MAXIMUM OF THE RIEMANN ZETA FUNCTION ON A SHORT INTERVAL OF THE CRITICAL LINE

L.-P. ARGUIN, D. BELIUS, P. BOURGADE, M. RADZIWIŁŁ, AND K. SOUNDARARAJAN

Abstract. We prove the leading order of a conjecture by Fyodorov, Hiary and Keating, about the maximum of the Riemann zeta function on random intervals along the critical line. More precisely, if \(t \) is uniformly distributed in \([T, 2T]\), then
\[
\max_{|t-u|\leq 1} \log |\zeta\left(\frac{1}{2} + iu\right)| = (1 + o(1)) \log \log T
\]
with probability converging to 1 as \(T \to \infty \).

1. INTRODUCTION

1.1. Maximum of the Riemann \(\zeta \) function on large and short intervals. Bounding the maximum of the Riemann zeta function on the critical line has been the source of many investigations since Lindelöf, who conjectured that for any \(\varepsilon > 0 \), we have
\[
\zeta\left(\frac{1}{2} + iT\right) = O(T^{\varepsilon}) \quad \text{as } T \to \infty.
\]
Among the many arithmetic consequences of the Lindelöf hypothesis we highlight the existence of primes in all intervals \([x, x + x^{1/2+\varepsilon}]\) for all \(x \) large enough, and in almost all intervals of the form \([x, x + x^\varepsilon]\). The current best bound towards the Lindelöf hypothesis states that
\[
|\zeta(\frac{1}{2} + it)| \ll 1 + |t|^{13/84 + \varepsilon}, \quad \text{see [7].}
\]
Conditionally on the Riemann hypothesis, Littlewood [24] showed that
\[
(1) \quad \zeta\left(\frac{1}{2} + iT\right) = O\left(\exp\left(C \frac{\log T}{\log \log T}\right)\right),
\]
for some constant \(C > 0 \). Apart from the value of the constant \(C [32, 36, 10] \), this bound remains the best that is known.

There has been more progress on lower bounds for the maximal size of the zeta-function. The first result is due to Titchmarsh, who proved that for any \(\alpha < \frac{1}{2} \), and large enough \(T \),
\[
\max_{s \in [0,T]} |\zeta(1/2 + is)| \geq \exp(\log^\alpha T).
\]

L.-P. A. is supported by NSF grant DMS-1513441, and a Eugene M. Lang Junior Faculty Research Fellowship.

D. B. is grateful for the hospitality of the Courant Institute during visits when part of this work was carried out.

P. B. is supported by NSF grant DMS-1513587.

M. R. is grateful to NSERC for partially funding this research.

K.S. is partly supported by a grant from the NSF, and a Simons Investigator grant from the Simons Foundation.
This result was improved to

\[
\max_{s \in [0,T]} |\zeta(1/2 + is)| \geq \exp \left(c \sqrt{\frac{\log T}{\log \log T}} \right)
\]

in [26] under the Riemann hypothesis, then the constant \(c \) was improved in [4] and, unconditionally, in [35]. The best lower bounds on the maximum were recently obtained in [6]: for any \(c < 1/\sqrt{2} \),

\[
\max_{s \in [0,T]} |\zeta(1/2 + is)| \geq \exp \left(c \sqrt{\frac{\log T \log \log T}{\log T}} \right).
\]

Previous results (with differing methods) were established in [26], [4], [35].

From (1) and (2), the actual size order of this maximum is unclear, and its asymptotics are not known to follow from conjectures in number theory. However, interesting probabilistic arguments [13] suggest that

\[
\max_{s \in [0,T]} \log |\zeta(1/2 + is)| \sim \sqrt{\frac{1}{2} \log T \log \log T}.
\]

There are however dissenting views, advocating that (1) is closer to the maximal size of the Riemann zeta-function (see end of [13]). These arguments are motivated by Waldspurger’s theorem and an analogy between integral weight and half-integral weight modular forms.

Although the global maximum up to height \(T \) can hardly be tested numerically, the maximum along random short intervals was very precisely conjectured by Fyodorov, Hiary and Keating, and their prediction is supported by numerics [15, 16]. This conjecture states that if \(t \) is random, uniform in \([0,T]\), then

\[
\max_{|t-s| \leq 1} \log |\zeta(1/2 + is)| = \log \log T - \frac{3}{4} \log \log \log T + X_T,
\]

where the random variable \(X_T \) converges weakly as \(T \to \infty \), to an explicit distribution\(^1\). Our main result is a proof for the first order asymptotics in (3).

Theorem 1.1. Let \(t \) be uniform in \([T, 2T]\). For any \(\varepsilon > 0 \), as \(T \to \infty \) we have

\[
\frac{1}{T} \text{meas} \left\{ T \leq t \leq 2T : (1 - \varepsilon) \log \log T < \max_{|t-s| \leq 1} \log |\zeta(1/2 + is)| < (1 + \varepsilon) \log \log T \right\} \to 1.
\]

While completing this work, we learned that the above result (as well as the analogue for \(\text{Im} \log \zeta \)) was independently proved in [28] under the assumption of the Riemann hypothesis.

1.2. **Extrema of log-correlated fields.** Fyodorov, Hiary and Keating’s conjecture was motivated by a connection with random matrices. This analogy has been a source of many investigations, for example at the microscopic level since Montgomery’s pair correlation conjecture [25], and the Keating–Snaith conjecture about the moments of the Riemann zeta function [21]. The prediction (3) relies on the analogy at a different, mesoscopic scale. Indeed, Selberg proved that \(\log |\zeta| \) is normally distributed on the critical axis, with variance

\(^1\)For convenience we state the conjecture (3) with a random interval of length 2, without loss of generality: only the parameters of the limiting distribution of \(X_T \) are supposed to depend on this fixed length.
of order $\frac{1}{2} \log \log T$. His central limit theorem has been extended to evaluation points at close distance in [8]: for example, if t is uniform on $[T, 2T]$ and $0 < h < 1$ depends on t, the covariance between $\log |\zeta(\frac{1}{2} + it)|$ and $\log |\zeta(\frac{1}{2} + i(t + h))|$ is of order

$$-\frac{1}{2} \log \max \left(h, \frac{1}{\log T}\right),$$

where $(\log T)^{-1}$ is a natural threshold corresponding to the typical spacing between ζ zeros. A parallel story holds for the logarithm of the characteristic polynomial of $N \times N$ Haar-distributed unitary matrices, $\log |P_N(z)|$: for $|z| = 1$, it is asymptotically Gaussian with variance $\frac{1}{2} \log N$ [21], and for two points on the unit circle within distance $|z_1 - z_2| = h$, the covariance between $\log |P_N(z_1)|$ and $\log |P_N(z_2)|$ is of order $-\frac{1}{2} \log \max \left(h, \frac{1}{N}\right)$, analogously to (4), see [8]. Fyodorov, Hiary and Keating gave a very precise conjecture for the maximum of $\{\log |P_N(z)|, |z| = 1\}$ by relying on the replica method, and techniques from statistical mechanics predicting extreme values in disordered systems [14,17,18]. Finally, assuming the logarithmic covariance form characterizes the extrema, they proposed the asymptotics (3).

The above Fyodorov-Hiary-Keating analogy, about extreme value theory, has recently been proved in a variety of cases. For a probabilistic model of the Riemann zeta function the leading order of the maximum on short intervals was obtained in [20], and the second order in [3]. For the characteristic polynomial of random unitary matrices, the asymptotics of the maximum at first order [2] and then second order [29] are known, together with tightness of the third order [11] in the more general context of circular beta ensembles. In the context of Hermitian invariant ensembles, the first order of the maximum of the characteristic polynomial was proved in [23] and precise conjectures can be found in [19]. Theorem 1.1 and its conditional analogue in [28] are the first results about the maxima of ζ itself, with the only source of randomness being the choice of the interval. Moreover, in connection with the prediction from [15, 16] that $\log |\zeta|$ behaves like a real log-correlated random field, we note that [33] recently proved that ζ converges to a complex Gaussian multiplicative chaos.

Finally, this work builds on, and adds to, the efforts to develop extreme value theory of correlated systems. Such statistics are expected to lie on the same universality class for any covariance of type [4]. This class includes the two-dimensional Gaussian free field, branching random walks, cover times of random walks, Gaussian multiplicative chaos, random matrices and the Riemann zeta function. We do not give here a list of the many rigorous works on this topic in recent years, pointing instead to [1] and the references therein.

1.3. About the proof. The short proof of the upper bound in Theorem 1.1 is given in section 2. We only rely on a Sobolev inequality and classical second moment estimates for ζ and ζ'. The proved upper bound is actually stronger than as stated in Theorem 1.1: for any function f diverging to $+\infty$, as $T \to \infty$, we have

$$\frac{1}{T} \text{meas}\left\{ \max_{|t-s| \leq 1} \log \left|\zeta \left(\frac{1}{2} + is\right)\right| < (\log \log T) + f(T)\right\} \to 1.$$
which corresponds to the first $\exp((\log T)^{1-\varepsilon})$ terms in the expansion of $\log |\zeta|$ over primes, for some $\varepsilon > 0$. This step makes use of ideas developed to give an alternative proof of Selberg’s central limit theorem in \cite{13}. Specifically we need to develop a maximal analogue of the argument in \cite{13}. The first observation is that it suffices to prove the lower bound for the local maxima of $\zeta\left(\sigma + it\right)$ with σ slightly off the half-line, as large values off the half-line propagate to the half-line. The second point is the construction of a special mollifier $M(s)$ which is shown to have two properties: On the one hand for almost all t we show that $|\zeta(\sigma + iu)M(\sigma + iu)| \approx 1$ for all $|t - u| \leq 1$. On the other hand we show that for almost all t we have $M(\sigma + iu) \approx \prod_{p \leq X} (1 - p^{-\sigma+iu})^{-1}$ for all $|t - u| \leq 1$ (and some suitably chosen cut-off X). The combination of these two properties implies that for almost all t we have $|\zeta(\sigma + iu)| \approx \prod_{p \leq X} (1 - p^{-\sigma+iu})^{-1}$ for all $|t - u| \leq 1$. Thus the problem is reduced to understanding the local maximum of $\sum_{p \leq X} p^{-\sigma+iu}$, which is a short sum over the primes.

