Chapter 3 -14- F Propositional Logic

Chapter 3.

Propositional Logic

Section 3.1. Introduction

As we explained in Chapter 1, it is our goal to show how ome can represent
different domains in some formal system and then to use arguments within this formal
system to reach new conclusions. Having done this, we transfer these new conclusions
back to the original domain and claim that we have now new information about this
original domain. But this means that we must have some method, beyond the formal
systems that we use to represent the domains, in which we can carry out these
arguments to the mew conclusions. This method is called "logic”, and can itsell be
viewed as another formal system. In the formal system of logic, we can explain or
define what it is for a result to "follow validly” from previously-found results and what
it is for something to be "true in a domain.”

l.ogic is what proofs are defined by, and proofs give us the reasons we believe in
the results of mathematics and scientific theories. If, for example, you didn't know
that there was a proofl of it, why would you believe that the area of a circle was wr®!
The importance of logic in mathematics, science, engineering, etc., cannot be
overstated: and it is crucial for you to learn this system well.

In learning logic, one of the things to be learned is how to "translate” statements
from the original problem domain into a neutral, domain-independent language (or
symbolism). Once the problem is stated in the symbolism, you can then use the "proofl
methods” of logic to determine what further conclusions can be drawn (or determine
whether a proposed conclusion actually does follow) from the initial ones. Now, pretty

much any problem domain could be chosen to illustrate the method of translating into
logic symbolism. But we shall simply content ourselves with showing how to translate
from arbitrary natural language (English) statements into our formal logic. (In
Chapter 10.2 and 10.4 we consider further translations from the realm of
mathematics). The reason for this is that it does mot presuppose any previous
knowledge of a particular problem domain (e.g., math ics or some particular
science). Furthermore, it is easier to make more "complex” statements in ordinary
language than it is in most problem domains, and this will give you practice in some
difficult translations. Finally of course, learning this in the most gencral case of
patural language allows the skill to be transferred easily to other domains: generally, if
you can translate English statements into logical notation, you can translate
statements from any specific problem domain into logical notation.

Section 1 August 9, 1986 Introduction

Chapter 3 -15- Propositional Logic

Section 3.2. Propositions

. The logic discussed in this chapter is concerned with propositions, hence its name
propusnu_)nal logic.” A proposition is what is expressed by a declarative sentence on
some particular occasion of its use. A declarative sentence is a sentence which could
possibly be true or false. Here are some examples of declarative sentences:

John went to school today

There are ten planets in our solar system

Force is mass times acceleration

The instructor of this course is extremely clever

Each of these could be true or could be false. Of course, whether t

false is a matter of possible debate for a variety of reasons. For e::L;{: 'i':u:hzrﬁ‘::
sentence, we need to know which John is being discussed and when "r.oda;f' is. If you
supply‘t‘hls qﬂ'ormauun, then you know which propesition the sentence :xpreu.er soa
proposition is the completely-filled-in thing that is being stated by the declarative
sentence. Of course, you still might not know whether it i true or is false, but you do
know that it is one or the other and not both. Generally, a propositio:l is what is
expressed by a completely definite, declarative sentence. By "completely definite” here
we do not mean that the sentence is about some one specific individual. The second
::d ;l:;rd fseni.n:n_t-estj:ma gmer;l, but :om:thelean are "completely definite” (except for

e of our in the second). Rather ing " ite” i
il bl Bl 1'hws]“']-. , being "completely definite” is a matter of

Not all sentences are declarative sentences. Questi
it . Questions, commands, re
are not declarative, as in the following ' Lo

Do you know the answer to problem number 3?
Do your homework!
Pass the salt.

Also, there are various "paradoxical” d i i
. the eclarative sentences which do m
propositions, such as . oy

This statement is false.

This cannot be either true or false, since if it were t i

cal A rue, then what it says |
that it is false) would have to happen and so it would be f’alse; and if it wer{ fi?:en:.igz;
what it says would not happen and so it would be true.

Having discussed what a proposition is, we move on to a di i

represent English in propositional logic. After that, we will diS::‘::s:::n:fwh:y: ::;
Evaluaung the truth of expressions in propositional logic (truth tables and various
?hart:ut methods). This is followed by a discussion of Conjunctive and Disjunctive
I\lorlr_lal Forms for expressions of proposi | logic. We then take a brief look at the
relationship between the Syntax and the Semantics of propositional logic. (A more
de:alle;‘l ';il:‘:uss_wu ris in Chapter 93j Finally, we present an explicit formal system of
natural deduction for propositional logic. C i

