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Abstract. We prove the leading order of a conjecture by Fyodorov, Hiary and Keating,
about the maximum of the Riemann zeta function on random intervals along the critical
line. More precisely, if t is uniformly distributed in [T, 2T ], then

max
|t−u|≤1

log

∣∣∣∣ζ (1

2
+ iu

)∣∣∣∣ = (1 + o(1)) log log T

with probability converging to 1 as T →∞.

1. Introduction

1.1. Maximum of the Riemann ζ function on large and short intervals. Bounding
the maximum of the Riemann zeta function on the critical line has been the source of many
investigations since Lindelöf, who conjectured that for any ε > 0, we have

ζ

(
1

2
+ iT

)
= O(T ε) as T →∞.

Among the many arithmetic consequences of the Lindelöf hypothesis we highlight the exis-
tence of primes in all intervals [x, x+x1/2+ε] for all x large enough, and in almost all intervals
of the form [x, x+ xε]. The current best bound towards the Lindelöf hypothesis states that
|ζ(1

2
+ it)| � 1 + |t|13/84+ε , see [7].

Conditionally on the Riemann hypothesis, Littlewood [24] showed that

(1) ζ

(
1

2
+ iT

)
= O

(
exp

(
C

log T

log log T

))
,

for some constant C > 0. Apart from the value of the constant C [32, 36, 10], this bound
remains the best that is known.

There has been more progress on lower bounds for the maximal size of the zeta-function.
The first result is due to Titchmarsh, who proved that for any α < 1

2
, and large enough T ,

max
s∈[0,T ]

|ζ(1/2 + is)| ≥ exp(logα T ) .
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This result was improved to

max
s∈[0,T ]

|ζ(1/2 + is)| ≥ exp

(
c

√
log T

log log T

)
in [26] under the Riemann hypothesis, then the constant c was improved in [4] and, uncon-
ditionally, in [35]. The best lower bounds on the maximum were recently obtained in [6]: for
any c < 1/

√
2,

(2) max
s∈[0,T ]

∣∣∣∣ζ (1

2
+ is

)∣∣∣∣ ≥ exp

(
c

√
log T log log log T

log log T

)
.

Previous results (with differing methods) were established in [26], [4], [35].
From (1) and (2), the actual size order of this maximum is unclear, and its asymptotics are

not known to follow from conjectures in number theory. However, interesting probabilistic
arguments [13] suggest that

max
s∈[0,T ]

log |ζ(1/2 + is)| ∼
√

1

2
log T log log T .

There are however dissenting views, advocating that (1) is closer to the maximal size of the
Riemann zeta-function (see end of [13]). These arguments are motivated by Waldspurger’s
theorem and an analogy between integral weight and half-integral weight modular forms.

Although the global maximum up to height T can hardly be tested numerically, the
maximum along random short intervals was very precisely conjectured by Fyodorov, Hiary
and Keating, and their prediction is supported by numerics [15, 16]. This conjecture states
that if t is random, uniform in [0, T ], then

(3) max
|t−s|≤1

log

∣∣∣∣ζ (1

2
+ is

)∣∣∣∣ = log log T − 3

4
log log log T +XT ,

where the random variable XT converges weakly as T → ∞, to an explicit distribution1.
Our main result is a proof for the first order asymptotics in (3).

Theorem 1.1. Let t be uniform in [T, 2T ]. For any ε > 0, as T →∞ we have

1

T
meas

{
T ≤ t ≤ 2T : (1− ε) log log T < max

|t−s|≤1
log

∣∣∣∣ζ (1

2
+ is

)∣∣∣∣ < (1 + ε) log log T

}
→ 1.

While completing this work, we learned that the above result (as well as the analogue for
Im log ζ) was independently proved in [28] under the assumption of the Riemann hypothesis.

1.2. Extrema of log-correlated fields. Fyodorov, Hiary and Keating’s conjecture was
motivated by a connection with random matrices. This analogy has been a source of many
investigations, for example at the microscopic level since Montgomery’s pair correlation
conjecture [25], and the Keating–Snaith conjecture about the moments of the Riemann zeta
function [21]. The prediction (3) relies on the analogy at a different, mesoscopic scale.
Indeed, Selberg proved that log |ζ| is normally distributed on the critical axis, with variance

1For convenience we state the conjecture (3) with a random interval of length 2, without loss of generality:
only the parameters of the limiting distribution of XT are supposed to depend on this fixed length.
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of order 1
2

log log T [34]. His central limit theorem has been extended to evaluation points at
close distance in [8]: for example, if t is uniform on [T, 2T ] and 0 < h < 1 depends on t, the
covariance between log |ζ(1

2
+ it)| and log |ζ(1

2
+ i(t+ h))| is of order

(4) − 1

2
log max

(
h,

1

log T

)
,

where (log T )−1 is a natural threshold corresponding to the typical spacing between ζ zeros.
A parallel story holds for the logarithm of the characteristic polynomial of N × N Haar-
distributed unitary matrices, log |PN(z)|: for |z| = 1, it is asymptotically Gaussian with
variance 1

2
logN [21], and for two points on the unit circle within distance |z1 − z2| = h, the

covariance between log |PN(z1)| and log |PN(z2)| is of order −1
2

log max
(
h, 1

N

)
, analogously

to (4), see [8]. Fyodorov, Hiary and Keating gave a very precise conjecture for the maximum
of {log |PN(z)|, |z| = 1} by relying on the replica method, and techniques from statistical
mechanics predicting extreme values in disordered systems [14,17,18]. Finally, assuming the
logarithmic covariance form characterizes the extrema, they proposed the asymptotics (3).

The above Fyodorov-Hiary-Keating analogy, about extreme value theory, has recently
been proved in a variety of cases. For a probabilistic model of the Riemann zeta function
the leading order of the maximum on short intervals was obtained in [20], and the second
order in [3]. For the characteristic polynomial of random unitary matrices, the asymptotics
of the maximum at first order [2] and then second order [29] are known, together with
tightness of the third order [11] in the more general context of circular beta ensembles.
In the context of Hermitian invariant ensembles, the first order of the maximum of the
characteristic polynomial was proved in [23] and precise conjectures can be found in [19].
Theorem 1.1 and its conditional analogue in [28] are the first results about the maxima of
ζ itself, with the only source of randomness being the choice of the interval. Moreover, in
connection with the prediction from [15, 16] that log |ζ| behaves like a real log-correlated
random field, we note that [33] recently proved that ζ converges to a complex Gaussian
multiplicative chaos.

Finally, this work builds on, and adds to, the efforts to develop extreme value theory of
correlated systems. Such statistics are expected to lie on the same universality class for any
covariance of type (4). This class includes the two-dimensional Gaussian free field, branching
random walks, cover times of random walks, Gaussian multiplicative chaos, random matrices
and the Riemann zeta function. We do not give here a list of the many rigorous works on
this topic in recent years, pointing instead to [1] and the references therein.

1.3. About the proof. The short proof of the upper bound in Theorem 1.1 is given in
section 2. We only rely on a Sobolev inequality and classical second moment estimates for
ζ and ζ ′. The proved upper bound is actually stronger than as stated in Theorem 1.1: for
any function f diverging to +∞, as T →∞, we have

1

T
meas

{
max
|t−s|≤1

log

∣∣∣∣ζ (1

2
+ is

)∣∣∣∣ < (log log T ) + f(T )

}
→ 1.

