words, the sentence is naturally parsed as (Poor
John) works and not as Poor (John works). The types reflect the natural grouping by the way they
reduce to s.

The point of this sort of analysis is that the same sort of calculation works equally well for
other sentences, and that if you try to do similar calculations for non-sentences, the typing will
block your attempts to reduce to s. For example, *John poor works is not a sentence, and its type
nnnℓ nrs cannot be reduced to s. This is because there is no cut that can eliminate the nℓ, since
nℓ needs an n on its right to form a cut. Equally bad, the nr cannot be cut, since nr needs an n
on its left, and the nℓ gets in the way (and as there’s no way to eliminate it, that is a problem for
nr as well).

*John poor works
n n nℓ nr s ( 6≤ s )
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In the following exercises you will find some examples to try—notice how the typing of different
parts of speech is naturally suggested by known sentences, but also how those types block non-
sentences. Ultimately, the power of this analysis may really only be seen by seeing how it works
for many different examples in many different languages, and how it accounts for what is and what
is not grammatically correct in those languages. In this section we merely scrape the surface with
these simple examples, with only a couple of more complicated ones to indicate the flavour of the
pregroup approach to linguistics. More complete accounts may be found in these books: From Word
to Sentence: A Computational Algebraic Approach to Grammar by Lambek, Polimetrica (2008),
and Computational Algebraic Approaches to Natural Language by Casadio & Lambek, Polimetrica
(2008).

10.2.3 Exercises

1. By considering the phrase (sentence) John works here, what must the type of here be? Notice
how this type indicates that here follows a sentence to create a new sentence.

I’ll give you (a hint for) the answer (but give it a try first!): John works types as s, as we’ve seen, so

here must have a type x which, when it follows s, must produce the type s again. So the s of John

works must be cut, and the only type that cuts it on the right is sr, and since we want s left over, here

must have the type . . . (try it yourself before reading further!!) . . . srs. (Did you get that?) Verify

this works with the typing graph. Notice that the graph suggests that here modifies works, since works

here has the same type as works, allowing the sentence to parse as John (works here). In the rest of

the examples/exercises, see how the typing reflects the “deep structure” of the sentence, its syntax as

opposed to its semantics.

2. By considering the phrase John often works, what must the type of often be? Once you
have your type for often, show it is correct by giving the typing graph for John often works,
showing the types reduce to s.

Again, a hint to get you started (if you need it!): often follows John, and so its type must cut the n of

John, and so must begin with nr. (Why not nℓ ?) Its type must end with something to cut the nrs

of works: that would require (nrs)ℓ (since we want a type which cuts the nrs which follows it). You

must figure out what (nrs)ℓ can be simplified to. (Refer to Exercise PG3.) Finally, between these two

elements we want the s, which will be left over when the various cuts are made.

3. What is the type of and, as in John runs and Jane watches ? Show the typing graph of John
runs and Jane watches. Note that John and Jane both have type n, and runs and watches
have the type nrs, like works (as do all intransitive verbs).

4. What is the type of for, as in John works for Jane ? Show the typing graph for John works
for Jane.

5. (Transitive verbs) By considering John likes Jane, what is the type of the (transitive) verb
likes ? Show the typing graph for John likes Jane.

6. What is the type of an adjective like fresh, as in John likes fresh milk ? Note that milk has
type n. Show the typing graph of John likes fresh milk. Note that the graph shows how fresh
modifies milk, so that essentially the sentence is parsed as John likes (fresh milk).

7. (Pronouns) What is the type of he ? Use the sentence He works as an example; do not be
satisfied with the type n however (we’ll see why soon!). Show the typing graph of He works.
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8. Show the typing graph of He likes Jane. Use the same type (not n) of He you used in the
previous exercise.

9. What is the type of him ? Again, do not be satisfied with the type n. Use Jane likes him as
an example, and show its typing graph.

Notice these types for he and him are not the same—nor should they be, since if they were
the same, then we would get satisfactory typing graphs for non-sentences like *Him likes Jane
and *Jane likes he. It is precisely the different typing of he and him that forces he into the
“subject” position (left of the verb) and him into the “object” position (right of the verb).

10. Show the typing graph of He likes him. Show that *Him likes he is not a sentence according
to the typing.

11. Show the typing graphs of the following sentences:

(a) John loves Jane and she loves him.

(b) John likes her mother. (c) She likes his mother.

(d) His mother likes her. (e) John works and he often plays.

12. Show the typing graph of Colorless green ideas sleep furiously. (Yes! You have enough typing
information to do this.)

13. (An entertainment.) Show that there are two different typing graphs for Time flies, corre-
sponding to two rather different meanings.

10.2.4 More subtle analysis

In his 2006 survey article, Lambek illustrates pregroup analysis with a richer set of atomic types,
taking into account such structure as tenses, questions, participles, and much else. In this richer
setting, we must add some inequalities among the types, corresponding to how one type might
include another as a special case. (Other, more general, inequalities are also permissible in pregroup
analysis, reflecting some of the flexibility of natural language.)

Here’s an example (you should refer to the article for the details—I am still aiming at just the
“flavour” here), using these basic types: s2 for sentences in the simple past tense, q for questions, q
for yes-or-no questions (where tense is irrelevant), q1 for yes-or-no questions in the present tense, ô
and o for direct objects (for technical reasons he uses two distinct types here), p2 for past participle
of intransitive verbs, π1, π3 for first and third person subject pronouns (“I” and “he”, “she”, or
“it”), and π for pronouns in general, with reductions q1 ≤ q, q ≤ q, ô ≤ o, and πk ≤ π.

