

Test 4

(version for practice)

Instructor: Dr. R.A.G. Seely

(Apr 2017)

(Marks)

(6)

Algebra & Functions (Maths 201–016)

Show your work—justify all your answers. Just having the correct answer is not sufficient. Pace yourself—a rough guide is to spend not more than 2m minutes on a question worth m marks.

(4×2) 1. Given
$$f(x) = \sqrt{x^2 + 16}$$
, $g(x) = 2x + 1$, calculate:
(a) $f(3) - g(3)$ (b) $f(g(1))$ (c) $g(x+3)$ (d) all values x so that $g(x) = 33$.

(3) 2. For the following graphs, say which ones are functions (and which are not).

- (5) 4. If θ is an acute angle for which $\cos \theta = \frac{5}{13}$, find the values of the other five trigonometric functions. (Give exact values, simplified.)
- (4) 5. Given this right-angled triangle: find the two other side lengths. (Give exact values, simplified.)

and (f) the local extrema.

(3×2) 6. Evaluate the following logarithmic expressions. (Give your answers as exact simplified expressions.)

(a)
$$\log_2(\frac{1}{32})$$
 (b) $\frac{\ln(e^6)}{\ln(e^{12})}$ (c) $145 \log_{54}(5-4)$

 (6×3) 7. Solve the following equations:

(a) $\sin(x) - \cos(x) = 0$	(b) $5^{x+2} = 125^{(x^2)}$
(c) $\frac{1}{6}\log_5(x) = \frac{1}{2}$	(d) $\log_2(x) + \log_2(x-2) = 3$
(e) $5 = 4 + \frac{7^{2x+1}}{7^3}$	(f) $4^{x+2} = \frac{1}{16}$