This result is obtained in a different way in [28], also unconditionally.
The lower bound in Theorem 1.1 is proved in section 3. As a first step, we show that we

only need to prove the lower bound for a sufficiently long but finite length Dirichlet sum,
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which corresponds to the first exp((log T )1−ε) terms in the expansion of log |ζ| over primes,
for some ε > 0. This step makes use of ideas developed to give an alternative proof of
Selberg’s central limit theorem in [31]. Specifically we need to develop a maximal analogue
of the argument in [31]. The first observation is that it suffices to prove the lower bound for
the local maxima of ζ(σ + it) with σ slightly off the half-line, as large values off the half-
line propagate to the half-line. The second point is the construction of a special mollifier
M(s) which is shown to have two properties: On the one hand for almost all t we show
that |ζ(σ + iu)M(σ + iu)| ≈ 1 for all |t − u| ≤ 1. On the other hand we show that for
almost all t we have M(σ+ iu) ≈

∏
p≤X(1− p−σ+iu)−1 for all |t− u| ≤ 1 (and some suitably

chosen cut-off X). The combination of these two properties implies that for almost all t we
have |ζ(σ + iu)| ≈

∏
p≤X(1 − p−σ+iu)−1 for all |t − u| ≤ 1. Thus the problem is reduced to

understanding the local maximum of
∑

p≤X p
−σ+iu, which is a short sum over the primes.

A key idea in the proof of the lower bound for the local maximum of
∑

p≤X p
−σ+iu is the

identification of an approximate branching random walk in this Dirichlet polynomial. This
idea was used in [3] to study the extrema of a random model of the zeta function, and in the
subsequent works regarding the extremes of characteristic polynomials [2,11,23,29] and the
zeta function [28]. The conceptual picture is explained in detail in [3,2]. Once the branching
structure appears, we follow a second moment method which goes back to Bramson’s study
of branching Brownian motion [9]; specifically we use Kistler’s robust multiscale refinement
from [22], in a manner close to [2]. This method requires large deviation estimates and
speed of convergence to the normal distribution for our Dirichlet sums, when evaluated at
distinct points. For that purpose, the Fourier and Laplace transforms with high arguments
are evaluated through an expansion over moments. Large moments are typically hard to
approximate, a problem we overcome here following a decomposition from [30]: over a good
subset B of [T, 2T ] the first log log T moments provide an accurate approximation of the
characteristic function, and the complement of B has small enough measure.

It should be possible to obtain more refined results by pushing the parameter K to infinity,
but we have not attempted to carry this out.

For the rest of the paper, we will think of t has a uniform random variable on [T, 2T ]. We

will write accordingly P for 1
T

meas and E for 1
T

∫ 2T

T
. We will also write f(T ) = O(g(T )) if

|f(T )|
|g(T )| is bounded and f(T ) = o(g(T )) if |f(T )|

|g(T )| → 0. Finally, we will sometimes write for short

f(T )� g(T ) when f(T ) = O(g(T )).

2. Proof of the upper bound

The upper bound is a direct consequence of unconditional moment bounds and of the
Sobolev-type inequality in Lemma A.1.

Proposition 2.1. If V = V (T ) tends to infinity as T →∞, then

P
(

max
|t−u|≤1

|ζ(1/2 + iu)| > V log T
)

= O(1/V 2) = o(1) .

Proof. Chebyshev’s inequality implies

(5) P
(

max
|t−u|≤1

|ζ(1/2 + iu)| > V log T
)
≤ 1

V 2(log T )2
E
[

max
|t−u|≤1

|ζ(1/2 + iu)|2
]
.
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Lemma A.1 bounds the second moment of the maximum by

E
[

max
|t−u|≤1

|ζ(1/2 + iu)|2
]
�
(
E
[
|ζ(1/2 + iu)|2

])1/2·
(
E
[
|ζ ′(1/2 + iu)|2

])1/2
+E

[
|ζ(1/2 + iu)|2

]
.

The following bounds of the second moment of ζ and its derivative are known unconditionally
(see, e.g., [37] and [12]):

E
[
|ζ(1/2 + it)|2

]
� log T

E
[
|ζ ′(1/2 + it)|2

]
� (log T )3 .

We conclude that

E
[

max
|t−u|≤1

|ζ(1/2 + iu)|2
]
� (log T )2 .

The proposition follows from this and (5). �

3. Proof of the lower bound

The lower bound of Theorem 1.1 is proved in two main steps. First, it is shown that the
maximum on a short interval of log |ζ| is close to the maximum of a Dirichlet polynomial
slightly off the critical axis. This is the content of Proposition 3.1. Second, a lower bound
for the maximum of Dirichlet polynomials on an interval is proved using the robust approach
of [22] in Proposition 3.2.

The following notation will be used throughout the section. Following [22], we will fix a
large integer K = K(ε). For this K, we take

(6) σ0 =
1

2
+

(log T )
3

2K

log T
.

The primes will be divided into ranges as follows

(7) Jj = [exp((log T )
j
K ), exp((log T )

j+1
K )], j = 1, . . . , K − 2,

and J0 = [2, exp((log T )
1
K )]. We also denote

(8) X = exp((log T )1− 1
K ) .

Finally, the relevant Dirichlet polynomials are

(9) Pj(u) = Re
∑
p∈Jj

1

pσ0+iu
, j = 0, . . . , K − 2 .

The lower bound in our theorem follows from the two main propositions stated below.

Proposition 3.1. For any ε > 0 and K = K(ε) large enough,

P
(

max
|t−u|≤1

log |ζ(1/2 + iu)| > (1− 2ε) log log T

)
≥ P

(
max
|t−u|≤ 1

4

K−3∑
j=1

Pj(u) > (1− ε) log log T

)
+ o(1).

Proposition 3.2. For any K > 3 and 0 < λ < 1,

(10) P
(
∃u : |t− u| ≤ 1, Pj(u) >

λ

K
log log T for all 1 ≤ j ≤ K − 3

)
= 1 + o(1).
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Proof of Theorem 1.1. Since on the event of Proposition 3.2, we have

K−3∑
j=1

Pj(u) > λ

(
1− 3

K

)
log log T for some u with |t− u| ≤ 1.

Therefore it suffices to take K large and λ close to 1 in terms of ε to get the lower bound of
the theorem using Proposition 3.1. �

3.1. Proof of Proposition 3.1. The proof of the proposition is divided into three lemmas.
In the first, we bound the maximum on the critical axis by the ones off axis.

Lemma 3.3. Let ε > 0, V > 1 and 1
2
≤ σ ≤ 1

2
+ (log T )−1/2−ε. Then

P
(

max
|t−u|≤1

|ζ (1/2 + it) | > V

)
≥ P

(
max
|t−u|≤ 1

4

|ζ (σ + it) | > 2V

)
+ o(1).

Proof. Recall that, for any t ∈ R, we can write ζ(σ + it) as an average on the critical line
using the Poisson kernel:

(11) ζ(σ + it) =

∫ ∞
−∞

ζ (1/2 + iu) · 1

π

σ − 1/2

(u− t)2 + (σ − 1/2)2
du .

We denote the above Poisson kernel centered by ft(u).
Consider t ∈ [T, 2T ] such that max|v|≤ 1

4
|ζ (σ + i(t+ v)) | > 2V . We write v∗ for the

v ∈ [−1
4
, 1

4
] that achieves the maximum for this t. Equation (11) implies

2V < |ζ(σ + i(t+ v∗))| ≤
∫ ∞
−∞
|ζ (1/2 + i(u+ v?)) | ft(u)du .

In particular, for this t, it must be that∫ t+1/2

t−1/2

|ζ (1/2 + i(u+ v?)) | ft(u)du > V ,

or ∫
[t− 1

2
,t+ 1

2
]c
|ζ (1/2 + i(u+ v?)) | ft(u)du > V .