system called Predicnl.ci{.u:i:. el o Olapar sty maitonlione logie sovs

“eetion 2 August 9, 1986 Propositions

Chapter 3 -18- Propositional Logic

Section 3.3. Translation

3.3.1. Stylistic Variance

The overall idea of translation is to represent ordinary language (English, here) in
a more abbreviated manner, and so that this abbreviated manner exhibits the true
logical form of the English. You might well ask "Why bother!” The answer to this is
not just that the abbreviated way is shorter, but more importantly that the way it is
represented will eliminate various infelicities and imperfections of English, and will
allow us to draw, more accurately, conclusions when we are given a set of data. As we
shall sce, since ordinary language is used for a variety of reasons besides the one of
drawing conclusions based on information at hand (it is also used for literary eflect and
so on), there are normally many different ways of saying the same thing. Whenever
this bappens in ordinary English, we shall want to be able to recognize it and translate
both of these alternate ways of saying it into the same abbreviated way. This will be
called the logical form of each of the sentences, and will be what's important in
determining what conclusions can be drawn on the basis of those English sentences.
This ability of English to "say the same thing in different ways" is called stylistic
variance, and the different ways are called stylistic variants of each other. Another
problem with ordinary English is that sentences which have radically different logical
forms sometimes in English have the same grammatical form. For example, the two
scotences

John is outside

Nothing is outside
are grammatically both Subject-Copula-Adjective, yet it is obvious that the former
sentence says of the object named ‘John’ that he is outside, whereas the second does
not say anything about an object named ‘nothing’ - there is no such object! As we
shall later see, we can give these sentences different logical forms by translating them
very dillerently.

In writing computer programs, one often starts by stating an algorithm in
ordinary English, then converting this into pseudo-code (or flowchart form), and then
finally converting this into explicit Pascal (or FORTRAN, etc.). Our strategy in
translating ordinary English into propositional logic will be similar: we will first alter
the ordinary English so that it is stated in a "stilted English”, and from this stilted
English we shall convert it to propositional logic. In the first step the main goal will
be to climinate stylistic variants in favour of one special form. Once we have this
special form, the second step will be very easy -- just as in the programming case.
This intermediate language, the "stilted English”, will be recognizable as English, but
will sound peculiar b of the insistence on using only one English form for each
type of logical form (rather than ordinary English's ability of making it "sound pretty”
by using dilferent stylistic variants).

3.3.2. Simple vs. Truth-Functionally Compound Sentences

A crucial distinction should be made at the first between truth-functionally
simple sentences ("atomic sentences”) and truth functionally compound sentences.
Intuitively speaking, an atomi t is a sent which is either very simple in
that it does not contain (as a part) any further sentence, or, if it does contain another
sentence as a part, it is not a truth-functional part. To explain this, we'll appeal to
some cxamples and then try to give a more detailed account. Here are some truth-
functionally compound (non-atomic) sentences.

1. Bill sings and Mary dances

‘ion 3 August 9, 1986 Translation

A BB AN NEENEENENRNRENRNIERERENY

Chapter 3 -17- Propositional Logic

2. Either Bill sings or Mary dances
3. If either John or Mary dances, then Bill sings
4. Snow is not white

In these sentences we can see that there are simpler parts which are themselves
sentences. For example, in the first sentence, Bill sings is such a part, as is Mary
dances. In the third sentence, either John or Mary dances is a part; and this part itsell
has sentences as parts (with a bit of ellipsis), namely John dances and Mary dances. In
the last one, the sentence which is a part is Snow ss white. As we mentioned, it is not
enough to just have sentences as parts, but also they have to be truth-functional parts.
This means that the truth or falsity of the parts entirely determine the truth or falsity of
the compound. For example, the truth or falsity of #1 relies entirely upon whether Bill
sings and Mary dances are each individually true or false. And the truth or falsity of
#3 depends entirely upon whether either John or Mary dances and Bill sings are true
or false. (And either John or Mary dances itsell depends for its truth or falsity entirely
upon the truth or falsity of John dances and Mary dances). The truth or falsity of #4
depends entirely upon the truth or falsity of snow s white. Thus these sentences
satisly the definition of being a truth functional compound sentence: they contain
sentences as parts and the truth or falsity of the compound depends entirely upon the
truth or falsity of these parts. This is in contrast to such complex sentences as

John believes that computing is easy
Kim hit Leslie because Sandy hates spinach

In these sentences there are sub-sentences (computing is easy for the first, Kim hit
Leslie and Sandy hates spinach for the second), but the truth or falsity of these sub-
sentences is not relevant to the truth or the entire sentence. It is just not relevant, in
assessing the truth of the first sentence, whether computing is in fact easy. John
might believe it regardless of whether it is true or false. And, so far as the second
sentence goes, whether or not it is true that Sandy hates spinach does not tell us why
Kim hit Leslie. What we say in such cases is that the sentences, while complex, are
not truth functional compounds of their parts. For, more than just the truth or falsity
of the parts is relevant to determining the truth or falsity of the whole.

