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Logical dilemmas: the life and 
work of Kurt Gödel 

by John W. Dawson, Jr. 
A.K. Peters, Ltd New paperback edition.

I HAVE HAD contact with Gödel only twice. 
In 1950, at the International Conference of 
Mathematicians, I attended his lecture, in which 
he showed that Einstein’s field equations allowed a 
periodic solution in which the future repeats the past. 
The second time was in Princeton in 1960, when he 
phoned my wife to give his excuses for not appearing 
at our party for logicians, fearing that there might be 
too many germs. 
Over the years, I have given much thought to Gödel’s 
revolutionary contributions to the foundations of 
mathematics, some thoughts in discussion with the 
mathematician Phil Scott and some with the philosopher 
Jocelyne Couture. However, I never studied Gödel’s ideas in 
their historical context and am grateful to find an integrated 
account of his life and work in this remarkable biography. 
The author manages to present Gödel’s pioneering work 
in logic and philosophy in a technically accurate way, yet 
understandable by mathematicians untrained in logic and even 
by general readers untrained in mathematics. I don’t wish to 
deprive the reader of this review of the pleasure of perusing the 
book under review, where she will learn much about Gödel’s 
life, embellished by fascinating anecdotes. I will therefore 
concentrate here on Gödel’s main contributions, as described 
by Dawson, with some elaborations of my own, which do not 
always agree with conventional opinion.
Gödel proved his completeness theorem in his doctoral 
dissertation of 1929. Originally, it dealt with first order 
classical logic and was later extended to higher order logic 
by Leon Henkin. It implies, in particular, that a statement in 
formal arithmetic is provable if and only if it is true in all 
models, which he originally called “realizations”. 
Gödel’s famous incompleteness theorem does not 
contradict this. What its proof shows is that it is not 
enough to look only at models with the so-called ω-
property (where S denotes the successor function):  
if (Sn0) holds for each natural number n, then so does xN 
(x). 
The crucial role of this property was first pointed out by 
Hilbert, when trying to react positively to Gödel’s challenge. 
Most people who cite the incompleteness theorem put it more 
strongly: there are true statements of arithmetic which are not 
provable. But this formulation presumes truth in a Platonic 
universe, which is here seen as a distinguished model with the 
ω-property. 
There is a classically, though not intuitionistically, 
equivalent ω*-property: 
if xN (x) holds, then so does (Sn0) for some natural 
number n. 

Although Gödel first announced 
his incompleteness theorem for 
classical arithmetic, it also holds 
for intuitionistic arithmetic (as 
I first learned from Dirk van 
Dalen). We now know that this 
does have a distinguished model 
with the ω*-property, in which all 
true statements are provable. We 
will return to this in the Postscript 

below. 
The incompleteness theorem 
was to be submitted for 
Gödel’s so-called habilitation 

(a prerequisite for permission 
to lecture at a university); 