With this, one can type I as π1, saw as πrs2o
l, and her as o; (saw is a transitive verb, so needs

both a subject such as a pronoun on the left and an object on the right to make a sentence: hence
gets the typing πrs2o

ℓ). Then I saw her becomes π1(π
rs2o

l)o which reduces to s2. (Exercise:
construct the typing graph.)

π(πrsoℓ)o ≤ (ππr)s(oℓo) ≤ 1s1 ≤ s

Questions are traditionally a bit trickier to analyse, especially “wh-questions”. Consider the
sentence Whom has he seen?. This is typed as follows:

Whom has he seen?

(qôℓℓqℓ) (q1p
ℓ
2π

ℓ
3) π3 (p2o

ℓ)
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and the equations imposed on the theory of pregroups allow one to compute this expression, reduc-
ing it to q; this is indeed a question. (Exercise: verify this does reduce to q by constructing the
typing graph.) One of the features Lambek liked about this approach is how well it handles what
Chomsky calls a “trace”: in a question such as the one above, since seen usually takes an object
(see is a transitive verb), Chomsky imagined that there was a “ghost” of that object following the
word seen, which pointed back to the word whom at the start of the question. In a sense it is as if
the question really were

Whom has he seen ?
❦

In Lambek’s pregroup analysis, such traces correspond to instances of double adjoints xℓℓ or
xrr, like the ôℓℓ we saw above in the type of whom. In fact, in this case the link between ôℓℓ and ôℓ

looks rather like the trace arrow.

Other languages

Pregroup analysis has been made of many languages, including Burushaski (an isolated language
spoken in Pakistan), Arabic, Chinese, German, French, Italian, and many more. Here are two
examples: first, a simple example in Italian,10 followed by an example of Lambek’s in French.11

The Italian example:

Gianni ha detto che Maria ha perso il treno.
Gianni said that Mary had missed the train.

We’ll simplify this a bit by assuming some resultant types of some compound phrases: “ha
detto” has type nrssell, “ha penso” has type nrsnℓ, and “il treno” has type n. Then the sentence
is typed thus:

Gianni ha detto che Maria ha penso il treno
n nrs sℓ s sℓ n nrs nℓ n

Next, the French example: to illustrate a more “interesting” (and so complicated) grammar,
Lambek introduces such types as π4 (first person plural subject pronoun in nominative case, like
nous), s1 (for declarative sentences in the present tense), o (direct object), ω (indirect object),
i, i′, j (three different types of infinitives, with the relations i < i′ < j ), among others. Then he
analyses Nous pouvons la lui donner as follows. Nous has the type π4; pouvons the type πr4s1j

ℓ;
la the type i′oℓℓi′ℓ; lui the type i′ωℓℓiℓ; and donner the type iωℓoℓ. Then we obtain the following
typing graph for Nous pouvons la lui donner, showing it is a sentence (in the present tense).

Nous pouvons la lui donner
π4 πr4s1j

ℓ i′oℓℓi′ℓ i′ωℓℓiℓ iωℓoℓ

10Taken from The Lambek Program, by C. Casadio, P.J. Scott, R.A.G. Seely. The example is due to our first
author, Claudia Casadio.

11J. Lambek, Exploring Feature Agreement in French with Parallel Pregroup Computations, J Log Lang Inf 19

(2010), 75–88.
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The only reduction that might cause concern is the cut on jℓi′: but recall that we supposed i′ < j
and hence (by Exercise PG2) jℓ < i′ℓ, and so jℓi′ ≤ i′ℓi′ ≤ 1, as required.

Analysis of musical chords

Just to illustrate that pregroups may be used for “languages” in quite a general sense, we sketch
(briefly) how they might be used to analyse chords in music.12

Terrat’s basic idea is that one can build chords from pitches, much as one builds sentences from
words, and that non-dissonant chords may be specified by a suitable rule (as an example, he gives
the rule “a chord is a sequence of at least 3 pitches such that the distance between two successive
pitches of the chord is at least 3 semitones”). He does not distinguish chords with the same interval
structure but based on different roots (so all major chords, for example, are considered the same
in this simple example). So all that needs to be specified are the intervals between pitches, and to
achieve non-dissonance, there must be some way to guarantee that successive pitches are at least
three semitones apart.

Here’s how he does this. Define the basic types as C for (non-dissonant) chord, P (i) for the
top pitch, P (i, j) for intermediate pitches, where i, j are positive integers, i giving the distance (in
semitones) above the root, and j the position of the pitch in the chord. Suppose we have these
inequalities:

P (i, j) ≤ P (k, j) if and only if i ≤ k
P (i, j) ≤ P (i)

for all i, j, k. Then, given a chord, in terms of the distances of its pitches above the root note, we
assign types as follows: P (i, 1) for the first pitch, where i is the number of semitones above the root
(i ≥ 3); P (i−3, k)rP (i, k+1) for each intermediate pitch in position k (i ≥ 3(k+1)); P (i−3)rC for
the last pitch (i ≥ 6). Then if the various values of i, k satisfy the condition in brackets, the type
of the chord will reduce to C, indicating the chord is non-dissonant (according to the definition),
but otherwise that will not be the case.

