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Abstract. Assuming the Generalized Riemann Hypothesis (GRH), we show using the
asymptotic large sieve that 91% of the zeros of primitive Dirichlet L-functions are simple.
This improves on earlier work of Özlük which gives a proportion of at most 86%. We further
compute an q-analogue of the Pair Correlation Function F (α) averaged over all primitive
Dirichlet L-functions in the range |α| < 2 . Previously such a result was available only when
the average included all the characters χ.

1. Introduction

Montgomery [4] was the first to consider the Pair Correlation of the zeros of the Riemann
zeta-function. Montgomery’s results suggested that the distribution of the zeros of the
Riemann zeta-function follows the same laws as the distribution of the eigenvalues of a
random unitary matrix. This connection was further expanded on, and is responsible for
much of the subsequent activity in the theory of L-functions (see for example [2], [3], [6]).

One can similarly investigate the distribution of the low-lying zeros in a family of L-
function. Özlük [5] considered a q-analogue of Montgomery’s results. His motivation was
to understand the low-lying zeros of L(s, χ) on average over χ modulo q and Q ≤ q ≤ 2Q.
Since the family is larger, one can obtain better results than in the case of the Riemann
zeta-function.

One defect in Özlük’s work was that it concerns an average over all characters χ rather
than just the primitive characters χ. As a result, in applications this often leads to inferior
results.

Recently, Conrey, Soundararajan, and Iwaniec developed an asymptotic large sieve [1].
They devised a method to obtain asymptotic estimates for rather general averages over
primitive characters. In this paper we revisit Özlük’s work in the light of these recent
developments, obtaining results for primitive characters rather than all characters. As a
consequence we obtain that, in a suitable sense, 91% of the zeros of primitive Dirichlet
L-functions are simple, on the assumption of the Generalized Riemann Hypothesis (GRH).

Let Φ be a smooth function which is real and compactly supported in (a, b) with 0 < a < b,
and define its Mellin transform

Φ̂(s) =

∫ ∞
0

Φ(x)xs−1 dx.
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Let

NΦ(Q) :=
∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

|Φ̂(iγχ)|2

with W a smooth function, compactly supported in (1, 2), the second sum being over prim-
itive characters χ, and the last sum being over all non-trivial zeros 1/2 + iγχ of Dirichlet
L-function L(s, χ). As we will see later (in Lemma 1)

NΦ(Q) ∼ A

2π
Q logQ

∫ ∞
−∞
|Φ̂(ix)|2 dx

where

A = Ŵ (1)
∏
p

(
1− 1

p2
− 1

p3

)
. (1.1)

Our work yields the following theorem.

Theorem 1. Assume GRH. The proportion of simple zeros of all primitive Dirichlet L-
functions is greater than or equal to 11

12
in the sense of the inequality

1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 ≥ 11

12
+ o(1)

with the sum being over primitive characters and with Φ chosen so that Φ̂(ix) = (sin x/x)2.

We note that the function Φ satisfying Φ̂(ix) = (sinx/x)2 is not smooth, but we can still

apply Theorem 2 to Φ since the condition Φ̂(ix) � |x|−2 is good enough in our proof and
can replace the smoothness.

Özlük obtains a similar lower bound but for all Dirichlet L-functions rather than just
the primitive L-functions. This yields an over-count and as a result Özlük’s method is only
capable of delivering a proportion of 0.8688 . . . simple zeros. This should be compared with
our proportion 11/12 = 0.917 . . .. We will explain the number 0.8688 . . . in Section 6.

Following Özlük we consider the q analogue of the Pair Correlation Function, which is
defined as

FΦ(Qα;W ) =
1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∣
∑
γχ

Φ̂ (iγχ)Qiγχα

∣∣∣∣∣∣
2

.

Our main result is the following.

Theorem 2. Assume GRH. Let ε > 0 and A be defined as in (1.1). Then

FΦ(Qα;W ) =(1 + o(1))

(
f(α) + Φ(Q−|α|)2 logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

)
+O(Φ(Q−|α|)

√
f(α) logQ)

holds uniformly for |α| ≤ 2− ε as Q→∞, where

f(α) :=

{
|α| for |α| ≤ 1

1 for |α| > 1.
(1.2)
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Since primitive Dirichlet L-functions form a unitary family, we conjecture that for α ≥ 2
the same asymptotic formula continues to hold. We obtain Theorem 2 by applying the
asymptotic large sieve. The proof of Theorem 2 starts with the explicit formula, for X ≥ 1∑

γ

Φ̂(iγ)X iγ = E(χ)Φ̂(1
2
)X1/2 −

∞∑
n=1

Λ(n)χ(n)√
n

Φ

(
n

X

)
+ Φ

(
1

X

)
log

q

π
+O

(
min(X1/2, X−1/2 log q log(1 +X))

)
, (1.3)

where E(χ) = 0 or 1 according as χ 6= χ0 or χ = χ0 and where 1
2

+ iγ ranges over non-trivial
zeros of L(s, χ). The term Φ(1/X) log q/π contributes only when X is small. Thus, Theorem
2 is essentially equivalent to the following Proposition.

Proposition 1. Assume GRH. Let ε > 0 and X = Qα. Then∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∑
n≤X

Λ(n)χ(n)Φ (n/X)

n1/2

∣∣∣∣∣
2

∼ f(α)NΦ(Q)

uniformly for |α| ≤ 2− ε as Q→∞, where f(α) is defined in (1.2).

The deduction of Theorem 1 from Theorem 2 can be found in Özlük’s paper in section 6,
but we reproduce it in Section 5 for completeness. The remainder of this paper is devoted
to the proof of Proposition 1.

The bulk of the proof of Proposition 1 is devoted to the estimation of the contribution
of the off-diagonal terms. When α > 1 we extract an additional main term from the terms
with |m− n| � Q. Indeed it is explained in [1]: “Besides the primary terms of the diagonal,
a secondary source for contribution to the main term is not so obvious as the diagonal one;
it rests in narrow strips parallel to the diagonal. A substantial contribution may come out
of the terms ambnF (m,n) with |m− n| � Q, but not strips of much smaller width”.