but he first announced it at a 
conference in Königsberg (now 

Kaliningrad). There Rudolf Carnap, 
Arend Heyting and John von Neumann were to defend the three 
prevailing mathematical philosophies: logicism, intuitionism 
and formalism respectively, when Gödel threw his bombshell. 
Of course, logicism may be attacked on the grounds that 
arithmetic requires one extra-logical axiom, the so-called 
axiom of infinity; but intuitionistic arithmetic was shown to 
be formalizable by Heyting. Gödel’s Platonism, at first sight, 
seems to contradict Hilbert’s formalist program, at least as long 
as one confines attention to classical arithmetic and as long as 
one does not possess a model of the latter with the ω-property. 
While intuitionists have no problem with the ω*-property, they 
may have difficulty with the ω-property. They might argue that 
we can accept the truth of xN (x) only if there is a uniform 
way of getting to know the truth of each (Sn0). After all, the 
proofs of the formulas φ(Sn0) might get more complicated 
as n increases. Perhaps this helps to explain Gödel’s lifelong 
interest in intuitionism.
To carry out his proof, Gödel had to re-invent the theory of 
primitive recursive functions, which may already have been 
known to Dedekind and Peano. Prompted by Herbrand, he 
later lectured on general recursive functions in Princeton, to 
fit in with the Church-Turing thesis. Today, these may be more 
easily described as recursively enumerable relations which 
happen to be one-to-one and universally defined, although the 
latter property need not always be provable. 
Gödel barely beat von Neumann to the second incompleteness 
theorem, which asserts that the consistency of arithmetic, 
suitably codified, cannot be proved within arithmetic. Many 
people, including Gödel himself, saw this as destroying 
Hilbert’s program. I am not so impressed with this result; for, if 
a formal language is inconsistent, then anything can be proved, 
including its consistency. 
In his 1938 Princeton lectures, published in 1940, Gödel 
proved the consistency of the continuum hypothesis, in what 
came to be known as Gödel-Bernays set theory. He used the 
constructible hierarchy of sets as his model. This model depends 
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on the axiom of choice and is not really constructible, in spite 
of its name. Gödel tried very hard to prove the independence 
of the continuum hypothesis, but did not succeed. This was 
proved about twenty years later by Paul Cohen, whom Gödel 
generously encouraged to publish his proof immediately. 
Unlike some famous mathematicians in similar circumstances, 
he did not claim priority. 
In a letter to von Neumann in 1955, we find the first known 
statement of what is now called the P = NP problem, 
although Gödel professed no interest in the emerging 
Computer Science. 
His last important contribution was the 1958 Dialectica 
Interpretation. In this paper he outlined the notion of a 
computable function of finite type and stressed how it can be 
applied to provide a constructive proof of the consistency of 
classical arithmetic. The paper also enunciated a number of 
constructivist principles, most of which are now known to be 
provable in higher order intuitionistic arithmetic. 
Although raised as a freethinker, Gödel later declared: “in 
religion there is much more that is rational than is generally 
believed”. He thought he had found a proof of the existence of 
God, an updated version of the famous argument by Anselm of 
Canterbury, which essentially asserted that God is defined to 
be a perfect being and that perfection implies existence. Gödel 
hesitated to publish his proof for fear that a belief in God might 
be ascribed to him, whereas he only wanted to show that such 
a proof could be carried out on the basis of accepted principles 
of formal logic. Still, it turned up in his Nachlass and has given 
rise to some recent discussion. 
The Italian algebraist Magari had found a flaw in the argument, 
but the Czech logician Hajek claimed to have fixed this. One 
wonders whether the existence of elephants can be proved by 
the same method. 
Gödel’s life ended sadly by self-induced starvation, like that 
of Eratosthenes, famous for his sieve and for being the first to 
measure the circumference of the earth. Yet their reasons were 
different: Eratosthenes was losing his eyesight and did not wish 
to live as a blind man; Gödel believed that his food had been 
poisoned. 
An appendix to Dawson’s book contains some interesting 
biographical vignettes of other logicians, from Paul Bernays 

to Ernst Zermelo. One is struck by how many of them 
also suffered from nervous breakdowns, depression or even 
paranoia: Cantor, Post and Zermelo. Dawson speculates that 
there is “a deep connection between rationalism and permanent 
unshakable delusional system.”
POSTSCRIPT: Some categorical afterthoughts may be 
appropriate. It is now evident that many of Gödel’s ideas can 
be illuminated by contributions from category theory. Bill 
Lawvere, searching for a characterization of the category of 
sets, was led to the notion of an elementary topos. This first 
saw the light of day in the Proceedings of the 1971 Halifax 
conference, in a joint article with Myles Tierney, offering 
a categorical proof of Paul Cohen’s independence theorem. 
Candidates for the classical category of sets are now recognized 
as elementary toposes (with natural numbers object) in which 
the terminal object is a generator. They may be viewed as 
Henkin models of classical higher order arithmetic. Gödel and 
other Platonists would wish to single out one such model with 
the ω-property as the category of sets. It is not clear whether 
a distinguished such model can be constructed, and classical 
mathematicians may have to live with a whole sheaf of such 
models. The situation is different when it comes to models of 
intuitionistic higher order arithmetic. 
These are elementary toposes in which the terminal object is a 
non-trivial indecomposable projective, as was first pointed out 
by Peter Freyd. The Platonist Gödel might have been pleased 
that a distinguished such model exists, the so-called free topos, 
the initial object in the (large) category of all (small) toposes. 
Being opposed to nominalism, Gödel might have been less 
pleased that the free topos can be constructed linguistically as 
what might be called the Tarski-Lindenbaum category of higher 
order intuitionistic arithmetic. Phil Scott and I wrote our book 
“Introduction to higher order categorical logic” with the explicit 
aim of showing that the free topos is a constructible model 
with the ω*-property in which all true statements are provable. 
Hilbert might have been pleased with this result if he could have 
overcome his antagonism to Brouwer’s intuitionism. Phil and I 
were motivated by Gödel’s Dialectica Interpretation, inasmuch 
as we attempted to show that the principles of constructive 
mathematics outlined there do indeed hold in the free topos. 
Unfortunately, we never completed this project. 
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