An example might help: Consider an “m7♭9” chord13 (you could consider Cm7♭9, whose root is
C, and whose basic notes are then C, E♭, G, B♭, and D♭: Cm7 with a “flat 9th”). We’ll represent
such a chord by this integer sequence: 3,7,10,13. With each integer we associate a term, as follows:

3 P (3, 1)
7 P (4, 1)rP (7, 2)

10 P (7, 2)rP (10, 3)
13 P (10)rC

so that the term for the chord is P (3, 1)P (4, 1)rP (7, 2)P (7, 2)rP (10, 3)P (10)rC. So: is this a (non-
dissonant) chord? Well, we have P (3, 1) ≤ P (4, 1), so P (4, 1)r ≤ P (3, 1)r and so P (3, 1)P (4, 1)r ≤ 1,
and the rest is easy. (Exercise: draw the typing graph for this calculation to show it is a non-
dissonant chord. Show that if we lower the third note, to get the chord C, E♭, F, B♭, then the
resulting chord is dissonant: the resulting type does not reduce to C.)

Terrat extends this simple example to get rather more mileage, and observes that different types
of music might allow different types and type relationships; feel free to explore these ideas yourself.

12This discussion is based on the paper Pregroup grammars for chords, by Richard Terrat (2004); a copy may be
found on my webpage, along with a sequel paper.

13Don’t worry if you know nothing of music theory; it’s not really necessary to follow the example. There is a link
on my webpage to a page which allows you to listen to various chords.
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10.2.5 Solutions to the exercises

Exercise PG in Section 10.2.1

1. If yx ≤ 1, 1 ≤ xy, then y = y1 ≤ y(xxℓ) = (yx)xℓ ≤ 1xℓ = xℓ, and xℓ = xℓ1 ≤ xℓ(xy) =
(xℓx)y ≤ 1y = y; i.e. y ≤ xℓ and xℓ ≤ y, and so y = xℓ. The proof for r is similar.

2. If x ≤ y then yℓ = yℓ1 ≤ yℓ(xxℓ) ≤ yℓ(yxℓ) = (yℓy)xℓ ≤ 1xℓ = xℓ. The proof for r is similar.

3. To show (xy)ℓ = yℓxℓ, we can use (1): we just need to verify that (yℓxℓ)(xy) ≤ 1 and
1 ≤ (xy)(yℓxℓ). But these are easy; for example (yℓxℓ)(xy) = yℓ(xℓx)y ≤ yℓ1y = yℓy ≤ 1,
and similarly for the expansion inequality. The case with r is similar. To show xrℓ = x, we
also use (1): here, since xrℓ = (xr)ℓ, we only need to show that xrx ≤ 1 and 1 ≤ xxr, which
is true. The equation xℓr = x is similar.

4. Again we use (1): this time the result is really easy, since it follows from 1 · 1 = 1.

Exercises in Section 10.2.3

I’ve just given the typing graphs—the rest of the answers can be deduced from them.

1. John works here
n nrs srs

2. John often works
n nrs sℓn nrs

3. John runs and Jane watches
n nrs srs sℓ n nrs

4. John works for Jane
n nrs srs nℓ n

5. John likes Jane
n nrs nℓ n

6. John likes fresh milk
n nrs nℓ nnℓ n

7. He works
s sℓn nrs

8. He likes Jane
s sℓn nrs nℓ n

9. Jane likes him
n nrs nℓ n srs

10. He likes him
s sℓn nrs nℓ n srs

11. (a) John loves Jane and she loves him
n nrs nℓ n srs sℓ s sℓn nrs nℓ n srs
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(b) John likes her mother
n nrs nℓ nnℓ n

(c) She likes his mother
s sℓn nrs nℓ nnℓ n

(d) His mother likes her
nnℓ n nrs nℓ n srs

(e) John works and he often plays
n nrs srs sℓ s sℓn nrs sℓn nrs

12. Colorless green ideas sleep furiously
nnℓ nnℓ n nrs srs

13. Time flies Time flies
n nrs s nℓ n

The “in-text” exercises in Section 10.2.4

I saw her
π πrs oℓ o

Whom has he seen
q ôℓℓqℓ q1 p

ℓ
2 π

ℓ
3 π3 p2 o

ℓ

3 7 10 13
P (3, 1) P (4, 1)rP (7, 2) P (7, 2)rP (10, 3) P (10)rC
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10.2.6 Appendix: Categories and Categorial Grammar

For comparison, we’ll turn now to Lambek’s original approach to linguistics, via the syntactic
calculus. We start with a tiny detour, however, to put this approach into a context which is close
to the deductive systems we’ve considered earlier in the semester. We intend to draw attention to
the fact that there is some structure common to groups and to pre-orders, although it may be less
than obvious because of the notation we use. We shall begin with a different structure entirely, and
then see if we can spot it in groups as well as in pre-orders.

Consider the collection of sets and maps (functions) between them. You may think of a function
as a “little black box” which considers things from one set and assigns them to another set, such
as the function “mother”, which looks at a person and tells who their mother is: lourdes 7→
madonna; or the function x2 which looks at a number and tells you what its square is: 5 7→ 25.