2. Lemmas

As announced in the introduction we start out by evaluating asymptotically NΦ(Q).

Lemma 1. Assume GRH. We have,

NΦ(Q) ∼ A

2π
Q logQ

∫ ∞
−∞
|Φ̂(ix)|2dx

as Q→∞, with

A = Ŵ (1)
∏
p

(
1− 1

p2
− 1

p3

)
.

Proof. Let N(χ, T ) denote the number of zeros of L(s, χ) in the rectangle 0 < σ < 1 and
−T ≤ t ≤ T . It is a standard fact (see [7]) that if the conductor of χ is q, then

N(χ, T ) =
T

π
log

qT

2πe
+O

(
log(qT )

log log(qT + 3)

)
.

uniformly in qT > 1. Integrating by parts we find∑
γχ

|Φ̂(iγχ)|2 =

∫ ∞
0

|Φ̂(it)|2dN(χ, t) =
1

π
log q

∫ ∞
0

|Φ̂(ix)|2dx+O

(
log q

log log q

)
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=
log q

2π

∫ ∞
−∞
|Φ̂(ix)|2dx+O

(
log q

log log q

)
and

NΦ(Q) :=
∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

|Φ̂(iγχ)|2

=

∫ ∞
−∞
|Φ̂(ix)|2dx ·

∑
q

W (q/Q)

ϕ(q)
· log q

2π
· ϕ∗(q) +O

(
Q logQ

log logQ

)
where ϕ∗(q) =

∑
cd=q ϕ(d)µ(c) is the number of primitive characters modulo q. Since W is

compactly supported in (1, 2) we have log q = logQ+O(1) in the summation. Therefore,

NΦ(Q) ∼ logQ

2π

∫ ∞
−∞
|Φ̂(ix)|2dx

∑
q

W (q/Q)
ϕ∗(q)

ϕ(q)
. (2.1)

Since ϕ∗ and ϕ are multiplicative, we have∑
q

ϕ∗(q)

ϕ(q)qs
=
∏
p

(
1 +

ϕ∗(p)

ϕ(p)ps
+

ϕ∗(p2)

ϕ(p2)p2s
+ · · ·

)
= ζ(s)

∏
p

(
1− 1

(p− 1)ps
+

1

(p− 1)p2s
− 1

p2s+1

)
= ζ(s)g(s), (2.2)

where g(s) is absolutely convergent for Re(s) > 0 and bounded on Re(s) ≥ ε for any ε > 0.
Using the Mellin inversion formula,

W (x) =
1

2πi

∫
(c)

Ŵ (s)x−sds, c > 1

and (2.2), we obtain that∑
q

W (q/Q)
ϕ∗(q)

ϕ(q)
=

1

2πi

∫
(c)

Ŵ (s)ζ(s)g(s)Qsds = Ŵ (1)g(1)Q+O(Qε) (2.3)

by shifting the contour to Re(s) = ε. Combining (2.1) and (2.3) we conclude that

NΦ(Q) ∼ Q logQ

2π
Ŵ (1)g(1)

∫ ∞
−∞
|Φ̂(ix)|2dx =

AQ logQ

2π

∫ ∞
−∞
|Φ̂(ix)|2dx.

�

The next four lemmas correspond to estimates of various types of prime sums. The proofs
are standard, but we present them here for a completeness.

Lemma 2. Assume GRH for L(s, χ2). Then we have∑
n

Λ(n)χ(n)√
n

Φ
( n
X

)
=
∑
p

Λ(p)χ(p)
√
p

Φ
( p
X

)
+O(1). (2.4)

Proof. By splitting the sum into three cases n = p, n = p2 and n = pk with k > 2, we get∑
n

Λ(n)χ(n)√
n

Φ
( n
X

)
=
∑
p

Λ(p)χ(p)
√
p

Φ
( p
X

)
+
∑
p

Λ(p2)χ(p2)

p
Φ

(
p2

X

)
+O(1).
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Since Φ has a compact support in (a, b) for some 0 < a < b, the last sum is∣∣∣∣∣∑
p

Λ(p2)χ(p2)

p
Φ

(
p2

X

)∣∣∣∣∣� ∑
√
aX<p<

√
bX

log p

p

= log
√
bX − log

√
aX +O(1)

= O(1).

Hence, we prove the lemma. �

Lemma 3. As X →∞,∑
p

log2 p

p
Φ2
( p
X

)
=

1

2π

∫ ∞
−∞
|Φ̂(it)|2dt logX +O(1).

Proof. Note that ∑
p

log2 p

p
Φ2
( p
X

)
=
∑
n

Λ(n) log n

n
Φ2
( n
X

)
+O(1).

By the Mellin inversion we have∑
n

Λ(n) log n

n
Φ2
( n
X

)
=

1

(2πi)2

∫
(c1)

∫
(c2)

Φ̂(s1)Φ̂(s2)
∑
n

Λ(n) log n

n1+s1+s2
Xs1+s2ds2ds1

for c1, c2 > 0. Since
∑

n Λ(n)(log n)n−s = (ζ ′/ζ)′(s), the above integral equals

1

(2πi)2

∫
(c1)

∫
(c2)

Φ̂(s1)Φ̂(s2)(ζ ′/ζ)′(1 + s1 + s2)Xs1+s2ds2ds1. (2.5)

By shifting the contour integral to Re(s2) = −c1 − ε, we pick up a double pole at s2 = −s1.
Hence we have (2.5) equals

1

2πi

∫
(c1)

Φ̂(s1)Φ̂(−s1) logXds1 +O(1)

+
1

(2πi)2

∫
(c1)

∫
(−c1−ε)

Φ̂(s1)Φ̂(s2)(ζ ′/ζ)′(1 + s1 + s2)Xs1+s2ds2ds1.

