HW6 DUE NOVEMBER 1

(1) Suppose F is continuous on [a, b]. Show that,

$$D^{+}(F)(x) := \limsup_{\substack{h \to 0 \\ h > 0}} \frac{F(x+h) - F(x)}{h}$$

is measurable.

(2) Prove that if K_{ε} is a sequence of approximations to the identity, then,

$$\sup_{\varepsilon>0} |(f\star K_\varepsilon)(x)| \le cf^*(x)$$

where $f^*(x)$ is the maximal function and $f \star K_{\varepsilon}$ is the convolution of f with K_{ε} .

- (3) If f is integrable on \mathbb{R} show that $F(x) = \int_{-\infty}^{x} f(t)dt$ is uniformly continuous.
- (4) Let f be measurable, and finite on [0,1]. Suppose that |f(x) f(y)| is integrable on $[0,1] \times [0,1]$ show that f is integrable on [0,1].
- (5) Let E be a subset of \mathbb{R} with $\lambda_{\star}(E) > 0$. Prove that for each $0 < \alpha < 1$, there exists an open interval I so that $\lambda_{\star}(E \cap I) > \alpha \lambda_{\star}(I)$.