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ABSTRACT. We estimate asymptotically the fourth moment of the Riemann
zeta-function twisted by a Dirichlet polynomial of length Ti~¢. Our work relies
crucially on Watt’s theorem on averages of Kloosterman fractions. In the con-
text of the twisted fourth moment, Watt’s result is an optimal replacement for
Selberg’s eigenvalue conjecture.

Our work extends the previous result of Hughes and Young, where Dirichlet
polynomials of length T11¢ were considered. Our result has several applica-
tions, among others to proportion of critical zeros of the Riemann zeta-function,
zero spacing and lower bounds for moments.

Along the way we obtain an asymptotic formula for a quadratic divisor prob-
lem, where the condition amims —bnine = h is summed with smooth averaging
on the variables my, ms,n1,n2, h and arbitrary weights in the average on a, b.
Using Watt’s work allows us to exploit all averages simultaneously. It turns out
that averaging over mi, ms, n1, no, h right away in the quadratic divisor problem
simplifies considerably the combinatorics of the main terms in the twisted fourth
moment.

1. INTRODUCTION

The Riemann zeta-function ((s) is intimately related to the study of prime
numbers and other problems in number theory. There are a number of famous
conjectures in this area. Two distinguished examples are the Riemann Hypothesis,
which states that all non-trivial zeros of ((s) are on the line Re(s) = 1/2, and the
Lindelof Hypothesis, which states that (1/2 + it) <. (1 + |t])°.

These two conjectures remain far out of reach. However, methods in analytic
number theory can prove that these conjectures are true on average. An example
of this is the study of moments of ((s). To be more precise, let

By = [l i

Here, asymptotic formulae were proven for £ = 1 by Hardy and Littlewood and
for k = 2 by Ingham (see [14; Chapter VII]). Note that the Lindel6f Hypothesis is
equivalent to I;,(T) <. T'" for all k € N.

The result of Ingham was useful in proving his zero density result (see, for
example, [14]), which also has applications to prime numbers. Despite extensive

further work, no such result is available for any other values of k. However, results
1
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are available for twisted fourth moments of ((s), which may be considered to be
somewhere between the k& = 2 result of Ingham and the open problem for k = 3.
Let us define
Pls)= Y =t
a<T? a
to be a Dirichlet polynomial of length 77, with ¥ > 0 and o, < a°. Then Watt’s

result in [15] gives that
T
/ €5 +it)|*|P(5 +it)|Pdt <. T (1)
0

for ¥ < 1/4. This is an improvement over the work of Deshouillers and Iwaniec
[7], which had a similar bound for ¥ < 1/5, and the initial work of Iwaniec [11],
which led to ¥ < 1/10 just using the Weil bound. Despite appearances, this type
of bound is not far removed from the prime number theory which inspired such
questions. For instance, the bound (1) is useful in studying prime numbers in
short intervals [5].

It is desirable to evaluate more precisely the quantity in (1), in view of various
applications to the theory of the Riemann zeta-function, including the study of
proportion of zeros on the critical line, gaps between zeros of the zeta-functions,
and lower bounds for moments. Some of these consequences of our main results
below have been in fact already worked out (see [2, 3, 4]) and have remained thus
far conditional.

Hughes and Young [10] obtained an asymptotic formula for

T
/|C(%+z’t)!4\P(%+it)|2dt
0

when 9 < 1/11, and it is expected that this result remains true all the way for
¥ < 1 (and in this range it implies the Lindeléf Hypothesis). In this paper, we
prove the following.

Theorem 1.1. Let T > 2 and let o, 3,7, € C with a, 3,7, < (logT)~".
Furthermore, let ®(x) be a smooth function supported in [1,2] with derivatives

®U)(z) <; T¢ for any j > 0. Consider

Qg Bb
A(s) = Z pr and B(s) = Z 7
a<T? b<T?

where ag K a° and Py < b, and let 1, 5~5(T) denote
—T . (1t
/ C(E+it+a)C(3+it+B)C(E—it+7)C(5 — it +0)AG +it) B +it) () d.
R

Define
Zoprsab = Aapr6BasrysaBysapb
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where

CA+a+9)C1+a+0)C(1+8+7)C(1+8+9)
C24+a+B+7v+0) ’

. . i
Bagnyba = H (Zjog 7o (p7 )“77,6(107 ' )}i 'j>

p*|la Zj:o 0'0476(])])0%5(]9])[) J

Ao s =

and oap(n) =, oo ny%ny”. Then we have

ga g t t\—af==0
Topqs(T Z Z Z]abg /R <T> (Zoaﬁ,’y,&a,b + <%> Z 5 —a,—Bap | dl

g9 (ab)=1
el [o(D) (L) ()"
e o Z— —,0,a P Z_ —a.a
+3 zl e [o()((5 o+ (5

b :
! t\ B0
+ <%) Za,—%—ﬁ,é,a,b + (%) Za,—6,7,—6,a,b dt
+ Oa <T%+219+5 + T%—&—ﬁ—i—a) ]

Remarks.

e Setting A = B and letting the shifts «, 3,7, — 0, Theorem 1.1 implies
an asymptotic formula for

/o IC(5 + )| P (3 +it)*dt

when ¥ < 1/4, which should be compared to the ¥ < 1/11 restriction in
the work of Hughes and Young [10].

e The above expression coincides with that obtained by Hughes and Young
[10]. Here, the first two terms come from the diagonal, while the four
remaining terms are the main terms coming from the off-diagonal contri-
bution of sums of the following type

By
Z - ag 5 éf(am1m2,bn1n2,h)K(mlanlng).
amimg—bning=h#0 mymyny Ny

Each of the four possibilities where ny < ng or nqy > nsg, m; < msg or
my > my contributes to exactly one of the off-diagonal main terms.

e As mentioned in [10; page 207], the symmetries of the expression imply
that the sum of the six main terms is holomorphic in terms of the shift
parameters. The holomorphy of this permutation sum has been proved in
[6; Lemma 2.5.1]. In the remaining of the article, we impose the additional
restrictions that |a & 8] > (logT)™!, etc. We note that the holomorphy
of I 5~6(T) and of the permutation sum leads to the holomorphy of the
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error term, and hence the maximum modulus principle can be applied to
extend the error term to the enlarged domain.

Practically, it is however unnecessary to specify the Euler products A, g,,s and
Ba g~5.0- In various applications (for example, [2, 3, 4]), the resulting arithmetic
factor can be worked out much more easily by incorporating the arithmetic proper-
ties of the sequences a, and (. For that purpose we state a variant of Theorem 1.1
below.