For the first integral we shift the contour to Re(s1) = 0 without passing any poles and it
becomes

logX

2π

∫ ∞
−∞

Φ̂(it)Φ̂(−it)dt =
logX

2π

∫ ∞
−∞
|Φ̂(it)|2dt.

The double integral is easily bounded by O(X−ε).
�

Lemma 4. Assume GRH for L(s,Ψ). If Ψ is a principal character, then∑
p

Ψ(p)Φ
(
p
X

)
log p

√
p

= Φ̂

(
1

2

)√
X +O(Qε).

If Ψ is not a principal character, then∑
p

Ψ(p)Φ
(
p
X

)
log p

√
p

�ε Q
ε
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for any ε > 0.

Proof. By the Mellin inversion of Φ, we have∑
p

Ψ(p)Φ
(
p
X

)
log p

√
p

=
1

2πi

∫
(c)

Φ̂(s)Xs
∑
p

Ψ(p) log p

p1/2+s
ds.

The sum over p has an analytic continuation via∑
p

Ψ(p) log p

p1/2+s
= −L

′

L
(1/2 + s,Ψ) +G(s),

where G(s) is analytic in Re(s) > 0 and is uniformly bounded for Re(s) ≥ ε > 0. By moving
the contour to Re(s) = ε, we can prove the Lemma. �

Lemma 5. For |Re(z)| ≤ ε and Re(s) < 0, we have∑
p

log p · Φ(p/X)

p1/2+z
B−s(p)R−s(p) = Φ̂(

1

2
− z)X1/2−z +O(X2ε log(2 + |z|)),

where

Bs(m) =
∏
p|m

(
1− 1

ps+1

)
,

Rs(m) =
∏
p|m

(
1 +

1

(p− 1)ps+1

)−1

.

Proof. By Mellin inversion of Φ, we have∑
p

log p · Φ(p/X)

p1/2+z
B−s(p)R−s(p) =

1

2πi

∫
(c)

Φ̂(w)Xw
∑
p

log pB−s(p)R−s(p)

p1/2+z+w
dw (2.6)

for c > 1/2 + ε. Define a function H(w, s) by

H(w, s) :=
ζ ′

ζ
(w) +

∑
p

log pB−s(p)R−s(p)

pw

=
ζ ′

ζ
(w) +

∑
p

log p

pw
(1− 1

p1−s )(1 +
1

(p− 1)p1−s )−1.

If Re(s) < 0, then H(w, s) is an analytic function of w in Re(w) > 1/2 and bounded on
Re(w) ≥ 1/2 + ε′ > 1/2. Applying this identity to (2.6) and shifting the contour to 2ε, we
have∑
p

log p · Φ(p/X)

p1/2+z
B−s(p)R−s(p) =

1

2πi

∫
(c)

Φ̂(w)Xw(−ζ
′

ζ
(
1

2
+ z + w) +H(

1

2
+ z + w, s))dw

=Φ̂(
1

2
− z)X1/2−z +O(X2ε log(2 + |z|)).

�

The next lemma can be proved by changing the sum to its Euler product. The proof is
quite standard and we omit it.
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Lemma 6. Suppose that (a,m) = 1. Then∑
(d,m)=1

1

ϕ(ad)ds
=

1

ϕ(a)
ζ(1 + s)K(s)Bs(m)Rs(a)Rs(m),

where Bs and Rs are defined in Lemma 5 and

K(s) =
∏
p

(
1 +

1

(p− 1)ps+1

)
.

3. Proof of Proposition 1

Proposition 1 is equivalent to

S =
∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∑
p

log p χ(p)
√
p

Φ
( p
X

)∣∣∣∣∣
2

∼ f(α)NΦ(Q) (3.1)

by Lemma 2. For notational convenience we let

ap =
log p
√
p

Φ
( p
X

)
(3.2)

and define

∆(p, r) =
∑
q

(q,pr)=1

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

χ(p)χ(r) (3.3)

for primes p and r, then we have

S =
∑
p,r

apar∆(p, r) =
∑
p

a2
p∆(p, p) +

∑
p,r
p 6=r

apar∆(p, r) = SD + SN ,

where SD is the sum of diagonal terms and SN is the sum of non-diagonal terms.

3.1. The diagonal term SD. By (3.3) and the Mellin inversion, we obtain that

∆(p, p) =
∑
q

(q,p)=1

ϕ∗(q)

ϕ(q)
W

(
q

Q

)
=

1

2πi

∫
(c)

Ŵ (s)

 ∑
q

(q,p)=1

ϕ∗(q)

ϕ(q)qs

Qs ds

for c > 1. By applying (2.2) and then shifting the contour to the line Re(s) = ε > 0, we
have

∆(p, p) =
1

2πi

∫
(c)

Ŵ (s)ζ(s)g(s)

(
1− 1

ps

)(
1− 1

(p− 1)ps
+

1

(p− 1)p2s
− 1

p2s+1

)−1

Qs ds

= Ŵ (1)g(1)

(
1− 1

p

)(
1− 1

(p− 1)p
+

1

(p− 1)p2
− 1

p3

)−1

Q+O(Qε).

By this equation and Lemma 3, we then obtain

SD =Ŵ (1)g(1)Q
∑
p

log2 p

p
Φ2
( p
X

)
+O(Q)

=AQ logX
1

2π

∫ ∞
−∞
|Φ̂(it)|2dt+O(Q),
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where A is defined as in (1.1).

3.2. The non-diagonal term SN . We first observe that

∆(p, r) =
∑
q

(q,pr)=1

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

χ(p)χ(r)

=
∑
q

(q,pr)=1

W (q/Q)

ϕ(q)

∑
d|q
d|p−r

ϕ(d)µ
(q
d

)

=
∑
d

d|p−r

ϕ(d)
∑
c

(cd,pr)=1

W (cd/Q)µ(c)

ϕ(cd)

(3.4)

for primes p and r. We want to replace the condition d|p− r by the character sum using∑
Ψ (mod d)

Ψ(p)Ψ(r) =

{
ϕ(d) for d|p− r, (pr, d) = 1

0 otherwise .