The point about functions is that you can compose them: if one function f gives the square
of a number: f(x) = x2, and another adds 1: g(x) = x + 1, then you can do one operation
after the other: g(f(x)) = x2 + 1. Note this is not the same as doing them in the other order:
f(g(x)) = (x + 1)2 = x2 + 2x + 1, so composition is not a commutative operation. It is however
associative, and it has a unit element, namely the identity function. (Think about that for a
moment, and convince yourself that it’s true.)

You saw the same structure when you looked at permutations (section 9.3.1). At that time, we
abstracted the structure to get the structure of a group in the following way: we supposed that
there is an operation ◦ combining two elements of a group. But this omits the fact that different
operations or functions may operate on different sets. For instance, we can have a function which
to every person assigns their current age (as a natural number: round down!), and another function
which to each natural number, adds 1. Let’s call these A(x) := Age of x and S(n) := n + 1. It’s
is traditional to denote these this way (where P is the set of people, and N is the set of natural
numbers):

A : P −→ N S : N −→ N

The composite function S(A(x)) tells you how old someone will be on their next birthday. We
regard this as an operation, “composition”, on functions: (S ◦ A)(x) = S(A(x))

A : P −→ N and S : N −→ N 7→ S ◦ A : P −→ N

But we cannot compose functions where the values are of the wrong type: for example, if M is
the function “mother of”, so that M(lourdes) = madonna, so that M : P −→ P assigns to each
person the appropriate person (his/her mother), then we cannot compose M with S: it makes no
sense to talk of S(M(lourdes)) = madonna + 1. So in composing functions, we need to pay
attention to their “domains” (the collection of things they apply to) and their “codomains” (or
“targets”, being the collection of things they might produce as “values”).

The arrow notation makes it clear what compositions work. When we write A : P −→ N, S : N
−→ N, it’s clear that we can perform A and then S on the output of A, since S needs an input
of type N, and A produces output of that type, ready for S to use. Notationally, the arrows “fit

together”: P
A−−→ N

S−−→ N. But when we try to fit the arrow S to M , we don’t get a match: P
M−−→ P but N

S−−→ N. (Note that this also shows we couldn’t have reversed the order of A and S:

N
S−−→ N followed by P

A−−→ N doesn’t fit: just what sense does it make to ask for the age of the
number n+ 1 anyway?)

We’ll give the definition of the algebraic structure that captures this notion, and then show how
it relates to groups and pre-orders.
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Definition: A category C consists of two collections of things (called objects and arrows), together
with some operations: an operation ι which assigns an arrow ιA to each object A, two operations
d, c which assign objects df , cf to each arrow f , and a (“partial”) operation ◦ which assigns an
arrow g ◦ f to each pair f, g of arrows satisfying the condition cf = dg. All this must satisfy the
following axioms. To simplify reading this, we use the convention that, for any arrow f , we write
f : A −→ B to mean that df = A and cf = B.

ιA : A −→ A
g ◦ f : A −→ C if f : A −→ B , g : B −→ C
ιB ◦ f = f = f ◦ ιA if f : A −→ B
h ◦ (g ◦ f) = (h ◦ g) ◦ f if f : A −→ B , g : B −→ C , and h : C −→ D

(Think of ιA as an “identity function”, df , cf as the “domain and codomain” of f , and ◦ as
composition of functions. Indeed, functions between sets do form a category in just this way.)

Examples of categories are not hard to find—as we indicated above, ordinary sets and functions
form one, and in a sense, that is the example which will initially guide our intuition. But be warned!:
most categories don’t look anything like sets and functions! Here are two examples: pre-orders,
and groups.

Every pre-order is a category in a natural way: the objects are just the entities which make up
the pre-order, and there is an arrow x −→ y if and only if x ≤ y. So there is at most one arrow x
−→ y between any two objects x, y; in fact, any category with this property, that there is at most
one arrow x −→ y between any two objects x, y, is a pre-order.

Exercise: Prove the claims in the preceding paragraph.

Every group is also a category, but in a different way. Given a group G, we define a category
with exactly one object (which we shall call G, but note the different typeface); the arrows a : G
−→ G are just the group elements a ∈ G.

Exercise: Prove that this does define a category.

Remark: We say an arrow f : A −→ B in a category C is an isomorphism if there is an arrow g
in C with the property f ◦ g = ιB and g ◦ f = ιA. A group is the same thing as a category with
exactly one object all of whose arrows are isomorphisms. You might like to try to prove this if you
feel frisky.

Definition: A functor F : C −→ D from a category C to a category D consists of functions F
which assign to any object C of C an object F (C) of D, and to any arrow f : C −→ C ′ of C an
arrow F (f) : F (C) −→ F (C ′) of D, subject to the following equations:

F (ιC) = ιF (C)

F (f ◦ g) = F (f) ◦ F (g)

Exercise: Define what one might mean by a “structure preserving map” between groups, and
show that if C, D are groups, then a functor between them is exactly such a map.
Do the same for pre-orders: a functor between pre-orders is precisely an order-preserving map
between them.

In general, we regard functors as structure preserving maps between categories; the examples
we shall have in mind will involve categories which represent logics, and the functors will be trans-
formations or operations on the logics which respect the notion of inference.
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Categories and logic

Since Boolean and Heyting algebras are pre-orders, they are also categories. So there are lots of
categories which have some connection with (propositional) logic. (And there are categories which
have connections with predicate logic—you can look into this on my research website if you are
so inclined.) For now, we’ll consider some simple categorical structures which correspond to very
weak logical notions, but which nonetheless have some relevance to other things.