Since |v∗| ≤ 1
4

and ft(u) is a probability density centered at t, the first case implies that
max|t−u|≤1 |ζ (1/2 + it) | > V . Therefore it remains to prove that the set

{t :

∫
[t− 1

2
,t+ 1

2
]c
|ζ (1/2 + i(u+ v?)) | ft(u)du > V }

has small probability. Again, since |v∗| ≤ 1
4
, it suffices to show that the probability of∫

[t− 1
4
,t+ 1

4
]c
|ζ (1/2 + iu) | ft(u)du > V is small
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By Chebyshev’s inequality, the probability is smaller than

(σ − 1/2)2

π2V 2
E

[(∫
|t|>1/4

|ζ (1/2 + iu) |
(u− t)2 + (σ − 1/2)2

du

)2
]

� (log T )−1−2εE

[∫
[− 1

4
, 1
4

]c
|ζ (1/2 + i(t+ v)) |2 dv

v2

]
,

where second inequality follows by definition of σ and Jensen’s inequality applied on 1[− 1
4
, 1
4

]c
1
8

dv
v2

.

The last expression is O((log T )−2ε). To see this, note that E[|ζ (1/2 + i(t+ v)) |2] is O(log T )
for |v| ≤ T/2, say. For |v| > T/2, one can use the fact that ζ(1/2 + it) = O(t1/4) (see, e.g.
Theorem 5.12 in [37]) to conclude that the integral over this range of v is � 1. �

For the second lemma, we take the following approximation for the inverse of ζ:

(12) M(s) =
∑
n

µ(n)a(n)

ns
,

where for n square-free µ(n) = (−1)ω(n) and ω(n) is the number of distinct prime factors,
and for n non-square-free µ(n) = 0. The factor a(n) equals 1 if all primes factors of n are
smaller than X and Ω(n) ≤ 100K log log T =: ν, where Ω(n) is the number of primes factors
of n. The following shows that the maxima of |ζ| and M−1 are close.

Lemma 3.4. For any ε > 0, we have

P
(

max
|t−u|≤1

|M(σ0 + iu)ζ(σ0 + iu)− 1| > ε

)
= 1 + o(1) .

Proof. We closely follow [31, Section 4], adapting it to different scalings. Assume we can

prove that, uniformly in σ > 1
2

+ (log T )−1+ 1
K

+ε,

(13)

∫ 2T

T

|M(σ + is)ζ(σ + is)− 1|2 ds = o(T ).

Then Lemma (3.4) follows by Chebyshev’s inequality and Lemma A.2.
To prove (13), we first consider the cross term in the square expansion. We integrate along

the rectangular contour with vertices σ + iT, σ + i2T, 2 + iT, 2 + i2T , and use the estimates
ζ = O(T 1/4) [37] and M = O(T ε) on the horizontal parts. This gives∫ 2T

T

ζ(σ + is)M(σ + is)ds =

∫ 2T

T

ζ(2 + is)M(2 + is)ds+ O(T 1/4+ε) = T + O(T 1/4+ε),

where we used the simple expansion∫ 2T

T

ζ(2 + is)M(2 + is)ds = T +
∑

m,n:mn 6=1

a(m)µ(m)

(mn)2

∫ 2T

T

(mn)−isds = T + O(1).

We therefore proved

(14)

∫ 2T

T

|M(σ + is)ζ(σ + is)− 1|2 ds =

∫ 2T

T

|M(σ + is)ζ(σ + is)|2 ds− T + O(T 1/4+ε),



8 L.-P. ARGUIN, D. BELIUS, P. BOURGADE, M. RADZIWI L L, AND K. SOUNDARARAJAN

and we now turn to the evaluation of the above second moment:∫ 2T

T

|M(σ + is)ζ(σ + is)|2 ds =
∑
h,k

µ(h)µ(k)a(h)a(k)

(hk)σ

∫ 2T

T

(
h

k

)is

|ζ (σ + is)|2 ds .

It can be estimated based on the following result (see [31, Lemma 4]): for any h, k ≤ T and
1/2 < σ ≤ 1, we have

(15)∫ 2T

T

(
h

k

)is

|ζ (σ + is)|2 ds =

∫ 2T

T

(
ζ(2σ)

(
(h, k)2

hk

)σ
+

(
t

2π

)1−2σ

ζ(2− 2σ)

(
(h, k)2

hk

)1−σ
)

ds

+ O(T 1−σ+ε min(h, k)).

The contribution of the above error terms is bounded by

T 1−σ+ε
∑
h,k

a(h)a(k)
min(h, k)

(hk)σ
≤ T 1−σ+ε

(∑
h

a(h)

)2

≤ T 1−σ+ε

(∑
p≤X

1

)2ν

= O
(
T 1−σ+2ε

)
.

The contribution of the first term in (15) is

(16) Tζ(2σ)
∑
h,k

a(h)a(k)µ(h)µ(k)

(hk)2σ
(h, k)2σ .

If we omit the constraint Ω(h),Ω(k) ≤ ν in the above sum, we obtain (for A a subset of PX ,
the set of primes smaller than X, we write πA =

∏
p∈A p):

∑
h,k:p|hk⇒p≤X

µ(h)µ(k)

(hk)2σ
(h, k)2σ =

∑
A,B⊂PX

(−1)|A|+|B|

(πAπB)2σ
π2σ
A∩B

=
∑

A⊂PX ,C⊂A,D⊂(PX−A)

(−1)|A|+|C|+|D|

(πAπD)2σ
=
∏
p≤X

(
1− 1

p2σ

)

where we decomposed B = C ∪ D and used
∑

C⊂A(−1)|C| = 0 unless A = ∅. The error
consisting in terms such that Ω(h) > ν or Ω(k) > ν is bounded using (57) by

∑
h,k:p|hk⇒p≤X

Ω(h)>ν

|µ(h)µ(k)|(h, k)2σ

(hk)2σ
≤ e−ν

∑
h,k:p|hk⇒p≤X

|µ(h)µ(k)|(h, k)2σ

(hk)2σ
eΩ(h)

= e−ν
∑

A⊂PX ,D⊂(PX−A)

e|A|

(πAπD)2σ
≤ e−ν

( ∑
A⊂PX

e|A|

π2σ
A

)2

= e−ν
∏
p∈PX

(
1 +

e

p2σ

)2

= O

(
1

(log T )98

)
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where we used (53). We therefore proved that

(16) = Tζ(2σ)

(∏
p≤X

(
1− 1

p2σ

)
+ O

(
1

(log T )98

))

= T

(∏
p>X

(
1− 1

p2σ

)−1

+ O

(
1

(2σ − 1)(log T )98

))
= T + O

(
T

(log T )96

)
,

where we used (52) to estimate log
∏

p>X

(
1− 1

p2σ

)−1

=
∑

p>X p
−2σ + O(1/X). This is

negligible whenever (2σ − 1) logX → ∞ (here (2σ − 1)X = (log T )1/(2K)). Finally, the
contribution from the second term in (15) is shown to be negligible as in [31]. �

For the last reduction, define the Dirichlet polynomials

(17) Pj(s) =
∑
n∈Jj

Λ(n)

ns log n
, j = 0, . . . , K − 2 .

Then again, the maxima of M and exp(−
∑

j Pj) are close.

Lemma 3.5. We have

P

(
max
|t−u|≤1

∣∣∣∣∣M(σ0 + iu)− exp

(
K−2∑
j=0

−Pj(σ0 + iu)

)∣∣∣∣∣ > (log T )−2

)
= 1 + o(1) .