Theorem 1.2. Under the same assumptions as in Theorem 1.1 we have

I t ~ t \—a—B-v—0 ~
[a,ﬁ;y,&(T) = Z Oéaﬁb/Rq)<f> (Za,ﬁ,%é,a,b<t> + (%) Zy,é,a,ﬁ,a,b@))dt

a,b<T?

_ t t\—a—7 ~ t\ a6~
+ > by /R (I)<T) ((g) Z—8,~ap.ab(t) + (%) Z—587.~a.ab(t)

a,b<T?

t\ B~ t\—B-6~
+(32)  Zacrcssas®+ (52)  Zacsopas(®) )dt

o
+0. <T%+2ﬁ+s n T§+q9+s)

where

Zaﬁ'yéab(t) = E , 1 11 1 1 V*<m1m2nln2>
#5700 B)i 3t 318 2T, 5+ 12
amima=bning (CL )2m1 my ny US>

and the function V*(x) is defined as in (8).

Remark. Note that the function V*(z) satisfies V*(z) <4 (1 + |z|)~4 for any
fixed A > 0, so Theorem 1.2 shows a better structure of the main terms. This is
the form suggested by following the recipe in [6].

An important feature of our results is that we exploit the averaging over a,b
in the proof of the theorems. Thus stating the results for individual a,b and
then summing the error term would lead to an inferior bound. Another interest-
ing feature is that since we arrive to the main terms from another direction, the
combinatorics of the main terms turn out to be easier than in previous treatments.

Our results should also be contrasted with recent results in [1], where the length
of ¥ was extended beyond 1/2 for the twisted second moment, and where some
expressions approaching those of Theorem 1.1 were considered. In addition, the
range ¥ < 1/4 is optimal in the sense that assuming the Selberg eigenvalue con-
jecture does not lead to an extension of the range of . On the Selberg eigenvalue
conjecture Motohashi [13] has obtained an exact formula for the twisted fourth
moment. However in his treatment an estimation of the error terms is lacking
(and the average over a and b is not exploited), and should not in any case allow
one to exceed ¥ = 1/4, as we will now explain. If the polynomial is chosen to

be an amplifier of length T%_e, then results of this form lead to the Burgess style
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subconvexity bound |¢(1/2 + it)| <. ¢167¢. Since this bound is a natural barrier
in other families of L-functions, it seems likely that we cannot improve the length
of the polynomial without including new ingredients specific to ((s).

The improvement over the work of Hughes and Young [10] arises from two
ingredients, both appearing in the treatment of a shifted convolution problem
involving the divisor function. The first is that we do not use the -method, which
turns out to be suboptimal in this application. The second, and main reason for the
improvement in our work, is the treatment of an exponential sum, which resembles
a sum of Kloosterman sums. In Hughes and Young’s work, they use the Weil bound
for Kloosterman sums, neglecting the possibility of further cancellation in the sum.
Our work takes advantage of further cancellation derived from spectral theory on
GL(2). In particular, we use the exponential sum bound from Watt [15], which
is based on the work of Deshouillers and Iwaniec [8]. However, we also appeal in
certain circumstances to the Weil bound, when Watt’s result is not effective.

The quadratic divisor problem that we obtain is likely to be useful in other work,
and therefore we also state it here. For a function f(x,y, z) decaying sufficiently
fast at infinity, we let ]?;:,(x, y, s) denote the Mellin transform of f with respect to
the third variable and we write ffor the Mellin transform with respect to all three
variables. Further, let f, g~s(z,y;a,b,g) be

L f3($, Y, S)C(S)C(l +oa— B +v - o+ 5)g7877a,,3,’y,5,a,b(07 O, S)dS, (2>

21 (1+€)
where 7q,8..6.06(1, v, s) is defined as in (23). Then we have the following.
Theorem 1.3. Let A, B, X, Z, T > 1 with Z > XT~° and log(ABXZ) < logT.

Let oy, By be sequences of complex numbers supported on [1, A] and [1, B], respec-
tively, and such that a, < A%, B, < B®. Let [ € COO(]R;O) be such that

oi+itk 272 _r
0x'Qyi0z+ xy )

for any i, j,k,r > 0. Let K € C*(Rx) be such that KY(z) <, T*(1+ z)77(1 +
/X% for any j,r > 0. Then, writing

F (@9, 2) igrr T+ 2) (L4 9) 7 (14 2)7 (14

QaBp
S = Z ag —— f(amymg, bniny, h) K (mymaning),
memsnlng
amima—bnina=h>0 1120t

where the sum runs over positive integers a,b, my, ms,ny,ny and h, we have
S =Maprys+Mpays+ Mapsy + Mpasy+E,

where

(I +a—p)(1+~—9) agaﬁgbg
Masos = (2+a—F+~—10) ZZ 8(gb)1-0
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2\ ~ o
/ K<g2ab>fa”8’%5(x’m?a>ba9)93 B0y
0

and the error term & is bounded by
£ <T°(AB)2XZ"* (AB +(A+ B)%(AB)iX%Z—i),

Another variant is stated in Section 4. We have chosen to state in the introduc-
tion the version that we will use to obtain Theorem 1.1. Here, as explained before,
each of the four main terms comes from the four possibilities where n; < ns or
niy > ng, my < My Or my > Mmo. To contrast our result with previous work, the
novelty in our treatment is that we average over all possible parameters, while
allowing the averages over a,b to have arbitrary weights. In comparison, the 9-
method delivers a fairly poor range of admissible values of a,b. Finally, when
a = b = 1 strong error terms have been obtained by Motohashi [12] exploiting the
fact that there are no exceptional eigenvalue for the Laplacian on SL(2,Z)\H, for
‘H the usual upper half plane.

