HW 3 DUE OCTOBER 4

A non-negative measurable function $f \geq 0$ is said to be *integrable* if,

$$\sup_{0 \le g \le f} \int_{\mathbb{R}} g(x) dx < \infty.$$

where the supremum is taken over all measurable g with $0 \le g \le f$, with g in addition bounded and supported on a set of finite measure. For an integrable f we write,

$$\int_{\mathbb{R}} f(x)dx := \sup_{0 \le g \le f} \int_{\mathbb{R}} g(x)dx$$

For general f (not necessarily non-negative) we say that f is integrable if |f| is integrable. Then both $f^+ = \max(f, 0)$ and $f^- = -\min(f, 0)$ are integrable, and we define

$$\int_{\mathbb{R}} f(x)dx := \int_{\mathbb{R}} f^{+}(x)dx - \int_{\mathbb{R}} f^{-}(x)dx$$

(1) Suppose that $f \geq 0$ and that f is integrable. If $\alpha > 0$ and $E_{\alpha} = \{x : f(x) > \alpha\}$, prove that

$$\lambda(E_{\alpha}) \le \frac{1}{\alpha} \int_{\mathbb{R}} f(x) dx.$$

- (2) Prove that if f is integrable, and $\int_E f(x)dx \ge 0$ for every measurable E then $f \ge 0$ almost everywhere. Conclude that if $\int_E f(x)dx = 0$ for every measurable E then f(x) = 0 almost everywhere.
- (3) Show that there exists an integrable f and a sequence of integrable f_n such that

(1)
$$\int_{\mathbb{R}} |f(x) - f_n(x)| dx \to 0 , \text{ as } n \to \infty$$

and yet $f_n(x) \to f(x)$ doesn't hold for any $x \in \mathbb{R}$. However show that, for any $\varepsilon > 0$,

(2)
$$\lambda(\lbrace x: |f_n(x) - f(x)| > \varepsilon\rbrace) \to 0 , \text{ as } n \to \infty$$
 Does (2) imply (1)?

.

(4) Consider the function f(x) such that $f(x) = x^{-1/2}$ for 0 < x < 1 and f(x) = 0 otherwise. Let r_n be a fixed enumeration of the rational \mathbb{Q} . Consider,

$$F(x) = \sum_{n=1}^{\infty} 2^{-n} \cdot f(x - r_n)$$

Prove that F is integrable, hence the series defining F converges almost everywhere. However, prove also that the series is unbounded on any interval.

(5) Let f be integrable. Let $E_{\alpha} = \{x : |f(x)| > \alpha\}$. Prove that,

$$\int_{\mathbb{R}} |f(x)| dx = \int_{0}^{\infty} \lambda(E_{\alpha}) d\alpha$$