Deductive systems and monoidal categories

We say a category C is a monoidal category if there is a functor ⊗ (pronounced “tensor”):
which assigns an object A⊗B to any two objects A,B
and an arrow f ⊗ g : A⊗ C −→ B ⊗D to any arrows f : A −→ B, g : C −→ D

as well as a “unit” object ⊤, satisfying the following axioms14:

A⊗⊤ = A = ⊤⊗A
A⊗ (B ⊗ C) = (A⊗B)⊗ C

and similarly for arrows.
Actually, this is what is usually called a “strict” monoidal category, but the distinction is one we

shall blur in this course. Usually one only asks for coherent isomorphisms, rather than equalities,
in the axioms above, but to spell out just what that means would take more time than I want
to spend on the matter. I have not supposed that ⊗ is commutative—to do so would force us to
take the notion of coherent isomorphism more seriously, as it is just not reasonable to ask for strict
commutativity. In any event, the examples we will want to consider will not have commutative
tensors, for precisely the same reason we didn’t want commutativity for the product in a preorder.

For us, the point about such monoidal structure is that it models some basic properties of con-
junction; in fact, one could describe an (admittedly weak) logic which only had that connective and
the properties that monoidal categories possess. What are those properties? We may summarize
them with the following “deduction rules” (I’ll explain the notation below, though it is similar to
what we used in Chapter 2):

A→ A
(Axiom)

Γ→ A ∆, A,∆′ → B

∆,Γ,∆′ → B
(Cut)

Γ, A,B,Γ′ → C

Γ, A⊗B,Γ′ → C
(⊗L) Γ→ A ∆→ B

Γ,∆→ A⊗B (⊗R)

Γ,∆→ A

Γ,⊤,∆→ A
(⊤L) → ⊤ (⊤R)

To emphasise the connection with the categorical structure, we have replaced the entailment sign ⊢
used earlier in the course with an arrow (not to be confused with implication!). So you should think
of A,B −→ C (for example) as representing an entailment of C with hypotheses A,B: A,B ⊢ C.
We shall call this logical system “monoidal logic”.

In these rules, we use capital Greek characters Γ,∆ to indicate finite sequences (lists) of WFFs,
and we imagine WFFs are defined with one constant ⊤ and one binary connective ⊗, in a pretty

14Again, there is some hidden structure we’re assuming—I’ll make this clearer in class, but for now, just assume
these axioms are to be interpreted “naturally”.
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obvious manner. The intention of the horizontal lines is to indicate how we can get new valid
inferences from existing ones: each deduction rule represents a way to construct a valid argument
(the one below the line) from one or more valid arguments (the ones above the line). Each valid
argument is represented as an inference, with premises before the arrow, and the conclusion after
it. The first two rules just correspond to identity arrows and composition of arrows; interpreted
as inferences they amount to the trivial inference of A from itself, and the process of combining
inferences (if one can infer A from some premises, then one can use that in another inference,
replacing a premise A with those premises from which one inferred A). The rule (⊗L) merely
expresses the idea that we represent tensors on the left of an inference by commas, and the (⊗R)
rule corresponds to the functoriality of tensor. Remember that we regard ⊗ as a weak notion of
and, so it shares some of the properties of ∧. Indeed, interpreting these two rules as inferences, we
have two familiar properties of and from propositional logic: one may replace two premises A,B
with a single premise A⊗B, and if we have inferences for each of A and B (as conclusions), then
by combining all the premises used, we may arrive at an inference of A ⊗ B. The last two rules
do the same for the constant ⊤: it is a unit for tensor, and is represented on the left by (literally)
“nothing”. You may think of ⊤ as being a weak version of the logical constant true; it has some
(but not all) of the properties ⊤ had in classical propositional logic. (An example of a property ⊤
does not have in monoidal logic is that although A ⊢ ⊤ is a tautology in classical logic, it is not so
in monoidal logic.)

There is a subtlety here we must mention: in the rule (⊗R) you should note that we repeated
the premises in the conclusion; this means that if we use a premise in proving A, and also use it
again in proving B, then in our proof of A⊗B, that premise gets listed twice. That is no error! We
want that duplicate listing, as it is related to the “conservation of resources” aspect of this logic,
which we’ll discuss in class. But here’s an illustration of this idea. Tensor is to be thought of as a
form of conjunction which pays attention to the use of “resources”, so (unlike propositional logic),
just because one has “A −→ B” and “A −→ C”, one may not have “A −→ B and C” (where “and”
means ⊗), although we do have “A and A −→ B and C”. For example: If I have $5, I can buy a
hamburger and If I have $5 I can buy a milkshake does not imply If I have $5 I can buy a hamburger
and a milkshake (you might need $10, which is what you are guaranteed by I have $5 and I have $5).
The format of the (⊗R) rule, with different Γ,∆, is necessary to capture this idea.

