
A PREGROUP GRAMMAR FOR CHORD SEQUENCES

Richard G. TERRAT
LIRMM/CNRS
161, rue ADA

34000 Montpellier
France

terrat@lirmm.fr

&
IRCAM

1, Place Igor Stravinsky
75004 Paris

France
terrat@ircam.fr

ABSTRACT

In 1984, Mark STEEDMAN [7] proposed a generative
grammar based on six context sensitive rewriting rules
able to produce a large variety of blues chord sequences.
Later, François PACHET [6] developed a method for
analyzing jazz chord sequences. Then, Marc
CHEMILLER [4] [5] uses STEEDMAN’s grammar to
compose by computers jazz music based upon chord
sequences generated by this grammar. About twenty
years after his first work, STEEDMAN [8] [9] comes
back to chord sequences analysis, but now with the aim
of recognition based upon categorial grammars.

Meanwhile, pregroup grammars have been conceived
as an algebraic tool to recognize well-formed sentences in
natural languages [1] [2].

Here we wish to use pregroup grammars to recognize
well-formed sequences of chords, especially in Jazz
music. Our recognition process reduces the chord
sequence to a simpler one. If this later sequence is
similar to a well-known pattern like blues, rag, “anatole”
or other, we can classify the original sequence as
conform to this pattern.

1. INTRODUCTION

Following the seminal work of Noam CHOMSKY [3]
attempting to provide a formal description of the syntax
of natural languages, many researchers have provided
various such formalisms in the musical field.

Formal descriptions are proved to be useful tools
either for a better comprehension of musical structures
(with recognition grammars), or with the aim of
automatic composition or improvisations (with
generative grammars).

Nevertheless either these grammars are easy to
implement (e.g. context-free) but insufficient to account
for complex musical structures, or heavily dependent of
the context and thus difficult to describe and process.

Thanks to recent works we can hope to get out of this
dilemma. For recognition grammars, pregroup grammars
play an important role in that work.

In a previous paper [10] we used pregroups to
recognize well-formed chords of pitches, for a given
definition of those chords. We showed how a judicious
choice of basic and simple types allows a context-free
grammatical description. Then we used the robustness
property to extend the set of well-formed chords in a
simple way.

Finally we argued in favor of an utilization of
pregroups grammars for the recognition and classification
of chord sequences, which is exactly the problem, treated
here.

In this paper we will first summarize in §2 the main
definitions and properties of pregroups, then §3 will
present the concept of type, §4 the one of typing used for
the syntactic units of the language while §5 specifies the
method of recognition ; §6 will show how pregroups can
be used for simple examples of chord sequences and §7
gives 2 typical examples of recognition of blues chord
sequences in be-bop compositions from earlier fifties.
Finally, §8 concludes with current prospects.

2. PREGROUPS

2.1. Definition

A pregroup is a partially ordered monoid in which each
element a has both a left adjoint al and a right adjoint ar

satisfying :

Contraction Expansion

al . a → 1 (1) 1 → a . al (2)
a . ar → 1 1 → ar . a

where “→” denotes the partial order relation, “.” the
multiplication and “1” the unit of the monoid. (The
multiplication sign will be omitted in the sequel).

2.2. Properties

a 1 = a = 1 a (3)
1 is the unit of the monoid

(a b) c = a (b c) (4)
multiplication is associative

a → b and c → d implies a c → b d (5)
order is compatible with multiplication

a b → 1 → b a implies a = bl and b = ar (6)
adjoints are unique

(a b)l = bl al (a b)r = br ar (7)
adjunction is quasi-distributive

a → b implies bl → al and br → ar (8)
adjunction reverses the order

alr = a = arl (9)
no mixed adjoints

Properties (3) to (5) are part of the definition of a
monoid ; properties (6) to (9) can be derived from
definitions and their proofs can be found in [2].

3. TYPES

3.1. Basic types

As linguists, we will work with the free pregroup
generated by a partially ordered set of so called basic
types which are elements of an enumerable set.