3.3.3. Logical Connectives and their Stylistic Variants

Sentences that are complex -- whether truth functionally complex or otherwise --
are made up of simpler sentences. These simpler sentences are joined together by
sentence conneclives to make the complex sentence. When the result is a truth-
functionally complex sentence, we say that the conmectives involved are truth
functional connectives. In the above examples, we used and, or, unless, not, etc., as
truth functional connectives; and we used believes that and because as mon-truth-
functional connmectives. (Other examples of non-truth-functional conmmectives are
before, in order that, it is necessary that, and most "psychological verbs” such as
believes.)

An atomic sentence is one that is not truth-functionally compound, although it
may be complex in a non-truth-functional way. Some examples of atomic sentences
are:

Snow is white
There is a blackboard in this room
John got tired because his friend forced him to help paint his house in order to
make it more marketable so that he could easily sell it before he moves to
Disneyland
It is common to pick out five truth-functional connectives as standard. They are: it is
not the case that, and, or, if-then, if and only if. However, sometimes even these

Section 3 August 9, 1986 Translation

Chapter 3 -18- Propositional Logic

connectives may be used in a non-truth-functional way, and it is necessary to exercise
judgement in deciding whether a particular use of one of these conncctives is or is not
a truth-functional use. Of course, as we mentioned before, English allows us many
stylistic variants of these connectives. Here are some common stylistic variants of our
five standard connectives:

it is not the case that X: translated ~X

it is false that X;

not-X;

X is false;

X is not true;

X doesn’t happen;

X fails.
X and Y: translated (XA Y)

both X and Y;

X but Y;

X although Y;

X, however Y;

X, whereas Y;

X, and also Y;

X besides Y; -

X, nevertheless Y;

X, nonetheless Y;

X even though Y;

not only X but also Y;

X in spite of the fact that Y;

X, but even so, Y;

X plus the fact that Y;

X inasmuch as Y;

X, while Y;

X, since Y;

X,asY;

X together with Y;

Xaswellas Y;

the conjunction of X and Y.
X or Y: translated (XVY)

either X or Y;

Xorelse Y;

X or, alternatively Y;

X otherwise Y;

X with the alternative that Y;

X unless Y.

section 3 August 9, 1986 Translation

Chapter 3 -19- Propositional Logic

if X, then Y: translated (X —>VY)

irx,Y;

Y, i X,

given that X, (it follows that) Y;

in case X, Y;

insofaras X, Y;

X leads to Y;

whenever X, Y;

Xonly if Y;

only il Y, X;

provided that X, Y;

Y, provided that X;

so longas X, Y;

X is a sufficient condition for Y;

Y is a necessary condition for X.
X if and only if Y: translated (X <>Y)

X exactly in case Y;

X just in case Y;

X when and only when Y;

X is equivalent to Y;

X is a necessary and sufficient condition for Y.
(We shall not now go into a long discussion of these translations, but a few things
might be noted. First, you should be aware of some terminology. The and connective
is called the "conjunctive operator”, it forms a conjunction and each of its two parts is
called a conjunct. The or connective is called the "disjunctive operator”, it forms a
disjunction and each of its two parts is called a disjunct. The if-then connective is
called the "conditional operator”, it forms a conditional! The part inside the "if"
clause is called the antecedent of the conditional, and the part inside the "then” clause
is called the consequent of the conditional. The if and only if connective is called the
"biconditional operator”. Second, you should especially notice that the conditional
operator has a number of pecularities. In English, it can be said in either order: you
can say "if X, then Y~ or you can say "Y, if X" Furthermore, "if" has a number of
stylistic variants such as "provided that”, "given that”, "in case”, "whenever”, and the
like. So we can combine the two of these and say such things as "Y, whenever X"
(which would mean the same as "if X, then Y"). You should also pay particular
attention to the fact that only, when it is combined with some stylistic variant of "il™,
converts the antecedent clause to a consequent clause. Therefore, while ™Y, if X"
means the same as "if X then Y", the sentence "Y only if X" means the same as "iryY
then X™. As it turns out, "only” can be combined with almost all the stylistic variants
of "if™; s0 if we were to say "Y only provided that X" we would mean "if Y then X", but
it we said "Y provided that X” we would mean "if X then Y". The biconditional is
ohviously a combination of "if" and "only if" conjoined with "and”. Therefore you can
get a stylistic variant of 7if and only if” by first getting a stylistic variant of "if”, then
getting a stylistic variaot of "only if", and then conjoining them with some stylistic
variant of "and”. For example, "X if and only if Y™ could be stated as "X whenever

| Sometimes it is called the “implication operator”, forming an implication.

ction 3 August 9, 1986 Translation

Chapter 3 -20- Propositional Logic

but only whenever Y7, or as *X is a necessary and sufficient condition for Y". The or
that we are interested in is the so-called inclusive ‘or’, When a statement is formed
using this connective, it means that at least one of the two disjuncts is true, possibly
both. When we have a scntence using unless people’s intuitions about its meaning
differ. We have given it as a stylistic variant of or, since that is the simplest way to
ranslate it. Other people, when faced with a sentence like X unless Y, prefer to view
it as meaning "if X doesn't happen, then Y will"; and still other people prefer to view
it as "il Y doesn’t happen then X will". These last two viewpoints would translate it
respectively as (~X—>Y) and (~Y—>X). As we shall later see, these are equivalent
to onc another, and both equivalent to (X'V Y). So it really doesn’t matter which way
one chooses to translate this.)

