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ABSTRACT. We prove that if two additive functions (from a certain class) take large values
with roughly the same probability then they must be identical. The Kac-Kubilius model
suggests that the distribution of values of a given additive function can be modeled by a
sum of random variables. We show that the model is accurate (in a large deviation sense)
when one is looking at values of the additive function around its mean, but fails, by “a
constant multiple”, for large values of the additive function. We believe that this phenom-
enon arises, because the model breaks down for the values of the additive function on the
“large” primes.

In the second part of the paper, we are motivated by a question of Elliott, to understand
how much the distribution of values of the additive function on primes determines, and is
determined by, the distribution of values of the additive function on all of the integers. For
example, our main theorem implies that a positive, strongly additive function is roughly
Poisson distributed on the integers if and only if it is 1 + o(1) or o(1) on almost all primes.
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1. INTRODUCTION

Let g be a strongly additive function. According to Mark Kac, the distribution of the
g(n)’s (with n 6 x and x large) can be predicted by studying the random variable

∑
p6x

g(p)Xp (1.1)

In (1.1) the Xp’s are independent random variables with P(Xp = 1) = 1/p and P(Xp =
0) = 1 − 1/p. Thus, we expect the g(n)’s to cluster around the mean µ(g; x) of (1.1) and
within O(σ(g; x)). Here µ(g; x) and σ2(g; x) are respectively the mean and the variance of
(1.1), so that

µ(g; x) =
∑
p6x

g(p)

p
and σ2(g; x) =

∑
p6x

g(p)2

p
·
(

1 −
1

p

)

The Erdös-Kac theorem (see [5], theorem 12.2), states that

Dg(x; ∆) :=
1

x
·#

{
n 6 x :

g(n) − µ(g; x)

σ(g; x)
> ∆

}
∼

∫∞

∆

e−u2/2 · du√
2π

for ∆ = O(1) and any reasonable additive function g. However it is known (see [14]) that
this “normal approximation” fails, already when ∆ = σ(g; x)1/3. In this range Dg(x; ∆) is
asymptotic to a constant c < 1 times the normal distribution. For larger values of ∆ there
is an ugly asymptotic (see [14] or [11]) comparing Dg(x; ∆) to the normal law. Our first
contribution is the observation that the ugly asymptotic can be recast in a more natural
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form. Namely, we have

1

x
·#

{
n 6 x :

g(n) − µ(g; x)

σ(g; x)
> ∆

}
∼ P

(∑
p6x

[
g(p) −

1

p

]
Xp > ∆σ(g; x)

)
(1.2)

uniformly in 1 6 ∆ 6 o(σ(g; x)), for instance for strongly additive functions g such that
0 6 g(p) 6 O(1) and σ(g; x) → ∞. Since (1.2) is a natural extension of the Erdös-Kac, it is
desirable to know if (1.2) holds for all additive functions for which the Erdös-Kac does (in
the version of [5], theorem 12.2). We leave this open. Instead, we ask in which range (1.2)
is no longer true, and by how much does (1.2) fail in that range? To answer this question
we confine our attention to the class C, defined below.

Definition. An additive function g belongs to C if and only if
• The function g is strongly additive1 and strictly positive.
• Given any A > 0, we have for all t > 0 and x > 2,

1

π(x)

∑

p 6 x

g(p) > t

1 = OA

(
e−At

)
(1.3)

• There is a distribution function Ψ(g; t) with non-zero second moment, such that for all
k > 0

1

π(x)

∑

p 6 x

g(p) 6 t

1 − Ψ(g; t) = Ok

(
1

logk x

)
uniformly in t ∈ R (1.4)

Additive functions belonging to C are particularly well-behaved. Nonetheless, even for
a g ∈ C, the asymptotic (1.2) doesn’t hold in the wider range ∆ ³ σ(g; x). Indeed, we
prove that for any fixed δ > 0, uniformly in 1 6 ∆ 6 δσ(g; x),

1

x
#

{
n 6 x :

g(n) − µ(g; x)

σ(g; x)
> ∆

}
∼ A

(
g;

∆

σ

)
P

(∑
p6x

g(p)

[
Xp −

1

p

]
> ∆σ

)
(1.5)

where A (g; z) is an analytic function depending only on Ψ(g; ·) and σ stands for σ(g; x).
Most importantly 0 < A(g; x) 6 A(g; 0) = 1 for positive x, and A(g; x) is a strictly de-
creasing function, decaying to 0 as x → ∞. For example when g(n) = ω(n), where
ω(n) is the number of prime factors of n, we have A(g; z) = e−γz/Γ(1 + z) (where γ is
the Euler-Mascheroni constant). The appearance of the factor A(g; ·), is largely due to the
large prime factors, and we state a precise conjecture explaining the phenomena, in the
next section. In order to prove (1.5) we simply establish asymptotics for the left and right
hand side of (1.5) and then compare them.

1That is g(pk) = g(p) for all primes p and integers k ≥ 1, and g(mn) = g(m)+g(n) whenever (m, n) = 1.
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Our main result is a “structure theorem”, classifying additive functions in C in terms of
the distribution of their large values.

Theorem 1.1. (The “structure theorem”) Let f, g ∈ C. Suppose that σ(f; x) ∼ σ(g; x) and let
σ := σ(x) denote a function such that σ(f; x) ∼ σ(x) ∼ σ(g; x). The asymptotic

1

x
·#

{
n 6 x :

f(n) − µ(f; x)

σ(f; x)
> ∆

}
∼

1

x
·#

{
n 6 x :

g(n) − µ(g; x)

σ(g; x)
> ∆

}
(1.6)

holds uniformly, in the range,
(1) 1 6 ∆ 6 o(σ1/3) – always (the distribution is normal)
(2) 1 6 ∆ 6 o(σα) with an α ∈ (1/3; 1) if and only if∫

R
tkdΨ(f; t) =

∫

R
tkdΨ(g; t)

for all k = 3, 4, . . . , ρ(α) where ρ(α) := d(1 + α)/(1 − α)e
(3) 1 6 ∆ 6 o(σ) if and only if Ψ(f; t) = Ψ(g; t)
(4) 1 6 ∆ 6 cσ with some fixed c > 0, if and only if f = g

Example. Let 0 < α, β < 1 be two algebraic irrationals. Let f, g be two additive functions
defined by letting f(pk) = {αp} and g(pk) = {βp} at all primes powers pk. By Vinogradov’s
theorem (on the uniform distribution of {αp}, see [19], ch. 11), both f, g ∈ C and in fact
Ψ(f; t) = t = Ψ(g; t) for 0 6 t 6 1. Thus by Theorem 1.1, f, g are similarly distributed (i.e
(1.6) holds) when ∆ is in the range 1 6 ∆ 6 o (σ) but not when ∆ ³ σ unless f = g, that
is α = β.

The theorem highlights a certain “discrete” behaviour of additive functions belonging
to C : For example, if (1.6) holds uniformly in 1 6 ∆ 6 o(σ1/3+ε) with any fixed ε > 0,
then (1.6) holds uniformly in 1 6 ∆ 6 o(σ1/2). In fact, given any α ∈ (1/3; 1), suppose
that (1.6) holds uniformly in 1 6 ∆ 6 o(σα), then for any δ > 0 relation (1.6) holds in
1 6 ∆ 6 o(σα+δ

)
as long as ρ(α + δ) = ρ(α).

For a f ∈ C we have σ2(f; x) ∼ c log log x for some constant c > 0. Thus given f, g ∈ C
we can always find a constant c > 0 such that σ(f; x) ∼ σ(c ·g; x). Keeping this observation
in mind and applying Theorem 1.1, we obtain the following corollary.

Corollary. Let f, g ∈ C. Suppose that (1.6) holds uniformly in 1 6 ∆ ¿ σ ³ (log log x)1/2, then
there is a constant c > 0 such that f = c · g.

(We mention another consequence of theorem 1.1 at the end of the introduction).
In the second part of the paper we focus on strongly additive f such that 0 6 f(p) 6

O(1) and σ(f; x) → ∞. We investigate the relationship between the asymptotic behaviour
of

Df (x;∆) :=
1

x
·#

{
n 6 x :

f(n) − µ(f; x)

σ(f; x)
> ∆

}
(1.7)
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in the range 1 6 ∆ ¿ε σ(f; x)1−ε and the convergence properties of

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
(1.8)

We prove roughly the following : If (1.8) converges to a distribution function Ψ(·) suffi-
ciently fast, then Df(x; ∆) behaves asymptotically like a sum of σ2(f; x) independent and
identically distributed random variables X1, X2, . . . with distribution determined by

E
[
eit X1

]
= exp

(∫

R

eiut − iut − 1

u2
dΨ(u)

)
. (1.9)

Note that the above forces E [X1] = 0 and Var(X1) = 1. We do need to be more precise
here since it is certainly possible that σ2(f; x) is not an integer: So, when we write “a sum
of σ2(f; x) i.i.d random variables”, we really mean a Levy process at time t = σ2(f; x), with
initial distribution determined by (1.9).2

In the converse direction we prove that if (1.7) behaves asymptotically like a sum of
σ2(f; x) i.i.d random variables (distributed according to (1.9) plus Ψ(α) − Ψ(0) = 1 for
some α > 0) then (1.8) converges almost everywhere to the distribution function Ψ(t).

The original motivation for studying this question was to characterize additive func-
tions with a “Poisson distribution” on the integers. Namely, we wanted to show that
any strongly additive functions whose values on the integers are “Poisson distributed”
must be 1 + o(1) or o(1) on most primes. Here is an example of what was achieved in
this direction (the example is a particular case of the theorems discussed previously): For
convenience denote by

P oisson (x;∆) =
∑

k>x+∆
√

x

e−x · xk

k!

the tails of a Poisson distribution with parameter x > 0. As a consequence 3 of a well-
known result of Halász [10] if f is strongly additive, f(p) ∈ {0, 1} and σ(f; x) → ∞, then

Df(x;∆) ∼ P oisson
(
σ2(f; x); ∆

)
(1.10)

uniformly in 1 6 ∆ 6 o(σ(f; x)). Conversely, suppose that f is strongly additive 0 6
f(p) 6 O(1), σ(f; x) → ∞ and that (1.10) holds uniformly in 1 6 ∆ 6 o(σ(f; x)). Then

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
−→ δ(t) :=

{
1 if t > 1

0 otherwise

2Levy processes are defined below; for now we can think of it as a natural way to make continuous a
count that is naturally discrete.