Bold face symbols : a, b, c, … will range over basic
types.

The order between basic types is declared as such, and
is stored in a table.

B = { a, b, c, ….}

3.2. Simple types

Simple types are formed from basic types and their
adjoints. Thus they form an infinite enumerable set :

∑ = {.. al l, al, a, ar, arr .. b l l, bl, b, br, brr .. }

Simple types inherit the order from the basic types as
follows :

if a→b then bl→al, br→ar, al l→bl l, arr→brr ..

Hence to check whether a → b , it is sufficient to
check whether a and b have the same exponent, i.e. a =
as , b = bs where a and b are basic types and s consists
of a finite number n of repetitions of the same suffix,
either l or r.

If a and b have the same exponent, then a → b if
either n is even and a→ b, or n is odd and b → a.

Otherwise, neither a reduces to b nor b to a.

Contractions of simple types can be understood as
rules such as :

al lal → 1 , ala → 1 , aar → 1 , ararr → 1 ..

3.3. Types

Strings of simple types will be called compounded
types or more simply : types.

The order → can be read as "reduces to".

4. TYPING

4.1. Assignment

As a first step, the language to be analyzed has to be
described in some grammatical terms. The smallest
syntactic units (words) are supposed to be in a
dictionary.

The next step is to define the set of basic types and
it’s ordering. Then, to every word, one, or more
generally several types have to be assigned.

The typing assignment must be done in such a way
that the sequence of words constitutes a well-formed
construct if and only if the corresponding string of its

types reduces to the basic type corresponding to the
construct. If more than one type is assigned to a word, it
is sufficient that one of these types yields a string
reducing to the final type.

Every typing respecting this condition is said to be
correct, i.e. it allows recognizing only well-formed
constructs and complete, i.e. it recognizes all well-
formed constructs.

4.2. Extension and robustness

An important property of typing is the possibility to
extend the constructs in a monotonic way, i.e. without
changing the properties of the previous string : this is
called the robustness.

These extensions can be done in two ways :

4.2.1. Assigning new types

If a new type y is assigned to a word w , without
changing the previous assigned types, and x is one of the
previous assigned types such that y → x then every
string of words recognized as well-formed using the type
assignment x for w is also well-formed using y.

4.2.2. Extension by new basic types

Let B be a given set of basic types. It is possible to
extend this set by declaring new basic types and their
order relations, obtaining thus a larger set of basic types
B' ⊃ B. Then the free pregroup P' generated by B'
includes the free pregroup P generated by B.

If a and b belong to P and a → b can be derived in P,
it can also be derived in P'.

4.3. Conservativity

If a → b can be derived in some pregroup P' and both a
and b belong to a smaller pregroup P ⊂ P', then the
whole reduction can be done in P.

The proof of this non-trivial property can be found in
[1].

4.4. Linearity

A pair of simple types (a ,b) is said contractible if a b
→ 1.

A triple of simple types (a, b, c) is said critical if
both (a, b) and (b, c) are contractible.

A string of simple types is said linear if it contains no
critical substring.

A typing is said linear if every string that can be
assigned to a string of words is linear.

If a string is linear, it has a unique irreducible form.
The proof can also be found in [1].

5. LANGUAGE ANALYSIS

5.1. Step by step

The robustness and conservativity properties allow
proceeding step by step to analyze a language. One can
take a subset of the language and show its correctness
and completeness. Then one can extend the fragments
either by assigning new types to words or by adding new
basic types and verifying that the typing involving the

new types is also correct and complete for the new
construct.