However, it is not effective in our application when d is large. Hence we introduce a new
parameter C and we split the above sum according to c ≤ C or c > C in order to handle the
condition d|p− r differently when d is large. Thus we define

U(p, r) =
∑
d

d|p−r

ϕ(d)
∑
c>C

(cd,pr)=1

W (cd/Q)µ(c)

ϕ(cd)
,

L(p, r) =
∑
d

d|p−r

ϕ(d)
∑
c≤C

(cd,pr)=1

W (cd/Q)µ(c)

ϕ(cd)

(3.5)

so that

∆(p, r) = U(p, r) + L(p, r).

Then by calculating the sums

SU :=
∑
p 6=r

aparU(p, r),

SL :=
∑
p 6=r

aparL(p, r),

we can evaluate the sum

SN = SU + SL. (3.6)

Since W is supported in (1, 2), we have cd � Q. If c > C then d � Q/C and replacing
the condition d|p − r by a character sum modulo d in U(p, r) is efficient and leads to good
estimates for SU . We perform this computation in section 3.3.

On the other hand, in the case c ≤ C, we have large d� Q/C and the above method using
modulo d character sums does not work. So we write de = |p− r|, we replace the condition
d|p−r by e|p−r and we eliminate d from our sum by expressing d as |p−r|/e. Now we have
e � XC/Q which is small enough, so that the modulo e character sums replacing e|p − r
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works well. This allows us to resume our argument in the case of the sum SL. We consider
the sum SL in section 3.4. For a technical reason the above idea will be modified slightly.

3.3. Evaluating SU . We first consider the sum U(p, r) defined in (3.5). Replacing the
condition d|p− r by a character sum, we have

U(p, r) =
∑
c>C

µ(c)
∑
d

(cd,pr)=1

W (cd/Q)

ϕ(cd)

∑
Ψ (mod d)

Ψ(p)Ψ(r).

We denote the sum corresponding to Ψ = Ψ0 in U(p, r) by

U0(p, r) =
∑
c>C

µ(c)
∑
d

(cd,pr)=1

W (cd/Q)

ϕ(cd)

and the others by

UE(p, r) =
∑
c>C

µ(c)
∑
d

(cd,pr)=1

W (cd/Q)

ϕ(cd)

∑
Ψ (mod d)

Ψ6=Ψ0

Ψ(p)Ψ(r).

Then U(p, r) = U0(p, r) +UE(p, r) and SU = SU0 +SUE , where SU0 :=
∑

p6=r aparU0(p, r) and

SUE :=
∑

p 6=r aparUE(p, r).

We consider the sum SU0 . Since
∑

c|k µ(c) = 1 for k = 1 and 0 for k > 1, we have

U0(p, r) =
∑
c>C

µ(c)
∑
d

(cd,pr)=1

W (cd/Q)

ϕ(cd)
=

∑
k

(k,pr)=1

W (k/Q)

ϕ(k)

∑
c|k
c>C

µ(c)

= W (1/Q)−
∑
k

(k,pr)=1

W (k/Q)

ϕ(k)

∑
c|k
c≤C

µ(c) = −
∑
c≤C

µ(c)
∑
d

(cd,pr)=1

W (cd/Q)

ϕ(cd)
.

By Mellin inversion, we have that

U0(p, r) = −
∑
c≤C

(c,pr)=1

µ(c)
1

2πi

∫
(2)

Ŵ (s)
Qs

cs

∑
d

(d,pr)=1

1

ϕ(cd)ds
ds.

By Lemma 6, we obtain that

U0(p, r) = −
∑
c≤C

(c,pr)=1

µ(c)

ϕ(c)

1

2πi

∫
(2)

Ŵ (s)
Qs

cs
ζ(1 + s)K(s)Bs(pr)Rs(c)Rs(pr) ds.

We move the contour integral to Re(s) = −1 + ε and pick a simple pole at s = 0. Then

U0(p, r) = −Ŵ (0)K(0)B0(pr)R0(pr)
∑
c≤C

(c,pr)=1

µ(c)R0(c)

ϕ(c)
+O

(
C

Q
Qε

)

and so

SU0 = −Ŵ (0)K(0)
∑
p,r
p 6=r

aparB0(pr)R0(pr)
∑
c≤C

(c,pr)=1

µ(c)R0(c)

ϕ(c)
+O

(
|
∑
p

ap|2
C

Q
Qε

)
. (3.7)
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Now we evaluate the main term of SU0 . The condition (c, pr) = 1 can be disregarded with
an additional error term Cε. Now the sum over p and r is∑

p,r
p 6=r

aparB0(p)B0(r)R0(p)R0(r) =
∑
p,r

aparB0(p)B0(r)R0(p)R0(r)−
∑
p

a2
pB0(p)2R0(p)2

=

(∑
p

apB0(p)R0(p)

)2

+O(Xε) (3.8)

by adding and subtracting diagonal terms. Similarly to Lemma 6, we can obtain∑
p

apB0(p)R0(p) =
√
XΦ̂

(
1

2

)
+O(Xε). (3.9)

Therefore, since the sum in the error term of (3.7) is
∑

p ap �
√
X, we have

SU0 = −Φ̂(1/2)2Ŵ (0)K(0)X
∑
c≤C

µ(c)R0(c)

ϕ(c)
+O

(
X

1
2

+ε +
XC

Q
Qε

)
(3.10)

by (3.7)–(3.9).
The next lemma shows the contribution of UE is small, so that we can conclude

SU = SU0 + SUE = −Φ̂(1/2)2Ŵ (0)K(0)X
∑
c≤C

µ(c)R0(c)

ϕ(c)
+O

(
X

1
2

+ε +
XC

Q
Qε +

Q1+ε

C

)
(3.11)

by (3.10) and Lemma 7.