3.3.4, Atomic Sentences

A truth functional connective (or logical connective, as it is often called; we shall
just use the simple "connective” if no ambiguity will result) ts simpler
together to make more complex ones. (Although it's a peculiar notion of "connects”,
since a negation only has one subsentence. It is called a unary conmnective for this
reason; the others are binary connectives.) Of course these simpler sentences aren't
neccssarily atomic sentences; the example above of

If either John or Mary dances, then Bill sings
bas cither John or Mary dances as a non-atomic simpler sentence.

We will use upper case letters to stand for or abbreviate atomic sentences of
English. Of course, il you bad a lot of different sentences of English to translate into
the formal system, you would perbaps need more than these letters. So we allow
oursclves the possibility of using subscripts on these letters. Ay would then be a

. different proposition from A,, and both of these would be different from just plain A.
It is often common to use letters with some association to the atomic sentences being
abbreviated. So Bill dances might be abbreviated as B; and Mary sings as M. So in
this text, we will adopt the comvention that capital letters (usually with some
association to the English sentence) will be used to abbreviate atomic sentences.

It would be helpful to have some method of talking about any sentence,
regardless of whether atomic or compound. We shall use lower case letters, especially
p, g, r for this purpose. Capital letters therefore abbreviate atomic sentences and the
Jower case ones are variables which can be replaced by any sentence whatsoever. (Im
the next chapter we shall discuss another use we have for lower case letters. We hope
that by that time enough will be clear so that context really can distinguish when we
mean one and when we mean the other.)

Every sentence is ultimately made up of atomic sentences, comnectives, and
punctuation. We have discussed how atomic sentences are abbreviated; let us now
turn to the conmectives. With regard to them, we bave five classes, the stylistic
variants of: it is not the case, and, or, if-then, if and only if. Each class is abbreviated
by some symbol. We use one standard set, but for typographical convenience one
often sees other symbols. Here is a partial list of some common ones.

English Our Text Other Notations
it is not the case that p ~p -p.p',—p.p. Np
pand q (phgq) (p8q). (p-q). (pq). Kpq
porq (pva) (p+4q), Apq
if p then g (p—>q) (p24q). Cpg
pif and onlyif g (p<>q) | (p=gq). Epg

As far as intra-sentential punctuation goes, English has commas, semicolons, dashes,

Section 3 August 9, 1988 Translation

Chapter 3 -21- Propositional Logic

colons. ete. In our symbolic language the only punctuation are parentheses, although
in order to increase visibility and readability we often use different styles of
parentheses -- brackets, braces. The point of these punctuation marks is to group
together the parts of the sentence which go together, so as to avoid ambiguity. For
instance, the string of symbols (pVgAr) would be ambiguous between ((pV g)Ar) and
(pv(gAr)). In English a similar ambiguity occurs in "Come with your spouse or come
allcue and have a good time”. To resolve the ambiguity in English we place a comma
either after "spouse” or after "alone”. The parentheses in the symbolic version perform
the same function.

3.3.5. The Formulas of Propositional Logic

Let us return to the task of translating English into our symbolism. It would be
good to know ﬁ‘rst. what, precisely, the symbolic language is. Here is an inductive (or
rr:urs}ve) definition of formula of propositional logic. (The concept of an inductive or
recursive definition will be more fully discussed in Chapter 6.)

1.. Any atomic sentence is a formula.
2.: If pis a formula, then ~p is a formula.
3.: If p and g are both formulas, then so are
(prq)
(pvq)
(p—>9)
(pe>q)
?r.rings of symbaols wPich do not satisfy 1-3 are not formulas by this definition. And it
is these fpr_mulas wi!u:h we are interested in using in propositional logic. (Sometimes
these legitimate strings are called well-formed formulas (of propositional logic), or
simply wff's (of propositional logic).) Any string of symbols can be tested against this
definition to determine whether it is a formula (of the propositional logic). For
example
((AAB)—{(Ce>B)v-A))
is a formula, following this reasoning
(a) A, B, and C are all atomic sentences and hence are formulas by 1.
(b) Therefore, (A A B) is a formula by 3; (C<>B) is a formula by 3; and ~A is a
formula by 2.
(c) Since (C<>B8) and ~A are formulas, so is ((C<>B)v~A) by 3.
(d) Since (AAB) and ((C<>B)v~A) are formulas, so s
((AAB)—>{(C<>B"/~A)) by 3.
It might be noticgd that rule 2 does not introduce parentheses, whereas rule 3 always
does. This sometimes makes the formulas difficult to read because of the proliferation
of parentheses. We've already mentioned the possibility of using diflerent styles of
pm_'cntheses so as to break up the monotony, so that the above formula might be
written as {{Aj'\B]—>(|CHB]U~A)}. Another common practice is to define
precedence relations amongst the connectives so that there is always a unique way of
restoring parentheses. For instance, it is common to usc this ordering
highest: =
middle: v , A
lowest: <>, —>
(Often further degrees of precedence are introduced, as sometimes A is given a higher
precedence than V, and sometimes —> higher than <=>. We shall just stick to the