A key idea in the proof of the lower bound for the local maximum of $\sum_{p \leq X} p^{-\sigma+iu}$ is the identification of an approximate branching random walk in this Dirichlet polynomial. This idea was used in \cite{1} to study the extrema of a random model of the zeta function, and in the subsequent works regarding the extremes of characteristic polynomials \cite{2} \cite{11} \cite{3} and the zeta function \cite{28}. The conceptual picture is explained in detail in \cite{1} \cite{2}. Once the branching structure appears, we follow a second moment method which goes back to Bramson’s study of branching Brownian motion \cite{3}; specifically we use Kistler’s robust multiscale refinement from \cite{22}, in a manner close to \cite{2}. This method requires large deviation estimates and speed of convergence to the normal distribution for our Dirichlet sums, when evaluated at distinct points. For that purpose, the Fourier and Laplace transforms with high arguments are evaluated through an expansion over moments. Large moments are typically hard to approximate, a problem we overcome here following a decomposition from \cite{30}: over a good subset B of $[T, 2T]$ the first $\log \log T$ moments provide an accurate approximation of the characteristic function, and the complement of B has small enough measure.

It should be possible to obtain more refined results by pushing the parameter K to infinity, but we have not attempted to carry this out.

For the rest of the paper, we will think of t has a uniform random variable on $[T, 2T]$. We will write accordingly \mathbb{P} for $\frac{1}{T}$ measured and \mathbb{E} for $\frac{1}{T} \int_{T}^{2T}$. We will also write $f(T) = O(g(T))$ if $\frac{|f(T)|}{g(T)}$ is bounded and $f(T) = o(g(T))$ if $\frac{|f(T)|}{g(T)} \to 0$. Finally, we will sometimes write for short $f(T) \ll g(T)$ when $f(T) = O(g(T))$.

2. Proof of the upper bound

The upper bound is a direct consequence of unconditional moment bounds and of the Sobolev-type inequality in Lemma \cite{11}.

Proposition 2.1. If $V = V(T)$ tends to infinity as $T \to \infty$, then

$$\mathbb{P}\left(\max_{|t-u| \leq 1} |\zeta(1/2 + iu)| > V \log T \right) = O(1/V^2) = o(1).$$

Proof. Chebychev’s inequality implies

$$\mathbb{P}\left(\max_{|t-u| \leq 1} |\zeta(1/2 + iu)| > V \log T \right) \leq \frac{1}{V^2 (\log T)^2} \mathbb{E}\left[\max_{|t-u| \leq 1} |\zeta(1/2 + iu)|^2\right].$$
Lemma A.1 bounds the second moment of the maximum by
\[
E \left[\max_{|t-u| \leq 1} |\zeta(1/2 + iu)|^2 \right] \ll \left(E \left[|\zeta(1/2 + iu)|^2 \right] \right)^{1/2} \left(E \left[|\zeta'(1/2 + iu)|^2 \right] \right)^{1/2} + E \left[|\zeta(1/2 + iu)|^2 \right].
\]
The following bounds of the second moment of \(\zeta \) and its derivative are known unconditionally (see, e.g., [37] and [12]):
\[
E \left[|\zeta(1/2 + it)|^2 \right] \ll \log T \quad E \left[|\zeta'(1/2 + it)|^2 \right] \ll (\log T)^3.
\]
We conclude that
\[
E \left[\max_{|t-u| \leq 1} |\zeta(1/2 + iu)|^2 \right] \ll (\log T)^2.
\]
The proposition follows from this and (5).
\]

3. Proof of the lower bound

The lower bound of Theorem 1.1 is proved in two main steps. First, it is shown that the maximum on a short interval of \(\log |\zeta| \) is close to the maximum of a Dirichlet polynomial slightly off the critical axis. This is the content of Proposition 3.1. Second, a lower bound for the maximum of Dirichlet polynomials on an interval is proved using the robust approach of [22] in Proposition 3.2.

The following notation will be used throughout the section. Following [22], we will fix a large integer \(K = K(\varepsilon) \). For this \(K \), we take
\[
\sigma_0 = \frac{1}{2} + \frac{(\log T)^{\frac{3}{2}}}{\log T}.
\]
The primes will be divided into ranges as follows
\[
J_j = [\exp((\log T)^j), \exp((\log T)^{j + 1})], \quad j = 1, \ldots, K - 2,
\]
and \(J_0 = [2, \exp((\log T)^{K - 1})] \). We also denote
\[
X = \exp((\log T)^{1 - \frac{1}{K}}).
\]
Finally, the relevant Dirichlet polynomials are
\[
P_j(u) = \text{Re} \sum_{\rho \in J_j} \frac{1}{\rho + iu}, \quad j = 0, \ldots, K - 2.
\]
The lower bound in our theorem follows from the two main propositions stated below.

Proposition 3.1. For any \(\varepsilon > 0 \) and \(K = K(\varepsilon) \) large enough,
\[
\mathbb{P} \left(\max_{|t-u| \leq 1} \log |\zeta(1/2 + iu)| > (1 - 2\varepsilon) \log \log T \right) \geq \mathbb{P} \left(\max_{|t-u| \leq 1} \sum_{j=1}^{K-3} P_j(u) > (1 - \varepsilon) \log \log T \right) + o(1).
\]

Proposition 3.2. For any \(K > 3 \) and \(0 < \lambda < 1 \),
\[
\mathbb{P} \left(\exists u : |t-u| \leq 1, P_j(u) > \frac{\lambda}{K} \log \log T \text{ for all } 1 \leq j \leq K - 3 \right) = 1 + o(1).
\]
Proof of Theorem 1.1. Since on the event of Proposition 3.2, we have

\[K^{-3} \sum_{j=1}^{K-3} P_j(u) > \lambda \left(1 - \frac{3}{K} \right) \log \log T \text{ for some } u \text{ with } |t-u| \leq 1. \]

Therefore it suffices to take K large and λ close to 1 in terms of ε to get the lower bound of the theorem using Proposition 3.1. \hfill \Box

3.1. Proof of Proposition 3.1. The proof of the proposition is divided into three lemmas. In the first, we bound the maximum on the critical axis by the ones off axis.

Lemma 3.3. Let $\varepsilon > 0$, $V > 1$ and $\frac{1}{2} \leq \sigma \leq \frac{1}{2} + (\log T)^{-1/2-\varepsilon}$. Then

\[\mathbb{P} \left(\max_{|t-u| \leq 1} |\zeta(1/2 + it)| > V \right) \geq \mathbb{P} \left(\max_{|t-u| \leq \frac{1}{4}} |\zeta(\sigma + it)| > 2V \right) + o(1). \]

Proof. Recall that, for any $t \in \mathbb{R}$, we can write $\zeta(\sigma + it)$ as an average on the critical line using the Poisson kernel:

\[\zeta(\sigma + it) = \int_{-\infty}^{\infty} \left(\zeta(1/2 + iu) \cdot \frac{\sigma - 1/2}{\pi (u - t)^2 + (\sigma - 1/2)^2} \right) du. \]

We denote the above Poisson kernel centered by $f_t(u)$.

Consider $t \in [T, 2T]$ such that $\max_{|u| \leq \frac{1}{4}} |\zeta(\sigma + i(t + v))| > 2V$. We write v^* for the $v \in [-\frac{1}{4}, \frac{1}{4}]$ that achieves the maximum for this t. Equation (11) implies

\[2V < |\zeta(\sigma + i(t + v^*))| \leq \int_{-\infty}^{\infty} |\zeta(1/2 + i(u + v^*)))| f_t(u) du. \]

In particular, for this t, it must be that

\[\int_{t-1/2}^{t+1/2} |\zeta(1/2 + i(u + v^*))| f_t(u) du > V, \]

or

\[\int_{[t-\frac{1}{2}, t+\frac{1}{2}]} |\zeta(1/2 + i(u + v^*))| f_t(u) du > V. \]

Since $|v^*| \leq \frac{1}{4}$ and $f_t(u)$ is a probability density centered at t, the first case implies that $\max_{|t-u| \leq 1} |\zeta(1/2 + it)| > V$. Therefore it remains to prove that the set

\[\{ t : \int_{[t-\frac{1}{2}, t+\frac{1}{2}]} |\zeta(1/2 + i(u + v^*))| f_t(u) du > V \} \]

has small probability. Again, since $|v^*| \leq \frac{1}{4}$, it suffices to show that the probability of

\[\int_{[t-\frac{1}{4}, t+\frac{1}{4}]} |\zeta(1/2 + iu)| f_t(u) du > V \]

is small.
By Chebyshev’s inequality, the probability is smaller than
\[
\frac{(\sigma - 1/2)^2}{\pi^2 V^2} \mathbb{E} \left[\left(\int_{|t| > 1/4} \left| \zeta \left(\frac{1}{2} + iu \right) \right| \frac{dv}{v^2} \right)^2 \right] \lesssim (\log T)^{-1-2\varepsilon} \mathbb{E} \left[\int_{[-1/2,1/2]} \left| \zeta \left(\frac{1}{2} + i(t + v) \right) \right|^2 \frac{dv}{v^2} \right],
\]
where second inequality follows by definition of \(\sigma \) and Jensen’s inequality applied on \(\mathbb{1}_{[-1/4,1/4]} \frac{1}{v^2} dv \).