Proof. We defined the truncated exponential

(18) M(s) =
∑
k≤ν

(−1)k

k!
(
∑
j

Pj(s))k .

Consider the good set

(19) U =

{
t : max
|t−u|≤1

|Pj(σ0 + iu)| ≤ 10

K1/2
log log T, ∀0 ≤ j ≤ K − 3

}
.

(The choice of upper bound is motivated by the logarithmic correlations (4). These imply
that, for each j, the values of Pj are almost perfectly correlated for points at a distance

less than (log T )−
j+1
K , and close to independent for points farther than (log T )−

j
K apart.

Therefore, at a heuristic level, one expects that the maximum of Pj corresponds to the one

of (log T )
j+1
K independent Gaussian variables of variance 1

K
log log T , which is of the order of

√
j+1
K

log log T . Here we pick a bound that holds simultaneously for all j.) Note that on the
set U , M is arbitrarily close to exp(−

∑
j Pj) since

∑
k>ν

(−1)k

k!
(
∑
j

Pj(s))k �
∑
k>ν

1

k!
(log log T )k � (log T )−100 .
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Moreover, the complement has small probability, since by Chebyshev’s inequality applied
with ` = log log T and the Sobolev’s inequality (A.2) with L = log T , we get

P(U c) ≤
∑
j

1

( 10
K1/2 log log T )2`

E
[

max
|t−u|≤1

|Pj(σ0 + iu)|2`
]

�
∑
j

L

( 10
K1/2 log log T )2`

sup
|σ−σ0|≤L−1

E
[
|Pj(σ + iu)|2`

]
+ o(1) .

The bound on the moments in Lemma B.2 yields E
[
|Pj(σ + iu)|2`

]
� `!( 1

K
log log T )` for all

j uniformly for |σ − σ0| ≤ L−1. We conclude that

P(U c)� log T ``e−``1/2 ( 1
K

log log T )`

( 10
K1/2 log log T )2`

� (log T )−4 .

With the above observations, the proof of the lemma is reduced to showing that

P
(

max
|t−u|≤1

|M(σ0 + iu)−M(σ0 + iu)| > (log T )−3

)
= 1 + o(1) .

Again, this follows by Chebyshev’s inequality and the Sobolev’s inequality (A.2) if

E
[
|M(σ + iu)−M(σ + iu)|2

]
→ 0 uniformly for |σ − σ0| ≤ L−1.

To see this, note thatM can be written as a Dirichlet sum
∑

n b(n)n−s where |b(n)| ≤ 1, by
expanding the powers of Pj. Moreover b(n) = a(n)µ(n) whenever Ω(n) ≤ ν, and b(n) = 0
if n ≤ Xν . (This is because the difference between M and M only comes from the prime
powers in Pj.) Thus if we write c(n) = b(n)− µ(n)a(n), the L2 difference becomes

�
∑
m,n

|c(n)c(m)|
(mn)σ

E[(m/n)it] .

If m 6= n, since log(m/n)� (mn)−1/2, the sum is smaller than X2ν/T (by an upper bound
on the number of terms). If m = n, then we have that the sum is

�
∑
n

Ω(n)>ν
p\n⇒p≤X

n−1 � r−ν
∏
p≤X

(
1 +

r

p
+
∑
j>1

(
r

p

)j)
� (log T )−99r

where we used Rankin’s trick (57) with 1 < r < 2. This concludes the proof of the lemma. �

Proof of Proposition 3.1. Note that the difference between the Dirichlet polynomials Pj and
Pj is given by the prime powers

Q(σ0 + iu) :=
K−2∑
j=0

Pj(u)−
∑
p≤X

1

pσ0+iu
=

1

2

∑
p≤X

1

p2σ0+2iu
+ O(1) ,
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since the higher powers are summable by (52). Therefore by Chebyshev’s inequality and the
Sobolev inequality A.1 we have

P( max
|t−u|≤ 1

4

|Q(u)| > log log log T )

� 1

(log log log T )2

(
E[|Q(2σ0 + it)|2] + (E[|Q(2σ0 + it)|2])1/2(E[|Q(2σ0 + it)|2])1/2

)
.

A quick calculation with Lemma B.2 shows that the parenthesis is O(1), so that the probabil-
ity goes to 0. Furthermore, we have on the set U in (19) that max|t−u|≤1/4 |Pj| ≤ 10

K1/2 log log T
for j = 0 and K − 2 with probability going to 1. By taking K = K(ε) large enough, these
two observations imply

P

(
max
|t−u|≤ 1

4

Re
K−2∑
j=0

Pj(u) ≥ (1− 2ε) log log T

)
≥ P

(
max
|t−u|≤ 1

4

K−3∑
j=1

Pj(u) ≥ (1− ε) log log T

)
+o(1) .

The two events appearing in Lemma 3.4 and 3.5 have probability 1 + o(1), and so does their
intersection. (The two lemmas were proved for |t − u| ≤ 1 but holds the same way for a

smaller interval.) If u is such that Re
∑K−2

j=0 Pj(u) ≥ (1 − 3ε/2) log log T , we must have on
these two events

|ζ(σ0 + iu)| ≥ |M−1(σ0 + iu)| ≥ |(log T )−2 + e−
∑
j Pj |−1 ≥ (1 + o(1))(log T )1−2ε) .

Altogether, we have so far shown

P

(
max
|t−u|≤ 1

4

|ζ(σ0 + iu)| ≥ (log T )1−2ε

)
≥ P

(
max
|t−u|≤ 1

4

K−3∑
j=1

Pj(u) ≥ (1− ε) log log T

)
+ o(1) .

To conclude, it suffices to redefine ε and apply Lemma 3.3 with σ0 and V = (log T )1−2ε.
�

3.2. Proof of Proposition 3.2. The proof of the proposition is based on large deviation
estimates of the variables Pj(u), |t− u| ≤ 1, for one point and two points, see Propositions
3.9 and 3.10. These estimates are derived using large moments of Dirichlet polynomials given
in Lemma B.1, and by estimating the Laplace-Fourier transform of the polynomials using
the moments, see Proposition 3.8.

The first step is to show that the moments of sums of Pj(τ) are very close to Gaussian
moments.

Proposition 3.6. Let (ξj, j ≤ K−3) and (ξ′j, j ≤ K−3) in C such that |ξj|, |ξ′j| ≤ (log T )
1

16K .

Then for any n ≤ (log T )
1

2K , we have for |τ |, |τ ′| ≤ 1,

(20)

E

[(∑
j

{ξjPj(t+ τ) + ξ′jPj(t+ τ ′)}

)n]

= (2n− 1)!!

(∑
j

{s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j}

)n

+ O(e−(log T )
1

2K )
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for

(21) s2
j =

1

2

∑
p∈Jj

p−2σ0 and ρj(τ, τ
′) =

1

2

∑
p∈Jj

p−2σ0 cos(|τ − τ ′| log p).

The odd moments are O(e−(log T )
1

2K ) under the same condition on n.

Note that without the error term the right-hand side of (20) is precisely what the n-th
moment would be if Pj(t+τ), Pj(t+τ

′) were jointly Gaussian with variance s2
j and covariance

ρj(τ, τ
′), and uncorrelated for different j. Using (52) one obtains the bounds

(22) 2s2
j =

log log T

K
+O((log T )−

1
2K ), ρj(τ, τ

′) = O
(

(log T )−
1

2K

)
if |τ−τ ′| ≥ (log T )−

j+1
m .

Of course −s2
j ≤ ρj(τ, τ

′) ≤ s2
j and in fact ρj(τ, τ

′) is close to s2
j if |τ − τ ′| ≤ (log T )−

j−1
m ,

since then the cosine in the sum is close to 1.