Section 3 August 9, 1986 Translation

Chapter 3 -22- Propositional Logic

simple three-way list shown.) When faced with a string like ~A V B, we recognize that
~ has higher precedence than V, and so parentheses are restored to yield (~AVB)
rather than ~(AVB). A formula like AAB—>CVD would have its parentheses
restored as ((AAB)—>(CVD)) rather than any other way. Our formula of above
might therefore be written as

AAB—>{C<>B)V~A
A final convention which is often used is that when the truth and falsity of the
complex scntence is unaflected by the replacement of parentheses then we may omit
them. This is most commonly employed with respect to A and V. As we shall soon
see, ((A AB)AC) has the same truth conditions as (A A(BAC)); so we can represent it
as (AABAC). The same holds true for (AVBYC). Of course mizing A and V does
make a difference, as we noted above. (AA(BVC)) does not have the same truth
conditions or truth table as ((AAB)VC), so we cannot eliminate the internal
parentheses. And the sentence ((A—>B)—>C) has very different truth conditions
from (A—>{B—>C)) and so their internal parentheses cannot be removed.
(A<>{B<>C)) and ((A<>B)<>C) do have the same truth conditions, so their
internal parentheses could be removed, although most texts do not do this.

Of course, the real problem is with clarity; so often we will keep parentheses even
if they are not strictly necessary.

3.3.8. The Process of Translation

We are now ready to attempt the process of translation from English to our
symbolic language. The overall idea is as discussed earlier: first convert the ordinary
English to our "stilted English” by eliminating stylistic variance and by judicious
placement of parentheses, and then convert the *stilted English” into symbels. This
second step is essentially trivial, requiring omly the construction of a "scheme of
abbreviation” (which is a statement of what abbreviation we shall use for each atomic
sentence) and replacement of the standard connectives by their symbolic counterparts.
It is the first step which is much more difficult.

lL.et us proceed by giving an example. As you will see, the crucial part of the
procedure has to do with discovering the "main connective” of a sentence (or sentence
part), and with being able correctly to spot stylistic variants of our "standard
connectives.” The procedure we shall develop is sometimes called "top-down parsing”
of a sentence. Let us start with a few simple examples. Suppose we are to translate
the sentence

If 31541 is an odd number, then either it is a prime number or the product of two
odd numbers.

To translate or parse this sentence we shall wish to find its "main connective”. Here
the comma tells us that what is being asserted is basically an "if-then” statement, so
we keep track of this:’
{ iL 3'+1 is an odd number, then either it is a prime number or the product of
two odd numbers)
We now notice that the antecedent is an atomic sentence and canmot be further
parsed, but that the consequent is itsell a complex statement. In particular, it is a
disjunction of two simpler statements and the ‘'it' which serves as a common subject is
really 3'5+1. So we replace the "either - or” by the simple "or”, fill in the real subject
of the embedded sentences, and add the parentheses that go with the "or”.
(il 3'%+1 is an odd number, then (3'+1 is a prime number or 3'5+1 is the
product of two odd numbers))

on 3 August 9, 1986 Translation

EEEBREREEEREREERENREREOEEOENTN

Chapter 3 . -23- Propositional Logic

We now have parsed this down to atomic sentences. We set up a scheme of
abbreviation, such as
0: 3'%+1 is an odd number
P: 3'%+1 is a prime number
N: 31541 is the product of two odd numbers
And we are finally in a position to directly translate the sentence, yielding
(0—>PVN))
Now consider the complex sentence
If John either plays pool or goes swimming, then, provided that Sally goes to
class, he will flunk the midterm unless she gives him the notes.
The first step is to locate the "main connective” of the sentence: ask yourself what is
being asscrted here? English punctuation is a valuable (although not infallible) clue
here. In this example, it seems pretty clear that what's being claimed is: if such-and-
such happens, then so-and-so will happen”, making the "if-then” be the main
connective. (The punctuation of a comma before the ‘then’ helps, but of course there
were other commas in the sentence). Having located the main connective, replace it by
the "standard name” of that conpective (here "if-then™ already is its own standard
name), and supply the parentheses that go with it. This yields
(I£ John either plays pool or goes swimming, then provided that Sally goes to
class, he will lunk the midterm unless she gives him the notes)
Repeat this procedure with the parts remaining. In the antecedent (the "if” clause) we
have, pretty obviously, an ‘or’ statement. And equally obviously the two disjuncts are
John plays pool and John gocs swimming. This would yield, after we expand the
cllipsis and add parentheses,
(IL (John plays pool or John goes swimming) then provided that Sally goes to
class, he will funk the midterm unless she gives him the notes)
Now let's do it to the consequent. We find the main connective, which is ‘provided
that' and its comma. We recall that this is a stylistic variant of "if-then"; so we
replace it by "if-then” and its parentheses. This yields
(I (John plays pool or John goes swimming) then (if Sally goes to class then he
will Aunk the midterm unless she gives him the notes))
Turning our attention to the last part of the sentence, we recognize that its main
connective is ‘unless’ and recall that this is a stylistic variant of "or™. So we replace it
by "or”, add its associated parentheses, and fill in the referents of she and he, yielding