3Halász originally proved that Df(x; ∆) ∼ P oisson(µ(f; x);∆). This does not contradict our statement
(1.10) because when f(p) ∈ {0; 1} we have µ(f; x) = σ2(f; x) + O(1) and in particular P oisson(µ(f; x); ∆) ∼

P oisson(σ2(f; x); ∆) in the range 1 6 ∆ 6 o(σ(f; x)).
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at all t ∈ R, with the possible exception of t = 1. Therefore, for most primes p we either
have f(p) = 1 + o(1) or f(p) = o(1), thus complementing Halász’s result.

Let us mention, without giving a proof, one consequence of the above result. Suppose
that f > 0 is bounded on the primes, σ(f; x) −→ ∞ and σ2(f; x) = c log log x + O(1) for
some constant c > 0 (the last assumption certainly holds if f ∈ C). The following holds: If
Df(x;∆) ∼ P oisson(log log x;∆) uniformly in 1 6 ∆ 6 o(σ(f; x)) then f(p) =

√
c + o(1) for

all but o(π(x)) primes 6 x 4. For a f ∈ C a more precise result follows from theorem 1.1
(and the fact that Dω(x;∆) ∼ P oisson(log log x;∆) uniformly in 1 6 ∆ 6 o(σ(f; x)) where
ω(n) is the number of prime factors of n).

2. PRECISE STATEMENT OF RESULTS.

Building on earlier work by Kubilius ([12], p. 160) and Maciulis [14] we establish The-
orem 2.1.

Theorem 2.1. If f ∈ C and σ = σ(f; x) then

Df(x; ∆) ∼ P

(∑
p6x

f(p)

[
Xp −

1

p

]
> ∆σ

)
(2.1)

uniformly in 1 6 ∆ 6 o (σ).

Remark. One can prove (2.1) for many other classes of f (for example when f > 0 is
a strongly additive function such that σ(f; x) → ∞ and 0 6 f(p) 6 O(1)). We believe
that (2.1) holds in very broad generality, perhaps even for any f satisfying the Erdös-Kac
theorem (in the Kubilius-Shapiro version, see [5], theorem 12.2), though one may have to
introduce some natural restrictions.

As announced in the introduction, the asymptotic relation (2.1) fails when ∆ ³ σ(f; x).
This phenomenon is described in the next Theorem.

Theorem 2.2. Let f ∈ C. Let σ = σ(f; x). For fixed δ > 0, uniformly in 1 6 ∆ 6 δσ,

Df(x;∆) ∼ A
(

f;
∆

σ

)
·P

(∑
p6x

f(p) ·
[
Xp −

1

p

]
> ∆σ

)

The function A(f; x) is analytic (in a neighborhood of R+ ∪ {0}), strictly decreasing, and decays to
0 as x → ∞. Further A(f; 0) = 1. All those properties are the consequence of an explicit formula
for A(f; z) that we now describe. Denote by

Ψ̂ (f; z) =

∫

R
eztdΨ(f; t)

4If instead we assume σ2(f; x) = cµ(f; x) + O(1) and Df(x;∆) ∼ P oisson(µ(f; x);∆) then necessarily c = 1

and f(p) = 1 + o(1) or f(p) = o(1) for most primes p.
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the Laplace transform of the distribution function Ψ(f; t). Let ω(z) = ω(f; z) be defined implicitly
by Ψ̂ ′(f; ω(z)) = Ψ̂ ′(f; 0) + zΨ̂ ′′(f; 0). The function ω(f; z) thus defined is well-defined in a
neighborhood of R+ ∪ {0} and analytic there. We have

A(f; z) =
e−γ(Ψ̂(f;ω(z))−1)

Γ(Ψ̂(f;ω(z))

Example. In the case of f being the number of prime factors of n, we find that Ψ̂(f; z) = ez

and that ω(f; z) = log(1 + z). Therefore

A(f; z) =
e−γz

Γ (1 + z)

Thus A(f; x) decays very fast !

The function A(f;∆/σ) stays essentially constant throughout the range ∆ = cσ + o(σ)
(where σ = σ(f; x)), since A(f;∆/σ) = A(f; c) + o(1) by analyticity. In this respect when
∆ ∼ cσ the quantity Df(x; ∆) differs asymptotically from its probabilistic counterpart only
by a constant.

We believe that the appearance of the function A(f; z) is essentially due to the large
prime factors. To back up our claim, let us look at what happens when one ignores the
large prime factors. We denote by f(n; y) the truncated additive function

f(n; y) =
∑

p|n

p 6 y

f(p)

The following conjecture was suggested by Kevin Ford.

Conjecture 2.3. Suppose that u := log x/ log y −→ ∞ and u 6 loglog x. Then

1

x
·#

{
n 6 x :

f(n; y) − µ(f;y)

σ(f;y)
> ∆

}
∼ P

(∑
p6y

f(p)

[
Xp −

1

p

]
> ∆σ(f;y)

)

uniformly in 1 6 ∆ 6 cσ(f;y) for any fixed c > 0.

In support of the conjecture we have the following simple proposition (which we de-
duce from Kubilius’s theorem, in Barban-Vinogradov’s version, [4], lemma 3.2, p. 122).

Proposition 2.4. Suppose that u = log x/ log y ³ loglog x. Then

1

x
·#

{
n 6 x :

f(n; y) − µ(f;y)

σ(f;y)
> ∆

}
∼ P

(∑
p6y

f(p)

[
Xp −

1

p

]
> ∆σ(f;y)

)

uniformly in 1 6 ∆ 6 cσ(f;y) for any fixed c > 0.
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Theorem 2.2 seems to suggest the inequality

Df(x;∆) 6 (1 + o(1)) ·P
(∑

p6x

f(p)

[
Xp −

1

p

]
> ∆σ(f; x)

)
(2.2)

might be true in general. This is possibly true for fixed strongly additive f > 0, uniformly
in ∆ > 0. It is certainly false if we drop the condition f > 0 and allow both f and ∆ to vary
uniformly. Ruzsa’s paper (see [16]) contains a weaker version of (2.2) which is however
valid uniformly in f and ∆. There is also a discussion of the “optimal” inequality in
Tenenbaum’s book (see [17], p. 315).

We now turn to the following question : Given an additive function f what is the re-
lationship between the distribution of f on the primes and the distribution of f on the
integers ? An early result in that direction is Kubilius’s theorem, stated below (see [5], p.
12).
Theorem. Let f be an additive function. Let σ = σ(f; x). Suppose that for every fixed t ∈ (0; 1)
we have σ(f; x) − σ(f; xt) = o(σ(f; x)). The following equivalence holds: There is a distribution
function Ψ(·) such that

1

σ2

∑

p 6 x

f(p) 6 tσ

f(p)2

p
·
(

1 −
1

p

)

converges weakly to Ψ(t) if and only if, there is a distribution function F with mean 0 and variance
1 such that Df(x; t) converges weakly to 1− F(t). The relationship between Ψ and F is determined
by ∫

R
eiut dF(t) = exp

(∫

R

eiut − iut − 1

u2
dΨ(u)

)
.

The striking feature of Kubilius’s theorem is that from the statistical behaviour of f(·)
on the integers one is able to deduce the statistical behaviour of f(·) on the primes. The
simplest case in which the theorem is applicable, is when f is equal to the number of
prime factors of n. In this case

1

σ2(f; x)

∑

p 6 x

f(p) 6 tσ

f(p)2

p
−→ δ0(t) :=

{
1 if t > 0

0 if t 6 0
(2.3)

because all the f(p)’s belong to a bounded range. As a consequence the limit law 1−F(t) =
limDf(x; t) is normal. This is of course nothing else than a variation on the Erdös-Kac
theorem. However (2.3) holds, in fact, for all f ∈ C. Thus, all that Kubilius’s theorem is
saying about additive function f ∈ C is that the limit law 1 − F(t) = limDf(x; t) is normal.
In what follows we will be interested in obtaining more detailed information about the
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convergence of
1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
−→ Ψ(t) a.e (2.4)

from assumptions on the large deviation behaviour of Df(x; ∆) when 1 6 ∆ ¿ε σ1−ε and
vice-versa. Note the difference in scale between (2.3) and (2.4) (that is, tσ is replaced by
t). To state the next two results let us define a Levy process (or rather a diluted version
of that notion: we don’t need any assumptions on the underlying probability space - the
name Levy process in law would seem appropriate but it is already taken). We allow
ourselves a little sloppiness in the definition (the sloppiness comes from working with
an uncountable set of mutually independent random variables, without discussing the
existence of such a family).
Definition. Let Ψ be a distribution function. Denote by {ZΨ(u) : u > 0} an indexed family of
mutually independent random variables, with distribution determined by

E
[
eitZΨ(u)

]
= exp

(
u ·

∫

R

eitx − itx − 1

x2
dΨ(x)

)
(2.5)

Note that for each u > 0 the random variable ZΨ(u) has mean 0 and variance u.

It is clear that the distribution of ZΨ(u) is known once the distribution of ZΨ(1) is. Also,
when n is a positive integers we can write ZΨ(n)

law
= X1 + . . . + Xn with X1, X2, . . . inde-

pendent and identically distributed random variables, each being distributed in exactly
the same way as ZΨ(1). Thus ZΨ(x) is a rather natural “continuous” generalization of the
notion of a “sum of n independent and identically distributed random variables”. Finally,
let us note that in the special case when Ψ(t) has a jump of size 1 at t = 1, the random
variable ZΨ(x) is a centered Poisson random variable with parameter x.

The content of the next Theorem is that a nice distribution on the primes implies a nice
distribution on the integers. Following Elliott (see [6], p. 50) we consider this a Theorem
in the “primes to integers” direction.