The last expression is \(O((\log T)^{-2\varepsilon}) \). To see this, note that \(\mathbb{E}[|\zeta \left(\frac{1}{2} + i(t + v) \right)|^2] \) is \(O(\log T) \) for \(|v| \leq T/2 \), say. For \(|v| > T/2 \), one can use the fact that \(\zeta \left(\frac{1}{2} + it \right) = O(t^{1/4}) \) (see, e.g. Theorem 5.12 in [37]) to conclude that the integral over this range of \(v \) is \(o(1) \).

For the second lemma, we take the following approximation for the inverse of \(\zeta \):
\[
M(s) = \sum_n \frac{\mu(n)a(n)}{n^s},
\]
where for \(n \) square-free \(\mu(n) = (-1)^{\omega(n)} \) and \(\omega(n) \) is the number of distinct prime factors, and for \(n \) non-square-free \(\mu(n) = 0 \). The factor \(a(n) \) equals 1 if all primes factors of \(n \) are smaller than \(X \) and \(\Omega(n) \leq 100K \log \log T =: \nu \), where \(\Omega(n) \) is the number of primes factors of \(n \). The following shows that the maxima of \(|\zeta| \) and \(M^{-1} \) are close.

Lemma 3.4. For any \(\varepsilon > 0 \), we have
\[
\mathbb{P} \left(\max_{|t-v| \leq 1} |M(s_0 + iv)\zeta(s_0 + iv) - 1| > \varepsilon \right) = 1 + o(1).
\]

Proof. We closely follow [31, Section 4], adapting it to different scalings. Assume we can prove that, uniformly in \(\sigma > \frac{1}{2} + (\log T)^{-1+\frac{1}{4}+\varepsilon} \),
\[
\int_T^{2T} |M(\sigma + is)\zeta(\sigma + is) - 1|^2 ds = o(T).
\]
Then Lemma 3.4 follows by Chebyshev’s inequality and Lemma A.2.

To prove (13), we first consider the cross term in the square expansion. We integrate along the rectangular contour with vertices \(\sigma + i7T, \sigma + i2T, 2 + i7T, 2 + i2T \), and use the estimates \(\zeta = O(T^{1/4}) \) [37] and \(M = O(T^{-\varepsilon}) \) on the horizontal parts. This gives
\[
\int_T^{2T} \zeta(\sigma + is)M(\sigma + is)ds = \int_T^{2T} \zeta(2 + is)M(2 + is)ds + O(T^{1/4+\varepsilon}) = T + o(T^{1/4+\varepsilon}),
\]
where we used the simple expansion
\[
\int_T^{2T} \zeta(2 + is)M(2 + is)ds = T + \sum_{m,n:mn \neq 1} \frac{a(m)\mu(m)}{(mn)^2} \int_T^{2T} (mn)^{-i}s ds = T + O(1).
\]
We therefore proved
\[
\int_T^{2T} |M(\sigma + is)\zeta(\sigma + is) - 1|^2 ds = \int_T^{2T} |M(\sigma + is)\zeta(\sigma + is)|^2 ds - T + O(T^{1/4+\varepsilon}),
\]
and we now turn to the evaluation of the above second moment:

\[
\int_{T}^{2T} \left| M(\sigma + is) \zeta(\sigma + is) \right|^2 ds = \sum_{h,k} \mu(h) \mu(k) a(h) a(k) \frac{1}{(hk)^\sigma} \int_{T}^{2T} \left(h \right)^{is} \left| \zeta(\sigma + is) \right|^2 ds .
\]

It can be estimated based on the following result (see [31, Lemma 4]): for any \(h, k \leq T \) and \(1/2 < \sigma \leq 1 \), we have

\[
\int_{T}^{2T} \left| \zeta(\sigma + is) \right|^2 ds = \int_{T}^{2T} \left(\zeta(2\sigma) \left(\frac{(h, k)^2}{hk} \right) + \left(\frac{t}{2\pi} \right)^{1 - 2\sigma} \zeta(2 - 2\sigma) \left(\frac{(h, k)^2}{hk} \right)^{1 - \sigma} \right) ds + O(T^{1 - \sigma + \varepsilon} \min(h, k)).
\]

The contribution of the above error terms is bounded by

\[
T^{1 - \sigma + \varepsilon} \sum_{h, k} a(h) a(k) \min(h, k) \leq T^{1 - \sigma + \varepsilon} \left(\sum_{h} a(h) \right)^2 \leq T^{1 - \sigma + \varepsilon} \left(\sum_{p \leq X} 1 \right)^2 = O(T^{1 - \sigma + 2\varepsilon}).
\]

The contribution of the first term in \((15)\) is

\[
T\zeta(2\sigma) \sum_{h, k} \frac{a(h) a(k) \mu(h) \mu(k)}{(hk)^{2\sigma}} (h, k)^{2\sigma} .
\]

If we omit the constraint \(\Omega(h), \Omega(k) \leq \nu \) in the above sum, we obtain (for \(A \) a subset of \(P_X \), the set of primes smaller than \(X \), we write \(\pi_A = \prod_{p \in A} p \)):

\[
\sum_{h, k : p | h, k = p \leq X} \frac{\mu(h) \mu(k)}{(hk)^{2\sigma}} (h, k)^{2\sigma} = \sum_{A \subset P_X} \frac{(-1)^{|A|+|B|}}{(\pi_A \pi_B)^{2\sigma}} \prod_{A \subseteq B} = \prod_{p \leq X} \left(1 - \frac{1}{p^{2\sigma}} \right)
\]

where we decomposed \(B = C \cup D \) and used \(\sum_{A \subset A} (-1)^{|C|} = 0 \) unless \(A = \emptyset \). The error consisting in terms such that \(\Omega(h) > \nu \) or \(\Omega(k) > \nu \) is bounded using \((57)\) by

\[
\sum_{h, k : p | h, k = p \leq X} \frac{\mu(h) \mu(k)\nu(h, k)^{2\sigma}}{(hk)^{2\sigma}} \leq e^{-\nu} \sum_{h, k : p | h, k = p \leq X} \frac{\nu(h, k)^{2\sigma}}{(hk)^{2\sigma}} e^{\Omega(h)} = e^{-\nu} \sum_{A \subset P_X} \frac{e^{\nu}}{(\pi_A \pi_D)^{2\sigma}} \leq e^{-\nu} \left(\sum_{A \subset P_X} \frac{e^{\nu}}{\pi_A^{2\sigma}} \right)^2 = e^{-\nu} \prod_{p \in P_X} \left(1 + \frac{e}{p^{2\sigma}} \right)^2 = O\left(\frac{1}{(\log T)^{98}} \right)
\]
where we used \((53)\). We therefore proved that
\[
(16) = T \zeta(2\sigma) \left(\prod_{p \leq X} \left(1 - \frac{1}{p^{2\sigma}} \right) + O \left(\frac{1}{(\log T)^{98}} \right) \right)
= T \left(\prod_{p > X} \left(1 - \frac{1}{p^{2\sigma}} \right)^{-1} + O \left(\frac{1}{(2\sigma - 1)(\log T)^{98}} \right) \right) = T + O \left(\frac{T}{(\log T)^{96}} \right),
\]
where we used \((52)\) to estimate \(\log \prod_{p > X} \left(1 - \frac{1}{p^{2\sigma}} \right)^{-1} \approx \sum_{p > X} p^{-2\sigma} + O(1/X)\). This is negligible whenever \((2\sigma - 1) \log X \to \infty\) (here \((2\sigma - 1)X = (\log T)^{1/(2K)}\)). Finally, the contribution from the second term in \((15)\) is shown to be negligible as in \([31]\). □

For the last reduction, define the Dirichlet polynomials
\[
(17) \quad \mathcal{P}_j(s) = \sum_{n \in J_j} \frac{\Lambda(n)}{n^s \log n}, \quad j = 0, \ldots, K - 2.
\]
Then again, the maxima of \(M\) and \(\exp(-\sum_j \mathcal{P}_j)\) are close.

Lemma 3.5. We have
\[
\mathbb{P} \left(\max_{|t-u| \leq 1} |M(\sigma_0 + iu) - \exp \left(\sum_{j=0}^{K-2} -\mathcal{P}_j(\sigma_0 + iu) \right) | > (\log T)^{-2} \right) = 1 + o(1).
\]

Proof. We defined the truncated exponential
\[
(18) \quad \mathcal{M}(s) = \sum_{k \leq \nu} \frac{(-1)^k}{k!} \left(\sum_j \mathcal{P}_j(s) \right)^k.
\]
Consider the good set
\[
(19) \quad \mathcal{U} = \left\{ t : \max_{|t-u| \leq 1} |\mathcal{P}_j(\sigma_0 + iu)| \leq \frac{10}{K^{1/2}} \log \log T, \forall 0 \leq j \leq K - 3 \right\}.
\]
(The choice of upper bound is motivated by the logarithmic correlations \([4]\). These imply that, for each \(j\), the values of \(\mathcal{P}_j\) are almost perfectly correlated for points at a distance less than \((\log T)^{-\frac{10}{K}}\), and close to independent for points farther than \((\log T)^{-\frac{1}{K}}\) apart. Therefore, at a heuristic level, one expects that the maximum of \(\mathcal{P}_j\) corresponds to the one of \((\log T)^{\frac{1}{K}+1}\) independent Gaussian variables of variance \(\frac{1}{K} \log \log T\), which is of the order of \(\frac{\sqrt{\log T}}{K}\log \log T\). Here we pick a bound that holds simultaneously for all \(j\).) Note that on the set \(\mathcal{U}\), \(\mathcal{M}\) is arbitrarily close to \(\exp(-\sum_j \mathcal{P}_j)\) since
\[
\sum_{k \geq \nu} \frac{(-1)^k}{k!} \left(\sum_j \mathcal{P}_j(s) \right)^k \ll \sum_{k \geq \nu} \frac{1}{k!} (\log \log T)^k \ll (\log T)^{-100}.
\]
Moreover, the complement has small probability, since by Chebyshev’s inequality applied with \(\ell = \log \log T \) and the Sobolev’s inequality (A.2) with \(L = \log T \), we get

\[
\mathbb{P}(U^c) \leq \sum_j \frac{1}{(\frac{10}{K^{1/2}} \log \log T)^{2\ell}} \mathbb{E} \left[\max_{|t-u| \leq 1} |\mathcal{P}_j(\sigma_0 + iu)|^{2\ell} \right]
\]

\[
\ll \sum_j \frac{L}{(\frac{10}{K^{1/2}} \log \log T)^{2\ell}} \sup_{|\sigma - \sigma_0| \leq L^{-1}} \mathbb{E} \left[|\mathcal{P}_j(\sigma + iu)|^{2\ell} \right] + o(1) .
\]