It is worth noticing that these rules are sufficient to prove associativity of tensor, and the unit
properties of ⊤. Here are some such derivations (including two different ones of the unit equation;
you should try to prove these yourself, once you understand what’s going on!):

A→ A
B → B C → C
B, C → B ⊗ C

A,B,C → A⊗ (B ⊗ C)

A⊗B, C → A⊗ (B ⊗ C)

(A⊗B)⊗ C → A⊗ (B ⊗ C)

A→ A
A,⊤ → A

A⊗⊤ → A
→ ⊤ A→ A
A→ ⊤⊗A

A⊗⊤ → ⊤⊗A (Cut)
→ ⊤

A→ A
A,⊤ → A

A⊗⊤ → A
A⊗⊤ → ⊤⊗A

But one must notice that this system does not have several “structural rules” that we took for
granted before. These are the following (usually called “contraction”, “weakening”, “exchange”):

Rules not valid here:
Γ, A,A,∆ → B

Γ, A,∆ → B
(c)

Γ,∆ → B

Γ, A,∆ → B
(w)

Γ, A,B,∆ → C

Γ, B,A,∆ → C
(e)

Notice that the lack of the contraction rule corresponds to the “conservation of resources” idea
mentioned above (as does in a way the lack of weakening: one may not have “unused resources”),
and the failure of exchange corresponds to the lack of commutativity for tensor.
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Monoidal closed structure

What about implication? We recall that in classical (and intuitionistic) propositional logic, im-
plication “internalized” derivation (or valid argument), in the following sense: there is a bijection
between valid arguments with a premise A and conclusion B, and derivations of the WFF15 A⇒ B.
In fact, this is true in the presence of other premises as well, so we have the following bijection
(indicated by the double horizontal line—you should think of this as meaning you can go either
way, from top to bottom, or vice versa):

Γ, A ⊢ B
Γ ⊢ A⇒ B

In the monoidal context, this looks similar, with a minor notational change: to distinguish the
implication in a monoidal category, we shall use a different shape for our “if . . . then . . . ” and “. . .
if . . . ” arrows, namely −◦ and ◦−. (We need the two directions, since without commutativity we
cannot deduce the properties of one from the other. In other words, A−◦B (“if A then B”) is not
equivalent to B ◦−A (“B if A”). For them to be equivalent would require conjunction (tensor) be
commutative. I may say more about this in class.)

So we want to add to our monoidal logical system the following rules:

Γ→ A ∆, B,∆′ → C

∆,Γ, A−◦B,∆′ → C
(−◦L) A,Γ→ B

Γ→ A−◦B (−◦R)

Γ→ A ∆, B,∆′ → C

∆, B ◦−A,Γ,∆′ → C
(◦−L) Γ, A→ B

Γ→ B ◦−A (◦−R)

The (L) rules are just generalizations of the entailments A,A−◦B −→ B and B ◦−A,A −→ B, which
are the monoidal versions of Modus Ponens, our old friend (−→ E). (To verify this claim, imagine
Γ is A, and that ∆,∆′ are both empty in the (−◦L) and (◦−L) rules.)

With these rules (and a suitable notion of equivalence of proofs), we can then establish the
following bijections, which in effect says that −◦ and ◦− properly internalize the notions of valid
argument (i.e. derivation) in our monoidal logic—we shall continue to call this logic by that name,
now with the addition of these “monoidal implications”.

A,Γ→ B

Γ→ A−◦B
Γ, A→ B

Γ→ B ◦−A

Summary: We have developed a logic with a conjunction and an implication, but with different
properties from classical propositional logic (different also from intuitionistic propositional logic).
For example, one cannot derive inferences like A −→ A⊗ A or A,B −→ A, which would be easy in
classical (or intuitionistic) logic. (Exercise: verify this.) But this logic does have some similarities
with classical and intuitionistic logic; for example, we can derive inferences like these: A,A −◦ B
−→ B and B ◦−A,A −→ B. (Exercise: verify this too.)

There is a (not totally misleading) way to think of the tensor, which is to impart to it a temporal
component: think of A ⊗ B as “A then B”, so A comes first. For example I had breakfast and I
went to school implies that breakfast came first, and would not describe the situation where your
breakfast was poutine at the Munch Box: that would be I went to school and I had breakfast. The

15We shall use the symbol ⇒ for implication in classical propositional logic, so as not to confuse matters with the
arrows in categories, which correspond to ⊢.
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two “lollipop arrows” are needed to allow the two possible ways one might have an implication plus
its premise (needed to conclude its conclusion), depending on which comes first. If the premise
comes first, we need a −◦ lollipop, as in A,A−◦B −→ B, but if the implication comes first, we need
the ◦− lollipop, as in B ◦−A,A −→ B.

At the start of the course, I mentioned that logicians have tried to formulate logics that do not
have the paradoxical property of classical (and intuitionist) logic that material implication seems
to entirely miss the notion of causality, so that If that’s a purple unicorn in the corner, then I’m a
monkey’s uncle is a true statement (simply because there is no unicorn, purple or otherwise, in the
corner). Most of the “relevance logics”16 they have developed are in fact based on monoidal logic.
You can see that the “resource-sensitive” nature of monoidal logic means that if A−◦B is true in
the logic, then there must be at least some “connection” between A and B.

Remark: Several years ago, my coauthor and I developed a graphical representation of deriva-
tions in a similar monoidal logic. These pictures look something like the following. (If there’s time,
I may discuss this in class.)