2. PROOF OF THEOREM 1.1 AND THEOREM 1.2

2.1. The approximate functional equation. We start by recalling the approx-
imate functional equation.

Lemma 2.1 (Approximate functional equation). Let G(s) be an even entire func-

tion of rapid decay in any fized strip |Re(s)| < C satisfying G(0) = 1, and let

1 G(s) e s
Voo, t) = i /(1) %ga,m,(s(s, t)yr 252 ds,

where

2 2 2

ga,ﬁ,%5<57t): F(%Jroﬂrit) F<%+[23+it) F(%Jr'yfit) F(%H—z’t)'

2 2 2

L _a—it 1_p—it Iyt 1_s+it
2 2 2 2
s () T() T (5 T(5)

r ( %-i—oz-‘rs-i-it) r ( §+ﬁ+s+z‘t> r ( §+w+s—it> r ( %+(5+s—it>
2

Furthermore, set

Xaprot)=m

and

Va:ﬁ7776 (‘x’ t) = X_'Y)_&_ay_ﬁ (t>va75’7’5 (‘T, t)'
Then we have

CE+a+it)((3+B+it)C(3+v—it)((3+ 6 —it)
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_ Z Ua,,B aw 5(n) <n )itVaﬁq,(s(mn, ) 5

+ Z o a<m>o—a SO (Y (. t) + Oal(1+ 1)),

(mn)> n

for any fixed A > 0.
Proof. See Proposition 2.1 of [10]. O

Remarks.

e As mentioned in [10], it is convenient to prescribe certain conditions on the
function G(s). To be precise, we assume G(s) is divisible by an even poly-
nomial Qs 5,.6(s), which is symmetric in the parameters «, 3,7, ¢, invariant
under the transformations a« — —a,  — —/f, etc. and zero at s = —@

(as well as other points by symmetry), and that G(s)/Qa,+.6(s) is inde-

pendent of «, 8,7,d. An admissible choice is Qa p-4(s)exp(s?) for such

Qa,p..6(5), but there is no need to specify a particular function G(s).

e For ¢ large and s in any fixed vertical strip Stirling’s approximation gives

Xt = (5) T o) (4)

and
dosnalst) = (5) (1406 (1 +1)). )

Moreover, for any fixed A > 0 we have

4 B
Vo Vap (@) <ag (14 o] /£2) 7. (6)

2.2. Initial manipulations. Applying the approximate functional equation (3),
we see that

Lo s(T) = Japrs(T) + Ty s ars(T) + Oa(T~),
for any fixed A > 0, where

= 2 -
Jopa( 2+a 148 14y 145

1
a,b<T?¥ mi,m2,n1,n2 (ab)§ my My Ny
amlmg)—lt < t )
Va mimeoning, t)®( =) dt

and J is the same sum, but with V in place of V. Write
Jo,p36(T) = Muagrs(T) + J5 5,5(T)

and

Jyb-a,p(T) = Moy 50, -(T) + 2, 54, _5(T),
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where

.0
Miapqs(T) = E E Lta 148 14y 145

1, 1
a,b<T?¥ ™M1,M2,101,n2 (ab)le my Ny N
amima=bninsg

t
/ Va’ﬂ’”"s(mlmﬂl”%ﬂ@(_) dt,
R T

Qg Olp
s =) > T
s +a  F+B 34y 346

15
ab<r?  mimzmine  (ab)zmi m3 n{ nj
=7 amime—bnina=h#£0

h @ t
/ (1 + ) Vaﬁ’%g(mlmgnlng, t)q) (—) dt
R T

bn1 N9

and My, 5 a-pand J* s 5 being similar expressions.

2.3. The diagonal terms. Asin Hughes and Young [10; Proposition 3.1] we have

gaBgp t 19,
Misapoa(T Z Z —h /R () Zapsasdt + O(TH57),

b)=1
Notice that when moving the line of integration to Re(s) = —1/4 + € in their
equation (47), we cross only a simple pole at s = 0. This is because of the
cancellation of the zeros of the function G(s) at —@, etc. with the poles of the
zeta-functions in the formula.
Similarly,

agaﬂgb t t \—a—B--9
Mo, 50 p(T Z Z oab / (7)(55) Zomt-a-paptl

b)=1
+ O(TH7).

2.4. The off-diagonal terms. We first evaluate J; 5. 5. In view of (6), the
summands in J; 5 5(T) with mimaning > T?*¢ give a negligible contribution.
Also, by integration by parts we have

T

h i t
1+ Vo P = ) dt <5 —
/R< bn1n2> ,/3,%6(m1m2n1n2 ) (T) J (h/ /—abmlmgnlng)JTj

for any fixed j > 0. So the contribution of the terms with |h| > v/abmymaoniny T—1+¢
is O4(T~4) for any fixed A > 0. Hence

QO
Tapra(T) =2 2
aprs(T) o S48 3y 3+

1
a,b<T? mimaningLT2te (ab) rmy My Ny 2
amima—bnina=h

0<|h|<Vabmymaning T~1+¢
h —it t
/ <1 + ) Va,gma(mlanl”z, tﬂ’(f) dt + OA(T_A)'
R

bnmz
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Note that a trivial bound gives

1
Jop6(T) e Tt Z Z T +0A(T™)
a,b<T? mimanine LT+ (abm1m2n1n2) 2
amimo—bnino=h

0<|h|<Vabmimaning T—11¢
<. T1+19+€’ (7)

where the last estimate comes from letting a, m,, mo and h vary freely and bound-
ing the number of values of b, n1, ny by the number of divisors of am;ms — h. For

|| < vabmimaniny T~ we have
h —it th
(1 ) o= ) o

bnine 2mbning

Thus, using the trivial bound (7) we get

IICED S > o ()
,B3,7,8 - ta _5+B8 3+v 3157 \abminimans

1
a,b<T? mimonino<T?te (ab)2m
amimsa—bnino=h#0

th y E
/Re< - m> Va5 (mimaning, t)<I><T> dt + O, (T’H )7

N po|—

where () is a function that is identically 1 for 0 < z < 1 and decays rapidly at
infinity.
Now, define
1 G(s) Cos
Vi) = — | 2 (om) e ds.

)= g7 ], 00 s 0
The estimate (5) implies that V, g,5(x, ) = V*(x/t?) + O.(¢""*27¢). In partic-
ular, we can replace V, 5. 5(z,t) with V*(2:/t*) in the above expression at the cost
of an error of size O.(T?*¢). Grouping the terms h and —h allows us to replace

e(—th/2mbniny) by 2cos(th/bning) and the condition h # 0 is now replaced by
h > 0. Thus

— 22—¢
QO h=T

*s(T) =2 - ( >

a,ﬁ,w,z?( ) /R Z Z lta 148 14y %Jréw abminimeons

1
a,b<T?% amima—bnina=h>0 (ab) 2 ml m2 n1 n2

th 1121112 t 9
v (PR Yo (L Yat + 0(T7),
o (bn1n2> 12 T o )
To the inner sum we apply our result on the quadratic divisor problem in the
form of Theorem 1.3 (using partial summation before and after applying the the-
orem) with

Flrgs) =cos (B)o(F10), K@=V (%), 2= ad X=t
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We then get four main terms

;,ﬁ,v,é(T) = Z,,B,'y,&(T) + Mz,a,'y 6( ) + Ma .5, 67( ) + M,Z’,oz,é,'y (T) + g

with the error being bounded by
£ <. T3He(T? 4 Tat9).