The bound on the moments in Lemma B.2 yields \(\mathbb{E} \left[|\mathcal{P}_j(\sigma + iu)|^{2\ell} \right] \ll \ell!(\frac{1}{K} \log \log T)^{\ell} \) for all \(j \) uniformly for \(|\sigma - \sigma_0| \leq L^{-1} \). We conclude that

\[
\mathbb{P}(U^c) \ll \log T \, \ell^2 e^{-\ell} \ell^{1/2} \left(\frac{1}{K} \log \log T \right)^{\ell} \ll (\log T)^{-4} .
\]

With the above observations, the proof of the lemma is reduced to showing that

\[
\mathbb{P} \left(\max_{|t-u| \leq 1} |M(\sigma_0 + iu) - \mathcal{M}(\sigma_0 + iu)| > (\log T)^{-3} \right) = 1 + o(1) .
\]

Again, this follows by Chebyshev’s inequality and the Sobolev’s inequality (A.2) if

\[
\mathbb{E} \left[|M(\sigma + iu) - \mathcal{M}(\sigma + iu)|^2 \right] \to 0 \text{ uniformly for } |\sigma - \sigma_0| \leq L^{-1} .
\]

To see this, note that \(\mathcal{M} \) can be written as a Dirichlet sum \(\sum_n b(n)n^{-s} \) where \(|b(n)| \leq 1 \), by expanding the powers of \(\mathcal{P}_j \). Moreover \(b(n) = a(n)\mu(n) \) whenever \(\Omega(n) \leq \nu \), and \(b(n) = 0 \) if \(n \leq X^\nu \). (This is because the difference between \(M \) and \(\mathcal{M} \) only comes from the prime powers in \(\mathcal{P}_j \).) Thus if we write \(c(n) = b(n) - \mu(n)a(n) \), the \(L^2 \) difference becomes

\[
\ll \sum_{m,n} \frac{|c(n)c(m)|}{(mn)^s} \mathbb{E}[(m/n)^it] .
\]

If \(m \neq n \), since \(\log(m/n) \gg (mn)^{-1/2} \), the sum is smaller than \(X^{2\nu} / T \) (by an upper bound on the number of terms). If \(m = n \), then we have that the sum is

\[
\ll \sum_{\substack{n \in \mathbb{N} \backslash \mathcal{P} \ \Omega(n) > \nu \ \mu(n) \neq 0 \ \mathcal{P} \leq X}} n^{-1} \ll r^{-\nu} \prod_{p \leq X} \left(1 + \frac{r}{p} + \sum_{j>1} \left(\frac{r}{p} \right)^j \right) \ll (\log T)^{-99r}
\]

where we used Rankin’s trick (57) with \(1 < r < 2 \). This concludes the proof of the lemma. \(\square \)

Proof of Proposition 3.1 Note that the difference between the Dirichlet polynomials \(\mathcal{P}_j \) and \(\mathcal{P}_j \) is given by the prime powers

\[
Q(\sigma_0 + iu) := \sum_{j=0}^{K-2} \mathcal{P}_j(u) - \sum_{p \leq X} \frac{1}{p^{\sigma_0 + iu}} = \frac{1}{2} \sum_{p \leq X} \frac{1}{p^{2\sigma_0 + 2iu}} + O(1) ,
\]
Then for any n Sobolev inequality A.1 we have since the higher powers are summable by [52]. Therefore by Chebyshev’s inequality and the moments, see Proposition 3.8.

To conclude, it suffices to redefine ε and apply Lemma 3.3 with σ_0 and $V = (\log T)^{1-2\varepsilon}$.

3.2. Proof of Proposition 3.2. The proof of the proposition is based on large deviation estimates of the variables $P_j(u)$, $|t-u| \leq 1$, for one point and two points, see Propositions 3.9 and 3.10. These estimates are derived using large moments of Dirichlet polynomials given in Lemma B.1 and by estimating the Laplace-Fourier transform of the polynomials using the moments, see Proposition 3.8.

The first step is to show that the moments of sums of $P_j(\tau)$ are very close to Gaussian moments.

Proposition 3.6. Let $(\xi_j, j \leq K-3)$ and $(\xi_j', j \leq K-3)$ in \mathbb{C} such that $|\xi_j|, |\xi_j'| \leq (\log T)^{1/16}$. Then for any $n \leq (\log T)^{1/16}$, we have for $|\tau|, |\tau'| \leq 1$,

$$\mathbb{E} \left[\left(\sum_j \{\xi_j P_j(t+\tau) + \xi_j' P_j(t+\tau')\} \right)^n \right] = (2n-1)!! \left(\sum_j \left(s_j^2 \xi_j^2 + \xi_j'^2 \right) + 2 \rho_j(\tau, \tau') \xi_j \xi_j' \right)^n + O(e^{-\log T})^\frac{1}{16}$$
Of course the odd moments are polynomials with Gaussians. With this in mind, we introduce the set X from Lemma B.1 is

$$s_j^2 = \frac{1}{2} \sum_{p \in J_j} p^{-2\sigma_0} \text{ and } \rho_j(\tau, \tau') = \frac{1}{2} \sum_{p \in J_j} p^{-2\sigma_0} \cos(|\tau - \tau'| \log p).$$

The odd moments are $O(e^{-(\log T)^{\frac{1}{2K}}})$ under the same condition on n.

Note that without the error term the right-hand side of (20) is precisely what the n-th moment would be if $P_j(t+\tau)$, $P_j(t+\tau')$ were jointly Gaussian with variance s_j^2 and covariance $\rho_j(\tau, \tau')$, and uncorrelated for different j. Using (52) one obtains the bounds

$$2s_j^2 = \frac{\log \log T}{K} + O((\log T)^{-\frac{1}{2K}}), \quad \rho_j(\tau, \tau') = O\left((\log T)^{-\frac{1}{2K}}\right) \text{ if } |\tau - \tau'| \geq (\log T)^{-\frac{i+1}{m}}.$$

Of course $-s_j^2 \leq \rho_j(\tau, \tau') \leq s_j^2$ and in fact $\rho_j(\tau, \tau')$ is close to s_j^2 if $|\tau - \tau'| \leq (\log T)^{-\frac{i+1}{m}}$, since then the cosine in the sum is close to 1.

Proof of Proposition 3.6. Let $a(p) = a^*(p) = 0$ for $p \notin \cup_j J_j$ and

$$a(p) = (\xi_j p^{-ir} + \bar{\xi}_j p^{-ir'})p^{-\sigma_0}, \quad a^*(p) = (\xi_j p^{ir} + \bar{\xi}_j p^{ir'})p^{-\sigma_0} \quad \text{ for } p \in J_j,$$

so that

$$\sum_j \{\xi_j P_j(\tau) + \bar{\xi}_j P_j(\tau')\} = \frac{1}{2} \sum_p \{a(p)p^{-it} + a^*(p)p^{it}\}$$

$$a(p)a^*(p) = (\xi_j^2 + \xi_j'^2 + 2\xi_j\xi'_j \cos(|\tau - \tau'| \log p))p^{-2\sigma_0} \text{ if } p \in J_j.$$

In this case, the function J appearing in Lemma B.1 takes the form

$$\prod_p J(a(p)a^*(p)z^2) = \prod_p \left(1 + \frac{a(p)a^*(p)z^2}{4} + O(|a(p)a^*(p)|^2 z^4)\right)$$

$$= \exp\left(\frac{z^2}{2} \left(\frac{1}{2} \sum_{j} \sum_{p \in J_j} p^{-2\sigma_0}(\xi_j^2 + \xi_j'^2 + 2\xi_j\xi'_j \cos(|\tau - \tau'| \log p)\right)\right) F_X(z),$$

for $F_X(z)$ a function which is analytic in a neighborhood of 0, satisfies $F_X(0) = 1$ and whose derivatives are at 0 are uniformly bounded by

$$\sum_j \sum_{p \in J_j} |a(p)a^*(p)|^2 \ll (\log T)^{\frac{1}{2K}} \sum_j \sum_{p \in J_j} p^{-2} \leq (\log T)^{\frac{1}{2K}} e^{-(\log T)^{\frac{1}{2K}}}.$$

The claim (20) follows from Lemma B.1 by taking the n-th derivative (note that the exponential term is exactly the moment generating function of a Gaussian) and noting that the terms involving a derivative of $F_X(z)$ contribute at most $O(e^{-(\log T)^{\frac{1}{2K}}})$. Also error term from Lemma B.1 is $X^{2n}/T \ll e^{-(\log T)^{\frac{1}{2K}}}$ under the assumption $n \leq (\log T)^{\frac{1}{2K}}$.