Proof of Proposition 3.6. Let a(p) = a?(p) = 0 for p /∈ ∪jJj and

a(p) = (ξjp
−iτ + ξ′jp

−iτ ′)p−σ0 , a?(p) = (ξjp
iτ + ξ′jp

iτ ′)p−σ0 for p ∈ Jj.
so that ∑

j

{ξjPj(τ) + ξ′jPj(τ
′)} =

1

2

∑
p

{a(p)p−it + a?(p)pit}

a(p)a?(p) = (ξ2
j + ξ′j

2
+ 2ξjξ

′
j cos(|τ − τ ′| log p))p−2σ0 if p ∈ Jj.

In this case, the function J appearing in Lemma B.1 takes the form∏
p

J (a(p)a?(p)z2) =
∏
p

(
1 +

a(p)a?(p)z2

4
+ O(|a(p)a?(p)|2z4)

)

= exp

z2

2

1

2

∑
j

∑
p∈Jj

p−2σ0(ξ2
j + ξ′j

2
+ 2ξjξ

′
j cos(|τ − τ ′| log p))

FX(z) ,

for FX(z) a function which is analytic in a neighborhood of 0, satisfies FX(0) = 1 and whose
derivatives are at 0 are uniformly bounded by∑

j

∑
p∈Jj

|a(p)a?(p)|2 � (log T )
1

8K

∑
j

∑
p∈Jj

p−2 ≤ (log T )
1

8K e−(log T )
1
K .

The claim (20) follows from Lemma B.1 by taking the n-th derivative (note that the ex-
ponential term is exactly the moment generating function of a Gaussian) and noting that

the terms involving a derivative of FX(z) contribute at most O(e−(log T )
1

2K ). Also error term

from Lemma B.1 is X2n/T � e−(log T )
1

2K under the assumption n ≤ (log T )
1

2K .
�

It is necessary to introduce a cutoff to obtain a precise comparison of the Dirichlet poly-
nomials with Gaussians. With this in mind, we introduce the set

(23) B(τ) = {T ≤ t ≤ 2T : Pj(t+ τ) ≤ (log T )
1

4K ∀1 ≤ j ≤ K − 3} .
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Note that if the moments of a random variable Y grow no faster than Gaussian moments
with some σ2 > 0 up to ` ≤ L, then

(24) P(Y > x)� exp(− x2

2σ2
)

whenever x2

2σ2 ≤ L. This is proved using Chebyshev’s inequality and optimizing over `.
Together with Proposition 3.6 this observation yields the following:

Lemma 3.7. Let |τ | ≤ 1. We have

(25) P(B(τ)c)� exp

(
−(log T )

1
2K

log log T

)
.

Proof. A union bound gives P(B(τ)c) ≤
∑K−3

j=1 P(Pj(t + τ) > (log T )
1

4K ) . Recall that K is

fixed. We use the Gaussian bound (24) and (22). Note that
((log T )1/4K)

2

2s2j
≤ (log T )1/2K . This

yields the claimed bound. �

On B(τ), we can derive precise bounds for the Fourier-Laplace transforms of the Pj.

Proposition 3.8. Let ξj ∈ C, 1 ≤ j ≤ K − 3, such that |ξj| ≤ (log T )
1

16K . Then for |τ | ≤ 1,

(26) E

[
exp

(
K−3∑
j=1

ξjPj(t+ τ)

)
1B(τ)

]
= (1 + O(e−(log T )

1
8K )) exp

(
1

2

K−3∑
j=1

ξ2
j s

2
j

)
.

Moreover, if τ 6= τ ′, then for ξ′j ∈ C, 1 ≤ j ≤ K − 3, with |ξ′j| ≤ (log T )
1

16K , we also have

(27)
E
[
exp

(∑K−3
j=1 ξjPj(t+ τ) + ξ′jPj(t+ τ ′))

)
1B(τ)∩B(τ ′)

]
= (1 + O(e−(log T )

1
8K )) exp

(
1
2

∑K−3
j=1 {s2

j(ξ
2
j + ξ′2j) + 2ρj(τ, τ

′)ξjξ
′
j}
)
.

Proof. The one point bound (26) follows from the two-point bound (27) with ξ′j = 0. The
proof of the latter consists in developing the exponential and use the Gaussian moments in
Proposition 3.6. These hold up at least to moments (log T )

1
2K . The restriction to the set B

takes care of the higher moments. The difference between the restricted moments and the
ones calculated in the corollary induce some error when computing the moments. This error
gets worse as the moments grow. With this in mind, we choose to cut the development at

N = 10 (log T )
1

3K .

Write for simplicity Pj for Pj(t+ τ) and P ′j for Pj(t+ τ ′), and similarly for B(τ) and B(τ ′).
The exponential can be written as

(28)

E

[
exp

(∑
j

ξjPj + ξ′jP
′
j

)
1B∩B′

]
=

∑
n≤N

1

n!
E

[(∑
j

ξjPj + ξ′jP
′
j

)n
1B∩B′

]
+
∑
n>N

1

n!
E

[(∑
j

ξjPj + ξ′jP
′
j

)n
1B∩B′

]
.
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By the definition of B, the bound on ξj and ξ′j, and the choice of N , the second term is
bounded by
(29)∑
n>N

1

n!
((
∑
j

|ξj|+|ξ′j|)(log T )
1

4K )n � (2K(log T )
1

16K
+ 1

4K )N

N !
exp

(
2K(log T )

1
16K

+ 1
4K

)
� e−(log T )

1
3K ,

since 2K(log T )
1

16K
+ 1

4K ≤ N/10 = (log T )
1

3K . For the first sum in (28), the unrestricted even
moments are given by (20) in Proposition 3.6:
(30)

E

[(∑
j

ξjPj + ξ′jP
′
j

)2n
]

= (2n−1)!!

(∑
j

{
s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j

})n

+O(e−(log T )
1

2K ).

For the odd moments, we simply have by Proposition 3.6:

(31) E

[(∑
j

ξjPj + ξ′jP
′
j

)2n
]
� e−(log T )

1
2K .

We claim that for any n ≤ N , the unrestricted moments are close to the unrestricted ones:

(32) E[(
∑
j

ξjPj + ξ′jP
′
j)
n 1B∩B′ ] = E[(

∑
j

ξjPj + ξ′jP
′
j)
n] + O(e−(log T )

1
4K ) .

Indeed, Cauchy-Schwartz inequality implies

E[(
∑
j

ξjPj + ξ′jP
′
j)
n 1(B∩B′)c ] ≤ E[(

∑
j

ξjPj + ξ′jP
′
j)

2n]1/2 · (2P(Bc))1/2 .

From (30), we see that the first term is bounded by(
(2n)!

2nn!

)1/2

((log T )
1

4K )n � NN((log T )
1

4K )N .

Equation (32) then follows from the choice of N and Lemma 3.7. Using (32) together with
(30) and (31) as well as (29), we get

(33)

E

[
exp

(∑
j

ξjPj + ξ′jP
′
j

)
1B(τ)∩B(τ ′)

]

=
∑
n≤N/2

1

2nn!

(∑
j

{
s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j

})n

+ O(e−(log T )
1

4K )

= exp

(
1

2

∑
j

{
s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j

})
+ O(e−(log T )

1
4K ) .

The second inequality comes from the fact that for |ξj|, |ξ′j| ≤ (log T )
1

16K ,∑
n>N/2

1

n!