Let us focus on the first main term. We have

* o C<1+a_ﬁ 1+7 5 Oégaﬁgbg
oc,ﬁ,'y,é(T)_2 C(2+Oé—ﬁ+")/ (5 ZZ gal ﬁgblé

. —1-8-6
// t2 2 ab fa,ﬂmé(%xa%b;g)x q)(?>dl’dt7

where f;ﬁm(g(x, x;a,b, g) is equal to
1

a__ - .]/c;(xv X, S)C(S)C(l +oa— 5 + v 5 + 5)97877@6,%6,(1,1;(0; 07 S)dS,
210 ) (14¢)

75 is the Mellin transform of f(z,y, z) with respect to z and 7,,8,.5.4(¢, v, s) is a
finite Euler product defined as in (23). After a change of variable we have

~

fs(@, 2, s) = 378/ cos(tu)y (u?T? )u*" du.
0
The integral over u can be expressed as a convolution of Mellin transform?, so

J/C;,(x,x s)=u=x —/ ¢ ~(2-9](5 — 22) cos (g(S—QZ))tzz_st.

271

We move the line of integration to Re(z) = —A for some large A > 0, collecting a

residue at z = 0 only (since @/D\(z) has a simple pole of residue 1 at z = 0). Taking
A large enough with respect to ¢ we obtain

~ s

fa(x,z,s) = 2°T'(s) cos (7>t_5 + Op (a7,
since t < T. We can ignore the O-term as this contributes an error of size O (T~4).
Now we evaluate the integral over z obtaining

o) 2
/ V*< T )x_1_5_5+sdx = (tg\/%)_ﬂ_“s(%r)ﬁ%_s
0

t2g%ab
by the Mellin expression (8) for V*(x). Thus, we obtain

aps(T) = M5 5(T)+ OA(T™1),

G(*ﬁﬂws)

2

—B—d+s

ISince Jo* cos(ta)a =t do = t =T (w) cos(Z) for 0 < R(w) < 1 and ¢ > 0.
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where

agafgp (1 +a—F)¢(1+v—0)
_22:§:sm1%15 C2+a—pB+7-9)

27”//1+a) t/27r %(ab)(—ﬁ—6+s)/2(27r)—8F(s) cos(%)

C(s)C(1+a—=B+7 =0+ 8)aprsab(0,0 s)®<%>dsdt.

aB’y&

Applying the functional equation ¢(1 — s) = 2(2m)~*I'(s) cos(%)¢(s) and making
the change of variable s — 3 + 0 + 2s we arrive to
a0mo (2+a—pF+v—0)
1 t
— o) [ M)
r \T

2mi (1+¢)

G(s)

dsdt,

where

Maprs(s) = C(1+a+y+2s)((1—p~0—2s)

Qgabgb
Z Z ga1 gg Sbgl o sna,ﬁ,'y,é,a,b(o,o,ﬁ + 6+ 25).

In summary we have

wprs(T) = M5 (1) + MG, s(T) + M55 (T) + Mgy s, (T) + &,

where £ < T24e(T20 4 T9+1).
On the other hand, proceeding identically to the above we also find that

i'y,—é,—oz,—ﬁ(T) - t*'y,—é —a, ﬁ( ) + M**6 —,—a, ﬂ(T)
—l—/\/l*y 5palT )+M*_*5,_
where £ <. T2t(T? + T7+1) and where, for example,

((14+a—=p)¢A+v—09)
(2+a—-p+7v—90)
1

t
— @(—)X s () (t/2m aﬂ/
5t [ 2 (7) Xowan Otz [

In view of (4) we get

g (T) + M p-alT) = C24+a—-0F+vy—0) 2mi /Rq)<T) (t/2m)
G(s)

L (M r5(5) + My () ) dsdt + OL(T).
+e

77_57_05

Mi*ﬁ,f'y,fﬁ,foz(T) =

G(s)

M_5_~.—p—als)dsdt.
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It is a standard exercise to check that M, 5.6(s) = M_s5_ _5_a(—s). Hence by

the residue theorem, noticing that the only pole in the strip —(14¢) < Re(s) < 1+«
o) g (D)
2 2

9

is at s = 0 as we assume that the function G(s) vanishes at

(A+a—=p)¢(1+~—9)
C24+a—-B+v—9)
1

t
e —B—6 €
5 .2 () #/27) 7~ M 5 0)dt + OL(T7).

::B,%é( )+M**6 —y,—B,— (T) =

The other terms combine in the same way. Hence we are left to show that

C(1+0‘_6)C(1+7_5) Z Z O‘gaﬁgb

C(2 +a— 5 +'7 o 5) 7575 gab oz —d6,7v,—B,a,bs

b)=1
which reduces to
aﬁbénayﬁv’%&aab(o’ 07 /8 + 6) = B o, — 777 5) B’Yv_ﬁvoZ?_éb

By symmetry and multiplicativity, this is equivalent to

puﬁna,ﬁ,—y,(s,pu (07 07 5 + 5) = Ba,—é,'y,—,é’,p”- (9)

From Lemma 6.9 of [10] we have

1 L pf ©0) _ 1p@) o 2R
Ba’_é’%_ﬁ’py - <1 B p2+a—5+7—5) p—(ﬁ‘f"Y) —1 <B —p BUApTB )’

where

BO — p-(+1)y _ 1)

Y

=@+ (" - p),
B® — p—OH-B—W—I—&(pﬁ—W _ pVﬁ—7>‘

On the other hand, using the definition of 7, .4.64(u, v, s) in (23), the left hand
side in (9) is equal to

PP (p—V(5+7) + Z p e (a+ 4,y =80 — B+7— 5))

0<j<v

—vy _ B 1
B ) ) )
=P - pf(ﬁﬂ) -1 1 pltaty 1 p1+'y—6 1 p2+a—,8+'y—5 )
So (9) is equivalent to
p () =) (1= p ) 4+ (p7 = pP) (L= p ) (1 —p 'p")
— 8 (B(m —p B 4+ p—2B<2)>_

It is an easy exercise to check that the above holds by comparing the coefficients
of p°, p~! and p~2, and hence Theorem 1.1 follows.
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2.5. Proof of Theorem 1.2. In the remaining of the section, we shall show that
Za,ﬁ,w,(s,a,b = abZa,Bq,d,a,b(t) + OE (T—(l—ﬁ)/Q-‘rs) (1())

fort <T,a,b <T”and (a,b) = 1, and hence Theorem 1.1 will imply Theorem 1.2.
From (8) we have