Lemma 7. Assume GRH. We have

SUE =
∑
p,r
p6=r

aparUE(p, r)� Q1+ε

C
. (3.12)

Proof. We write

SUE =
∑
p,r

log p log r
√
pr

Φ
( p
X

)
Φ
( r
X

)
UE(p, r)−

∑
p

log2 p

p
Φ2
( p
X

)
UE(p, p). (3.13)

By Lemma 4, the first sum in (3.13) is

∑
c>C

µ(c)
∑
d

W (cd/Q)

ϕ(cd)

∑
Ψ (mod d)

Ψ6=Ψ0

∣∣∣∣∣∣
∑
p-cd

Ψ(p)Φ
(
p
X

)
log p

√
p

∣∣∣∣∣∣
2

�
∑
c>C

1

ϕ(c)

∑
d≤2Q

c

1

ϕ(d)
ϕ(d)Qε � Q1+ε

C
.

The second sum in (3.13) is also bounded by

log2X
∑
c>C

1

ϕ(c)

∑
d≤2Q

c

1

ϕ(d)
ϕ(d)� Q1+ε

C
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in a similar way. These prove the lemma. �

3.4. Evaluating SL. Recall that

L(p, r) =
∑
c≤C

µ(c)
∑
d|p−r

(cd,pr)=1

W (cd/Q)

ϕ(cd)
ϕ(d)

for primes p and r. For distinct prime p, r, the condition d|p− r implies (d, pr) = 1. So we
can erase the condition (d, pr) = 1, getting

L(p, r) =
∑
c≤C

(c,pr)=1

µ(c)
∑
d|p−r

W (cd/Q)

ϕ(cd)
ϕ(d).

Using the identity

ϕ(d)

ϕ(cd)
=

1

ϕ(c)

∏
p|(d,c)

(
1− 1

p

)
=

1

ϕ(c)

∑
a|c,a|d

µ(a)

a
,

we have

L(p, r) =
∑
c≤C

(c,pr)=1

µ(c)

ϕ(c)

∑
d|p−r

W

(
cd

Q

) ∑
a|c,a|d

µ(a)

a
=

∑
c≤C,a|c
(c,pr)=1

µ(a)µ(c)

aϕ(c)

∑
ad|p−r

W

(
acd

Q

)
.

Letting ade = |p− r|, we change the sum over d to the sum over e as follows

L(p, r) =
∑

c≤C,a|c
(c,pr)=1

µ(a)µ(c)

aϕ(c)

∑
ae|p−r

W

(
c|p− r|
Qe

)
.

Now we can replace the condition ae|p− r by a character sum modulo ae, getting

L(p, r) =
∑

c≤C,a|c
(c,pr)=1

µ(a)µ(c)

aϕ(c)

∑
e

W

(
c|p− r|
Qe

)
1

ϕ(ae)

∑
Ψ (mod ae)

Ψ(p)Ψ(r).

Similarly to the sum U(p, r), we split the sum L(p, r) into two parts L0(p, r) and LE(p, r),
where L0(p, r) is the sum coming from the principal character Ψ = Ψ0 and LE(p, r) is the
sum coming from the remaining non-principal characters.

We compute the contribution from L0(p, r). Define

SL0 :=
∑
p,r
p 6=r

aparL0(p, r),

where ap = log p√
p

Φ(p/X). By the Mellin inversion, we get

SL0 =
∑
p,r
p 6=r

apar
∑
a,c,e

a|c,c≤C
(ce,pr)=1

µ(a)

aϕ(ae)

µ(c)

ϕ(c)
W

(
c|p− r|
eQ

)
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=
1

2πi

∫
(−ε)

Ŵ (s)
∑
p,r
p 6=r

apar
∑
a,c,e

a|c,c≤C
(ce,pr)=1

µ(a)

aϕ(ae)

µ(c)

ϕ(c)

(
c|p− r|
eQ

)−s
ds.

In order to separate the sums of p and r, we need the following Mellin transform

|p− r|−s =
1

2πi

∫
(δ)

Γ(1− s)Γ(z)

Γ(1− s+ z)

(
pz−sr−z + rz−sp−z

)
dz

for p 6= r, δ > 0 and Re(s) < 0. Note that the (absolute) convergence of the z integral is
ensured by the fact that the Gamma factors decay like |z|−1+Re(s). Using the above identity
we have

SL0 =
2

(2πi)2

∫
(−ε)

∫
(δ)

Ŵ (s)QsΓ(1− s)Γ(z)

Γ(1− s+ z)

·
∑
p,r
p6=r

ap
ps−z

ar
rz

∑
c≤C

(c,pr)=1

µ(c)

csϕ(c)

∑
a|c

µ(a)

a

∑
(e,pr)=1

es

ϕ(ae)
dz ds

for ε > 0. Note that the sums over a, c, p and r have only finitely many terms, so that there
are no convergence issues on them. The sum over e is∑

(e,pr)=1

es

ϕ(ae)
=

1

ϕ(a)
ζ(1− s)K(−s)B−s(pr)R−s(a)R−s(pr)

by Lemma 6, where the functions K, Bs and Rs are defined in Lemmas 5 and 6. The sum
over a is ∑

a|c

µ(a)R−s(a)

aϕ(a)
=
∏
`|c

(
1− R−s(`)

`(`− 1)

)
.

Hence, we deduce

SL0 =
2

(2πi)2

∫
(−2ε)

∫
(ε)

Ŵ (s)Qsζ(1− s)K(−s)Γ(1− s)Γ(z)

Γ(1− s+ z)

·
∑
p,r
p6=r

ap
ps−z

ar
rz
B−s(pr)R−s(pr)

∑
c≤C

(c,pr)=1

µ(c)

csϕ(c)

∏
`|c

(
1− R−s(`)

`(`− 1)

)
dz ds.