⊗

A B

A⊗B

(⊗ I) ⊗

A⊗ B

A B

(⊗ E)
⊤

⊤
(⊤ I) ⊤

⊤

(⊤ E)

−◦

C
B

A
Γ

A−◦B

(−◦ I) −◦

B

A A−◦B

(−◦ E)
◦−

C
B

A
Γ

B ◦− A

(◦− I) ◦−

B

B ◦− A A

(◦− E)

You should read these “top-down”, with premises at the top and the conclusion at the bottom.
With these we can represent general derivations in monoidal logic as more complicated graphs. For
example, here are several graphs which represent some derivations, including the ones given earlier
of associativity of ⊗ and of the unit law for ⊤ (the two derivations given for the unit law are in
fact represented by the same graph, which gives a hint of the nature of the “equivalence of proofs”

16A lovely (and useful) such logic is “linear logic”, developed in the mid 1980s by Jean-Yves Girard; you can read
more about it in the papers on my research website and the references given there.
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mentioned before).

⊗

⊗

⊤

⊗

⊤

−◦

⊗

⊗

⊗

⊗

◦−

−◦

−◦

−◦

◦−

−◦

(1)

(4)

(2) (3)

Optional Exercise: Identify what derivations these might be. (Answers: (1) A⊗ (A−◦B) −→ B;
(2) (A⊗B)⊗C −→ A⊗ (B ⊗C) (this is the derivation given earlier of this form); (3) (B ◦− (A−◦
B)) −◦ B −→ (B ◦− (A −◦ B)) −◦ B (it is a non-trivial problem to decide under what conditions
this is just the identity arrow, and solving this problem, and others like it, was one of the main
objectives of our early research into such monoidal logics—we succeeded!); (4) A ⊗ ⊤ −→ ⊤ ⊗ A
(this corresponds to both the derivations given earlier of this form).)

An application to linguistics

We are now in a position to consider the approach to categorial grammar that appeared in Lam-
bek’s 1958 paper. He used a logical syntax like the one we’ve developed here to analyse sentence
generation. The main idea is very similar to the pregroup approach: to every word in a language
(I’ll still use English) we associate a syntactic type, designating its part of speech. Again, in our
examples we’ll start with the two atomic types, s (for sentences) and n (for nouns), as before.

Then we give other words compound types, built up from the atomic ones using the connectives
of monoidal logic. So we’d have types like n ◦− n, n −◦ s, and so on. (Actually, Lambek used a
much more compact notation, which you’ll see in his paper, and which I’ll mention later.) Then
as before, the idea is to give types to words in potential sentences, and to see if the type s may be
derived from the tensor of all the types from the words in your phrase.

We’ll take the same examples as we had before, so you can easily compare the two approaches.
So, intransitive verbs such as works generally receive the type n −◦ s (because they need a noun
in front to make up a sentence), so a phrase like John works would be typed n ⊗ (n −◦ s), and
we’ve already seen that there is in fact a derivation n⊗ (n−◦ s) −→ s, so we’d conclude John works
is a sentence. Using a “display style” presentation (now using a horizontal line to represent the
“in-line” arrow meaning a valid inference, and dropping the use of the tensor), this would look like
this:

John works

n n−◦ s
s



10.2. CATEGORIAL GRAMMAR 255

Such “type derivations” correspond to the typing graphs we used in the pregroup approach.
This works for other languages as well; here is the example from Italian we saw before:

Gianni ha detto che Maria ha perso il treno.
Gianni said that Mary had missed the train.

We analyse this this way (again using horizontal lines to indicate inferences, rather than our
“in-line” notation with arrows):

Gianni ha detto che Maria ha perso il treno

n
(n−◦ s) ◦− s

s ◦− s
n

(n−◦ s) ◦− n n
n−◦ s

s
s

n−◦ s
s

As with the John works example, I have put the type of each component in the Italian sentence
directly under the component. To simplify the example, some words (“ha detto” and “ha perso”)
have been treated as a single component.

Some of our other simple examples may be seen in Figure 10.1; in each case, I have used the
“display style” presentation, as above: underneath each word of the sentence appears the type of
the word, and the horizontal lines indicate inferences from the tensor of the types above the line
(as premises) to the type (the conclusion) that results from them. In each case the final type (at
the bottom) is s, indicating that the words do in fact form a grammatically correct sentence.

Exercise 1: Show that (for any objects x, y, z in a monoidal closed category)

(x−◦ y) ◦− z ↔ x−◦ (y ◦− z)

(The use of this result is illustrated in Figure 10.1.)

We shall often write these equivalent forms without brackets: x −◦ y ◦− z. The point is that this
equivalence allows us to analyse a sentence in any sensible way, with the same outcome. Let’s see
some more examples.

Our first uses n−◦ (s ◦− (n−◦ s))↔ (n−◦ s) ◦− (n−◦ s) to analyse John often works, two ways:

John often works

n n−◦ (s ◦− (n −◦ s))
s ◦− (n−◦ s) n−◦ s

s

John often works

n

(n−◦ s) ◦− (n−◦ s) n−◦ s
n−◦ s

s
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John works

n n−◦ s
s

(Poor John) works

n ◦− n n
n n−◦ s

s

(John works) here

n n−◦ s
s s−◦ s

s

(John works) (for Jane)

n n−◦ s
s

(s −◦ s) ◦− n n
s−◦ s

s

John (likes Jane)

n
(n−◦ s) ◦− n n

n−◦ s
s

(John likes) Jane

n n−◦ (s ◦− n)
s ◦− n n

s

(†)

John (likes (fresh milk))

n
n−◦ s ◦− n

n ◦− n n
n

n−◦ s
s

Time flies

n n−◦ s
s

s ◦− n n
s

† Note in this and the previous example we have given “likes” different types: (n −◦ s) ◦− n

and n−◦ (s ◦−n). We might expect (x−◦ y) ◦− z is equivalent to x−◦ (y ◦− z). In fact, we can

prove this (Exercise 1), and so we can simply write n−◦ s ◦− n as the type of “likes”, which

we do in the next example (in fact, it is the type of any transitive verb, a verb which takes a

subject and an object).