~ 1 G(s t \2s Oo.g(m)o n
Zaaﬁﬂ/ﬁ,a,b(t) _/(1)Q<%> Z 7/3( ) 'y,é( )dS

T 2mi 5 (ab)% (mn)%“

am=bn

Since (a,b) = 1 we get

~ 1 G(S) / t\25, 1e) ~= Tap(bn)o, s(an
Zusnsnolt) = gy [ 2 (o) e 3o st gy

2w s \2rm —

Let

 Tas(1)055(n)
Aapas(s) = %

n=1

(I Fa+y+28)((1+a+6+2s)C(1+ B+ +2s)C(1+ 5+ + 2s)
C2+a+B+v+0d+4s)

and

Bagrsals) =

H (Z;io Oa (P 5(pI T )pI(1+29) ) |

i\ 22520 Tas(P)o s (p)p 702

so that An g5 = Aap6(0), Bagrsa = Bapsrsa(0) and

Zoo Oa5(bn)o., s(an)
8 76
= n1+21 = Aazﬁfﬁa(s)Bavﬁ:’y:éva(s)B’Y767a’ﬁvb(8)
n=1

Moving the line of integration in (11) to Re(s) = —1/4 + ¢, we cross only a simple
pole at s = 0. The zeros of G(s) at —(O‘Qﬂ, etc. cancel out various poles of the
zeta-functions. Bounding the new integral by absolute values we obtain

Zapvsap(t) = (ab) " Ay 6BasnsaBysass + O (T*%“(ab)*%)
and so (10) follows.

3. AN UNBALANCED QUADRATIC DIVISOR PROBLEM

As preparation for the proof of our quadratic divisor problem (Theorem 4.1) we
consider the first an “unbalanced” divisor problem where the variables mq, mo, nq, no
appearing in ami;msy — bnins = h are (essentially) subject to the condition that
my1 < mo and n; < no. This assumption simplifies the decision on which variable
to apply Poisson summation formula. In the proof of this result we appeal to our
main technical ingredients: Watt’s theorem and the Weil bound.
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Proposition 3.1. Let A, B, My, My, N1, No, H > 1 and let M = MMy, N =
NiNy. Let Wy, fori=0,1,...,4, be smooth functions supported in [1,2] such that

Wi(j) < (ABMN)® for any fived j > 0. Let o, By be sequences of complexr num-
bers supported on [A,2A] and [B,2B], respectively, and such that o, <K A%, B K
Be. Let

St = amlmz_gFih# @aﬁbWO<Z)Wl <M1)W2(M2)W3<N1)W4<N2)

where the sum runs over positive integers a,b, my, ma, ni,ne and h. Assume that
we have My < My(ABMN)®, Ny < Ny(ABMN)* and H < (AB)2*. Then

Sy =M+E,

where

M= 5 aasi() ()W) [ () w () @

a,b,m1,n1,h,d
(am1,bni)=d

and
£ <. (ABMNH?)* (AB + Hi(A+ B)3 (ABMN)%)

Moreover, without any assumption on H the same result holds with the bound for
& being replaced by

£ <. (ABMNH?)*(ABH)i(A + B)i + (ABMN)°H?. (12)

Proof. First, we observe that we can assume there is § > 0 such that MN >
(AB)? and, for (12), H < (ABMN)2~? since otherwise the bound is trivial, and
that AM =< BN (otherwise the sum is empty when AMBNH is large enough).
Moreover, by symmetry we can assume BN; < AM;. To summarize, we have

AM =< BN,  MN > (AB)® and BN, < AM,. (13)

Now, let d = (amq,bny) (note that this implies d|h). We can eliminate the
variable ny by writing ami;ms — bnyns = +h as me = +(h/d)am,/d (mod bny/d):

)3 WQ(MQ)W“(NQ)

amlmgnngﬁfngzih
Mo amimae F h

- W, (—)W (—)

2. \My /) g N
mo==(h/d)ami/d (mod bni/d)

. mo amime “l4e )

= — 1 (H(AM )
> W2<M2>W4<bn1]\f2>< +O: (H(AM)™H)

mo=+(h/d)ami/d (mod bni/d)
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The contribution of the error term to S is bounded by

H(AM)™™ =y 0y (AM) <. HY(AM),

h=H amima—bningo==h,
amimoxXbnino<AM

and, thus, after applying Poisson’s summation and changing h into dh, we get

Se=, Zaaﬂbw‘)(dh)Wl(Ml)W?’(Nl)

d<2H a,bmi,ni,h lE
(amq,bn1)=d (14)

aml/d €
e(:Flh bnl/d)F(a’ b,my,nq,d,l) —|—OE(H2(AM) ),

where

d? > xd xd d*lz
F(a,b d,l) = 4% W, d
(a,6,m1, 71,4, 1) abmyn /0 2<am1M2> 4<bn1N2> e(abmlnl) .
o bnix am,x
= lx)dx.
/0 W2(dM2>W4< AN, >e( z)du
The term | = 0 corresponds to the main term (notice that the sum over d can

be extended to an infinite sum since Wy(-) is compactly supported in [1,2]). For
the terms with [ # 0, integration by parts implies

bn1 amq >j dM2

(a,b,my,ny,d, 1) <. ( )5 i (dM2+dN2 bny
. AM ~NidM,
< (AM) <dlM2N2> BN,

for any fixed j > 0. Hence we can restrict the sum in (14) to 0 < |I| < L, where

AM

I —
dMyNo

(AM)®.
Thus, we have
Se=M+Ry+ OE(HQ(AM)E),

where

S Y 3 aan(E)m(i)n(E)

d<2H a,bmi,ni,h 0<|l|<L
(am1,bni)=d

amy/d
e( +lh bnll//d >F(a,b, ma,ny, 1, d).
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From the definition of F', we have

Rew Y [ 1Zea@ldn

d<2H BN, ~AM;

where

Zeaw)= Y, ) O‘aﬁbe)(dh)Wl(Ml)W?’(Nl)

a,b,mi,ni,h 0<|{|[<L
(am1,bny)=d

bn,x am,x am, /d
lh l
W2(dM2>W4< d]\@)e(qc by ) )
We can bound Z. ; using the following lemma which we will prove in the next
subsection.