Theorem 2.5. Let f be a strongly additive function. Suppose that σ2 = σ2(f; x) → ∞ and that
0 6 f(p) 6 O(1) for all primes p. If there is a distribution function Ψ(t) such that

1

σ2

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
− Ψ(t) ¿ 1

σ2

uniformly in t ∈ R as x −→ ∞, then

Df(x; ∆) ∼ P
(ZΨ

(
σ2

)
> ∆σ

)

uniformly in 1 6 ∆ 6 o(σ), as x → ∞.
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Theorem 2.5 is saying that assuming certain regularity conditions on the primes, the
distribution of an additive function on the integers mimics a sum of σ2(f; x) random vari-
ables. In the converse “integers to primes” direction we have Theorem 2.6.

Theorem 2.6. Let f be a strongly additive function. Suppose that σ2 = σ2(f; x) −→ ∞ and that
0 6 f(p) 6 O(1) for all primes p. If we have

Df(x; ∆) ∼ P
(ZΨ

(
σ2

)
> ∆σ

)

uniformly in 1 6 ∆ ¿ε σ1−ε, for some distribution function Ψ of compact support on R>0 (that
is Ψ(α) − Ψ(0) = 1 for some α > 0), then

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)

converges weakly to the distribution function Ψ (i.e converges to Ψ(t) at all continuity points of
t).

(This is not an “integer to primes” theorem in the sense of [6], because of the σ2(f; x) →
∞ and f(p) 6 O(1) assumption; we believe both can be dropped without (too) much
difficulty). The motivation for Theorem 2.6 and Theorem 2.5 comes from an open-ended
question raised in Elliott’s book [6]: given the “average” behaviour of an additive function
f on the integers, how much can we say about its behaviour on the primes? (see p. 50 in
[6]).

By taking Ψ(t) to have a jump of size 1 at t = 1 in the previous theorem, we obtain the
following corollary.

Corollary 2.7. Let

P oisson (x;∆) =
∑

k>x+∆
√

x

e−x · xk

k!

denote the tails of a Poisson distribution with parameter x. By a result of Halász [10] for any
strongly additive function f such that f(p) ∈ {0, 1} and σ2(f; x) → ∞, we have Df(x;∆) ∼

P oisson(σ2(f; x); ∆) uniformly in the range 1 6 ∆ 6 o(σ(f; x)). Conversely, given a strongly
additive function f such that 0 6 f(p) 6 O(1) and σ2(f; x) → ∞, suppose that Df(x; ∆) ∼

P oisson(σ2(f; x); ∆) holds uniformly in the range 1 6 ∆ ¿ε σ(f; x)1−ε; then

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
−→ δ(t) :=

{
1 if t > 1

0 else

at all t ∈ R, except possibly at t = 1. Thus for almost all primes p we either have f(p) = 1+o(1)
or f(p) = o(1).
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We now turn to the description of the technical Theorem 2.8 which we state in the
introduction because of its central importance. A recurrent difficulty in the paper is that
when we deal with the distribution of f in the range ∆ ³ σ we are forced to consider the
following two cases separately:
1. The values f(p) do cluster on αZ for some α > 0.
2. The values f(p) do not cluster on αZ for any α > 0.
Definition. Let X be a random variable. We say that X is lattice distributed on αZ (α > 0) if
P (X ∈ αZ) = 1, and P (X ∈ βZ) < 1 for all β > α. Analogously we say that a distribution
function is lattice distributed (resp. non-lattice distributed) when the underlying random variable
is lattice (resp. non-lattice distributed).

In order to state Theorem 2.8 we introduce further notation. We denote by

Ψ̂ (f; z) :=

∫

R
eztdΨ(f; t) = 1 +

∞∑

k=1

∫

R
tkdΨ(f; t) · zk

k!
, (2.6)

the two-sided Laplace transform of Ψ(f; t). By (1.3) and (1.4) we have 1 − Ψ(f; t) ¿A e−At

and Ψ(f; t) = 0 for t < 0. Hence the Laplace transform Ψ̂ is an entire function with Taylor
expansion as in (2.6). Thus all moments of Ψ(f; t) exists, and in accordance with (2.6) the
k-th moment of Ψ(f; ·) is

∫
R tkdΨ(f; t). We also define the function ω(f; z) implicitly by,

Ψ̂ ′(f;ω(f; z)) = Ψ̂ ′(f; 0) + z · Ψ̂ ′′(f; 0)

Although this function does not appear in the statement of Theorem 2.8, it will frequently
be encountered in subsequent proofs.

Theorem 2.8. Let f ∈ C. We have,
(1) Uniformly in 1 6 ∆ 6 o

(
σ(f; x)1/3

)
,

Df(x; ∆) ∼
1√
2π

∫∞

∆

e−u2/2 · du

(2) Given ε > 0, uniformly in (loglog x)ε ¿ ∆ 6 o (σ(f; x)),

Df(x; ∆) ∼ Sf(x;∆) :=
(log x)

Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2

Here v = vf(x; ∆) is a parameter, defined as the unique positive solution to the equation

Ψ̂ ′(f; v) loglog x = Ψ̂ ′(f; 0) loglog x + ∆ · (Ψ̂ ′′(f; 0) loglog x)1/2

(3) If Ψ(f; t) is not lattice distributed, then given δ, ε > 0, uniformly in the range (loglog x)ε ¿
∆ 6 δσ(f; x),

Df(x; ∆) ∼
L(f; v)e−vc(f)

Γ(Ψ̂(f; v))
· Sf(x;∆) , v = vf(x;∆)
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where L(f; z) is an (entire) function, defined by

L(f; z) =
∏

p

(
1 −

1

p

)Ψ̂(f;z)

·
(

1 +
ezf(p)

p − 1

)

and c(f) is defined by µ(f; x) = Ψ̂ ′(f; 0) · loglog x + c(f) + o(1).
(4) If Ψ(f; t) is lattice distributed onZ, then given δ, ε > 0, uniformly in the range (loglog x)ε ¿

∆ 6 δσ(f; x),

Df(x;∆) ∼
L(g; v)e−vc(f)

Γ(Ψ̂(f; v))
· Ph (ξf(x; ∆); v) · Sf(x;∆) , v = vf(x;∆)

where ξf(x;∆) = µ(f; x) + ∆σ(f; x), and g, h are two additive functions defined by

g(p) =

{
f(p) if f(p) ∈ Z
0 otherwise

and h(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

Finally, the function Ph(a; v) is defined by,

Ph (a; v) = v
∑

`∈Z
ev(`+{a}) ·P

(∑
p

h(p)Xp > ` + {a}

)

Remark. In part (4) of Theorem 2.8 the assumption “Ψ(f; t) lattice distributed on Z”
entails no loss of generality. If Ψ(f; t) is lattice distributed on αZ then Ψ(f/α; t) = Ψ(f; αt)
is lattice distributed on Z and f/α is an additive function.

Let us make a few remarks about the asymptotics in Theorem 2.8. In the range 1 6 ∆ 6
o(σ) the parameter v := vf(x;∆) is o(1). In addition v admits an convergent expansion
of the form

∑
k ak(∆/σ)k and so does the function A(f; z) =

∑
k bkz

k. On composing the
two we obtain (log x)A(f;v) = exp(log log x

∑
ck(∆/σ)k) ∼ exp(σ2

∑
ck(∆/σ)k) for some

coefficients ck. Thus for ∆ 6 σ1−ε only the first ¿ 1/ε terms will dictate the asymptotic
behaviour of (log x)A(f;v). To complete the picture,

e∆2/2

√
2π

∫∞

∆

e−u2/2 du ∼
1√
2π∆

for ∆ → ∞

On the other hand when ∆ ∼ cσ for some fixed constant c > 0, all the ck have a non-trivial
contribution and the the parameter v = vf(x; ∆) = κ + o(1) for some κ > 0 depending
on c. In the range ∆ ∼ cσ both L(f; v) and e−vc(f) are essentially constant, while Sf(x;∆)

is about the size of (log x)Ψ̂(f;κ)−1−κΨ̂ ′(f;κ)+o(1). Hopefully, these few remarks give a good
picture of the asymptotic behaviour in part (1), (2) and (3) of theorem 2.8. Regarding part
(4) of theorem 2.8, since the f(p) are concentrated on Z, we have g(p) = f(p) for “almost
all” prime p. Throughout the range ∆ ³ σ we have L(g; v) ³ 1 and Ph(ξf(x; ∆); v) ³ 1 but
otherwise the latter expression is highly irregular. In fact, because Ph(ξf(x;∆); v) involves
{ξf(x; ∆)} = {µ(f; x) + ∆σ(f; x)} the ratio

Df(x; cσ(f; x)) · Sf(x; cσ(f; x))−1
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does not tend to a limit as x → ∞, when c is fixed. This is also discussed in Balazard, Nico-
las, Pomerance, and Tenenbaum’s paper [1]. Let us note in passing that the probabilistic
interpretation we give for Ph(ξf(x;∆); v) might be of interest in connection with some of
the question raised in [3]. Compared to previous results, namely those of the Lithua-
nian school, the novelty in Theorem 2.8 is the bigger range 1 6 ∆ 6 δσ(f; x), although it is
quite possible that the result was known, or at least anticipated, by the experts in the field.

Plan of the paper. Section 4-8 and Section 9-10 can be taught of as separate. In sections
4.3-4.5 we establish rather general large deviations results. The lemmas in section 4.1
will allow to specialize these to cases of arithmetical interest. In section 5, we deduce
theorem 2.8 from the lemmas in section 4. In section 6 we establish theorem 1.1 by using
theorem 2.8. Finally we prove theorem 2.2 in section 7. Theorems 2.6 and 2.7 are proven
respectively in section 10 and section 9.

Regarding sections 4-8, the core ideas are scattered throughout the proof of proposition
4.10, the proof of proposition 4.17 and the entire section 6. Sections 9 and 10 are essentially
“stand-alone” and the techniques used there differ from the ones appearing before.
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3. NOTATION

We summarize in the table below some of the recurrent notation. We let f ∈ C.