It is necessary to introduce a cutoff to obtain a precise comparison of the Dirichlet polynomials with Gaussians. With this in mind, we introduce the set

$$B(\tau) = \{T \leq t \leq 2T : P_j(t + \tau) \leq (\log T)^{\frac{1}{2K}} \forall 1 \leq j \leq K - 3\}.$$
Note that if the moments of a random variable Y grow no faster than Gaussian moments with some $\sigma^2 > 0$ up to $\ell \leq L$, then

\[(24) \quad \mathbb{P}(Y > x) \ll \exp\left(-\frac{x^2}{2\sigma^2}\right)\]

whenever $\frac{x^2}{2\sigma^2} \leq L$. This is proved using Chebyshev’s inequality and optimizing over ℓ. Together with Proposition 3.6 this observation yields the following:

Lemma 3.7. Let $|\tau| \leq 1$. We have

\[(25) \quad \mathbb{P}(B(\tau)^c) \ll \exp\left(-\frac{(\log T)^{\frac{1}{8}}}{\log \log T}\right)\]

Proof. A union bound gives $\mathbb{P}(B(\tau)^c) \leq \sum_{j=1}^{K-3} \mathbb{P}(P_j(t + \tau) > (\log T)^{\frac{1}{8}})$. Recall that K is fixed. We use the Gaussian bound (24) and (22). Note that $\frac{(\log T)^{1/4K}}{2s_j^2} \leq (\log T)^{1/2K}$. This yields the claimed bound. \(\square\)

On $B(\tau)$, we can derive precise bounds for the Fourier-Laplace transforms of the P_j.

Proposition 3.8. Let $\xi_j \in \mathbb{C}$, $1 \leq j \leq K-3$, such that $|\xi_j| \leq (\log T)^{\frac{1}{16\pi}}$. Then for $|\tau| \leq 1$,

\[(26) \quad \mathbb{E}\left[\exp\left(\sum_{j=1}^{K-3} \xi_j P_j(t + \tau)\right) 1_{B(\tau)}\right] = (1 + O(e^{- (\log T)^{\frac{1}{8\pi}}})) \exp\left(\frac{1}{2} \sum_{j=1}^{K-3} \xi_j^2 s_j^2\right).
\]

Moreover, if $\tau \neq \tau'$, then for $\xi_j' \in \mathbb{C}$, $1 \leq j \leq K-3$, with $|\xi_j'| \leq (\log T)^{\frac{1}{16\pi}}$, we also have

\[(27) \quad \mathbb{E}\left[\exp\left(\sum_{j=1}^{K-3} \xi_j P_j(t + \tau) + \xi_j' P_j(t + \tau')\right) 1_{B(\tau) \cap B(\tau')}\right] = (1 + O(e^{- (\log T)^{\frac{1}{8\pi}}})) \exp\left(\frac{1}{2} \sum_{j=1}^{K-3} \{s_j^2 (\xi_j^2 + \xi_j'^2) + 2\rho_j(\tau, \tau')\xi_j\xi_j'\}\right).
\]

Proof. The one point bound (26) follows from the two-point bound (27) with $\xi_j' = 0$. The proof of the latter consists in developing the exponential and use the Gaussian moments in Proposition 3.6. These hold up at least to moments $(\log T)^{\frac{1}{8\pi}}$. The restriction to the set B takes care of the higher moments. The difference between the restricted moments and the ones calculated in the corollary induce some error when computing the moments. This error gets worse as the moments grow. With this in mind, we choose to cut the development at

$$N = 10 (\log T)^{\frac{1}{16\pi}}.$$

Write for simplicity P_j for $P_j(t + \tau)$ and P_j' for $P_j(t + \tau')$, and similarly for $B(\tau)$ and $B(\tau')$. The exponential can be written as

\[(28) \quad \mathbb{E}\left[\exp\left(\sum_j \xi_j P_j + \xi_j' P_j'\right) 1_{B \cap B'}\right] = \sum_{n \leq N} \frac{1}{n!} \mathbb{E}\left[\left(\sum_j \xi_j P_j + \xi_j' P_j'\right)^n 1_{B \cap B'}\right] + \sum_{n > N} \frac{1}{n!} \mathbb{E}\left[\left(\sum_j \xi_j P_j + \xi_j' P_j'\right)^n 1_{B \cap B'}\right].\]
By the definition of B, the bound on ξ_j and ξ'_j, and the choice of N, the second term is bounded by
\begin{equation}
\sum_{n>N} \frac{1}{n!} \left(\sum_j |\xi_j| + |\xi'_j| \right) \left(\log T \right)^{\frac{1}{10^k} n} \leq \frac{2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} N}{N!} \exp \left(2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} \right) \lesssim e^{-\left(\log T \right)^{\frac{1}{10^k}}},
\end{equation}

since $2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} \leq N/10 = \left(\log T \right)^{\frac{1}{10^k}}$. For the first sum in (28), the unrestricted even moments are given by (20) in Proposition 3.6
\begin{equation}
\sum_{n>N} \frac{1}{n!} \left(\sum_j |\xi_j| + |\xi'_j| \right) \left(\log T \right)^{\frac{1}{10^k} n} \leq \frac{2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} N}{N!} \exp \left(2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} \right) \lesssim e^{-\left(\log T \right)^{\frac{1}{10^k}}},
\end{equation}

Indeed, Cauchy-Schwartz inequality implies
\begin{equation}
\sum_{j} \sum \left(\sum_j \left\{ s_j^2 (\xi_j^2 + \xi'_j^2) + 2\rho_j (\tau, \tau') \xi_j \xi'_j \right\} \right) n + O\left(e^{-\left(\log T \right)^{\frac{1}{10^k}}} \right).
\end{equation}

For the odd moments, we simply have by Proposition 3.6
\begin{equation}
\sum_{n>N} \frac{1}{n!} \left(\sum_j |\xi_j| + |\xi'_j| \right) \left(\log T \right)^{\frac{1}{10^k} n} \leq \frac{2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} N}{N!} \exp \left(2K \left(\log T \right)^{\frac{1}{10^k} + \frac{1}{10^k}} \right) \lesssim e^{-\left(\log T \right)^{\frac{1}{10^k}}},
\end{equation}

We claim that for any $n \leq N$, the unrestricted moments are close to the unrestricted ones:
\begin{equation}
\mathbb{E}\left[\sum_j \xi_j P_j + \xi'_j P'_j \right] \leq \mathbb{E}\left[\sum_j \xi_j P_j + \xi'_j P'_j \right] + O\left(e^{-\left(\log T \right)^{\frac{1}{10^k}}} \right).
\end{equation}

Indeed, Cauchy-Schwartz inequality implies
\begin{equation}
\mathbb{E}\left[\sum_j \xi_j P_j + \xi'_j P'_j \right] \leq \mathbb{E}\left[\sum_j \xi_j P_j + \xi'_j P'_j \right] + O\left(e^{-\left(\log T \right)^{\frac{1}{10^k}}} \right).
\end{equation}

From (30), we see that the first term is bounded by
\begin{equation}
\left(\frac{(2n)!}{2^{n!}} \right)^{\frac{1}{2}} \left(\left(\log T \right)^{\frac{1}{10^k}} \right)^n \leq N^N \left(\left(\log T \right)^{\frac{1}{10^k}} \right)^N.
\end{equation}

Equation (32) then follows from the choice of N and Lemma 3.7. Using (32) together with (30) and (31) as well as (29), we get
\begin{equation}
\sum_{n>N/2} \frac{1}{n!} \left(\sum_j \left\{ s_j^2 (\xi_j^2 + \xi'_j^2) + 2\rho_j (\tau, \tau') \xi_j \xi'_j \right\} \right) n + O\left(e^{-\left(\log T \right)^{\frac{1}{10^k}}} \right).
\end{equation}

The second inequality comes from the fact that for $|\xi_j|, |\xi'_j| \leq (\log T)^{\frac{1}{10^k}},$
\begin{equation}
\sum_{n>N/2} \frac{1}{n!} \left(\sum_j \left\{ s_j^2 (\xi_j^2 + \xi'_j^2) + 2\rho_j (\tau, \tau') \xi_j \xi'_j \right\} \right) n \leq e^{-\left(\log T \right)^{\frac{1}{10^k}}}.
\end{equation}
The additive error in \((33)\) can be absorbed in the main term since
\[e^{-(\log T)\frac{x}{2\pi}} \ll e^{-(\log T)\frac{x}{2\pi}} \exp \left(\frac{1}{2} \sum_j \left(s_j^2 (\xi_j^2 + \xi_j'^2) + 2\rho_j(\tau, \tau')\xi_j\xi'_j \right) \right). \]

The statements of Proposition 3.8 are used to get precise large deviation estimates on the variables \(P_j\). Define the event
\[T(\tau) = \{ t : P_j(t + \tau) > x_j, \forall 1 \leq j \leq K - 3 \}. \]
We first prove a two point bound for \(\tau\) and \(\tau'\) that are at mesoscopic distance.