Lemma 3.1. Under the conditions of Proposition 3.1 (without the condition H <

(AB)2%%), the assumptions (13) and x = ZJA\Z, we have

A:B:H (M;N,
Z - (AM)? (
:t)d(x> << ( ) % MQNQ
Moreover, if H < (AB)2*¢ and d < (AB)2(AM)™1%% then
A’BH? [ MiNy\ 3 , N2H i
BM) (1+ )
7 (nay) (B (1+ T
We first assume that H < (AB)2. We apply (15) to the terms with d >
min {(AB) (AM)~100e (AMIRHYS | e mtegrate over x < dNo/(AM;) and then
5

)%(BNl) H(BNy + Mymin {A, 1Y), (15)

Zy () <. (AM)* (16)

BM,
use the inequality d>min(z.w0) d3 < 273 +w 3 getting that the contribution of

these terms to R4 is
(ABN)zH

<L (AM)* ;
M2

(BN (BN, + My min {4, H})

AM,N,H (AB)3
We think of the above expression as being of the form (I +11)(a+b), expanding it

as [-a+1-b+11-a+11-bwe use the inequality min(A, H) < Aand min(A, H) < H
in the terms I7 - a and I1 - b respectively, getting,

N|=
= ol

3
B3N:N,H: BiN:iNZH ) BiMZ(NN,)zH?
<. (AM)* 2 L L AB N3 H: + ( 1)
M Ve
1 A1)z AZM22

Subsequently in the first term we use BN; < AM;, in the second term we
use AM = (BN) and in the fourth term H < (AB)z*¢ together with M; <
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My(AM)F,
: 1 3 3 1 1
< (AM)(ABINTH? + ATBING H + ATBE(NN))#H)
Finally using the inequalities AM =< BN, N; < Ny(AM)® and H < (AB)%Jra we
conclude with the bound
11 1o 1 1.1
<. (BNH)?* <AB + AZBZNfH?) <. (BNH)?* (AB + AZ(BN)ZHE)
<. (ABMNH?) (AB+ HiA B (ABMN)}).

For the other values of d we apply (16). The integration over x contributes
dMy/(BN;), while the sum over d is bounded using > 1 d <. (AB)-.

d<(AB)2
Thus the contribution of these terms to Ry is

M, L MUN A R N2H N}
ABH( ) BM (1 )
\any,) (BME(MH g

A
< (AM)* BN,

Repeatedly using that AM =< BN we see that the above is

w\»—‘

<. ABH?(AM)*** 4+ AT BEHINZ (AM)?*
<. (AMH)*** (AB + (ABH)i(ABMN)

00l

and so Proposition 3.1 follows in the case H < (AB)%Jrs

Without the assumption H < (AB)%+E we apply (15) for all d, integrating over
x < dNy/(AM;) and obtain

Ra <. (AM) A B3 ( ) H(BNy)? (BN, + AM;)
<. (AM) AH(ABM;N,)2 (BN, + AM,)?,
since AM =< BN and BN; < AM,;. Finally, since M; < My(AM)® and AM =<
BN, we have AM; < A2(AM)2(AM)® < Az(ABMN)i(AM)¢ and similarly for
BNy, thus
Ry <. (AM)*AH(AB)i(A+ B)i(ABMN)3.

This is stronger than (12), so the proof of Proposition 3.1 is concluded. O

3.1. Proof of Lemma 3.1.
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3.1.1. Proof of (15). First, observe that we have

Zeal®)= > >, > O‘dlaﬁb%(dh)Wl(dJQ\Z1>W3<N1>

dida=d a,b,mi,n1,h 0<|l|<L
(a,dg):l,d|bn1
(am1,bny/d)=1

WQ(ZEDW‘*(CWJ;?)G( ¥ lhbT/ld) o(lz).

dNa
AM;y>

we have

By Weil’s bound and partial summation, for a < A/d; and x =<

> (R ama)

(m1,bny/d)=1

1 di M
< (AM)(th, by fd) (b /) 142 (1 + S22,

bm

and thus

1 1ie di1 My
Zoalw) <o (AMY S ST (Wb bna/d)z (b /d)? (1+ = )

1

dide=d alh<ALH/d
bn1<BN71,d|bny

ALH

(bny)>2 ate ( dlMl )

b?’Ll
d1do=d bn1 < BNy

d|bny

> (BM)

dido=d

(BN (BN, + My min {4, H}),

ALH

2

ALH

2

since d; < A, di <d < H.

3
2

< (AM) +di M (BN)?)

<. (AM)*®

3.1.2. Proof of (16). To prove (16) we need Watt’s bound in the form given by [1].

Lemma 3.2. Let H,C,R,S,V,P > 1 and 6 < 1. Assume that

X = (Rzzp ); > (RSVPY,  (RS)?> max{HQC S—P(RSVP) }

Moreover, assume that a(y), B(y) are complex valued smooth functions, supported
on the intervals [1, H] and [1,C], respectively, such that

al(x), B9 (2) <; (62)~

for any j > 0. Assume a,,bs are sequences of complex numbers supported on
[R,2R], [S,2S5], respectively, and such that a, < R, by < S°. Finally, assume
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that
iti

axlay] ")/T,S(xa y) <<1,] x—ly—]

for any i,j > 0, and v, s(x,y) is supported on [V,2V] x [P,2P] for all v and s.
Then

> a(h)ﬁ(c)%s(v,p)arbse(i hcm)

h,c,r,s,0,p °p
(rv,sp)=1

7 HC\3 Pz H*CPX?\i .
<6 HCR(V+SX)<1+ﬁ> (HW> (HW> (HCRSV P)°.

In order to apply Lemma 3.2, we write Z, 4(z) as

Zy alz) = Z Z Z adlaﬁdng()(%)Wl(dJQ\Z?)Wg(d;\;T)

dide=d3ds=d a,b;mi,n1,h 0<|l|<L
(amq,bni)=1
(a,d2)=(b,ds)=1

W2<b]7\141;6>w4<a%x>e( - lh%m;) e(l).

Thus, we use Proposition 3.2 with

it ABM; Ny &

Ho 2 L= (222NN 2 e

e e <d2M2N2>( )
A B M,y N
Ro2 So2 ved pon
Ca P Vo T

and
ABMNN % .

since Lr < (ABMN)?. The conditions required by Lemma 3.2 are A?T%N >

(ABM; Ny)¢, which is satisfied since H < (AB)2*< and MN > (AB)?, and

dids)?H*(ABMN)2 d\d2BN,
AB)? > (dads 3 AM) b
(ABY? > o { DRSS AN 4y

Since M1 S MQ(AM)E, N1 S NQ(AM)E, BN1 S AMl, dl <K A,dg <K B and
H < (AB)2"=, this condition is satisfied if d < (AB)z(AM)~'9 Thus, under
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this condition we have

1
ALH (M, B BN MiNy\ 3\ 2

Z AM)® 1
+a(®) < ) ddy ( + 3< H )( +d2d4 AB)2 (M2N2> )

(1 N ds N, ) ( d3d4N2H)

A B2
ALH B BN % BdIN?H
(AM)* dd, ( ds (_ )(1 d3A3B2>

3
ALH B PREAY
< (s (7)) (1 i)
ABLH(BN) <1 N? H)
d H A3B2)
since M1 < My(AM)E, Ny < No(AM)®, BN, < AM;, AM =< BN and H <
(AB)z*¢. This concludes the proof of the lemma.