Df(x; ∆) :=
1

x
·#

{
n 6 x :

f(n) − µ(f; x)

σ(f; x)
> ∆

}

L(f; z) :=
∏

p

(
1 −

1

p

)Ψ̂(f;z)

·
(

1 +
ezf(p)

p − 1

)

ω(f; z) := defined implicitly by Ψ̂ ′(f; ω(f; z)) = Ψ̂ ′(f; 0) + z · Ψ̂ ′′(f; 0)

σ2
Ψ(f; x) := Ψ̂ ′′(f; 0) · loglog x =

∫

R
t2dΨ(f; t) · loglog x

c(f) := µ(f; x) − Ψ̂ ′(f; 0) · loglog x + o(1)

vf(x; ∆) := ω(f; ∆/σΨ(f; x))

A(f; z) := Ψ̂(f; z) − 1 − zΨ̂ ′(f; z)

E(f; z) := A(f;ω(f; z))

Sf(x; ∆) :=
(log x)

Ψ̂(f;v)−vΨ̂ ′(f;v)−1

v(2πΨ̂ ′′(f; v) loglog x)1/2
with v = vf(x; ∆)

hf(n) := strongly additive function such that hf(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

S(h) := {p : h(p) 6= 0} = {p : f(p) 6∈ Z}

gf(n) := f(n) − hf(n)

{Xp} := Independent Bernoulli random variable with P (Xp = 1) = 1/p.

X(hf) :=
∑
p6x

hf(p)Xp

Phf
(a; v) := v

∑

k∈Z
ev(k+{a}) ·P (X(hf) > k + {a})

ξf(x; ∆) := µ(f; x) + ∆σ(f; x)

B2(f; x) :=
∑
p6x

f(p)2

p

D×
f (x; ∆) :=

1

x
·#

{
n 6 x :

f(n) − µ(f; x)

B(f; x)
> ∆

}

Sometimes we will write logk x to mean the k times iterated logarithm. When the con-
text is clear we will drop the subscript f from hf and gf. In the same vein we usually
abbreviate vf(x; ∆) by v, and sometimes σΨ(f; x) by σΨ, although this is always mentioned
when done.
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4. PRELIMINARY LEMMATA

In the first two subsections we collect background information. The main technical
tools are developed in the subsequent sections: indeed, the three general large deviations
theorems corresponding to Proposition 4.9, Proposition 4.10 and Proposition 4.17, form
the technical backbone of this paper.

4.1. A mean-value theorem. The object of this section is to prove the following mean
value theorem.

Proposition 4.1. Let f ∈ C. Given C > 0, uniformly in −C 6 κ := Re s 6 C,

1

x

∑
n6x

esf(n) =
L(f; s)

Γ(Ψ̂(f; s))
· (log x)Ψ̂(f;s)−1 + OA,C

(
EA(x; s) · (log x)Ψ̂(f;κ)−2

)

where EA(x; s) = 1 + | Im s|1/A + | Im s|/ log x. In particular, given C > 0, we have, uniformly in
−C 6 κ := Re s 6 C and | Im s| 6 log x,

1

x

∑
n6x

esf(n) =
L(f; s)

Γ(Ψ̂(f; s))
· (log x)Ψ̂(f;s)−1 + OC

(
(log x)Ψ̂(f;κ)−3/2

)

Remark. We will be mostly using the second formula.

With more effort one can (probably) show that for | Im s| 6 log x the error term is
(log x)Re(Ψ̂(f;s))−2, but this will not be needed. The lemma is proven by using the method of
Levin and Fainleb (see [7] for a survey article and [13] for the paper we will follow). We
include the proof only for completeness’s sake. It is quite likely that a comparable result
can be deduced directly from one of the lemma in Tenenbaum’s book [17] but maybe only
for a more restrained class of additive functions.

First let us prove that Ψ̂(f; z) is entire.

Lemma 4.2. Let f ∈ C. The function Ψ̂(f; s) is entire.

Proof. Since f ∈ C, by assumption (1.3) and (1.4)

1 − Ψ(f; t) 6 c(A) · e−At

for every fixed A > 0 and c(A) a constant depending on A. Since in addition we require
f to be positive, Ψ(f; t) = 0 when t < 0. It follows that

∫

R
tkdΨ(f; t) =

∫∞

0

tkdΨ(f; t)

= k

∫∞

0

tk−1 · (1 − Ψ(f; t))dt

6 c(A) · k
∫∞

0

tk−1e−Atdt = c(A) · k · k! ·A−k
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Therefore the series

1 +
∑

k>1

∫

R
tkdΨ(f; t) · sk

k!

converges absolutely in |s| < A/2. This allows us to interchange summation and integra-
tion and we obtain

1 +
∑

k>1

∫

R
tkdΨ(f; t) · sk

k!
=

∫

R
estdΨ(f; t) := Ψ̂(f; s)

for |s| < A/2. Since the series on the left is absolutely convergent for |s| < A/2 and sums
to Ψ̂(f; s) it follows that Ψ̂(f; s) is analytic in |s| < A/2. But A is arbitrary, therefore Ψ̂(f; s)
is entire. ¤

Lemma 4.3. Let f ∈ C. Given A,C > 0 we have, uniformly in | Re s| 6 C,

∑
p6x

esf(p) = π(x) ·
[
Ψ̂(f; s) + OA,C

(
1 + | Im s|

(log x)2A

)]

In particular the estimate
∑
p6x

esf(p) = π(x) · [Ψ̂(f; s) + OA,C

(
(log x)−A

)]

holds uniformly in | Re s| 6 C and | Im s| 6 (log x)A (hence also for | Im s| 6 loglog x).

Proof. To simplify notation let F(x; t) = (1/π(x)) · #{p 6 x : f(p) 6 t}. Let A > 0 be an
arbitrary, but fixed constant, and write ξ := loglog x. We have

∑
p6x

esf(p) = π(x) ·
∫∞

0

estdF(x; t)

= π(x) ·
[∫Aξ

0

estdF(x; t) +

∫∞

Aξ

estdF(x; t)

]
(4.1)

Since F(x; t) is a distribution function the second integral is for Re s 6 C, bounded in mod-
ulus by

∫∞
Aξ

eCtdF(x; t) which is ¿ (log x)−2A since 1 − F(x; t) ¿C e−(C+2)t by assumptions.
We rewrite the first integral in (4.1) as

∫Aξ

0

estdF(x; t) =

∫Aξ

0

estdΨ(f; t) +

∫Aξ

0

estd(F(x; t) − Ψ(f; t)) (4.2)

Since F(x; t) − Ψ(f; t) ¿C,A (log x)−A(C+3) (again by assumptions) the second integral in
(4.2) is bounded by¿ (log x)−2A+ |s|·(log x)−2A which is less than¿ (1+ | Im s|)·(log x)−2A

because | Re s| 6 C. As for the first integral in (4.2) we note that 1−Ψ(f; t) ¿ e−(C+2)t hence
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|
∫∞

Aξ
estdΨ(f; t)| 6

∫∞
Aξ

eCtdΨ(f; t) ¿ (log x)−2A which allows us to complete the tails. By
(4.2) and the above observations

∫Aξ

0

estdF(x; t) =

∫∞

0

estdΨ(f; t) + O

(
1 + | Im s|

(log x)2A

)
= Ψ̂(f; s) + O

(
1 + | Im s|

(log x)2A

)

Plugging the above back into (4.1) and recalling that the second integral in (4.1) was
bounded by O((log x)−2A) we conclude that

∑
p6x

esf(p) = π(x) ·
[
Ψ̂(f; s) + OA,C

(
1 + | Im s|

(log x)2A

)]

as desired. ¤

We now focus on L(f; z). We prove that L(f; z) is entire – this is used all over the place,
but especially in the proof of the “structure theorem”.

Lemma 4.4. Let f ∈ C. The function L(f; z) is entire. Given κ > 0 there is an x0(κ) such that
uniformly in | Re z| 6 κ, | Im z| 6 log log x and x > x0(κ),

∏
p6x

(
1 −

1

p

)Ψ̂(f;z)

·
(

1 +
ezf(p)

p − 1

)
= L(f; z) · (1 + O

(
(log x)−1

))

Furthermore, uniformly in | Re z| 6 κ we have L(f; z) = Oκ,ε(1 + | Im z|ε).

Proof. First let us prove that L(f; s) is entire. Let κ be given, and B a disk of radius κ

around 0. By assumption (1.3), f(p) = o(log p). Therefore there is a C := C(κ) > 2 such
that for all p > C we have esf(p) 6 p1/3 for Re s 6 κ. In particular none of the terms
(1 + esf(p)/p − 1/p) vanish when Re s 6 κ and p > C. To show that L(f; s) is entire, it’s
enough to show that the products

∏

C6p6x

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esf(p)

p − 1

)
(4.3)

converge uniformly in s ∈ B. Equivalently since none of the terms in (4.3) vanish when
Re s 6 κ (hence in s ∈ B), it’s enough to show that the tails

∑
p>x

[
Ψ̂(f; s) · log

(
1 −

1

p

)
+ log

(
1 +

esf(p)

p − 1

)]
→ 0 (4.4)



18 MAKSYM RADZIWILL

uniformly in s ∈ B as x → ∞. Since |esf(p)| 6 p1/3 and |Ψ̂(f; s)| 6 Ψ̂(f; κ) for s ∈ B, it
follows from a Taylor expansion that

∑
p>x

[
Ψ̂(f; s) · log

(
1 −

1

p

)
+ log

(
1 +

esf(p)

p − 1

)]

=
∑
p>x

[
esf(p)

p
−

Ψ̂(f; s)

p

]
+ O

(∑
p>x

Ψ̂(f;κ)

p2
+

∑
p>x

eκf(p)

p2

)
(4.5)

By lemma 4.3 and an integration by parts the error term in (4.5) is Oκ(1/x). We can
assume that x > eeκ . Let F(s; x) = (1/x)

∑
n6x esf(p). We have

∑
p>x

[
esf(p)

p
−

Ψ̂(f; s)

p

]
=

∫∞

x

1

t
d

[
F(s; x) − Ψ̂(f; s)π(t)

