HW 2 HONORS ANALYSIS 3 DUE TUESDAY 27TH SEPTEMBER 2016

- (1) A G_{δ} set is a countable intersection of open sets. Countable unions of closed sets are known as F_{δ} sets. Prove that a closed set is G_{δ} set and an open set an F_{δ} set. Show that there exists F_{δ} sets which is not G_{δ} sets.
- (2) Let f_n be a sequence of measurable functions on [0,1] with $|f_n(x)| < \infty$ for almost every $x \in [0,1]$. Show that there exists a sequence c_n of positive real numbers such that,

$$\lim_{n \to \infty} \frac{f_n(x)}{c_n} = 0$$

for almost every $x \in [0,1]$. (Hint: Consider c_n for which $\lambda(\{x:|f_n(x)|/c_n>1/n\})<2^{-n}$ and apply Borel-Cantelli)

(3) Show that there is no everywhere continuous function f such that,

$$f(x) = \mathbf{1}_{[0,1]}(x)$$

almost everywhere, and where $\mathbf{1}_{[0,1]}$ is the indicator function of the interval [0,1].

- (4) Show that an open disc in \mathbb{R}^2 is not a disjoint union of open rectangles. (Hint: What happens to the boundary of any of these rectangles?)
- (5) Let f be Lebesgue measurable. Suppose that for all $x, y \in \mathbb{R}$,

(1)
$$f(x+y) = f(x) + f(y)$$
.

Prove that f is continuous. (Hint: You only need to show continuity at zero)

Bonus: Prove that in fact f(x) = xf(1).

(Interestingly, if we don't require f to be measurable, then other solutions to (1) exists, by necessity they are non-measurable).