5.2. Type checking algorithms

The type checking problem is to decide whether a → b
for arbitrary types a and b. A type-checking algorithm is
an implementation of this decision procedure. In fact, it
is sufficient to prove that bl a → 1 because of the
following property :

a → b if and only if bl a → 1 (10)

It has been shown that such an algorithm exists and
that its complexity is at most in time O(n3)

Moreover, if the string is linear, a linear algorithm can
decide the type-checking problem in time O(n) [1]

6. A SIMPLE GRAMMAR FOR CHORD
SEQUENCES

6.1. Description

We follow STEEMNAN’s trail that first proposed a
generative grammar based on six context sensitive
rewriting rules [7] able to produce a large variety of blues
chord sequences, and then introduced categorial
grammars for recognition [8] [9]. We transpose and adapt
these rules in the context of pregroups. Our typing has
been conceived to be linear, thus leading to a unique
final sequence.

6.2. Types

6.2.1. Basic types

We use the traditional notation for chords using the
simple modes : major (omitted) or minor (m) and the
seventh (7).

X is called the root of the chord, i the alteration and j
the mode possibly with the seventh

Xij X ∈ {A, B, C, D, E, F, G}
i ∈ {b, , #}
j ∈ { , m, 7, m7}

Ex A, Bm, Gm7, C7

6.2.2. Order

"Take care of the sevenths and the sounds will take care
of themselves" [7]

Some sevenths are minor sevenths and don’t act as
dominant ones. If this is the case they have to be
rewritten as simple triads ; the typing rules will treat
differently this two types of sevenths :

Xi7 → Xi
Xim7 → Xim

6.2.3. Functions used in typing

The typing rules will make use of the distances between
roots of chords. These distances will be represented by
functions using roman numbers as diatonic distances
possibly with chromatic alterations (b or #) as prefix.
The mode, possibly with a seventh, is added as suffix.

F(x) x ∈ {A, B, C, D, E, F, G}
F ∈ {b, , #} x {I, II, III, IV, V, VI,

VII} x { , m, 7, m7}

Ex: bIIm(E) = Fm
VI7(C) = A7

6.3. Typing

6.3.1. Assignments

Chords Simple types

x I(x) Identity
x7 Vr(x) V(x) IV deletion
x7M Vmr(x) Vm(x) "
x9 V7r(x) V7(x) "
x13 Vm7r(x) Vm7(x) "

V7r(x) I(x) Perfect cadence
bIIr(x) I(x) Tritone substitution

xm Im(x) Identity
xm7 bVIIr(x) bVII(x) IIIml(x) IIm & IIIm deletion
xm6 V7r(x) Im(x) Perfect cadence

bIIr(x) Im(x) Tritone substitution
bIImr(x) Im(x) "

x7 I7(x) Identity
x7b9 V7r(x) I7(x) Perfect cadence
x7#9 Vm7r(x) I7(x) "
x7#5 bII7r(x) I7(x) Tritone substitution

bIIm7r(x) I7(x) "
bV7r(x) I7(x) "
bVm7r(x) I7(x) "

xm7 Im7(x) Identity
xm9 V7r(x) Im7(x) Perfect cadence
xØ7 bII7r(x) Im7(x) Tritone substitution

bIIm7r(x) Im7(x) "
bV7r(x) Im7(x) "
bVm7r(x) Im7(x) "

x°7 VIIr(x) VII(x) bIIm(x) bIIml(x) °7 deletion
VIIr(x) VII(x) V(x) Vl(x) "
VIIr(x) VII(x) VIm(x) VIml(x) "

6.3.2. Explanations

IV deletion

This typing applies only to a simple major chord
(without dominant seventh). It allows, as Steedman's
rule n°2, the reduction of cadence I (resp. : Im, I7, Im7)
IV to I (resp. : Im, I7, Im7) thus deleting the IVth chord.

IIm & IIIm deletion

This typing applies to a simple minor chord located
between a left bVII and a right IIm. It allows, as
Steedman's rule n°5, the reduction of cadence I, IIm,
IIIm to I, thus deleting the IIm and IIIm chords.

Perfect cadence

This typing applies to a major or minor chord with or
without a dominant seventh, this chord being preceded
by a V7 or a Vm7, with the following rules :

as a final perfect cadence : (V7, I) reduces to I and
(V7, Im) reduces to Im

as an extended cadence : (V7, I7) or (Vm7, I7)
reduces to I7 ; (V7, Im7) reduces to Im7

This is analogous to Steedman's rule n°3.