]
(4.6)

= −
F(s; x) − Ψ̂(f; s)π(x)

x
+

∫∞

x

1

t2
· [F(s; t) − Ψ̂(f; s)π(t)

]
dt

Since t > x > eeκ by lemma 4.3 we have F(s; t)− Ψ̂(f; s)π(t) = Oκ,A

(
t(log t)−A

)
uniformly

in | Im s| 6 κ and | Re s| 6 κ (hence uniformly in s ∈ B). It follows that (4.6) is bounded by

(log x)−A +

∫∞

x

t(log t)−A

t2
dt ¿ (log x)−A+1

uniformly in s ∈ B. Therefore (4.4) holds uniformly in s ∈ B, and thus
∑

p>C

[
Ψ̂(f; s) · log

(
1 −

1

p

)
+ log

(
1 +

esf(p)

p − 1

)]

is analytic in B. Exponentiating and multiplying by a product over the primes p 6 C 6 x

(obviously analytic) we conclude that

L(f; s) :=
∏

p

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esf(p)

p − 1

)

is analytic in B. Since B was a ball with an arbitrary radius, it follows that the function
L(f; s) is entire. In fact we proved more. We established that the tails in (4.4) are ¿
(log x)−A+1. Therefore, for all x large enough (how large x we have to choose depends
only on how big | Re s| we allow)

∏
p6x

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esf(p)

p − 1

)
= L(f; s) ·

(
1 + OA

(
(log x)

−A+1
))

(4.7)

uniformly in s ∈ B. In fact in (4.6), F(s; t) − Ψ̂(f; s)π(t) = OA(t(log t)−A) does hold uni-
formly in the range | Re s| 6 κ and | Im s| 6 loglog x for t > x, by lemma 4.3. Therefore the
tails (4.4) are Oκ,A((log x)−A+1) uniformly in | Re s| 6 κ and | Im s| 6 loglog x and it follows
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that (4.7) holds in that range. This gives the second claim of the lemma. Now it remains
to prove that L(f; s) = Oκ,ε(1+ | Im s|ε) uniformly in | Re s| 6 κ. Let as usual C := C(κ) > 0

be chosen so that (1 + esf(p)/(p − 1)) does not vanish in the half-plane Re s 6 κ for p > C.
We want to give a bound for L(f; s) that holds uniformly in | Re s| 6 κ and | Im s| 6 T .
Without loss of generality T > 1. Uniformly in | Re s| 6 κ

∑

p>C

[
Ψ̂(f; s) · log

(
1 −

1

p

)
+ log

(
1 +

esf(p)

p − 1

)]

=
∑

p>3/2

[
esf(p)

p
−

Ψ̂(f; s)

p

]
+ Oκ(1)

=

∫∞

3/2

F(s; t) − Ψ̂(f; s)π(t)

t
+ Oκ(1) (4.8)

with F(s; t) :=
∑

n6t esf(p) as usual. Note that by lemma 4.3, for any given A > 0 we have
uniformly in | Re s| 6 κ and | Im s| 6 T

F(s; t) − Ψ̂(f; s)π(t) = Oκ,A

(
t(log t)−A

)
when t > exp

(
T 1/A

)
(4.9)

We split the integral in (4.8) into two parts. The part over 3/2 6 t 6 exp(T 1/A) and the
remaining part over t > exp(T 1/A). Note that |F(s; t)| 6 F(κ; t). Furthermore by lemma 4.3,
F(κ; t) ¿ Ψ̂(f;κ)π(t). Using these observations the integral over the 3/2 6 t 6 exp(T 1/A)
part is bounded by

∫ eT1/A

3/2

1

t2

[
F(κ; t) + Ψ̂(f;κ)π(t)

]
dt ¿ Ψ̂(f;κ)

∑

p6eT1/A

1

p
¿ Ψ̂(f; κ)

A
log(1 + T) (4.10)

by making A large enough we can make the integral above 6 ε log(1 + T) for any given
ε > 0. The remaining integral over t > exp(T 1/A) is bounded using (4.9). Indeed we find
that ∫∞

eT1/A

1

t2
· [F(s; t) − Ψ̂(f; s)π(t)

]
dt ¿κ,A

∫∞

eT1/A

t · (log t)−A

t2
dt ¿κ,A T−1+1/A (4.11)

Of course we can assume that A > 2. By (4.10) and (4.11) we conclude that the integral
in (4.8) is 6 ε log(1 + T) + Oκ(1) uniformly in | Re s| 6 κ and | Im s| 6 T . Exponentiating
(4.8) it follows that uniformly in | Re s| 6 κ and | Im s| 6 T ,

∏

C6p

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esf(p)

p − 1

)
= Oκ,ε(1 + T ε)

Multiplying on both sides by
∏

p<C(1 − 1/p)Ψ̂(f;s) · (1 + esf(p)/(p − 1)) does not change
the bound. Thus L(f; s) = Oκ,ε(1 + T ε) uniformly in | Re s| 6 κ, | Im s| 6 T in particular
L(f; s) = Oκ,ε(1 + | Im s|ε) uniformly in | Re s| 6 κ. The claim follows. ¤
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Finally we need an elementary lemma on sums of multiplicative functions. The follow-
ing lemma appears on page 308 of Tenenbaum’s book [17].

Lemma 4.5. Let g > 0 be a multiplicative function, such that for some A and B,
∑
p6x

g(p) log p 6 Ax

∑
p

∑

v>2

g(pv)

pv
· log pv 6 B

Then, for x > 1, ∑
n6x

g(n) 6 (A + B + 1) · x

log x

∑
n6x

g(n)

n

Corollary 4.6. Let f ∈ C. Given C > 0, uniformly in 0 6 κ 6 C,
∑
n6x

eκf(n) = OC

(
x · (log x)Ψ̂(f;κ)−1

)

∑
n6x

eκf(n)

n
= OC

(
(log x)Ψ̂(f;κ)

)

Proof. In lemma 4.5 we choose g(n) := eκf(n). By lemma 4.3 there is an A := A(C) such
that ∑

p6x

eκf(p) · log p 6
∑
p6x

eCf(p) · log p 6 A(C) · x

for all x > 1. Also note that
∑

p

∑

v>2

eκf(pv)

pv
· log pv ¿

∑
p

eCf(p) · log p

p2

and by lemma 4.3 the above sum converges. Hence the second assumption of the lemma
holds, for some B := B(C) large enough. Thus by lemma 4.5,

∑
n6x

eκf(n) = OC

(
x

log x
·
∑
n6x

eκf(n)

n

)
= O

(
x

log x
·
∏
p6x

(
1 +

eκf(p)

p − 1

))
(4.12)

By lemma 4.3 and an integration by parts
∑

p6x eκf(p) · (p− 1)−1 = Ψ̂(f;κ) loglog x+OC(1).
Therefore the product in (4.12) is bounded by (log x)Ψ̂(f;κ). Hence the mean-value M(x) :=∑

n6x eκf(n) ¿ x(log x)Ψ̂(f;κ)−1 and also
∑
n6x

eκf(n)

n
=

M(x)

x
+

∫x

1

M(t)

t2
· dt

¿ (log x)Ψ̂(f;κ)−1 +

∫x

1

(log t)Ψ̂(f;κ)−1 · t−1dt ¿ (log x)Ψ̂(f;κ)
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as desired. ¤

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Let Pk denote the product of the first k primes. The plan of our
proof is the following. First we estimate

mk(x; z) :=
∑

n 6 x

(n, Pk) = 1

ezf(n)

n
(4.13)

uniformly in | Re z| 6 C and with k = k(C) > 0 chosen suitably. Then we relate (4.13)

to the mean value Mk(x; z) :=
∑

n6x,(n,Pk)=1 ezf(n). By a simple convolution argument we
subsequently obtain the desired asymptotic for M(x; z) :=

∑
n6x ezf(n). Denote by Λf(z;n)

the “generalized van Mangoldt function” defined by

ezf(n) · log n =
∑

d|n

ezf(d) ·Λf(z;n/d) (4.14)

Looking at the Dirichlet series for Λf(z;n) we conclude that Λf(z;n) vanishes when n is
not a prime power. On the other hand when n = pα is a prime power (see [7], lemma
1.1.2)

Λf(z; p
α) = log pα ·

∑
m6α

(−1)
m−1

m
· ezmf(p) ·

(
α − 1

m − 1

)

Therefore

∑

n 6 x

(n, Pk) = 1

Λf(z;n) =
∑

pα 6 x

p > k

log pα
∑
m6α

(−1)
m−1

m
· ezmf(p) ·

(
α − 1

m − 1

)

=
∑

m6log x/ log k

(−1)
m−1

m
·

∑

pα 6 x

α > m

p > k

log pα · ezmf(p) ·
(

α − 1

m − 1

)
(4.15)

We split the above sum into two. The terms with m = 1 contribute

∑

pα 6 x

p > k

ezf(p) · log pα = Ψ̂(f; z) · x + OA,C

(
x · 1 + | Im z|

(log x)3A

)
(4.16)
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by lemma 4.3 and an integration by parts (using the prime number theorem with a OB(x(log x)−B)
error term. The terms m > 2 contribute

∑

26m6log x/ log k

(−1)
m−1

m

∑

pα 6 x

α > m

p > k

α log p · ezmf(p) ·
(

α − 1

m − 1

)
(4.17)

Since f(p) = o(log p) (because of assumption (1.3)) we can choose k large enough so as to
have f(p) 6 (1/4C) log p for all p > k. With this choice of k := k(C), for Re z 6 C, the sum
in (4.17) is bounded in modulus by

¿
∑

26m6log x

1

m

∑

pα 6 x

α > m

p > k

(log x)2 · exp

(
Cm · log p

4C

)
· 2α

¿ xlog 2/ log k ·
∑

26m6log x

1

m
· (log x)

3 · x1/4 · x1/m ¿ x3/4+log 2/ log k · (log x)4

To obtain the second bound we use p 6 x1/m to get exp(Cm log p/4C) 6 x1/4 and then
the bound