(if (John plays pool gr Jobn goes swimming) then (if Sally goes to class then
(John will lunk the midterm or Sally gives John the notes)))

Since there are no more connectives to consider, we are now ready to replace the
atomic sentences by their abbreviations and the standard connectives by their
abbreviations. So we construct a scheme of abbreviation, such as

P: John plays pool

5: John goes swimming

C: Sally goes to class

F: John will flunk the midterm

G: Sally gives John the notes
and replace, yielding

((PVS)—{C—>{FV G)))

siom 3 August 9, 1986 Translation

Chapter 3 -24- Propositional Logic

Deleting a few parentheses, we get
PvS—>{C—>FVG)
Practice is the only way to become proficient at this. Try it with
a: If it snows or freezes tomorrow, then if the kumquats are in blossom and are
unprotected, then the crop will be ruined unless a miracle occurs.
b: Not both Fred and Randy will win the programming contest.
¢: Kim wants someone to take him on a date, but Sandy's car isn't working and
Leslie is sick in bed.
d: If Len gets sick if he drinks too much, then given that he is healthy if and only if
he is sober, he drinks too much if he gets sick.
We shall do it with one more sentence. Recall that p only if gis a stylistic variant of if
p then g. Further we remark that ncither p nor g is a stylistic variant of both of not-
(cither p or g) and (not-p and not-g). (You can look at nmeither...nor... as a way of
pegating an entire either...or... - which gives you the former, or as saying that
*neither are true”, i.e., both are false - which gives you the latter. As we shall see,
these are equivalent ways of saying the same thing.) Consider the sentence
Il John goes to school only if Mary neither stays home nor goes to work, then
neither one will be happy unless both are crazy.
We first spot "if-then” as the main connective. This yields
(il John goes to school only if Mary neither stays home nor goes to work then
neither one will be happy unless both are crazy)
Now, working on the antecedent, we spot "only if” as the main connective, giving us
(iL(il John goes to school then Mary neither stays home nor goes to work) then
peither one will be happy unless both are crazy)
The Mary neither stays home nor goes to work part is a stylistic variant of it is not the
case that (Mary stays home or Mary goes to work), so we get
(il (il John goes to school then not- (Mary stays home or Mary goes to work))
then neither one will be happy unless both are crazy)
Turning our attention to the consequent, we recognize unless as the main connective
(and a stylistic variant of or). So we get
{ if (il John goes to school then not- (Mary stays home aor Mary goes to work))
then (neither one will be happy ar both are crazy))
The neither one will be happy becomes it is nof the case that (John will be happy or
Mary will be happy). This yiclds
(iL(il John goes to school then not- (Mary stays home or Mary goes to work))
then (not- (John will be happy ar Mary will be happy) oz both are crazy))
And lastly, the both are crazyis a stylistic variant of John is crazy and Mary is crazy
so overall we get
{ il (iL John goes to school then not- (Mary stays home or Mary goes to work))
then (not- (John is happy or Mary is happy) or (John is crazy and Mary is
crazy)))
which is our "stilted English™ version of the original sentence. We now construct a
scheme of abbreviation for the atomic sentences, such as
S: John goes to school
H: Mary stays home
W: Mary goes to work

Section 3 August 9, 1080 Translation

Chapter 3 - 25 - Propositional Logic

J: John will be happy

M: Mary will be happy

C: John is crazy

D: Mary is crazy
Doing all the replacements yields

(S—>~(HV W))—>{(~(JVM)V(CAD)))
Deleting some parentheses, we can reduce this to

(§—>~(HV W))—>~(JVM)V(CAD)

Section 3.4. Truth Tables

Truth tables are a method to tabulate whether a truth-functionally compound
sentence is true or false, based on the truth or falsity of the components. If, for
example, you know that p is true, then you automatically know ~p to be false (and the
reverse). Of course, you probably don't know whether p is true or is false, so we give
a table consisting of all the possibilities, namely two. Here is a truth table for ~p.