(
1

2

∑
j

{
s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j

})n

� e−(log T )
1

4K .
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The additive error in (33) can be absorbed in the main term since

e−(log T )
1

4K � e−(log T )
1

8K exp

(
1

2

∑
j

{
s2
j(ξ

2
j + ξ′

2
j) + 2ρj(τ, τ

′)ξjξ
′
j

})
.

�

The statements of Proposition 3.8 are used to get precise large deviation estimates on the
variables Pj. Define the event

(34) T (τ) = {t : Pj(t+ τ) > xj, ∀1 ≤ j ≤ K − 3}.
We first prove a two point bound for τ and τ ′ that are at mesoscopic distance.

Proposition 3.9. Let τ and τ ′ such that (log T )−(m+1)/K ≤ |τ − τ ′| < (log T )−m/K for some
0 ≤ m ≤ K − 3. We have for xj = 2s2

j

(35) P(T (τ) ∩ T (τ ′))� exp

(
m∑
j=1

−
x2
j

2s2
j

+
K−3∑
j=m+1

−
x2
j

s2
j

)
.

Proof. Since the right-hand side of (25) is of lower order than the right-hand side of (35),
it suffices to prove a bound on P(T (τ) ∩ T (τ ′) ∩ B(τ) ∩ B(τ ′)). For simplicity, we write
Pj = Pj(t + τ), P ′j = Pj(t + τ ′), B = B(τ) and B′ = B(τ ′). Note that by definition of the
set T , the probability P(T ∩ T ′ ∩B ∩B′) is bounded by

E

(
exp

(
K−3∑
j=1

βj(Pj + P ′j)

)
1B∩B′

)
exp

(
−2

K−3∑
j=1

βjx

)
for any βj > 0. Using (27) we get that this is at most

c exp

(
1

2

K−3∑
j=1

2β2
j (s

2
j + ρj(τ, τ

′)2)− 2
K−3∑
j=1

βjx

)
for all 0 < βj < (log T )

1
16K . For j ≤ m we have the trivial bound ρj(τ, τ

′) ≤ s2
j and for

j ≥ m+ 1 we have by (22) that ρj(τ, τ
′) = O(1), so that the probability is at most

c exp

(
1

2

m∑
j=1

4β2
j s

2
j +

1

2

K−3∑
j=m+1

2β2
j s

2
j − 2

K−3∑
j=1

βjx+ O(
K−3∑
j=m+1

β2
j )

)
.

By setting βj = x/s2
j for j ≥ m+ 1 and βj = x/(2s2

j) for j ≤ m we obtain (35). �

We also need precise large deviation bounds for one point τ and two points τ and τ ′ that
are at near macroscopic distance.

Proposition 3.10. For |τ | ≤ 1 we have for xj = 2s2
j

(36) P(T (τ)) ≥ (1 + o(1))
∏
j

∫ ∞
0

1√
2πs2

j

e
− (x+y)2

2s2
j dy .

Moreover, if |τ − τ ′| ≥ (log T )−
1

2K , then

(37) P(T (τ) ∩ T (τ ′)) ≤ (1 + o(1)) P(T (τ)) P(T (τ ′)) .
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The proof consists of inverting the Fourier-Laplace transform of Proposition 3.8. We will
do this by directly using the following lemma used in [2] and based on [5, Corollary 11.5].

Lemma 3.11. Let d ≥ 1. Let µ and ν be two probability measures on Rd with Fourier
transform µ̂ and ν̂. There exists constant c > 0 such that for any function f : Rd → R with
Lipschitz constant C and for any R,N > 0,∣∣∣∣∫

Rd
fdµ−

∫
Rd
fdν

∣∣∣∣ ≤ C

N
+‖f‖∞

{
(RN)d‖(µ̂− ν̂) 1(−N,N)d‖∞ + µ(((−R,R)d)c) + ν(((−R,R)d)c)

}
.

There will be a small error in the inversion if there is a broad range of parameters where
the Fourier transforms are close. In the present setting, the errors on the probability need
to be o((log T )−1)) to compensate the number of points in the discretization. The range of
the Fourier transform in Proposition 3.8 is thus a priori insufficient. To improve the error,
it is necessary to make a change of measure to make the value λ

K
log log T typical.

Proof of Proposition 3.10. We start with the one-point bound (36). It suffices to lower bound
P(T (τ) ∩B(τ)). We drop the dependence on τ for simplicity. Define the measure Q by the
Radon-Nikodym derivative

dQ
dP

=
exp(

∑
j βjPj)

E[exp(
∑

j βjPj)]
1B , βj =

xj
s2
j

.

The probability of T ∩B under P can be written as

P(T ∩B) = E
[
e
∑
j βjPj 1B

]
e−

∑
j βjx EQ

[
e−

∑
j(βjPj−x)1T

]
= (1 + o(1))e

−
∑
j

x2j

2s2
j EQ

[
e−

∑
j(βjPj−xj)1T

]
by Proposition 3.8 and the choice of β. It remains to prove that

(38) EQ
[
e−

∑
j(βjPj−xj)1T

]
≥ (1 + o(1))

∏
j

∫ ∞
0

e
−
xjy

s2
j

e
− y2

2s2
j√

2πs2
j

dy .

Consider the functions gj defined by

gj(y) =

{
0 if y ≤ 0

e−βjy if y ≥ (log T )−
1

64K2 ,

with a linear interpolation on the interval [0, (log T )−
1

64K2 ]. By construction, gj is Lipschitz

with constant (log T )
1

64K2 . Moreover,

EQ
[
e−

∑
j βj(Pj−xj)1T

]
≥ EQ

[∏
j

gj(Pj − xj)1T

]
.

The expectation on the right can now be compared to the expectation over independent
Gaussians variables with variance s2

j via Fourier inversion. The Fourier transform of the
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distribution of (Pj − xj, j ≤ K − 3) under Q is
(39)

EQ
[
ei

∑
j tj(Pj−xj)

]
= e−i

∑
j tjxj

E
[
e
∑
j(βj+itj)Pj 1B

]
E
[
e
∑
j βjPj 1B

] = (1+O(e−(log T )
1

8K )) exp

(
−1

2

∑
j

t2js
2
j

)
,

for |tj| ≤ (log T )
1

32K by Proposition 3.8. The right side corresponds to the Fourier transform
of independent Gaussian variables of variance s2

j . The difference between the Fourier trans-

forms on that range is O(e−(log T )
1

8K ). We apply Lemma 3.11 with d = K − 3, N = R =

(log T )
1

32K2 and f =
∏

j gj. This yields

(40)

∣∣∣∣∣∣EQ

[∏
j g(Pj − xj)1T

]
−
∏

j

∫∞
0
gj(y) e

− y2

2s2
j√

2πs2j
dy

∣∣∣∣∣∣
� (log T )

1
64K2

(log T )
1

32K2
+ (log T )

K−3
16K2

e(log T )
1

8K
+ e−(log T )

1
32K2

+ e−(log T )
1

32K2 � (log T )−
1

64K2 ,

where the last two terms in the first inequality come from the measure of ((−R,R)d)c under
the Gaussian and Q measure; they are bounded respectively by a standard Gaussian tail
bound and the corresponding bound under Q, which can be obtained from the exponential
Chebyshev inequality and the exponential moment bound (39) (with tj purely complex).
The claim (38) follows from (40) and the fact that

(41)

∣∣∣∣∣∣∣
∏
j

∫ ∞
0

gj(y)
e
− y2

2s2
j√

2πs2
j

dy −
∏
j

∫ ∞
0

e
−
xjy

s2
j

e
− y2

2s2
j√

2πs2
j

dy

∣∣∣∣∣∣∣� (log T )−
1

64K2 ,

since

(42)

∫ ∞
0

e
−
xjy

s2
j

e
− y2

2s2
j√

2πs2
j

≥ e

x2j

2s2
j

∫ ∞
xj/sj

e−u
2/2

√
2π

du� sj
xj
� (log T )−

1
64K2 .