We can remove the condition (pr, c) = 1 with an additional error O(C2εQ−2ε
√
X). The

double sum over primes p and r is∑
p 6=r

ap
ps−z

ar
rz
B−s(p)B−s(r)R−s(p)R−s(r)

=
∑
p

ap
ps−z

B−s(p)R−s(p) ·
∑
r

ar
rz
B−s(r)R−s(r)−

∑
p

a2
p

ps
B−s(p)

2R−s(p)
2

=

(
Φ̂(

1

2
− s+ z)X1/2−s+z +O(X4ε log(2 + |s− z|))

)
×
(

Φ̂(
1

2
− z)X1/2−z +O(Xε log(2 + |z|))

)
+O(Xε)
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by Lemma 5. The big-oh terms only contribute O(Q−2εC2εX1/2+4ε) to SL0 , so that

SL0 =
2

(2πi)2

∫
(−2ε)

∫
(ε)

Ŵ (s)Qsζ(1− s)K(−s)Γ(1− s)Γ(z)

Γ(1− s+ z)
Φ̂(

1

2
− s+ z)Φ̂(

1

2
− z)X1−s

·
∑
c≤C

µ(c)

csϕ(c)

∏
`|c

(
1− R−s(`)

`(`− 1)

)
dz ds+O(Q−2εC2εX1/2+4ε).

To evaluate the integral, we split into two cases.

Case 1: X = Qα, where 1 < α < 2. In this case, we shift the contour of s to Re(s) = 1+ε
and get

SL0 = −(Residue at s = 0)− (Residue at s = 1)

+
2

(2πi)2

∫
(1+ε)

∫
(ε)

Ŵ (s)Qsζ(1− s)K(−s)Γ(1− s)Γ(z)

Γ(1− s+ z)
Φ̂(

1

2
− s+ z)Φ̂(

1

2
− z)X1−s

·
∑
c≤C

µ(c)

csϕ(c)

∏
`|c

(
1− R−s(`)

`(`− 1)

)
dz ds+O(Q−2εC2εX1/2+4ε)

= −(Residue at s = 0)− (Residue at s = 1) +O(Q1+εX−ε +Q−2εC2εX1/2+4ε).

Three functions in the integrand have poles at s = 0 or s = 1. ζ(1− s) has a simple pole at
0, Γ(1− s) has a simple pole at s = 1 and K(−s) has a simple pole at s = 1, since

K(−s) =
∏
`

(
1 +

1

(`− 1)`1−s

)
= ζ(2− s)

∏
`

(
1 +

1

(`− 1)`2−s −
1

(`− 1)`3−2s

)
.

Hence, the residue at the simple pole s = 0 is

− 1

πi

∫
(ε)

Ŵ (0)K(0)
Γ(z)

Γ(1 + z)
Φ̂(

1

2
+ z)Φ̂(

1

2
− z)X

∑
c≤C

µ(c)

ϕ(c)

∏
`|c

(
1− R0(`)

`(`− 1)

)
dz

= − 1

πi

∫
(ε)

1

z
Φ̂(

1

2
+ z)Φ̂(

1

2
− z)dz · Ŵ (0)K(0)X

∑
c≤C

µ(c)R0(c)

ϕ(c)

= −Φ̂(1/2)2Ŵ (0)K(0)X
∑
c≤C

µ(c)R0(c)

ϕ(c)
.

The residue at the double pole s = 1 is

1

πi

∫
(ε)

Φ̂(−1

2
+ z)Φ̂(

1

2
− z)dz · ζ(0)Ŵ (1)Q(log

Q

X
+O(1))

∑
c≤C

µ(c)

cϕ(c)

∏
`|c

(
1− R−1(`)

`(`− 1)

)
= − 1

2πi

∫
(1/2)

Φ̂(−1

2
+ z)Φ̂(

1

2
− z)dz ·BŴ (1)Q log

Q

X
+O(Q)

= − 1

2π

∫ ∞
−∞
|Φ̂(it)|2dt ·BŴ (1)Q log

Q

X
+O(Q),

where

B =
∑
c

µ(c)

cϕ(c)

∏
`|c

(
1− R−1(`)

`(`− 1)

)
=
∏
p

(
1− 1

p2
− 1

p3

)
.
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By (1.1) and the above, the residue at s = 1 is

− 1

2π

∫ ∞
−∞
|Φ̂(it)|2dt · AQ(log

Q

X
+O(1)).

Combining all together, we get

SL0 = Φ̂(1/2)2Ŵ (0)K(0)X
∑
c≤C

µ(c)R0(c)

ϕ(c)
+

1

2π

∫ ∞
−∞
|Φ̂(it)|2dt · AQ(log

Q

X
+O(1))

+O(Q+Q−2εC2εX1/2+4ε) (3.14)

for 1 < α < 2 with X = Qα. Note that the first term in SL0 is cancelled with the main term
of SU0 in Equation (3.11).

Case 2: X = Qα, where 0 ≤ α ≤ 1. In this case, we shift the contour of s to Re(s) = ε
and get

SL0 = −(Residue at s = 0)

+
2

(2πi)2

∫
(ε)

∫
(ε)

Ŵ (s)Qsζ(1− s)K(−s)Γ(1− s)Γ(z)

Γ(1− s+ z)
Φ̂(

1

2
− s+ z)Φ̂(

1

2
− z)X1−s

·
∑
c≤C

µ(c)

csϕ(c)

∏
`|c

(
1− R−s(`)

`(`− 1)

)
dz ds+O(Q−2εC2εX1/2+4ε)

= −(Residue at s = 0) +O(QεX1−ε +Q−2εC2εX1/2+4ε).

Since 0 ≤ α ≤ 1, we obtain that

QεX1−ε = Qα+(1−α)ε � Q.

By the same argument as in Case 1, we get that

SL0 = Φ̂(1/2)2Ŵ (0)K(0)X
∑
c≤C

µ(c)R0(c)

ϕ(c)
+O(Q+Q−2εC2εX1/2+4ε),

and the first term is cancelled with the main term of SU0 .

The contribution from LE(p, r) is small by the following Lemma.