< (AM)

4. THE QUADRATIC DIVISOR PROBLEM MAIN TERM

In this section we establish the quadratic divisor problem. This amounts to
using Proposition 3.1 and to a careful analysis of the main term. We will first
prove a rougher result and then deduce the slightly more flexible version stated in
the introduction.

Theorem 4.1. Let A, B,H, X, T > 1 with log(ABHX) < logT. Let oy, [ be
sequences of complex numbers supported on [A,2A] and [B,2B], respectively, and
such that a, < A%, 5, < B*. Let f € C*(R%,) be such that
ai+j+k
0x'Qyi0zk
for any i,j5,k > 0. Moreover, assume f(x,y,z) is supported on [H,2H]| as a

function of z for all x,y. Finally, let K € C®(Rs) be such that KVU)(z) <,
Te(1+2) (1 +x/X?)~" for any j,r > 0. Then, writing

fl@,y,2) <ijr T°(1+2) 7 (1+y) 7 (1+2)7" (17)

QaBp
S = Z ag —— f(amymg, bniny, h) K (mymanins),
memsnlng
amima—bnina=h>0 10120012

where the sum runs over positive integers a,b, my, ms,ni,ny and h, we have

S == Ma,ﬂ(y’(s + Mﬁ7a"}/’§ + Ma}ﬁ#ify + M67a,§’f\/ + 57 (18)

where

C(14+a—=p)C1+~-=19) Z Z agaﬁgbg

Mapis = (2+a—B+vy—9) f(gb)+—?
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00 IQ . 55
i K(m) faprs(z,zia,b,g)z™" " de,
with (]?;757%5 as in (2), and & is bounded by

1

£ < T°(ABX2H?)i(AB + Hi(A + B)3(ABX?)) (19)
if H< (AB)2*, and by
£ < T°(ABX2H?)3(ABH)i(A + B)% + T°H? (20)
m any case.
Proof. First notice that we can replace the assumption (17) by a stronger one,
gitith
Oxt0yi DzF
for any ¢, j, k,r > 0, since both § and the main terms M change by a negligible
amount when multiplying f by k(zy/ABX?T¢), where x(z) is a smooth function

which is identically 1 for x < 1 and decays faster than any polynomial at infinity:.
We let g be a smooth function such that

gla) +9(1/x) =1
for all x € R and g(x) <, (14+2)~" for any fixed r > 0 and z > 1. We also require

that
o+ 57) =a(+ 05) =0

flr,y,2) < T°(1+2) (1 +y) (14 2)*(1 + 2y /ABX?*T¢)™"

Introducing the product

(s + o5 ) (o) (32 ) =
mo my na ny
we obtain four roughly similar terms. For simplicity we will focus on only one of
them, say, the one with g(%)g(%)

We apply a dyadic partition of unity to the sums over my, ms, ni,no and h. Let
W be a smooth non-negative function supported in [1,2] such that

()

where M runs over a sequence of real numbers with #{M : Y1 <M< YV} <
log Y. With this partition of unity, we re-write our sum as

S = § S(My, My, Ny, Ny, H') 4+ O4(T™4),
My,M2,N1,N2,H'
where

S<M17M27N17N27H/>
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Qafp
- Z T B s ag 5 5f(am1m2>bn1n2,h)K(mlmznlnz)
amima—bnina=h>0 mymyngny

()a G (v G () (5w ().

Notice that we can assume H' =< H by our assumption on f. Using the estimates
for g and K we obtain

S: Z S(Ml,MQ,Nl,NQ,H/>+OA(T7A).

My ,M2,N1,No,H'
My <MsT*¢, Ny<N2T*
M1 My N1 No X 2T¢

We now separate variables in S(M;j, My, Ny, Ny, H') by introducing the Mellin
inversions,

f(z,y, h) ///fswzx Sy~h*dsdwdz,
2m

1
“d d K
o(r) = 5 /(E)gw)x uan R

Note that g(x) has a simple pole at u = 0 with residue 1. Thus,

1 aaﬁb _ h
My, My, Ny, Noy H') = —— [ - AT
S(My, My, Ny, Ny, H') (2m~)6/8 /6) Z asb“’h W(H’)

amimo—bnino=h>0

—s—u—v—a mi *SJHLI/ﬂ ( >*wvl/7 ( )—w—l—vué (712)
M W<M1> Vg )" Y~ "~

f(s w, 2) K (1)§(w)§(v)dsdwdzdudvdy.

Now we apply Proposition 3.1% to transform the above expression into

ol omuep—a (b1 TS TU—V=B
2m / // asb“’( d)"m ( d )

a,b ml,nl,h d
aml,bnl) d

a ()T w v G G v ()

F(s,w, 2) K (v)§(w)§(v)dedsdwdzdudvdy + E = Mo + &,

2To be more precise, we need to truncate the complex integrals at height £7 before applying
Proposition 3.1 and re-extend them afterwards, as can be done at a negligible cost thanks to (21).
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say, where
& <. T*(ABX?H?)i(AB + Hi(A + B)?(ABX?)5)
/() . " ‘fA(s,w, z)}?(y)’|dsdwdzdl/|
< T*(ABX*H?)i(AB + Hi(A+ B)?(ABX?)5)
if H < (AB)z*¢, and
S <. T*(ABX?H?)3(ABH)i (A + B)i + T°H?
in any case, since the bounds on the derivatives of f(x,y, z) give
Fls,w, 2) <ep TXRW R (ABX?)RE) 4 (ABX2)R6<:>) 1)
(A + 1D+ Jwh (1 + [2) (1 +v))

for Re(s),Re(w),Re(z),Re(r) > € and any k > 0, using integration by parts k
times with respect to each variable.
Folding back the Mellin inversions we get

D> jgf;w(%)w(%)w(%ml—a_gnlawdm

a,b,mi,ni,h
(am1 lm1) d

2

f(abmlnlx’ abmlnlx’ dh)K<ab(m1n1x) )g( dny )g( dm1>

d d d? am,x bn,x
()