Proposition 3.9. Let \(\tau\) and \(\tau'\) such that \((\log T)^{-(m+1)/K} \leq |\tau - \tau'| < (\log T)^{-m/K}\) for some \(0 \leq m \leq K - 3\). We have for \(x_j = 2s_j^2\)
\[\mathbb{P}(T(\tau) \cap T(\tau')) \ll \exp \left(\sum_{j=1}^{K-3} -\frac{x_j^2}{s_j^2} + \sum_{j=m+1}^{K-3} -\frac{x_j^2}{s_j^2} \right). \]

Proof. Since the right-hand side of \((25)\) is of lower order than the right-hand side of \((35)\), it suffices to prove a bound on \(\mathbb{P}(T(\tau) \cap T(\tau') \cap B(\tau) \cap B(\tau'))\). For simplicity, we write \(P_j = P_j(t + \tau), P'_j = P_j(t + \tau'), B = B(\tau)\) and \(B' = B(\tau')\). Note that by definition of the set \(T\), the probability \(\mathbb{P}(T \cap T' \cap B \cap B')\) is bounded by
\[\mathbb{E} \left(\exp \left(\sum_{j=1}^{K-3} \beta_j(P_j + P'_j) \right) 1_{B \cap B'} \right) \exp \left(-2 \sum_{j=1}^{K-3} \beta_j x \right) \]
for any \(\beta_j > 0\). Using \((27)\) we get that this is at most
\[c \exp \left(\frac{1}{2} \sum_{j=1}^{s_j^2} 2\beta_j^2 (s_j^2 + \rho_j(\tau, \tau')^2) - 2 \sum_{j=1}^{K-3} \beta_j x \right) \]
for all \(0 < \beta_j < (\log T)^{\frac{1}{2\pi}}\). For \(j \leq m\) we have the trivial bound \(\rho_j(\tau, \tau') \leq s_j^2\) and for \(j \geq m + 1\) we have by \((22)\) that \(\rho_j(\tau, \tau') = O(1)\), so that the probability is at most
\[c \exp \left(\frac{1}{2} \sum_{j=1}^{m} 4\beta_j^2 s_j^2 + \frac{1}{2} \sum_{j=m+1}^{K-3} 2\beta_j^2 s_j^2 - 2 \sum_{j=1}^{K-3} \beta_j x + O(\sum_{j=m+1}^{K-3} \beta_j^2) \right). \]
By setting \(\beta_j = x/s_j^2\) for \(j \geq m + 1\) and \(\beta_j = x/(2s_j^2)\) for \(j \leq m\) we obtain \((35)\). \hfill \Box

We also need precise large deviation bounds for one point \(\tau\) and two points \(\tau\) and \(\tau'\) that are at near macroscopic distance.

Proposition 3.10. For \(|\tau| \leq 1\) we have for \(x_j = 2s_j^2\)
\[\mathbb{P}(T(\tau)) \geq (1 + o(1)) \prod_j \int_0^\infty \frac{1}{\sqrt{2\pi s_j^2}} e^{-\frac{(x+y)^2}{2s_j^2}} dy. \]
Moreover, if \(|\tau - \tau'| \geq (\log T)^{-\frac{1}{2\pi}}\), then
\[\mathbb{P}(T(\tau) \cap T(\tau')) \leq (1 + o(1)) \mathbb{P}(T(\tau)) \mathbb{P}(T(\tau')). \]
The proof consists of inverting the Fourier-Laplace transform of Proposition 3.8. We will do this by directly using the following lemma used in [2] and based on [5, Corollary 11.5].

Lemma 3.11. Let \(d \geq 1 \). Let \(\mu \) and \(\nu \) be two probability measures on \(\mathbb{R}^d \) with Fourier transform \(\hat{\mu} \) and \(\hat{\nu} \). There exists constant \(c > 0 \) such that for any function \(f : \mathbb{R}^d \to \mathbb{R} \) with Lipschitz constant \(C \) and for any \(R, N > 0 \),

\[
\left| \int_{\mathbb{R}^d} f \, d\mu - \int_{\mathbb{R}^d} f \, d\nu \right| \leq \frac{C}{N} + \|f\|_\infty \left\{ (RN)^d \|\hat{\mu} - \hat{\nu}\|_\infty + \mu(((-R, R)^d)^c) + \nu(((-R, R)^d)^c) \right\}.
\]

There will be a small error in the inversion if there is a broad range of parameters where the Fourier transforms are close. In the present setting, the errors on the probability need to be \(o((\log T)^{-1}) \) to compensate the number of points in the discretization. The range of the Fourier transform in Proposition 3.8 is thus a priori insufficient. To improve the error, it is necessary to make a change of measure to make the value \(\lambda K \log \log T \) typical.

Proof of Proposition 3.10. We start with the one-point bound (36). It suffices to lower bound \(\mathbb{P}(T(\tau) \cap B(\tau)) \). We drop the dependence on \(\tau \) for simplicity. Define the measure \(\mathbb{Q} \) by the Radon-Nikodym derivative

\[
\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(\sum_j \beta_j P_j\right) 1_B, \quad \beta_j = \frac{x_j}{s_j^2}.
\]

The probability of \(T \cap B \) under \(\mathbb{P} \) can be written as

\[
\mathbb{P}(T \cap B) = \mathbb{E}\left[e^{\sum_j \beta_j P_j} 1_B\right] e^{-\sum_j \beta_j x} \mathbb{E}_{\mathbb{Q}}\left[e^{-\sum_j (\beta_j P_j - x_j)} 1_T\right]
\]

\[
= (1 + o(1)) e^{-\sum_j \frac{x_j^2}{2s_j^2}} \mathbb{E}_{\mathbb{Q}}\left[e^{-\sum_j (\beta_j P_j - x_j)} 1_T\right]
\]

by Proposition 3.8 and the choice of \(\beta \). It remains to prove that

\[
\mathbb{E}_{\mathbb{Q}}\left[e^{-\sum_j (\beta_j P_j - x_j)} 1_T\right] \geq (1 + o(1)) \prod_j \int_0^{\infty} e^{-\frac{x_j y}{s_j^2}} e^{-\frac{y^2}{2s_j^2}} \frac{1}{\sqrt{2\pi s_j^2}} \, dy.
\]

Consider the functions \(g_j \) defined by

\[
g_j(y) = \begin{cases}
0 & \text{if } y \leq 0 \\
 e^{-\beta_j y} & \text{if } y \geq (\log T)^{-\frac{1}{64 K^2}}
\end{cases}
\]

with a linear interpolation on the interval \([0, (\log T)^{-\frac{1}{64 K^2}}] \). By construction, \(g_j \) is Lipschitz with constant \((\log T)^{-\frac{1}{64 K^2}}\). Moreover,

\[
\mathbb{E}_{\mathbb{Q}}\left[e^{-\sum_j \beta_j (P_j - x_j)} 1_T\right] \geq \mathbb{E}_{\mathbb{Q}}\left[\prod_j g_j(P_j - x_j) 1_T\right].
\]

The expectation on the right can now be compared to the expectation over independent Gaussians variables with variance \(s_j^2 \) via Fourier inversion. The Fourier transform of the
The claim (38) follows from (40) and the fact that

\[\mathbb{E}_Q \left[e^{i \sum_j t_j (P_j - x_j)} \right] = e^{-i \sum_j t_j x_j} \frac{\mathbb{E} \left[e^{\sum_j (\beta_j + it_j) P_j} \right]}{\mathbb{E} \left[e^{\sum_j \beta_j P_j} \right]} \leq (1 + O(e^{-(\log T)^{3/4}})) \exp \left(-\frac{1}{2} \sum_j t_j^2 s_j^2 \right), \]

for \(|t_j| \leq (\log T)^{3/4}\) by Proposition 3.8. The right side corresponds to the Fourier transform of independent Gaussian variables of variance \(s_j^2\). The difference between the Fourier transforms on that range is \(O(e^{-(\log T)^{3/4}})\). We apply Lemma 3.11 with \(d = K - 3\), \(N = R = (\log T)^{3/2}\) and \(f = \prod_j g_j\). This yields

\[
\left| \mathbb{E}_Q \left[\prod_j g(P_j - x_j)1_T \right] - \prod_j \int_0^\infty g_j(y) e^{-\frac{x_j^2 y}{2s_j^2}} dy \right| \leq (\log T)^{64K^2} + (\log T)^{16K^2} e^{- (\log T)^{1/2}} + e^{-(\log T)^{3/2}} \ll (\log T)^{-\frac{1}{64K^2}},
\]

where the last two terms in the first inequality come from the measure of \((-R, R)^d\) under the Gaussian and \(Q\) measure; they are bounded respectively by a standard Gaussian tail bound and the corresponding bound under \(Q\), which can be obtained from the exponential Chebyshev inequality and the exponential moment bound (39) (with \(t_j\) purely complex). The claim (38) follows from (40) and the fact that

\[
\prod_j \int_0^\infty g_j(y) e^{-\frac{x_j^2 y}{2s_j^2}} dy - \prod_j \int_0^\infty e^{-\frac{x_j^2 y}{2s_j^2}} e^{-\frac{y^2}{2s_j^2}} dy \ll (\log T)^{-\frac{1}{64K^2}},
\]

since

\[
\int_0^\infty e^{-\frac{x_j^2}{2s_j^2}} e^{-\frac{y^2}{2s_j^2}} \geq e^{\frac{x_j^2}{2s_j^2}} \int_{x_j/s_j}^\infty e^{-u^2/2} du \gg \frac{s_j}{x_j} \gg (\log T)^{-\frac{1}{64K^2}}.
\]

This concludes the proof of (38).

