HW7 DUE NOVEMBER 22TH

- (1) Let X be a set and \mathcal{M} a non-empty collection of subsets of X. Prove that if \mathcal{M} is closed under complements and countable unions of disjoint sets, then \mathcal{M} is a σ -algebra.
- (2) Consider the Lebesgue outer measure λ^* . Prove that a set E is λ^* -Caratheodory measurable if and only if E is Lebesgue measurable.
- (3) Suppose that ν, ν_1, ν_2 are signed measures, and μ is a positive measure on the same σ -algebra \mathcal{M} . Prove
 - (a) If $\nu_1 \perp \mu$ and $\nu_2 \perp \mu$ then $\nu_1 + \nu_2 \perp \mu$.
 - (b) If $\nu_1 \ll \mu$ and $\nu_2 \ll \mu$ then $\nu_1 + \nu_2 \ll \mu$.
 - (c) $\nu \ll |\nu|$.
 - (d) If $\nu \perp \mu$ and $\nu \ll \mu$ then $\nu = 0$.
- (4) Let F be an increasing function. Recall that we can write F as $F_A + F_C + F_J$ where F_A is absolutely continuous, F_C is continuous with $F'_C = 0$ almost everywhere and F_J is a pure jump function. Given an increasing right continuous function G let μ_G be the measure such that $\mu_G((a, b]) = G(b) G(a)$ (this is known as a Borel measure). Let μ_A, μ_C, μ_J denote respectively the measures $\mu_{F_A}, \mu_{F_C}, \mu_{F_J}$. Show that,
 - (a) The measure μ_A is absolutely continuous with respect to Lebesgue measure, and in addition,

$$\mu_A(E) = \int_E F'(x)dx$$

(b) $\mu_C + \mu_J$ and Lebesgue measure are mutually singular.