T F
F T

The left side of the vertical line says: "when p has the value _" and the right side says
"then ~p has the value __". When we are considering the binary connectives, each of
the parts can be true or false independently, so there are four possibilities to be

considered. The various binary connectives we have considered have the following
truth tables.

q | (prg) (pva) (p—>q) (p<>q)

p

T T T T T T
T F F T F F
F T F T T F
F F F F T T

As you can easily see, there are 16 possible binary truth functions. We have picked
these four because of their nearness to various English connectives. (Later on, we shall
mention some of the others such as NAND, NOR, and XOR). Given these basic truth
tables for the four binary and one unary connectives, we can comstruct a truth table
for any complex sentence by building it up from the truth tables of its parts.
Sometimes when the final truth table for a sentence is given, it will consist of all T's.
Such sentences are called tautologies. Other times the truth table will consist of all F's
in its final column. Such sentences are called contradictions. Scntences which have
truth tables that are not all T's and not all [''s are called contingencies.

Let us look a bit at the process of writing a truth table for an arbitrary formula,
say (-{P—>Q)<>{RV~Q)). The strategy will be to first figure out all the possible
combinations of T and F for the three sentence letters occurring in our formula. This
is casily done by writing a table that consists of a left side and a right side. The left
cide has columns for each sentence letter. (The right side will be left blank for now).

roo il
[

Now, for the column closest to the vertical bar (here, our R), alternate T's and F’s,

Section 4 August 9, 1986 Truth Tables

Chapter 3 -26- Propositional Logic

For the next column (our Q), alternate pairs of T's and F's, and for the third column
(our P), alternate quadruples of T's and F's. This yields

r o rj

T T

e e
mEagmm =
Mm-S

If there had been a fourth sentence letter, it would have alternated octuples of T's and
F's. The total number of rows needed to capture all the possible truth combinations
for the sentence letters obviously depends on how many sentence letters there are: if
there are n sentence letters, we need 2" rows.

For the second step, we use the right half of the table. We construct a column for
each subformula of (~(P—>Q)<>{RV~Q)). Since the left side of the table already
contains columns for the atomic sentences, the right side needs to have columns only
for the more complex ones. In this example, the more complex ones are ~@, (P—>Q),
(Rv=Q), ~P—>Q), and the entire formula.

rR|-0 (P—Q) (RV=Q) ~{P—>Q) ({(P—>Q)<>RV=Q))

mmmma AT
mmagEamESaS
mgmagTmaTmS

Now, the basic truth tables for the connectives have been given above. We can just
apply them here to fill in the present table. For example, the basic truth table for ~p
says Lo change p's value. In the present example, under ~Q we would enter the
opposite of Q's value (which we get from the column under Q). This would yield

R|~0 (P—>Q) (RvV=Q) ~(P—>Q) (-{P—>Q)«>(RV-Q))

mmmma---|T
=m0
maTSTRSTH
e e B B e e R B |

Now we move to the next column, (P—>Q), and fill in its truth table (by referring to
the basic truth table for (p—>g) and using the P and Q columns).

Section 4 August 9, 1986 Truth Tables

Chapter 3 -27- Propositional Logic

~Q (P—>Q) (RV~Q) —HP—>0Q) ({P—>@Q)<>{RV=-Q))

EEE LT
=] 's)
IHmAmam |
HHammAagEs
EEECLEEE

Now go to the (RV—@Q) column, using the basic truth table for (pVg). Here the
relevant subparts are the R column and the ~@ column.

~Q (P—>Q) (Rv~Q) ~(P—>Q) (~{P—>Q)«>(RV=Q))

mmmmaaa94|v
mmAaATT S0
el R R i Rl | o)
HeEmmaams
HEaSammaS
Hamggams

And now we move to the ~{(P—>Q) column. Again we use the basic truth table for
negation, and apply it to the (P—>@Q) column.

(P—>Q) (Rv~Q) ~{P—>Q) (AP—>Q)<>(RV-Q))

mmmmgaa|T
mmeaEaTmma0
mEmamamam
EEEEC L LAY
e Ll i ke
HEamEEETE S
mmmmegamT

We are finally ready to determine the truth table for our original formula, which is in
the far right hand column. We fll in its entries using the basic (p<—>g) truth table
and the columns for ~(P—>@Q) and (RV~Q)

~Q (P—>Q) (Rv-Q) —H{P—>0Q) (~(P—>Q)<>RV-Q))

mmmm- =T
mmaaTTmaa0
mEamamam T
HEmmeEE T
EEC T
HEamAaaame
R R R N e B
R R R e e R

This final column (together with the specific order you chose on the left side of the
vertical bar) is the truth table for (<(P—>Q)<>(RV~@Q)). We see that it is true in
four cases:

a.Pand Qare T,RisF
b.Pand RareT,.Qis F

Section 4 August 9, 1986 Truth Tables

Chapter 3 - 28 - Propositional Logic

c.PisT,Qand R are F
d.QisT,PandR are F
It is false in the other four cases; bence, it is a contingency.