∑
pα6x,α>m 1 ¿ x1/m log x. Making k larger if necessary we see that the sum in

(4.17) is bounded by x1−ε for some small but fixed ε > 0. Our bound for (4.17) together
with (4.16) allows us to conclude that

∑

n 6 x

(n, Pk) = 1

Λf(z;n) = Ψ̂(f; z) · x + OA,C

(
x · 1 + | Im z|

(log 2x)3A

)
(4.18)

Upon integrating by parts (and making A larger if necessary) we obtain
∑

n 6 x

(n, Pk) = 1

Λf(z;n)

n
= Ψ̂(f; z) · log x + A0(f; z) + OA,C

(
1 + | Im z|

(log 2x)3A

)
(4.19)

uniformly in | Re z| 6 C where A0(f; z) :=
∫∞

1
[G(z; t) − Ψ̂(f; z)t]t−2dt is analytic in | Re z| 6

C and where G(z; t) :=
∑

n6x,(n,Pk) Λf(z;n). Using equation (4.16) and repeating the same
proof as in lemma 4.4 we find that A0(f; z) = OA,C(1 + | Im z|1/A) uniformly in the range
| Re z| 6 C. Following Levin and Fainleb we express

∑
n6x,(n,Pk)=1 ezf(n) · log n · n−1 in two

different ways. On the one hand, integrating by parts we get
∑

n 6 x

(n, Pk) = 1

ezf(n) · log n

n
= mk(x; z) · log x −

∫x

2

mk(u; z)

u
du (4.20)
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where mk(x; z) :=
∑

n6x,(n,Pk)=1 ezf(n) · n−1. On the other by (4.14) and (4.19),

∑

n 6 x

(n, Pk) = 1

ezf(n) · log n

n
=

∑

d 6 x

(d, Pk) = 1

ezf(d)

d

∑

n 6 x/d

(n, Pk) = 1

Λf(z;n)

n

=
∑

d 6 x

(d, Pk) = 1

ezf(d)

d
·
[
Ψ̂(f; z) · (log x − log d) + A0(f; z) + OA,C

(
1 + | Im z|

(log 2x/d)3A

)]

= Ψ̂(f; z)

∫x

2

mk(u; z)

u
du + A0(f; z)mk(x; z) + OA,C

(
1 + | Im z|

(log x)2A

)
(4.21)

In the error term we bound
∑

eκf(d)·d−1/2·d−1/2·(log 2x/d)−3A by using Cauchy-Schwarz’s
inequality and Corollary 4.6 (also, we assume without loss of generality that A is chosen
sufficiently large, A > 4Ψ̂(f; 2C) + 4 will do). Comparing (4.20) with (4.21) we conclude
that

mk(x; z) log x − (1 + Ψ̂(f; z))

∫x

2

mk(u; z)

u
du = A0(f; z)mk(x; z) + O

(
1 + | Im z|

(log x)2A

)

uniformly in | Re z| 6 C. Recall that A is taken large enough, A > 4Ψ̂(f; 2C) + 4. Dividing
by x(log x)Ψ̂(f;z)+2 on both sides and integrating from 2 to x we obtain

∫x

2

mk(u; z)du

u(log u)Ψ̂(f;z)+1
−

∫x

2

1 + Ψ̂(f; z)

u(log u)Ψ̂(f;z)+2

∫u

2

mk(v; z)

v
dvdu (4.22)

= A0(f; z)

∫x

2

mk(x;u)du

u(log u)Ψ̂(f;z)+2
+ A1(f; z) + O

(
1 + | Im z|

(log x)A+Ψ̂(f;C)+1

)

with both A0(f; z) and A1(f; z) analytic in | Re z| 6 C. In fact by a proof similar to the one
in lemma 4.4 we find that A1(f; z) ¿A,C 1 + | Im z|1/A. Upon interchanging integrals the
second term in (4.22) can be re-written as

(
1 + Ψ̂(f; z)

) ∫x

2

mk(v; z)

v

∫x

v

dudv

u(log u)Ψ̂(f;z)+2

=

∫x

2

mk(v; z)dv

v(log v)Ψ̂(f;z)+1
−

∫x

2

mk(v; z)dv

v(log x)Ψ̂(f;z)+1

Therefore (4.22) simplifies to
∫x

2

mk(u; z)

u
du = A0(f; z)

∫x

2

mk(u; z)

u(log u)Ψ̂(f;z)+2
· (log x)Ψ̂(f;z)+1

+A1(f; z) · (log x)Ψ̂(f;z)+1 + OA,C

(
1 + | Im z|

(log x)A

)
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Plugging the above relation into the equation right above (4.22) yields

mk(x; z) · log x = (1 + Ψ̂(f; z))A0(f; z)

∫x

2

mk(u; z)du

u(log u)Ψ̂(f;z)+2
· (log x)Ψ̂(f;z)+1

+(1 + Ψ̂(f; z))A1(f; z) · (log x)
Ψ̂(f;z)+1

+ O

(
1 + | Im z|

(log x)A

)

+A0(f; z) ·mk(x; z) + O

(
1 + | Im z|

(log x)2A

)

because |Ψ̂(f; z)| 6 Ψ̂(f;C). We could iterate to obtain an asymptotic expansion. We
choose not to do so. Instead we note the bound |mk(x; z)| 6 mk(x;κ) ¿ (log x)Ψ̂(f;κ)

(κ := Re z) coming from from Corollary 4.6. Recall also that A0(f; z) ¿C 1 + | Im z|1/A

and that Ψ̂(f; z) ¿C 1. With these two bounds at hand our previous equality becomes

mk(x; z) = (1 + Ψ̂(f; z))A1(f; z) · (log x)Ψ̂(f;z) + O
(
EA(x; z) · (log x)Ψ̂(f;κ)−1

)

uniformly in | Re z| 6 C and where EA(z; x) = 1 + | Im z|1/A + | Im z| · (log x)−1. We now
evaluate Mk(x; z) :=

∑
n6x,(n,Pk)=1 ezf(n). Using the definition of Λf(z;n), equation (4.18),

corollary 4.6, and the previous line, we get

Wk(x; z) =
∑

n 6 x

(n, Pk) = 1

ezf(n) · log n =
∑

d 6 x

(d, Pk) = 1

ezf(d)
∑

n 6 x/d

(n, Pk) = 1

Λf(z; n)

=
∑

d 6 x

(d, Pk) = 1

ezf(d) ·
[
Ψ̂(f; z)(x/d) + OA,C

(
x

d
· 1 + | Im z|

(log 2x/d)2A

)]

= Ψ̂(f; z) · xmk(x; z) + OA,C

(
x · 1 + | Im z|

(log x)A

)

= A2(f; z) · x(log x)Ψ̂(f;z) + O
(
EA(x; z) · x(log x)Ψ̂(f;κ)−1

)

uniformly in | Re z| 6 C and where A2(f; z) := (1+Ψ̂(f; z))Ψ̂(f; z)A1(f; z). In the second line
above, we bound

∑
eκf(d) · d−1 · (log 2x/d)−2A by applying Cauchy-Schwarz’s inequality

and using Corollary 4.6 (also recall that A > 4Ψ̂(f; 2C) + 4). Integrating by parts our
previous result we conclude that the mean value Mk(x; z) equals to

Mk(x; z) :=

∫x

2

dWk(t; z)

log t
=

Wk(x; z)

log x
+

∫x

2

Wk(t; z)

t(log t)2
dt

Corollary 4.6 yields the bound |Wk(t; z)| 6 Wk(t;κ) = OC(t · (log t)Ψ̂(f;κ)) where as usual
κ := Re z. It follows that the second integral in the above equation is bounded by x ·
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(log x)Ψ̂(f;κ)−2. We conclude that

Mk(x; z) = A2(f; z) · x(log x)Ψ̂(f;z)−1 + OA,C

(
EA(x; z) · x(log x)Ψ̂(f;κ)−2

)

It remains to estimate M(x; z) =
∑

n6x ezf(n). At this point recall that the function A1(f; z) =

OC(1+| Im z|1/A) and that A2(f; z) = Ψ̂(f; z)(1+Ψ̂(f; z))A1(f; z) hence the same bound holds
for A2(f; z). Let g(z; n) be a multiplicative function defined by g(z; p`) = exp(zf(p`)) when
p 6 k and g(z;p`) = 0 otherwise. We have

M(x; z) =
∑

d6x

g(z;d)
∑

n 6 x/d

(n, Pk) = 1

ezf(n) =
∑

d6x

g(z;d)Mk(x/d; z)

Using our estimate for Mk(x/d; z) this simplifies to

M(x; z) = A3(f; z) · x(log x)Ψ̂(f;z)−1 + OA,C

(
EA(x; z) · x(log x)Ψ̂(f;κ)−2

)

where A3(f; z) =
∏

p6k(1 + ezf(p) · (p − 1)−1)A2(f; z) is analytic. It remains to show that
A3(f; z) = L(f; z)/Γ(Ψ̂(f; z)). Here, we use an abelian argument. Consider the two-variable
function.