Figure 10.1: Examples: the syntactic calculus
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Exercise 2: Try this one for yourself: John runs and Susan watches. You know that John and
Susan are type n, that runs and watches are type n−◦ s (since they are intransitive verbs), and it’s
pretty easy to see that and is of type s−◦ s ◦− s (it takes a sentence on either side and produces a
sentence).

Now, what about pronouns? We start with some familiar simple examples.

He works

s ◦− (n−◦ s) n−◦ s
s

He likes Jane

s ◦− (n−◦ s)
n−◦ s ◦− n n

n−◦ s
s

Jane likes him

n n−◦ s ◦− n
s ◦− n (s ◦− n)−◦ s

s

Remarks: likes, being a transitive verb, has type n−◦s◦−n (bracketed either way). You might be
tempted to give both he and him type n, but then a phrase like Him works would be a sentence, just
as He works is. This is not correct—he and him have to have different types, reflecting that they
are used differently. This means he must be typed s◦−(n−◦s), and him must be typed (s◦−n)−◦s.
It’s important to note that there is no equivalence between s◦− (n−◦s) and (s◦−n)−◦s—this time
the arrows point the wrong way. But notice that the bracketing is demanding that he is followed
by something to make a sentence, and that him is preceded by something to make a sentence. This
fits the idea that he is a subject and him is an object of a sentence.

Now consider the following sentence: He likes him. We expect to be able to reduce [s ◦− (n−◦
s)] ⊗ [n −◦ s ◦− n] ⊗ [(s ◦− n) −◦ s] to s, but there is no evident arrow that does this. However, if
we had either of the following, then we could get to s:

(x−◦ y)⊗ (y −◦ z) −→ x−◦ z
(z ◦− y)⊗ (y ◦− x) −→ z ◦− x

Exercise 3: These are consequences of the deduction rules defining monoidal closed categories,
and so we do have entailments of this sort in our monoidal logic. Show how to derive them.

Then we can finish the analysis of He likes him, for example as follows.

He likes him

s ◦− (n−◦ s) (n−◦ s) ◦− n
s ◦− n (s ◦− n)−◦ s

s

Exercise 4: do the analysis the other way, as He (likes him).

These are simple examples; in the full article, Lambek illustrates the idea with more compli-
cated examples, and indicates where his approach has problems (many of which were resolved in
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later work, by him and by others, and many of which he feels his current approach handles more
successfully—such is the nature of research!). I suggest you read at least sections 1-3, 5, 6, and
if you feel like some more mathematical material, section 7; the rest of the paper will probably
be fairly heavy-going at a first attempt. One warning when you look at his article, however: his
notation is different from ours. He drops the tensor, just writing it as “concatenation”, so x ⊗ y
would just be written xy, and the “lollipop arrows” become slashes, so x −◦ y becomes x\y and
x◦−y becomes x/y. This more compact notation has some advantages when it comes to annotating
words with types (but it does lose the flavour of “conjunction” and “implication”, which we wanted
for our logic, replacing that intuition with one based on multiplication and division).

Solutions to the exercises in section 10.2.6

Exercise 1:
Remember the defining bijections which establish the meaning of −◦ and ◦−, which we use as

follows:

u −→ (x−◦ y) ◦− z
u, z −→ x−◦ y
x, u, z −→ y
x, u −→ y ◦− z

u −→ x−◦ (y ◦− z)
and letting either the top or the bottom entailment be the identity gives us the two equivalent
entailments we want.

Exercise 2:

John runs and Susan watches

n n−◦ s
s

s−◦ s ◦− s
n n−◦ s

s
s−◦ s

s

Exercise 3:
Use

(x−◦ y)⊗ (y −◦ z) −→ x−◦ z
x⊗ (x−◦ y)⊗ (y −◦ z) −→ z

and then get the bottom arrow as follows:

x⊗ (x−◦ y)⊗ (y −◦ z) −→ y ⊗ (y −◦ z) −→ z

(The other is similar.)

Exercise 4:

He likes him

s ◦− (n−◦ s)
n−◦ (s ◦− n) (s ◦− n)−◦ s

n−◦ s
s
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A coda:

Monoidal closed categories and pregroups are both special cases of a more general structure (linear
bicategory)17, which turns up in many other contexts, illustrating the mathematical principal that
one should find common meaningful structures in seemingly unrelated contexts, and see what’s
“really going on” in the common underlying structure.

17See Introduction to linear bicategories, J.R.B. Cockett, J. Koslowski, R.A.G. Seely, Mathematical Structures in
Computer Science (10), 2002. This paper was dedicated to Jim Lambek, in honour of his contributions to the subject.