Lemma 8. We have

SLE :=
∑
p,r
p 6=r

log p log r
√
pr

Φ
( p
X

)
Φ
( r
X

)
LE(p, r)� X1+εC1+ε

Q
. (3.15)

Proof. Let ap be defined as in (3.2). We have that

SLE =
∑
a,c,e
ac≤C

µ(a)µ(ac)

aϕ(ac)ϕ(ae)

∑
Ψ (mod ae)

Ψ 6=Ψ0

∑
p,r

p 6=r,(c,pr)=1

aparΨ(p)Ψ(r)W

(
ac|p− r|
Qe

)
.
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Since W is supported in (1, 2), ac|p−r|
Qe
≥ 1 and e ≤ ac|p−r|

Q
≤ acX

Q
. Proceeding similarly to SL0

we obtain

SLE =
1

2πi

∫
(−ε)

Ŵ (s)Qs
∑
a,c,e

ac≤C,e≤acX/Q

µ(a)µ(ac)es

a1+scsϕ(ac)ϕ(ae)

∑
Ψ (mod ae)

Ψ 6=Ψ0

∑
p,r
p 6=r

(c,pr)=1

aparΨ(p)Ψ(r)|p− r|−sds

=
2

(2πi)2

∫
(−ε)

∫
(ε)

Ŵ (s)QsΓ(1− s)Γ(z)

Γ(1− s+ z)

∑
a,c,e

ac≤C,e≤acX/Q

µ(a)µ(ac)es

a1+scsϕ(ac)ϕ(ae)
×

∑
Ψ (mod ae)

Ψ 6=Ψ0

∑
p,r
p6=r

(c,pr)=1

aparΨ(p)Ψ(r)pz−sr−zdzds.

The double sum over p and r is∑
p,r
p6=r

(c,pr)=1

aparΨ(p)Ψ(r)pz−sr−z

=
∑
p

(c,p)=1

log pΨ(p)

p1/2+s−z Φ
( p
X

) ∑
r

(c,r)=1

log rΨ(r)

r1/2+z
Φ
( r
X

)
−

∑
p

(aec,p)=1

(log p)2

p1+s
Φ
( p
X

)2

and bounded by Xε assuming GRH. The lemma easily follows from this bound. �

3.5. Conclusion of the proof of Proposition 1. In the beginning of Section 3, we have
shown that the sum S splits into

S = SD + SN

with SD the diagonal terms and SN the off-diagonal terms. In Section 3.1 we have shown
that the diagonal terms SD contribute

SD ∼
A

2π
Q logX

∫ ∞
−∞
|Φ̂(ix)|2dx

In Sections 3.2–3.4 we have shown that SN = SU + SL is at most O(Q) if X = Qα with
0 ≤ α ≤ 1 and that if X = Qα with 1 < α < 2 then SN is

SN ∼
A

2π
Q log(Q/X)

∫ ∞
−∞
|Φ̂(ix)|2dx,

by (3.11), (3.14) and (3.15), and choosing C = Qε. Combining the above estimates we
conclude that

S ∼ f(α) A
2π
Q logQ

∫ ∞
−∞
|Φ̂(ix)|2dx = f(α)NΦ(Q)

for 0 ≤ α < 2, where f(α) is defined in 1.2. This gives the desired estimate.
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4. Proof of Theorem 2

Recall that

FΦ(Qα;W ) :=
1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∑
γχ

Φ̂(iγχ)X iγχ

∣∣∣∣2.
Since W is supported in (1, 2), there is no primitive character in the sum over χ. Then by
the Cauchy-Schwarz inequality, we have

FΦ(Qα;W ) = M1 +M2 +O(
√
M1M2),

where

M1 :=
1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∑
n

Λ(n)χ(n)√
n

Φ
( n
X

) ∣∣∣∣2
and

M2 :=
1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣Φ( 1

X

)
log

q

π

∣∣∣∣2.
By Proposition 1, M1 ∼ f(α) for |α| ≤ 2−ε, where f(α) is defined in (1.2). Also by a partial
summation and (2.3) we have

M2 ∼
1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)
ϕ∗(q)Φ(X−1)2 log2Q

∼ Φ(Q−|α|)2 logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

.

Therefore, we have

FΦ(Qα;W ) = (1 + o(1))

(
f(α) + Φ(Q−|α|)2 logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

)
+O(Φ(Q−|α|)

√
f(α) logQ).

5. Proof of Theorem 1

We reproduce here the argument from Özlük’s paper [5]. First we need a lemma.

Lemma 9. Assume GRH. If 1 < α < 2 is fixed, and the function Φ satisfies Φ(x) = Φ(x−1),
then

1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ,γ′χ

(
sin(α/2(γχ − γ′χ) logQ)

α/2(γχ − γ′χ) logQ

)2

Φ̂(iγχ)Φ̂(iγ′χ) ∼
(

1 +
1

3α2

)
.

Proof. We follow the argument given in [4]. Let

r(u) =

(
sin παu

παu

)2

and we use the identity
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1

NΦ(Q)

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ,γ′χ

r

(
(γχ − γ′χ) logQ

2π

)
Φ̂(iγχ)Φ̂(iγ′χ) =

∫ ∞
−∞

FΦ(Qβ;W )r̃(β)dβ

(5.1)

where r̃(β) is the Fourier transform of r defined as

r̃(β) =

∫ ∞
−∞

r(t)e−2πiβtdt.

In this case

r̃(β) =

{
(α− |β|)/α2 if |β| < α

0 otherwise.