Lf(s; z) :=
∏

p

(
1 −

1

ps

)Ψ̂(f;z)

·
(

1 +
ezf(p)

ps − 1

)

Mimicking the proof of lemma 4.4 it is not too hard to prove that Lf(s;κ) is uniformly
bounded when 1 6 s 6 2 and κ ∈ [0; δ] for some δ > 0. In addition by [7] (corollary
to lemma 1.1.7) for fixed κ > 0 the function Lf(s; κ) is right continuous at s = 1, when s

is going through the reals. Thus Lf(s;κ) → Lf(1; κ) = L(f; κ) for fixed κ and as s → 1+.
Furthermore we have the factorization

Lf(s;κ)ζ(s)Ψ̂(f;κ) =
∑

n>1

eκf(n)

ns
= s

∫∞

1

M(t;κ)t−s−1dt (4.23)

= A3(f; κ) · s
∫∞

1

(log t)Ψ̂(f;κ)−1 · t−sdt + Oδ

(∫∞

1

(log t)Ψ̂(f;κ)−2 · t−sdt

)

By a change of variable u := log t the first integral becomes
∫∞

1

(log t)Ψ̂(f;κ)−1 · t−sdt =

∫∞

0

e−t(s−1) · tΨ̂(f;κ)−1dt =
Γ(Ψ̂(f; κ))

(s − 1)Ψ̂(f;κ)

Therefore (4.23) can be re-written as

Lf(s; κ) · ζ(s)Ψ̂(f;κ) = A3(f;κ)Γ(Ψ̂(f;κ))s(s − 1)−Ψ̂(f;κ) + O((s − 1)−Ψ̂(f;κ)+1)

Choose s = 1 + 1/ log x and fix κ. By our earlier remark Lf(s;κ) = L(f;κ) + o(1). Further-
more ζ(s) ∼ 1/(s − 1). Therefore the previous equation turns into

L(f; κ) − A3(f; κ)Γ(Ψ̂(f; κ)) = o(1)
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It follows that A3(f;κ) = L(f; κ)/Γ(Ψ̂(f; κ)). Since both functions are analytic in | Re z| 6 C

and coincide on a compact interval we get A3(f; z) = L(f; z)/Γ(Ψ̂(f; z)) for all | Re z| 6 C. It
now follows that

1

x

∑
n6x

ezf(n) =
L(f; z)

Γ(Ψ̂(f; z))
· (log x)Ψ̂(f;z)−1 + OA,C

(
EA(x; z) · (log x)Ψ̂(f;κ)−2

)

uniformly in | Re z| 6 C which is the desired claim. ¤

4.2. Two simple estimates for vf(x;∆). In the next lemma we collect a few useful facts
about vf(x; ∆). First we prove that vf(x;∆) is essentially ∆/σΨ(f; x).

Lemma 4.7. Let f ∈ C. Given δ > 0 uniformly in 1 6 ∆ 6 δσΨ(f; x),

vf(x;∆) ³δ ∆/σΨ(f; x)

Furthermore vf(x; ∆) ∼ ∆/σΨ(f; x) in the 1 6 ∆ 6 o(σΨ(f; x)) range. Finally the function
ω(f; z) is analytic in a neighborhood of R+ ∪ {0}

Proof. Consider the function ω(f; z) defined implicitly by

Ψ̂ ′(f;ω(f; z)) = Ψ̂ ′(f; 0) + z · Ψ̂ ′′(f; 0)

Note that by definition v = vf(x;∆) := ω(f; ∆/σΨ(f; x)). Since Ψ̂ ′′(f; x) 6= 0 for all x > 0,
by Lagrange’s inversion the function ω(f; z) is analytic in a neighborhood of R+ ∪ {0}.
Therefore

vf(x;∆) = ω(f;∆/σΨ(f; x)) = ∆/σΨ(f; x) + O
(
(∆/σΨ(f; x)2

)
(4.24)

Therefore for ∆ 6 cσΨ(f; x) and c small enough vf(x; ∆) ³ ∆/σΨ(f; x). In the remaining
range c 6 ∆/σΨ(f; x) 6 δ it is clear that vf(x; ∆) ³ 1 ³ ∆/σΨ(f; x): indeed, vf(x;∆) =
ω(f;∆/σΨ(f; x)), the function ω(f; x) is positive and continuous for x > 0 and ∆/σΨ(f; x)
belongs to a bounded interval. Also, the second assertion of the lemma follows immedi-
ately from (4.24). ¤

Lemma 4.8. Let f ∈ C. As usual let ξf(x; ∆) := µ(f; x)+∆σ(f; x). For any given δ > 0, we have
uniformly in 1 6 ∆ 6 δσ(f; x),

ξf(x;∆) = Ψ̂ ′(f; vf(x;∆)) · loglog x + c(f) + Oδ

(
1√

loglog x

)

Proof. Integrating by parts the result of lemma 4.3 gives an estimate for the average
∑

p6x esf(p)/p.
Differentiating using Cauchy’s formula and setting s = 0 we find that

µ(f; x) = Ψ̂ ′(f; 0) · loglog x + c(f) + O

(
1√

log x

)

σ2(f; x) = Ψ̂ ′′(f; 0) · loglog x + O (1)
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By definition of vf(x;∆) we have

Ψ̂ ′(f; vf(x; ∆)) · loglog x = Ψ̂ ′(f; 0) · loglog x + ∆(Ψ̂ ′′(f; 0) loglog x)1/2

= µ(f; x) − c(f) + ∆σ(f; x) + O

(
∆

loglog x

)

= µ(f; x) − c(f) + ∆σ(f; x) + Oδ

(
1√

loglog x

)

and the claim follows. ¤
4.3. Large deviations when 1 6 ∆ = o((loglog x)1/6). The following is a consequence of
a result of Hwang [11] (see the statement of the main result in 1.1 and then Corollary 3).

Proposition 4.9. Let f ∈ C. Let Ω(f; x) be a sequence of random variables, such that

E
[
esΩ(f;x)

]
= A(s) · (log x)

Ψ̂(f;s)−1 · (1 + ox→∞(1))

uniformly in |s| 6 ε for some ε > 0 sufficiently small and with A(s) analytic and non-zero in a
neighborhood of s = 0. Then, uniformly in 1 6 ∆ 6 o

(
σ(f; x)1/3

)
,

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)
∼

∫∞

∆

e−u2/2 · du√
2π

For all interesting Ω(f; x) we will be able to determine asymptotics for

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)

when ∆ is in the range (loglog x)ε ¿ ∆ 6 cσ(f; x). Hwang’s lemma will be used to
complement these results – that is, handle the (easy) range 1 6 ∆ 6 o((loglog x)1/6). Let
us note that Maciulis [14] proved a result similar to proposition 4.9, but much earlier.
The drawback of his result is that it is harder to use because of the many parameters
introduced in the statement.

4.4. Large deviations: (loglog x)ε ¿ ∆ ¿ σ(f; x) and Ψ(f; t) non-lattice. The object of this
section is to prove the following (general) lemma.

Proposition 4.10. Let f ∈ C. Suppose that Ψ(f; t) is not lattice distributed. Let Ω(f; x) be a
sequence of random variables such that, for any given C > 0, uniformly in 0 6 κ := Re s 6 C

and | Im s| 6 loglog x,

E
[
esΩ(f;x)

]
= A(s) · (log x)

Ψ̂(f;s)−1
+ OC

(
(log x)Ψ̂(f;κ)−3/2

)

Here A(s) is analytic in Re s > 0 and non-vanishing on R+ ∪ {0}. Assume that A(s) ¿C

(1+ | Im s|1/8) holds throughout 0 6 Re s 6 C. Then, given δ, ε > 0, uniformly in (loglog x)ε ¿
∆ 6 δσ(f; x),

P(Ω(f; x) > µ(f; x) + ∆σ(f; x)) ∼ A(v) · (log x)
Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f)
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where v := vf(x;∆) is the unique positive solution to the equation

Ψ̂ ′(f; v) · loglog x = Ψ̂ ′(f; 0) · loglog x + ∆(Ψ̂ ′′(f; 0) loglog x)1/2

and c(f) as in the statement of Theorem 2.8 (or see section 3).

It is possible to prove proposition 4.10 using the method of “associated distribution”
due to Cramer [2]. The method presented here is more concise, and avoids some of the
redundancy inherent in Cramer’s method. One of the peculiarity of our method is that
it seems to require an asymptotic for E[esΩ(f;x)] in the range | Re s| 6 C and | Im s| 6 ψ(x)
for some ψ(x) → ∞, whereas Cramer’s methods needs only an assumption on the range
|s| 6 C, for C big enough.

Our proof relies on the following six lemmata. The first lemma is “well-known”. A
proof can be found in Petrov’s book [15] (or in Esséen’s thesis [9], theorem 5, p. 26).

Lemma 4.11. A distribution function F(t) is not lattice distributed if and only if for all t 6= 0 the
Fourier transform φ(t) =

∫
R eit udF(u) has modulus < 1.

Lemma 4.11 admits the following consequence.

Lemma 4.12. Let f ∈ C. Suppose that Ψ(f; t) is not lattice distributed. Then

φ(t) = eΨ̂(f;it)−1

is the Fourier transform of a non-lattice distribution function. Furthermore, for any w > 0 and
t ∈ R, we have

| exp(Ψ̂(f; w + it) − Ψ̂(f;w))| 6 |φ(t)|

Proof. For a distribution function F denote by F∗n the n-fold convolution of F with itself.
Consider the distribution function

D(f; t) =
1

e

∑

k>0

Ψ∗k (f; t) · 1

k!

The Fourier transform of D(f; t) is given by
∫

R
eit udD(f; u) =

1

e

∑

k>0

1

k!

∫

R
eit udΨ∗k (f;u)

=
1

e

∑

k>0

1

k!
· Ψ̂ (f; it)k

= eΨ̂(f;it)−1

This proves existence. Furthermore, since Ψ(f; t) is not lattice distributed, by Lemma 4.11,
we have |Ψ̂(f; it)| < 1 for all t 6= 0. Therefore |eΨ̂(f;it)−1| < 1 for all t 6= 0. Hence by Lemma
4.11, eΨ̂(f;it)−1 is the Fourier transform of a non-lattice distribution function. Finally, for
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the last statement of this lemma, let us note that

Re
(
Ψ̂(f; w + it) − Ψ̂(f; w)

)
=

∫∞

0

ewu · (cos(tu) − 1) dΨ(f;u)

6
∫∞

0

(cos(tu) − 1)dΨ(f;u) = Re
(
Ψ̂(f; it) − 1

)

Note that Ψ(f; u) = 0 for u < 0, this is why we are allowed to “forget” about integrating
over −∞ < u 6 0. ¤

The next lemma is taken from Esséen’s thesis [9] (see Lemma 1 on page 49).

Lemma 4.13. Let F(t) be a distribution function and denote by φ(t) it’s Fourier transform∫
R eit udF(u). If F(t) is not lattice-distributed, then, for any c > 0 there is a λ(x) → ∞ and

a ξ(x) → ∞ such that
∫λ(x)

c

|φ(t)|x · dt

t
¿ 1

ξ(x) ·√x

From lemma 4.13 and lemma 4.12 we obtain the following useful estimate.