Tritone substitution

This leads to more a complicated typing due to a
multiplicity of combinations with the extended cadence.

First of all, a first tritone substitution can only occur
after a perfect cadence. Before the substitution, the roots
of the two adjacent chords making the perfect cadence
have an ascending distance of 5 semi-tones (ex: G, C).
The tritone substitution adds an ascending distance of 6
semi-tones (ex: G to C#) thus leading to an ascending
distance of 11 semi-tones (ex: C#, C).

Now, let us add a new perfect cadence into this
interval ; this will split the old ascending distance of 11
semi-tones into two new ascending distances of 6 and 5
semi-tones (ex : C#, G, C). There are now 3 possible
distances between two adjacent roots of chords : 5, 6 and
11 semi-tones.

At this point, more tritone substitution cannot
introduce new distances : 5 + 6 becomes 11, 6 + 6
becomes 0 and 11 + 6 becomes 5 (because all
computations are done modulo 12). This is due to the
particular role of the tritone, acting as a kind of "inverse"
: (tritone (tritone (x)) = x.

Note that if the preceding chord had a G root, the new
cadence will have the following roots : G, C#, G, C that
contains two successive tritones.

Adding more perfect cadences will now lead to introduce
new distances. For instance, extending the G, C cadence
gives the sequence of roots : C#, D, G, C. A new
ascending distance of 1 semi-tone appears between the
adjacent chords C#, D. Following that way, we can
cover all the chromatic scale ! Thus, in the above
example, any distance between the C# root and the root
of its following chord can be possible. But in such a
case, the C# chord will certainly be "forgotten" as a part
of the extended cadence, and we can stop the analysis of
this cadence at D.

So, we have chosen a typing allowing only the
previous ascending distances of 5, 11 and 6 semi-tones
(i.e. V, VII and bV) as possible compositions of
extended cadences and tritone substitutions. This seems
to cover all cases of blues we have met.

If we would like to accept a deeper recursion, it would
be necessary to introduce new typings with larger context
such as : W7r(x) I7(x) Y7(x) Y7l(x) for a chord x
located between two chords of roots W and Y.

Another way is to introduce a specific type for the end
of the extended cadence, as in [8] [9]. But this causes
other difficulties.

We have also to take into account the modes (major or
minor).

In an extended cadence, the chord preceding a major
may be either major or minor, but the chord preceding a
minor chord must be a major chord.

In a tritone substitution, Steedman imposes that the
substituted chord must have the same mode as the chord
following it. But all composers do not follow this rule.
For instance the Blues for Alice (Charlie Parker)
contains at the end of bar 3 and the beginning of bar 4
the following sequence : Dm7, Db7, Cm7. It is obvious
that the Db7 chord comes from a tritone substitution of
the sequence : Dm7, G7, Cm7.

So, we have chosen all possible combinations of
modes for the chord issued from a tritone substitution.

°7 deletion

This typing applies to a diminished seventh chord
located between a left VII and a right IIm, V or VIm
chord. It allows, as Steedman's rule n°6, the reduction of
the cadence I, #I°7, (resp. : IIm, V, VIm) to I, (resp. :
IIm, V, VIm) thus deleting the #I°7 chord.