We plug in FΦ(Qβ;W ) from Theorem 2 to the right-hand side of (5.1), obtaining that the
right-hand side of (5.1) is

(1 + o(1))

∫ α

−α

(
f(β) + Φ(Q−|β|)2 logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

)
r̃(β)dβ

with f(β) is defined in (1.2). For 1 < α < 2, we have∫ α

−α
f(β)r̃(β)dβ =

2

α2

∫ 1

0

β · (α− β)dβ +
2

α2

∫ α

1

(α− β)dβ

= 1 +
1

3α2
− 1

α

and

logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

·
∫ α

−α
Φ(Q−|β|)2r̃(β)dβ

∼ logQ

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

· 2

α2

∫ 1

0

Φ(Q−β)2(α− β)dβ

∼ 2

α

∫ logQ

0

Φ(e−u)2du

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

∼ 2

α

∫ ∞
0

Φ(e−u)2du

(
1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx)−1

=
1

α
.

The last equality is obtained by the Plancherel’s theorem for the Mellin transform in the
form

1

2π

∫ ∞
−∞

∣∣∣Φ̂(ix)
∣∣∣2 dx =

∫ ∞
−∞

Φ(e−u)2du =

∫ ∞
−∞

Φ(e−|u|)2du

and the fact that the function Φ satisfies Φ(x) = Φ(x−1).
�

Proof of Theorem 1. Pick Φ̂(s) = ((es − e−s)/2s)2 so that Φ̂(iγ) = (sin γ/γ)2. We need to
check that this choice is possible, that is, that Φ is real and compactly supported in (a, b)
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for some a, b > 0. Indeed, by Mellin inversion we have

Φ(x) =
1

2πi

∫
(c)

(
es − e−s

2s

)2

· x−sds

=


1
2
− 1

4
log x for 1 ≤ x ≤ e2,

1
2

+ 1
4

log x for e−2 ≤ x ≤ 1,

0 otherwise ,

so it satisfies the required conditions. Note that Φ satisfies Φ(x) = Φ(x−1).
Let mρ be the multiplicity of the zero ρ = 1

2
+iγ. We count zeros according to multiplicity.

In particular, ∑
γχ

mρΦ̂(iγχ)2 =
∑
γχ,γ′χ
γχ=γ′χ

Φ̂(iγχ)Φ̂(iγ′χ)

because on both sides a given zero is counted with weight m2
ρΦ̂(iγχ)2. We have∑

γχ
simple

Φ̂(iγχ)2 ≥
∑
γχ

(2−mρ)Φ̂(iγχ)2

≥ 2
∑
γχ

Φ̂(iγχ)2 −
∑
γχ,γ′χ

(
sinα/2(γχ − γ′χ) logQ

α/2(γχ − γ′χ) logQ

)2

Φ̂(iγχ)Φ̂(iγ′χ).

Hence ∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

simple

Φ̂(iγχ)2

≥ 2
∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

Φ̂(iγχ)2

−
∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ,γ′χ

(
sin(α/2(γχ − γ′χ) logQ)

α/2(γχ − γ′χ) logQ

)2

Φ̂(iγχ)Φ̂(iγ′χ)

We take α = 2− δ, with δ > 0, in the previous lemma, and observe that

∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ,γ′χ

(
sin(α/2(γχ − γ′χ) logQ)

α/2(γχ − γ′χ) logQ

)2

Φ̂(iγχ)Φ̂(iγ′χ) ≤
(

13

12
+ ε

)
NΦ(Q)

with some ε→ 0 as δ → 0+. Combining the above two equations and using the fact that∑
q

W (q/Q)

ϕ(q)

∑∗

χ (mod q)

∑
γχ

Φ̂(iγχ)2 = NΦ(Q)

we prove the theorem. �
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6. Discussion of Özlük’s result

In this section we explain why heuristically one expects that Özlük’s result provides at
most a proportion of 86% simple zeros. It is reasonable to suppose that as t → ∞, there
exists a κ such that∑

q≤t

1

ϕ(q)

∑∗

χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 ∼ κ
t log t

2π

∫ ∞
−∞
|Φ̂(ix)|2dx. (6.1)

Özlük proves that∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 & 11

12

Q logQ

2π

∫ ∞
−∞
|Φ̂(ix)|2dx.

We re-write the left-hand side as follows∑
q≤Q

1

ϕ(q)

∑
χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 =
∑
q≤Q

1

ϕ(q)

∑
d|q

∑∗

χ∗ (mod d)

∑
γχ∗

simple

|Φ̂(iγχ∗)|2,

where χ∗ is the primitive character inducing χ. Note that the nontrivial zeros of L(s, χ) and
L(s, χ∗) coincide. Therefore, we get∑

q≤Q

1

ϕ(q)

∑
χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 =
∑
dq≤Q

1

ϕ(dq)

∑∗

χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2

≤
∑
d≤Q

1

ϕ(d)

∑
q≤Q/d

1

ϕ(q)

∑∗

χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2

.
∑
d≤Q

1

ϕ(d)
κ
Q

d
log

Q

d

1

2π

∫ ∞
−∞
|Φ̂(ix)|2dx

∼ κ
∞∑
d=1

1

dϕ(d)

Q logQ

2π

∫ ∞
−∞
|Φ̂(ix)|2dx.

It thus follows that

κ ≥ 11

12

(
∞∑
d=1

1

dϕ(d)

)−1

,

or equivalently

1

N ′Φ(Q)

∑
q≤Q

1

ϕ(q)

∑∗

χ (mod q)

∑
γχ

simple

|Φ̂(iγχ)|2 ≥ 11

12

(
∞∑
d=1

1

dϕ(d)

)−1

A−1
0 ,

where

N ′Φ(Q) :=
∑
q≤Q

1

ϕ(q)

∑∗

χ (mod q)

∑
γχ

|Φ̂(iγχ)|2

∼ 1

2π
logQ

∫ ∞
−∞
|Φ̂(ix)|2dx

∑
q≤Q

ϕ∗(q)

ϕ(q)
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∼ A0
Q logQ

2π

∫ ∞
−∞
|Φ̂(ix)|2dx

and

A0 =
∏
p

(
1− 1

p2
− 1

p3

)
.

Therefore from Özlük’s work we obtain a proportion of

11

12

(
∞∑
d=1

1

dϕ(d)

)−1

A−1
0 ≈ 0.86883781 . . . .
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