Section 3.5. Equivalences

In the above basic truth tables of the last section, note particularly the column
for ‘€=>". This table says that p and q have the same truth value: if p is true then so
is g, and if p is false then so is g. Hence if we wish to say that two formulas are
equivalent we can do it in one of two ways: (1) we could say that they have the same
truth table, or (2) we could say that the result of placing a <> between them is a
tautology. Either of these ways can be tested by truth tables. (By the way, we can
justify our earlier claims in this manner. Write a truth table for each of (pA(gAr))
and ((pAg)Ar). You will discover them to be the same, so we are justified in our
practice of dropping the internal parentheses -- it wouldn't matter which way you
added them back on. Now write a truth table for ~(pvq)e>{~pr~g). You will
discover that there are all T's in its final column; so it's a tautology. This means that
~(pV¢) and (~pA~q) are equivalent ways of saying the same thing. Recall that we
said that neither p nor gcould be translated either way.)

Koowledge of certain of these equivalents, especially the "DeMorgan Laws” which
relate ‘A, ‘V', and ‘~' can make your programming life much easier. Most
programming languages have tives” corresponding to these three. For
example, Pascal has ‘AND’, ‘OR’, and ‘NOT'. One type of "atomic expression” in
Pascal is simple equality, greater than, and less than between variables. So 'X<Y',
‘A=, and the like are "atomic expressions” which can be either true or false, and
which can be made into compound expressi by ns of the tives. Pascal
(and other programming languages) use such expressions to control the action of a
loop. Two loop structures in Pascal are

WIILE p DO
<body>

and
REPEAT <body>
UNTIL p

The "while loop™ works as follows: the statement(s) in the "body” are continually
performed so long as p is true. p is checked for truth or falsity, and if it is true then
the "body" is performed and p is again checked. If it is true the process is repeated.
When p is false the “body” is mot performed, and control is passed to the next
statement in line. The "until loop™ performs the "body” until p becomes true - that
is, as long as p is false. (Actually, it performs the body, then checks for p's truth or
falsity. If p is false, then it does it all again. If p is true, control is passed to the next
statement.)

Suppose you wish to perform some action as long as some complex state of affairs
is true. Let's say you want to perform “body” as long as either A<B or B=50. If you
were to use the while loop you would say

WHILE ((A<B) OR (B=50)) DO

<body>
If you were to use an until loop you would say

ction 5 August 9, 1986 Equivalences

Chapter 3 -29- Propositional Logic

REPEAT <body>
UNTIL NOT((A<B) OR (B=50))
Using the DeMorgan Laws you could alternatively put this last loop as
REPEAT <body>
UNTIL (NOT(A<B) AND NOT(B=50))
But these are easy cases. Suppose instead you want a loop to stop when either A>B
or A<C, and you were to use a while loop. You should say to yourself: "The loop is to
stop when one or the other of these statements becomes true. That is, it continues so
long as the disjunction is false.” So you write
WHILE NOT((A>B) OR (A<C)) DO
<body>
You might also appeal to DeMorgan’s Laws and say to yourself: "So it stops when one
or the other of the statements becomes true. So it must continue as long as they're
both false.” So you might write
WHILE (NOT(A>B) AND NOT(A<C)) DO
<body>
Suppose the desire was instead to write a while loop to stop when both A=B and
B=C. Yousay "So it is to stop when (A=B AND B=C); it must therefore continue as
long as this compound statement is false.” So you write
WHILE NOT({A=B) AND (B=C)) DO
<body>
Or, using DeMorgan's Laws, you write
WHILE (NOT(A=B) OR NOT(B=C)) DO
<body >
Finally suppose you want to loop to stop when neither A=B nor B=C. Again you say:
"Stops when NOT(A=B OR B=C). Therefore continues so long as this compound
statement is false.” So you write
WHILE ((A=B) OR (B=C)) DO
<body>
A good grasp of these simple equivalences helps programming a lot. If you don't know
the answer off the top of your head, you can always write a truth table to figure it out.

Section 3.6. Truth Table Shortcuts and Related Methods

3.8.1. Some Shortcuts

As mentioned above, to consider every possible assignment of T or F to each of
the n sentence letters of a given complex sentence would require a truth table with 27
rows in it. When there are more than three dilferent sentence letters in a sentence, the
construction of an entire truth table becomes extremely long and tedious. Thercfore
various shortcuts have been developed to aid in evaluating such sentences. Using the
shortcuts depends on what you wish to show about the sentence in question. For
example, if you wonder whether the formula is a tautology, you might check only
those rows which you don't already know that it's true. Consider, for example, a
sentence like (pAgq)—>p. We know from the ‘—>"' truth table that the only time an
\——>' statement can be false is when its antecedent is true. And since the antecedent

Section 0 August 9, 1986 Truth Table Shortcuts and Related