The proof of the two-point bound (37) is done similarly. As in the proof of Proposition 3.9, it suffices to prove a bound on \(P(T(\tau) \cap T(\tau') \cap B(\tau) \cap B(\tau'))\). For simplicity, we write \(P_j'\) for \(P_j(\tau')\) and \(B'\) for \(B(\tau')\). The right change of measure is now

\[
d\mathbb{Q} = \frac{\exp(\sum_j \beta_j (P_j + P_j'))}{\mathbb{E}[\exp(\sum_j \beta_j (P_j + P_j'))]} 1_{B \cap B'} , \quad \beta_j = \frac{x_j}{s_j^2}.
\]

The probability \(P(T \cap T' \cap B \cap B')\) becomes

\[
\mathbb{E} \left[e^{\sum_j \beta_j x_j (P_j + P_j')} 1_{B \cap B'} \right] e^{-2 \sum_j \beta_j x_j} \mathbb{E}_Q \left[e^{-\sum_j \beta_j (P_j + P_j' - 2x_j)} 1_{T \cap T'} \right].
\]

It follows from (27) that

\[
\mathbb{E} \left[\prod_{j=1}^{K-3} \xi_j P_j + \xi_j' P_j' \right] 1_{B \cap B'} = (1 + O((\log T)^{-\frac{1}{4}})) \exp \left(\frac{1}{2} \sum_{j=1}^{K-3} (\xi_j^2 + \xi_j'^2) s_j^2 \right),
\]
for $|\xi|, |\xi'| \leq \log T^{\frac{16\pi}{K}}$, where we have used that $|\sum_j \xi_j \xi'_j \rho_j(\tau, \tau')| \ll (\log T)^{\frac{1}{16\pi}} (\log T)^{-\frac{1}{16\pi}} = O((\log T)^{-\frac{1}{16\pi}})$, by (22). We thus expect the variables $((P_j, P'_j), j \leq K - 3)$ to be approximatively independent Gaussians of variance s_j^2. By (44), the quantity in (43) equals

$$(1 + o(1)) e^{-\sum_j \frac{x_j^2}{s_j^2}} \mathbb{E}_Q \left[e^{-\sum_j \beta_j (P_j + P'_j - 2x_j)} 1_{T \cap T'} \right].$$

We now show that

$$\mathbb{E}_Q \left[e^{-\sum_j \beta_j (P_j + P'_j - 2x_j)} 1_{T \cap T'} \right] \leq (1 + o(1)) \prod_j \left(\int_0^\infty e^{\frac{x_j y}{s_j^2}} e^{-\frac{y^2}{2s_j^2}} \frac{dy}{\sqrt{2\pi s_j^2}} \right)^2. \tag{45}$$

This is proved by using Lemma 3.11 with $d = 2(K - 3), N = R = (\log T)^{\frac{1}{32 K^2}}$ and $f = \prod_j g_j$ where g_j is now

$$g_j(y) = \begin{cases} 0 & \text{if } y \leq -(\log T)^{-\frac{1}{64 K^2}} \\ e^{-\beta_j y} & \text{if } y > 0 \end{cases},$$

with linear interpolation in-between. This function has Lipschitz constant $(\log T)^{\frac{1}{64 K^2}}$, and by definition,

$$\mathbb{E}_Q \left[e^{-\sum_j \beta_j (P_j + P'_j - 2x_j)} 1_{T \cap T'} \right] \leq \prod_j g_j(P_j - x_j)g_j(P'_j - x_j) 1_{T \cap T'} \tag{46}.$$

The Fourier transform under the Q-measure is

$$\mathbb{E}_Q \left[e^{i \sum_j (t_j P_j + t'_j P'_j - 2x_j)} \right] = e^{i \sum_j (t_j + t'_j)x_j} \frac{\mathbb{E} \left[e^{i \sum_j \beta_j (P_j + P'_j) 1_{B \cap B'}} \right]}{\mathbb{E} \left[e^{i \sum_j \beta_j (P_j + P'_j) 1_{B \cap B'}} \right]} \tag{47}$$

$$= (1 + O((\log T)^{-\frac{1}{16\pi}})) \exp \left(-\frac{1}{2} \sum_j (t_j^2 + t'_j^2)s_j^2 \right).$$

for $|t_j|, |t'_j| \leq (\log T)^{\frac{1}{16\pi}}$ by (44). Again, the right side corresponds to the Fourier transform of pairs of independent Gaussian variables of variance s_j^2. The difference between the two Fourier transform is $O((\log T)^{-\frac{1}{16\pi}})$. Lemma 3.11 directly implies

$$\mathbb{E}_Q \left[\prod_j g_j(P_j - x_j)g_j(P'_j - x_j) 1_{T \cap T'} \right] - \prod_j \left(\int_0^\infty g_j(y) e^{-\frac{y^2}{s_j^2}} dy \right)^2 \ll \frac{(\log T)^{\frac{1}{64 K^2}}}{(\log T)^{\frac{32 K^2}{16\pi}}} + (\log T)^{\frac{2(K - 3)}{16 K^2}} + e^{-(\log T)^{\frac{1}{16 K^2}}} e^{-(\log T)^{\frac{1}{32 K^2}}} \ll (\log T)^{-\frac{1}{64 K^2}}, \tag{48}$$

similarly to in (40). The claim (45) follows from (48) and (46). The error coming from g_j is controlled as in (41). This concludes the proof of (45) and of the proposition.

It is now possible to finish the proof of Proposition 3.2.
Proof. Without loss of generality, we suppose that \(\log T \) is an integer. Consider a finite set \((\tau_\ell) \) of \(\log T \) points that are equidistant on \([-1, 1]\). As mentioned in \([22]\), we have that \(2s_j^2 = \frac{1}{\pi} \log \log T + o(1) \). Therefore, for \(\lambda < 1 \), the probability in the statement is greater or equal to \(\mathbb{P}(\bigcup_{\tau} T(\tau_\ell)) \). Moreover, by a direct application of the Cauchy-Schwarz inequality (the Paley-Zygmund inequality), this is bounded below by

\[
\left(\mathbb{E} \left[\sum_{\ell} 1_{T(\tau_\ell)} \right]^2 \right)^2 \leq \sum_{\ell, \ell'} \mathbb{P}(T(\tau_\ell) \cap T(\tau_{\ell'})).
\]

On one hand, by \([36]\) and \([42]\), the sum in the numerator is bounded below by

\[
\sum_{\ell} \mathbb{P}(T(\tau_\ell)) \geq (1 + o(1)) \log T \prod_j \int_0^\infty \frac{1}{\sqrt{2\pi s_j^2}} e^{-\frac{(x_j + y)^2}{2s_j^2}} dy
\]

\[
\gg (\log T)^{-\frac{1}{\pi}} \sum_j -\frac{x_j^2}{s_j^2} (\log \log T)^{-1/2}.
\]

On the other hand, the sum in the denominator can be split into three parts. The first is over pairs with \(|\tau_\ell - \tau_{\ell'}| \geq (\log T)^{-\frac{1}{\pi}} \). There are at most \((\log T)^2 \) such pairs, therefore by \([37]\),

\[
\sum_{|\tau_\ell - \tau_{\ell'}| \leq (\log T)^{-\frac{1}{\pi}}} \mathbb{P}(T(\tau_\ell) \cap T(\tau_{\ell'})) \leq (1 + o(1)) \left(\sum_{\ell} \mathbb{P}(T(\tau_\ell)) \right)^2.
\]

In view of \([49]\) and \([50]\), it remains to show that the sum over pairs such that \(|\tau_\ell - \tau_{\ell'}| > (\log T)^{-\frac{1}{\pi}} \) are negligible with respect to the numerator. There are at most pairs \((\log T)^{2 - \frac{1}{\pi}}\) with \((\log T)^{-\frac{1}{\pi}} < |\tau_\ell - \tau_{\ell'}| \leq (\log T)^{-\frac{1}{\pi}}\). Proposition \([3.9]\) (with \(m = 0 \)) implies that the sum over these pairs is

\[
\ll (\log T)^{2 - \frac{1}{\pi}} e^{-\frac{1}{\pi}} \left(\sum_{\ell} \mathbb{P}(T(\tau_\ell)) \right)^2 = o \left(\left(\sum_{\ell} \mathbb{P}(T(\tau_\ell)) \right)^2 \right),
\]

where the second inequality is from the bound \([50]\). Finally, there are at most \((\log T)^{2 - \frac{m}{\pi}} \) pairs with \((\log T)^{-\frac{m}{\pi}} < |\tau_\ell - \tau_{\ell'}| \leq (\log T)^{-\frac{m}{\pi}} \). By Proposition \([3.9]\), the sum of the probabilities over these pairs is

\[
\ll (\log T)^{2 - \frac{m}{\pi}} \exp \left(\sum_{j=1}^m \frac{x_j^2}{2s_j^2} + \sum_{j=m+1}^{K-3} \frac{x_j^2}{2s_j^2} \right) = (\log T)^{2 - \frac{m}{\pi}} \exp \left(-\sum_{j=1}^{K-3} \frac{x_j^2}{2s_j^2} \right) \exp \left(\sum_{j=1}^m \frac{x_j^2}{2s_j^2} \right)
\]

\[
\ll (\log T)^{2 - \frac{m}{\pi}} \exp \left(-\sum_{j=1}^{K-3} \frac{x_j^2}{s_j} \right) (\log T)^{-\frac{m}{\pi}(1-\lambda^2)}.
\]

This implies that the sum over \(m \) from 1 to \(K - 3 \) is \(O \left((\log T)^{2 - \frac{1-\lambda^2}{\pi}} \exp \left(-\sum_{j=1}^{K-3} \frac{x_j^2}{s_j} \right) \right) \) which is also negligible with respect to the numerator by \([50]\). This concludes the proof of the proposition. \(\square \)
The following Sobolev-type inequalities will be needed several times throughout the paper.

Lemma A.1. Let f be a differentiable function on $[0, \infty)$ such that $f(t) = o(t^{1/2})$ and $f'(t) = o(t^{1/2})$. Then

$$\frac{1}{T} \int_{-T}^{2T} \max_{u \in [-1,1]} |f(t+u)|^2 \, dt \ll \left(\frac{1}{T} \int_{-T}^{2T} |f(t)|^2 \, dt \right)^{1/2} \cdot \left(\frac{1}{T} \int_{-T}^{2T} |f'(t)|^2 \, dt \right)^{1/2} + \frac{1}{T} \int_{-T}^{2T} |f(t)|^2 \, dt.$$

Proof. For any $t \in [T, 2T]$ and any $u \in [-1,1]$, integration yields the inequality

$$|f(t+u)|^2 \leq \int_{t-1}^{t+u} |f'(s) \cdot f(s)| \, ds + \int_{t+u}^{t+1} |f'(s) \cdot f(s)| \, ds + \frac{1}{2} |f(t-1)|^2 + \frac{1}{2} |f(t+1)|^2.$$

Therefore, by taking the maximum over u and averaging on t, we get

$$\mathbb{E} \left[\max_{u \in [-1,1]} |f(t+u)|^2 \right] \leq \int_{-1}^{1} \mathbb{E} \left[|f'(t + s) \cdot f(t + s)| \right] \, ds + \frac{1}{2} \mathbb{E} \left[|f(t-1)|^2 \right] + \frac{1}{2} \mathbb{E} \left[|f(t+1)|^2 \right].$$

By assumption on f and f', we have any $s \in [-1,1]$, $\mathbb{E} \left[|f'(t + s)|^2 \right] \ll \mathbb{E} \left[|f'(t)|^2 \right]$ and $\mathbb{E} \left[|f(t + s)|^2 \right] \ll \mathbb{E} \left[|f(t)|^2 \right]$. The claim follows from this observation and Cauchy-Schwarz inequality applied on the first term.