7. EXAMPLES

7.1. AU PRIVAVE (Après Vous) Charlie Parker

Origin

F / D7b9 Gm7 / C7 F
Cm7 /
F7#5

Bb7 Bb7 F7M / Gm7 Am7 / D7

Gm7 C7 F / D7b9 Gm7 / C7

Typing

F D7
D7r Gm7
Gm7r C7 C7r F

Cm7 Cm7r

F7

Bb Bb F FrFAml Am D7

D7r Gm7 Gm7r C7 F D7
D7r Gm7
Gm7r C7

Result

F F F7

Bb Bb F

C7 F C7

7.2. BLUES FOR ALICE Charlie Parker

Origin

F7M
Em7b5 /

A7b9
Dm7 /

Db7 Cm7 / F7

Bb7 Bbm7 / Eb7 Am7 / D7
Abm7 /

Db7

Gm7 C7 F7M / D7 Gm7 / C7

Typing

F
Em7 Em7r

A7
A7r Dm7
Dm7r Db7

Db7r Cm7
Cm7r F7

Bb
Bbm7

Bbm7r Eb7
Eb7r Am7
Am7r D7

D7r Abm7
Abm7r Db7

Db7r Gm7 Gm7r C7 F D7
D7r Gm7
Gm7r C7

Result

F F7

Bb

C7 F C7

8. CONCLUSION

The two above examples reduce the original chord
sequences in such a way that they can be identified (by a
human) as blues chord sequences with a turnover at their
ends. Nevertheless, the “holes” in the resulting sequences
have to be filled. In the first example (Au Privave), this
can be done straightforwardly by extending the chords
preceding or following the holes.

If we do so in the second example we are no able to
fit the traditional blues pattern, due to the lack of the F
chords in the 7th and 8th bars. The reason is that the
extended cadence, including several triton substitutions,
starting at bar 11 has “eaten” all chords until bar 6! This
is not unusual, especially in be-bop, but there is no way
to “rediscover” the lost chords. The only possibility is to
accept that a long extended cadence together with its

triton substitutions is in fact part of a correct blues
sequence.

Furthermore, our typing is not “complete”. We
studied the case of mutually recursive perfect cadences
and triton substitutions when the depth of recursion is
bounded. But this may also happen with recursive
deletions such as °7 , IV and IIm, IIIm that can be also
nested. Such recursions are no taken into account by the
present typing. The (complex) sequences using them will
thus not be recognized as blues ones.

We have shown that pregroup grammars can be used to
describe the context-sensitive syntax of chords
sequences, but with a certain lack of completeness.
Further works are now under investigation. For example
searching more adapted typing yielding more
completeness for a given pattern research.Furthermore, as
pregroup grammars are able to recognize specific sentence
constructions in natural languages, they may also be able
to recognize specific chord sequences allowing their
classification in some particular context ; for example in
jazz music : blues, rag, anatole (chord sequence of "I got
rhythm" – G. Gershwin -) etc .. Such classifications
would be a useful help for indexing pieces in large
databases, especially on the WWW, either by extracting
chord files from "real books" or possibly with the help
of software extracting chord sequences from scores or
even audio files.

9. REFERENCES

9.1. Pregroups

[3] DEGEILH Sylvain, PRELLER Anne (2003) -
Pregroups and the French noun phrase -
LIRMM, rapport de recherche n° 03023, 2003
- to be published in: JLLI, 2004

[4] LAMBEK Joachim (2000) - An algebraic
approach to English sentence - unpublished
lecture notes, McGill University, QC, Canada

9.2. Chords and Grammars

[3] CHOMSKY Noam (1979) – Structures
syntaxiques – Editions du Seuil

[4] CHEMILLIER Marc (2004) – Grammaires,
automates et musique – BRIOT, PACHET
(éd) – Informatique musicale, IC2 Hermes – to
appear

[5] CHEMILLIER Marc (2004) – Steedman's
grammar for jazz chord sequences – Soft
Computing, special issue on Formal Systems
and Music – to appear

[6] PACHET François (1998) – Sur la structure
algébrique des séquences d’accord de Jazz –
JIM 1998, Agelonde

[7] STEEDMAN Mark (1984) – A Generative
Grammar for Jazz Chord Sequences – Music
Perception 2, 52-77 1984

[8] STEEDMAN Mark (2003) – Formal
Grammars for Computational Music
Analysis : The Blues and the Abstract Truth –
INFORMS Atlanta October 2003

[9] STEEDMAN Mark (2004) – Pattern and
Grammar in Music – AI2 Jan. 2004

[1 0] TERRAT Richard (2004) – Pregroup
Grammars for Chords – ISMIR 2004