This is summed over all Ny, No, M7, M, and H' satisfying M; < MyT=, N7y < NoT*
and M;My;Ny Ny < X2T?. These conditions can be removed at the cost of an error
of size OA(T*A). This allows us to extend the summation over all My, My, N1, Ny
and H’, and thus to remove the partition of unity. In the remaining expression we
now make a linear change of the x variable which gives

Mi= > M

My, Mz Ny,No,H'

_ Z 1aa6b dmfl a+p 1—1 y+38
al—Bp1—o

abm1 ni,h,d
(amq bnl) d

2 2

.y (5o (2 g (2 ),

ab T T
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We now prepare for the final evaluation of M; by expressing g in terms of its Mellin
transform and f x,x,dh) as the inverse Mellin transform of fg(x x,8). Then

M, = i@z, s) Glu)g(v)a= =0 (s)
27” /(a /(a /1+a/ < >

(67187 1—s _—l—a+f—2u_—1—y+5—2v
E md ml nq ddedUd”U
a7b7m17nlad
(amq,bni)=d

Write ¢ = (a,b) so that a = ga’, b = gb' and (¢/,V/) = 1. In addition
(@'mq,0ny) = d with d = gd'. Let k = (/,;my) and ¢ = (a/,ny), and write
my = km) and n; = ¢n}. Then using (a’,b') = 1, we see that (a'mq,b/ny) =
ké(a'm/,b'n}). Thus d = gkld” for some d”. We re-parametrize the above sum by
summing over all g, all k|t/; ¢|a’ and adding the condition that (m/,b'/k) =1 and
(n},a’/¢) = 1. For notational simplicity we delete the extraneous superscripts ’
and ” in the resulting formula,

Z —14+B+6—u—v—s Z Oégaﬂgb
g ql—Brupl—otv
g

(a,b)=1
dl—sk—a+ﬂ—2u—sg—"1+5—2v—8
Z Z Tra—B+2u T 5roe—dedsdudv.
my

klb (m1,n1)=d
La (m1,b/k)=1

(n1,a/8)=1
We now let
w=a—LF0+2u and z2=7v—0+ 2.
In this way,
dlfs dlfs
> memmomm s DL ameE (22)
(m1,n1)=d m 1 (m1,m1)=d 1 1
(m1,b/k)=1 (ma1,b/k)=1
(n1,a/0)=1 (n1,a/€)=1

Since (a,b) = 1 the above Dirichlet series factors as

pi1=9) 1 1 \—! 1 \-!
H(Z j(24w+z) Z m)n(l_plﬂv) H(l_p1+z> :

pib/k “m,n>0, pla/t plb/k
pta/t min{m,n}=0

The expression in the first bracket is

1 -1 1 1
(1 - p1+w+z+s> ( Z pm(1+w)+n(1+z) o Z pm(1+w)+n(1+z)>

m,n>0 m,n>1
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(1= gmm) () (- 5m) (- )
pltwtzts pLt= pltw p2tutz
and thus (22) is equal to
CI+w+z+s)C(1+w)C(l+2)

C2+w+=2)
H pw+z+s,2z,w+ 2) H p(w+ 2z + s, w,w+ 2),
pla/l plb/k

where

1 1 1 1
cp(T,y,2) = (1 - p1+x> (1 - p1+y> (1 N p2+z> :

Combining everything together we have obtained the following formula

o /g)/e)/mg/ e i ()00

(I+a—-0F+v—04+2u+2v+8)((1+a—F+2u)((1+v—06+2v)
C24+a—B+7—6+2u+2v)

x—ﬁ—é-i-u-i-v Z gl+6+6—u—v—s Z agaﬁgbnaﬁ,%&a:b(u? v, 8) dadedUdU,

ql-Brupl—s+v
g (a,b)=1

where

NaBrb,a.6(U, Vs 8) = NaBy.5,0(Ws Vs 8)My.6.0,86(U, V, S) (23)
and

na,ﬂ,%é,a(ua v, 3)

— E g—’y—i—&—?v—s
La

Hcp(oz—B+’y—5+2u+2@+s,’y—5+2v,a—6+7—5+2u+20).
pla/t

Next we shift the line integration over u towards Re(u) = —1/4 + ¢/2 and that
of v towards Re(v) = —1/4 + ¢/2. We collect the poles from v = 0 and v = 0,
and for the terms where only one of the two residues is taken we move the other
integral to the (—1/24¢)-line so that for the three resulting error terms we always
have Re(u) + Re(v) = —1/2 + . We do not collect poles at u = —(a — 3)/2 and

—(vy — §)/2 since we ensured that g(—(a — 3)/2) = g(—(y — 6)/2) = 0. Since
J/C;,(:E,l‘, s) <. T°H for Re(s) = 1 + ¢, this operation produces an error of size
O. (Ta(ABXz)iH(A% + B%)), which is acceptable for £, and a main term equal
to

C14+a—=p5)CA+~v=19) Z Z agaﬁgbg

_ 16
(@t+a—PF+y=0) = 4= (90)7F(gb)
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/ ((g2ab>foc7ﬁm6<$ax§ a,b,g)x h ‘de,
0

where faﬂ,%g(x, x;a,b, g) is equal to
1

a__- fg(l‘, x, S)C(S)C(]' +a— /6 + Y 5 + S)g_sna,ﬂﬂ/,&a,b(oa 07 S)dS,
210 J (14

as desired. O

Corollary 4.1. Let A, B, X, Z,T > 1 with Z > XT~¢ and log(ABX7) < logT.
Let o, By be sequences of complex numbers supported on [1, A] and [1, B], respec-
tively, and such that oy < A%, By < B°. Let f € C*°(R2,) be such that

gitith 272y
0x'Oyidzk zy )
for anyi,j,k,v > 0. Let K € C®(Rxo) be such that KW (z) <, T¢(1+ x)77(1 +

z/X?)™" for 0 < j < 2 and any r > 0. Then (18) holds with the error term &
bounded by

flz,y,2) <ijrr T5(L+2) " (14+y) 7 (1 + z)*’“(l +

£ <T°(AB):XZ % (AB +(A+ B)%(AB)iX%Z*%).

Proof. We divide the summations over a, b, h using partitions of unity localizing
ax< A, b =< A, h < H' and notice that by (20) the error term coming from
the terms with A’B’ < T¢ is bounded by T6X1Z~! « T¢X3Z~1 . For the
terms with A’B’ > T° we observe that the contribution from the terms with
H > T<(A'B )%X Z~1 is negligible, whereas for the remaining terms we have
H' < T(AB):XZ' <« (AB)2% and we can apply (19). Summing back over
the partitions of unity then gives the claimed result. 0
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