This concludes the proof of (38).
The proof of the two-point bound (37) is done similarly. As in the proof of Proposition

3.9, it suffices to prove a bound on P(T (τ)∩ T (τ ′)∩B(τ)∩B(τ ′)). For simplicity, we write
P ′j for Pj(τ

′) and B′ for B(τ ′). The right change of measure is now

dQ
dP

=
exp(

∑
j βj(Pj + P ′j))

E[exp(
∑

j βj(Pj + P ′j))]
1B∩B′ , βj =

xj
s2
j

.

The probability P(T ∩ T ′ ∩B ∩B′) becomes

(43) E
[
e
∑
j βj(Pj+P

′
j) 1B∩B′

]
e−2

∑
j βjxj EQ

[
e−

∑
j βj(Pj+P

′
j−2xj)1T ∩T ′

]
.

It follows from (27) that

(44) E

[
exp

(
K−3∑
j=1

ξjPj + ξ′jP
′
j)

)
1B∩B′

]
= (1 + O((log T )−

1
4K ) exp

(
1

2

K−3∑
j=1

(ξ2
j + ξ′j

2
)s2
j

)
,
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for |ξ|, |ξ′| ≤ log T
1

16K , where we have used that |
∑

j ξjξ
′
jρj(τ, τ

′)| � (log T )
1

8K (log T )−
1

2K =

O((log T )−
1

4K ), by (22). We thus expect the variables ((Pj, P
′
j), j ≤ K − 3) to be approxi-

matively independent Gaussians of variance s2
j . By (44), the quantity in (43) equals

(1 + o(1))e
−

∑
j

x2j

s2
j EQ

[
e−

∑
j βj(Pj+Pj−2xj)1T ∩T ′

]
.

We now show that

(45) EQ
[
e−

∑
j βj(Pj+Pj−2xj)1T ∩T ′

]
≤ (1 + o(1))

∏
j

∫ ∞
0

e
−
xjy

s2
j
e
− y2

2s2
j√

2πs2
j

dy


2

.

This is proved by using Lemma 3.11 with d = 2(K−3), N = R = (log T )
1

32K2 and f =
∏

j gj
where gj is now

gj(y) =

{
0 if y ≤ −(log T )−

1
64K2

e−βjy if y > 0 ,

with linear interpolation in-between. This function has Lipschitz constant (log T )
1

64K2 , and
by definition,

(46) EQ

[
e−

∑
j βj(Pj+P

′
j−2xj)1T ∩T ′

]
≤ EQ

[∏
j

gj(Pj − xj)gj(P ′j − xj)1T ∩T ′
]
.

The Fourier transform under the Q-measure is

(47)

EQ

[
ei

∑
j(tjPj+t

′
jP
′
j−2xj)

]
= e−i

∑
j(tj+t

′
j)xj

E
[
e
∑
j(βj+itj)Pj+(βj+it′j)P

′
j 1B∩B′

]
E
[
e
∑
j βj(Pj+P

′
j) 1B∩B′

]
= (1 + O((log T )−

1
4K )) exp

(
−1

2

∑
j

(t2j + t′j
2
)s2
j

)
,

for |tj|, |t′j| ≤ (log T )
1

16K by (44). Again, the right side corresponds to the Fourier transform

of pairs of independent Gaussian variables of variance s2
j . The difference between the two

Fourier transform is O((log T )−
1

4K ). Lemma 3.11 directly implies

(48)

∣∣∣∣∣∣EQ

[∏
j gj(Pj − xj)gj(P ′j − xj)1T ∩T ′

]
−
∏

j

(∫∞
0
gj(y)e

− y2

2s2
j dy

)2
∣∣∣∣∣∣

� (log T )
1

64K2

(log T )
1

32K2
+ (log T )

2(K−3)

16K2

(log T )
1

4K
+ e−(log T )

1
32K2

+ e−(log T )
1

32K2 � (log T )−
1

64K2 ,

similarily to in (40). The claim (45) follows from (48) and (46). The error coming from gj
is controlled as in (41). This concludes the proof of (45) and of the proposition. �

It is now possible to finish the proof of Proposition 3.2.
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Proof. Without loss of generality, we suppose that log T is an integer. Consider a finite set
(τ`) of log T points that are equidistant on [−1, 1]. As mentioned in (22), we have that
2s2

j = 1
K

log log T + o(1). Therefore, for λ < 1, the probability in the statement is greater or
equal to P (

⋃
` T (τ`)). Moreover, by a direct application of the Cauchy-Schwarz inequality

(the Paley-Zygmund inequality), this is bounded below by

(49)

(
E
[∑

` 1T (τ`)

])2

E
[(∑

` 1T (τ`)

)2
] =

(∑
` P(T (τ`))

)2∑
`,`′ P(T (τ`)

⋂
T (τ`′))

.

On one hand, by (36) and (42), the sum in the numerator is bounded below by

(50)

∑
`

P(T (τ`)) ≥ (1 + o(1)) log T
∏
j

∫ ∞
0

1√
2πs2

j

e
−

(xj+y)
2

2s2
j dy

� (log T ) e

∑
j −

x2j

2s2
j (log log T )−1/2.

On the other hand, the sum in the denominator can be split into three parts. The first is
over pairs with |τ` − τ`′ | ≥ (log T )−

1
2K . There are at most (log T )2 such pairs, therefore by

(37),

(51)
∑

|τ`−τ`′ |≤(log T )−
1

2K

P(T (τ`) ∩ T (τ`′)) ≤ (1 + o(1))

(∑
`

P(T (τ`))

)2

.

In view of (49) and (50), it remains to show that the sum over pairs such that |τ` − τ`′| >
(log T )−

1
2K are negligible with respect to the numerator. There are at most pairs (log T )2− 1

2K

with (log T )−
1
K < |τ`− τ`′ | ≤ (log T )−

1
2K . Proposition 3.9 (with m = 0) implies that the sum

over these pairs is

� (log T )2− 1
2K e

∑
j −

x2j

s2
j � (log T )−

1
2K

(∑
`

P(T (τ`))

)2

= o

(∑
`

P(T (τ`))

)2
 ,

where the second inequality is from the bound (50). Finally, there are at most (log T )2−m
K

pairs with (log T )−
(m+1)
K < |τ` − τ`′ | ≤ (log T )−

m
K . By Proposition 3.9, the sum of the

probabilities over these pairs is

� (log T )2−m
K exp

(
m∑
j=1

−
x2
j

2s2
j

+
K−3∑
j=m+1

−
x2
j

s2
j

)
= (log T )2−m

K exp

(
−

K−3∑
j=1

x2
j

s2
j

)
exp

(
m∑
j=1

x2
j

2s2
j

)

� (log T )2 exp

(
−

K−3∑
j=1

x2
j

s2
j

)
(log T )−

m
K

(1−λ2) .

This implies that the sum over m from 1 to K − 3 is O
(

(log T )2− 1−λ2
K exp

(
−
∑K−3

j=1

x2j
s2j

))
which is also negligible with respect to the numerator by (50). This concludes the proof of
the proposition. �
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Appendix A. Sobolev-type inequalities

The following Sobolev-type inequalities will be needed several times throughout the paper.