Lemma A.2. Let $p > 0$, let f be an analytic function in the strip $\sigma_0 < \sigma < \sigma_1$. Then for any $L > 1$, and σ with $\sigma_0 + 1/L \leq \sigma \leq \sigma_1 - 1/L$,

$$\int_{-T}^{2T} \max_{|t-u| \leq 1} |f(\sigma + iu)|^p \, dt \ll L \sup_{\sigma^* \in [\sigma_0 - 1/L, \sigma_1 + 1/L]} \int_{-T-1}^{2T+1} |f(\sigma^* + it)|^p \, dt.$$

Proof. To prove the lemma it suffices to notice that,

$$\max_{|t-u| \leq 1} |f(\sigma + iu)| \leq \sum_{|j| \leq L} \max_{|t-u-j/L| \leq 1/L} |f(\sigma + iu)|^p$$

and by subharmonicity of $|f|^p$, the above is

$$\ll L^2 \int_{|x| \leq 1/L} \sum_{|j| \leq L} \int_{|t-y-j/L| \leq 2/L} |f(\sigma + x + iy)|^p \, dy \, dx \ll L^2 \int_{-1/L}^{1/L} \int_{t-1}^{t+1} |f(\sigma + x + iy)|^p \, dy \, dx.$$

The claim follows by integrating over t.

Appendix B. Elementary Number Theory Estimates

The Prime Number Theorem states that, cf. [27],

$$\# \{ p \leq x : p \text{ prime} \} = \int_{2}^{x} \frac{1}{\log y} \, dy + O(xe^{-c\sqrt{\log x}}).$$
In particular, this implies

\[(52) \quad \sum_{p \leq p \leq Q} \frac{1}{p^{2\sigma}} = \int_{p}^{Q} \frac{1}{x^{2\sigma} \log x} \, dx + O(e^{-c\sqrt{\log P}}) .\]

When \(\sigma = 1/2 + \delta\) and \(\delta \log Q < 1\), it is easy to check that this yields

\[(53) \quad \sum_{p \leq p \leq Q} \frac{1}{p^{2\sigma}} = \log \log Q - \log \log P + O(\delta \log Q) .\]

This is the case in particular for the choice of \(\sigma_0\) \(\in \{0\}\) where \(\delta = (\log T)^{-1 + \frac{3}{10}}\) and the largest \(Q\) is the upper bound of the set \(J_{K-3}\) given in \(\{7\}\).

The next lemma confirms the heuristics that the Dirichlet polynomials are very close to polynomials where \((p^{-it})\) is replaced by IID uniform variables on the circle. This result appears elsewhere, in particular in \([8,\) proof of Proposition 3.1\]. We prove it for completeness.

Lemma B.1. Let \(X \geq 1\) and let \((a(p), p\) prime\) and \((a^{*}(p), p\) prime\) be two sequences in \(\mathbb{C}\) with \(|a(p)|, |a^{*}(p)| \leq 1\) for all \(p\) and \(a(p) = a^{*}(p) = 0\) for \(p > X\). Then for \(k \in \mathbb{N}\) we have

\[\mathbb{E} \left[\left(\frac{1}{2} \sum_{p} a(p)p^{-it} + a^{*}(p)p^{it} \right)^{k} \right] = \partial_{z}^{k} \left(\prod_{p} J(a(p)a^{*}(p)z^{2}) \right) \bigg|_{z=0} + O \left(\frac{X^{2k}}{T} \right)\]

where \(J(z) = \sum_{n \geq 0} z^{n}/(2^{2n}(n!)^{2})\). In particular, the expression is \(O\left(X^{2k}/T \right)\) for odd \(k\).

Proof. The expectation can be written as

\[\sum_{p_{1},\ldots,p_{k}} \mathbb{E} \left[\prod_{l=1}^{k} \left(\frac{1}{2} a(p_{l})p_{l}^{-it} + a^{*}(p_{l})p_{l}^{it} \right) \right].\]

Denote the number of prime factors of \(n\) (with multiplicities) by \(\Omega(n)\). We define the multiplicative function \(g(q^{a}) = 1/a!\) if \(q\) is prime. If we write \(n = q_{1}^{a_{1}} \ldots q_{r}^{a_{r}}\) for the prime decomposition of \(n\), the above sum becomes

\[(54) \quad \sum_{\Omega(n) = k} k! g(n) \mathbb{E} \left[\prod_{l=1}^{k} \left(\frac{1}{2} a(q_{l})q_{l}^{-it} + \frac{1}{2} a^{*}(q_{l})q_{l}^{it} \right)^{\alpha_{l}} \right]\]

Let \(N_{l}\) be independent Binomial random variable with parameters \((\alpha_{l}, 1/2)\). Denote the expectation over these by \(E\). Note that by expanding the power \(\alpha_{l}\) each term can be written as

\[\left(\frac{1}{2} a(q_{l})q_{l}^{-it} + \frac{1}{2} a^{*}(q_{l})q_{l}^{it} \right)^{\alpha_{l}} = E[a(q_{l})^{N_{l}}a^{*}(q_{l})^{\alpha_{l}-N_{l}}e^{-it\log q_{l}^{2N_{l}-\alpha_{l}}}] .\]

The expectations \(\mathbb{E}\) and \(E\) can be interchanged. Moreover, unless \(N_{l} = \alpha_{l}/2\) for all \(l\) we have that \(|i\log \prod_{l} q_{l}^{2N_{l}-\alpha_{l}}| \geq \frac{X}{T^{2}}\). In this case the factor coming from the integration of the exponential in \(t\) is bounded by \(X^{k}/T\). These observations imply altogether the following:

\[\mathbb{E} \left[\prod_{l} a(q_{l})^{N_{l}}a^{*}(q_{l})^{\alpha_{l}-N_{l}}e^{it\log q_{l}^{2N_{l}-\alpha_{l}}} \right] = \prod_{l} \frac{(a(q_{l})a^{*}(q_{l}))^{\alpha_{l}/2}}{2^{\alpha_{l}}}(\alpha_{l}/2) + O \left(\frac{X^{k}}{T} \right)\]
where we use the bound on $a(p), a^*(p)$ and the convention that $\binom{\alpha}{\alpha/2} = 0$ if $\alpha/2$ is not an integer. Consider the multiplicative function f defined by

$$f(p^\alpha) = \frac{(a(p)a^*(p))^{\alpha/2}}{2^\alpha} \binom{\alpha}{\alpha/2}.$$

With these observations (54) becomes

$$\sum_{\Omega(n) = k} k!f(n)g(n) + O\left(\frac{X^{2k}}{T}\right),$$

where for the error term we used the fact that there are at most X^{k} terms in the sum. The condition $\Omega(n) = k$ can be expressed using a contour integral

$$\sum_{\Omega(n) = k} k!f(n)g(n) = \frac{k!}{2\pi i} \oint \sum_{n \geq 1} f(n)g(n)z^{\Omega(n)} \frac{dz}{z^{k+1}}.$$

Since the summand is a multiplicative function, the finite sum may be expressed as an Euler product

$$\sum_{n \geq 1} f(n)g(n)z^{\Omega(n)} = \prod_p \left(1 + \sum_{\ell \geq 1} \frac{(a(p)a^*(p)z^2)^\ell}{2^{2\ell}(2\ell)!} \binom{2\ell}{\ell}\right) = \prod_p \mathcal{J}(a(p)a^*(p)z^2).$$

The lemma follows by putting this back in (56) and using Cauchy’s formula.

A similar argument can be used to prove an upper bound on the moment, see Lemma 3 in [36].

Lemma B.2. Let $a(p)$ be a sequence of complex coefficients and $\sigma \geq 1/2$. Then for X and $k \in \mathbb{N}$ such that $X^{k} \leq T(\log T)^{-1}$, we have

$$\mathbb{E}\left[\left|\sum_{p \leq T^{1/k}} \frac{a(p)}{p^{\sigma+it}}\right|^{2k}\right] \ll k! \cdot \left(\sum_{p \leq T^{1/k}} \frac{|a(p)|^2}{p^{2\sigma}}\right)^k.$$

Note that when the sum does not involve only primes but also prime powers (like in the case of \mathcal{P}_i) one can apply the Lemma with the choice of $a(p) = \alpha(p) + \beta(p^2)/p^{1/2}$ for example with $\alpha(p)$ the coefficient at the primes and $\beta(p^2)$ the coefficients at squares of primes.

The following observation called Rankin’s trick will be used often:

$$\sum_{n > x} a(n) \leq x^{-\alpha} \sum_{n > x} a(n)n^\alpha \leq x^{-\alpha} \sum_{n=1}^{\infty} a(n)n^\alpha \quad a(n) \geq 0, \alpha > 0.$$

References

Department of Mathematics, Baruch College and Graduate Center, City University of New York, USA

E-mail address: louis-pierre.arguin@baruch.cuny.edu

Institute of Mathematics, University of Zurich, Switzerland

E-mail address: david.belius@cantab.net

Courant Institute, New York University, USA

E-mail address: bourgade@cims.nyu.edu

Department of Mathematics and Statistics, McGill University, Canada

E-mail address: maksym.radziwill@mcgill.ca

Department of Mathematics, Stanford University, USA

E-mail address: ksound@stanford.edu