Lemma A.1. Let f be a differentiable function on [0,∞) such that f(t) = o(t1/2) and
f ′(t) = o(t1/2). Then

1

T

∫ 2T

T

max
u∈[−1,1]

|f(t+u)|2 dt�
(

1

T

∫ 2T

T

|f(t)|2 dt

)1/2

·
(

1

T

∫ 2T

T

|f ′(t)|2 dt

)1/2

+
1

T

∫ 2T

T

|f(t)|2 dt .

Proof. For any t ∈ [T, 2T ] and any u ∈ [−1, 1], integration yields the inequality

|f(t+ u)|2 ≤
∫ t+u

t−1

|f ′(s) · f(s)|ds+

∫ t+1

t+u

|f ′(s) · f(s)|ds+
1

2
|f(t− 1)|2 +

1

2
|f(t+ 1)|2

=

∫ t+1

t−1

|f ′(s) · f(s)|ds+
1

2
|f(t− 1)|2 +

1

2
|f(t+ 1)|2 .

Therefore, by taking the maximum over u and averaging on t, we get

E
[

max
u∈[−1,1]

|f(t+ u)|2
]
≤
∫ 1

−1

E [|f ′(t+ s) · f(t+ s)|] ds+
1

2
E[|f(t− 1)|2] +

1

2
E[|f(t+ 1)|2] .

By assumption on f and f ′, we have any s ∈ [−1, 1], E [|f ′(t+ s)|2] � E [|f ′(t)|2] and
E [|f(t+ s)|2] � E [|f(t)|2]. The claim follows from this obsrvation and Cauchy-Schwarz
inequality applied on the first term �

Lemma A.2. Let p > 0, let f be an analytic function in the strip σ0 < σ < σ1. Then for
any L > 1, and σ with σ0 + 1/L ≤ σ ≤ σ1 − 1/L,∫ 2T

T

max
|t−u|≤1

|f(σ + iu)|pdt� L sup
σ?∈[σ−1/L,σ+1/L]

∫ 2T+1

T−1

|f(σ? + it)|pdt.

Proof. To prove the lemma it suffices to notice that,

max
|t−u|≤1

|f(σ + iu)| ≤
∑
|j|≤L

max
|t−u−j/L|≤1/L

|f(σ + iu)|p

and by subharmonicity of |f |p, the above is

�L2

∫
|x|≤1/L

∑
|j|≤L

∫
|t−y−j/L|≤2/L

|f(σ + x+ iy)|pdydx� L2

∫ 1/L

−1/L

∫ t+1

t−1

|f(σ + x+ iy)|pdydx .

The claim follows by integrating over t. �

Appendix B. Elementary Number Theory Estimates

The Prime Number Theorem states that, cf. [27],

#{p ≤ x : p prime} =

∫ x

2

1

log y
dy + O(xe−c

√
log x) .
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In particular, this implies

(52)
∑

P≤p≤Q

1

p2σ
=

∫ Q

P

1

x2σ log x
dx+ O(e−c

√
logP ) .

When σ = 1/2 + δ and δ logQ < 1, it is easy to check that this yields

(53)
∑

P≤p≤Q

1

p2σ
= log logQ− log logP + O(δ logQ) .

This is the case in particular for the choice of σ0 (6) where δ = (log T )−1+ 3
2K and the largest

Q is the upper bound of the set JK−3 given in (7).

The next lemma confirms the heuristics that the Dirichlet polynomials are very close
to polynomials where (p−it) is replaced by IID uniform variables on the circle. This result
appears elsewhere, in particular in [8, proof of Proposition 3.1]. We prove it for completeness.

Lemma B.1. Let X ≥ 1 and let (a(p), p primes) and (a?(p), p primes) be two sequences in
C with |a(p)|, |a?(p)| ≤ 1 for all p and a(p) = a?(p) = 0 for p > X. Then for k ∈ N we have

E

(1

2

∑
p

a(p)p−it + a?(p)pit

)k
 = ∂kz

(∏
p

J (a(p)a?(p)z2)

)∣∣∣
z=0

+ O

(
X2k

T

)
where J (z) =

∑
n≥0 z

n/(22n(n!)2) . In particular, the expression is O
(
X2k/T

)
for odd k.

Proof. The expectation can be written as∑
p1,...,pk

E

[
k∏
l=1

(
1

2
a(pl)p

−it
l + a?(pl)p

it
l

)]
.

Denote the number of prime factors of n (with multiplicities) by Ω(n). We define the
multiplicative function g(qα) = 1/α! if q is prime. If we write n = qα1

1 . . . qαrr for the prime
decomposition of n, the above sum becomes

(54)
∑

Ω(n)=k

k!g(n) E

[
k∏
l=1

(
1

2
a(ql)q

−it
l +

1

2
a?(ql)q

it
l

)αl]
Let Nl be independent Binomial random variable with parameters (αl, 1/2). Denote the
expectation over these by E. Note that by expanding the power αl each term can be written
as (

1

2
a(ql)q

−it
l +

1

2
a?(ql)q

it
l

)αl
= E[a(ql)

Nla?(ql)
αl−Nle−it log q

2Nl−αl
l ].

The expectations E and E can be interchanged. Moreover, unless Nl = αl/2 for all l we
have that |i log

∏
l q

2Nl−αl
l | ≥ c

Xk . In this case the factor coming from the integration of the

exponential in t is bounded by Xk/T . These observations imply altogether the following:

E

[
E

[∏
l

a(ql)
Nla?(ql)

αl−Nleit log q
2Nl−αl
i

]]
=
∏
l

(a(ql)a
?(ql))

αl/2

2αl

(
αl
αl/2

)
+ O

(
Xk

T

)
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where we use the bound on a(p), a?(p) and the convention that
(
α
α/2

)
= 0 if α/2 is not an

integer. Consider the multiplicative function f defined by

f(pα) =
(a(p)a?(p))α/2

2α

(
α

α/2

)
.

With these observations (54) becomes

(55)
∑

Ω(n)=k

k!f(n)g(n) + O

(
X2k

T

)
,

where for the error term we used the fact that there are at most Xk terms in the sum. The
condition Ω(n) = k can be expressed using a contour integral

(56)
∑

Ω(n)=k

k!f(n)g(n) =
k!

2πi

∮ ∑
n≥1

f(n)g(n)zΩ(n) dz

zk+1
.

Since the summand is a multiplicative function, the finite sum may be expressed as an Euler
product∑

n≥1

f(n)g(n)zΩ(n) =
∏
p

(
1 +

∑
`≥1

(a(p)a?(p)z2)
`

22`(2`)!

(
2`

`

))
=
∏
p

J (a(p)a?(p)z2) .

The lemma follows by putting this back in (56) and using Cauchy’s formula. �

A similar argument can be used to prove an upper bound on the moment, see Lemma 3
in [36].

Lemma B.2. Let a(p) be a sequence of complex coefficients and σ ≥ 1/2. Then for X and
k ∈ N such that Xk ≤ T (log T )−1, we have

E

∣∣∣ ∑
p≤T 1/k

a(p)

pσ+it

∣∣∣2k
� k! ·

( ∑
p≤T 1/k

|a(p)|2

p2σ

)k
.

Note that when the sum does not involve only primes but also prime powers (like in the
case of Pi) one can apply the Lemma with the choice of a(p) = α(p)+β(p2)/p1/2 for example
with α(p) the coefficient at the primes and β(p2) the coefficients at squares of primes.

The following observation called Rankin’s trick will be used often:

(57)
∑
n>x

a(n) ≤ x−α
∑
n>x

a(n)nα ≤ x−α
∞∑
n=1

a(n)nα a(n) ≥ 0, α > 0.
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