Lemma 4.14. Let f ∈ C. Suppose that Ψ(f; t) is not lattice distributed. Then, for any c > 0 there
is a λ(x) → ∞ and a ξ(x) → ∞ such that uniformly in w > 0,

∫λ(x)

c

∣∣∣(log x)
Ψ̂(f;w+it)−Ψ̂(f;w)

∣∣∣ · dt

t
¿ 1

ξ(x) ·√loglog x

Proof. Since Ψ(f; t) is not lattice distributed, by lemma 4.12 the function φ(t) = eΨ̂(f;it)−1

is the Fourier transform of a non-lattice distribution function. Therefore by lemma 4.13,
given any c > 0 there is a λ(x) → ∞ and a ξ(x) → ∞ such that

∫λ(x)

c

∣∣∣eΨ̂(f;it)−1
∣∣∣
loglog x

· dt

t
¿ 1

ξ(x) ·√loglog x
(4.25)

By lemma 4.12 we have for all w > 0,
∫λ(x)

c

∣∣∣(log x)
Ψ̂(f;w+it)−Ψ̂(f;w)

∣∣∣ · dt

t
6

∫λ(x)

c

∣∣∣eΨ̂(f;it)−1
∣∣∣
loglog x

· dt

t

This together with (4.25) gives the claim. ¤
We need one more lemma from Esséen’s thesis [9] (see theorem 6 on page 27).

Lemma 4.15. Let F(t) be a distribution function. Suppose that F(t) is not degenerate (that is
F(t) does not have a jump of mass 1). Denote by φ(t) the Fourier transform

∫
R eitudF(u) of the

distribution function F(·). There is a c0 and a c1 such that for any interval I of size less than c0

meas
u∈I

(
|φ(u)|2 > 1 − δ

)
6 c1 ·

√
δ

The constants c1 and c0 depend at most on the distribution function F.
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Finally, we need one last lemma that will allow us to smooth out P(Ω(f; x) > t) (the
smoothing will be negligible because Ψ(f; t) is not lattice distributed). The lemma is es-
sentially what appears in Tenenbaum [18] (first formula in section 3 and first formula in
section 4 of his paper).

Lemma 4.16. Let Y(x) be a sequence of random variables. Suppose that each Y(x) has an entire
moment generating function and define

ΦY(x; t)(z) = E
[
ezY(x)

] · e−zt

Let C > 0 be given. Then for all κ > 0 and M,T > 0, we have

P(Y(x) > t) =
1

2πi

∫κ+iM

κ−iM

ΦY(x; t)(z) · Tdz

z(z + T)

+O (Err) + O

(
Teκ/T

M
·ΦY(x; t)(κ)

)
(4.26)

and the error term Err is given by

Err =
1

2πi

∫κ+iM

κ−iM

ΦY(x; t)(z) · ez/T · Tdz

(z + T)(z + 2T)

Proof. First we establish the above when M = ∞. This case follows from the inequalities
appearing in Tenenbaum’s paper. Let y+ = max(y; 0). Following Tenenbaum [18] (see
first equation in section 3) we have

1 − e−Ty+

=
1

2πi

∫κ+i∞

κ−i∞
ezy · Tdz

z(z + T)

for all y ∈ R and κ, T > 0. Let χ(·) denote the characteristic function of [0;∞). Again
according to Tenenbaum’s paper (see beginning of section 4), we have the inequality

0 6 χ(y) −
(
1 − e−Ty+

)
6 e2

e − 1
·
(
e−T(y+1/T)+

− e−2T(y+1/T)+
)

=
e2

e − 1
· 1

2πi

∫κ+i∞

κ−i∞
ezy · ez/T · Tdz

(z + T)(z + 2T)

It follows that for u, t ∈ R,

0 6 χ(u − t) −
1

2πi

∫κ+i∞

κ−i∞
ezu · e−zt · Tdz

z(z + T)

6 K

2πi

∫κ+i∞

κ−i∞
ezu · e−zt · ez/T · Tdz

(z + T)(z + 2T)

with K = e2/(e − 1). Integrating the above inequality over u, with respect to the measure
dP(Y(x) 6 u) and applying Fubini’s theorem we obtain the claim, in the case M = ∞.
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To obtain the general case, note that —ΦY(x; t)(z)| 6 ΦY(x; t)(κ) for Re z = κ and let
R(κ, M) := {κ + it : |t| > M}. By the previous inequality for ΦY ,

∣∣∣∣
∫

R(κ,M)

ΦY(x; t)(z) · Tdz

z(z + T)

∣∣∣∣ 6 ΦY(x; t)(κ) · 2
∫∞

M

Tdt

t2
6 2T

M
·ΦY(x; t)(κ)

Therefore

1

2πi

∫κ+ı∞

κ−ı∞
ΦY(x; t)(z)

Tdz

z(z + T)
=

1

2πi

∫κ+iM

κ−iM

ΦY(x; t)(z) · Tdz

z(z + T)
+ O

(
ΦY(x; t)(κ) · T

M

)

We truncate the integral appearing in the term Err in a similar fashion. In this case the
truncation contributes O(Teκ/T/M · ΦY(x; t)(κ)). Having truncated our integrals we ob-
tained the “general” case of our lemma. ¤

We are now in position to prove proposition 4.10.

Proof of Proposition 4.10. Let’s keep the notation ΦΩ(x; t) = E[ezΩ(f;x)] · e−zt introduced in
lemma 4.16 and abbreviate µ := µ(f; x), σ := σ(f; x). Throughout we set z := v + it =
vf(x;∆) + it with t ∈ R and we abbreviate v := vf(x; ∆). Note that by lemma 4.7 there is
a C = C(δ) > 0 such that 0 6 v 6 C when ∆ is in the range 1 6 ∆ 6 δσ(f; x). (We allow
our error term to depend on C). Also by lemma 4.8, e−v(µ+∆σ) ³ (log x)−vΨ̂ ′(f;v). Thus, by
assumptions and this estimate

ΦΩ(x;µ + ∆σ)(z) = A(z)(log x)Ψ̂(f;z)−1e−z(µ+∆σ) + O((log x)Ψ̂(f;v)−3/2e−v(µ+∆σ))

= A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) + O
(
(log x)A(f;v)−1/2

)
(4.27)

for 0 6 v := Re z 6 C and | Im z| 6 loglog x and where A(f; v) := Ψ̂(f; v) − 1 − vΨ̂ ′(f; v).
We insert (4.27) into (4.26) of the previous lemma. In there we set κ := vf(x; ∆), Y(x) :=

Ω(f; x), M := loglog x and T :=
√

λ(x) −→ ∞. The function λ(x) is ¿ logloglog x and tends
to infinity as x → ∞. It will be specified explicitly later on. We get

P(Ω(f; x) > µ + ∆σ) :=
1

2πi

∫ v+iM

v−iM

A(z)(log x)Ψ̂(f;z)−1e−z(µ+∆σ) · Tdz

z(z + T)

+O

(
1

2πi

∫ v+iM

v−iM

A(z)(log x)Ψ̂(f;z)−1e−z(µ+∆σ) · ez/T · Tdz

(z + T)(z + 2T)

)
(4.28)

+O

(∫ v+iM

v−iM

(log x)A(f;v)−1/2 · ev/T · T |dz|

|z| · |z + T |

)
+ O

(
T

M
·ΦΩ(x; µ + ∆σ)(v)

)

At the outset note that the very last error term is negligible. Indeed, by (4.27) and
the boundedness of A(v) in 0 6 v 6 C (the function A(·) is continuous!), we have
ΦΩ(x;µ+∆σ)(v) ¿ (log x)A(f;v). Therefore T/M·ΦΩ(x; µ+∆σ)(v) ¿ (logloglog x/ loglog x)·
(log x)A(f;v) which is negligible compared to the expected size of the main term.
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The integral over T · |dz|/|z||z + T | contributes less than v−1 + T ¿ v−1(1 + T). Thus the
second error term in (4.28) is ¿ (log x)A(f;v)−1/2v−1(1 + T). Since T ¿ logloglog x this error
term is negligible compared to the expected size of the main term.

Once we evaluate the main term in (4.28) it will be clear how to bound the first error
term in (4.28). Therefore let’s focus on estimating

1

2πi

∫ v+iM

v−iM

A(z)(log x)Ψ̂(f;z)−1e−z(µ+∆σ) · Tdz

z · (z + T)
(4.29)

This corresponds to the main term for P(Ω(f; x) > µ(f; x) + ∆σ(f; x)). We split (4.29) into
a part over M := {v + it : |t| 6 η(x) · (loglog x)−1/2} where η(x) = logloglog x and a part
over R = {v + it : |t| 6 M} −M. The part over M will furnish the main term and the part
over R will be negligible.

1. Asymptotic for (4.29) restricted to z = v + it ∈M.

By lemma 4.8 for z ∈M =
{
v + it : |t| 6 η(x) · (loglog x)−1/2

}
,

e−z(µ+∆σ) = (log x)−zΨ̂ ′(f;v) · e−zc(f) · (1 + O((loglog x)−1/2))

Therefore, for z ∈M,

A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ)

= A(z)e−zc(f) · (log x)Ψ̂(f;z)−1−zΨ̂ ′(f;v) · (1 + O
(
(loglog x)−1/2

))

= A(z)e−zc(f) · (log x)Ψ̂(f;z)−1−zΨ̂ ′(f;v) + O
(
(log x)A(f;v) · (loglog x)−1/2

)

In the third line we use the fact that |Ψ̂(f; z)| 6 Ψ̂(f; v) and that A(z) is analytic hence
bounded in the (bounded) region 0 6 v := Re z 6 C, | Im z| 6 2. Plugging the above
estimate into (4.29) (restricted to z ∈M) yields

1

2πi

∫

M
A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) · Tdz

z(z + T)

=
1

2πi

∫

M
A(z)e−zc(f) · (log x)Ψ̂(f;z)−1−zΨ̂ ′(f;v) · Tdz

z(z + T)
(4.30)

+O

(
(log x)A(f;v)

√
loglog x

∫

M

T · |dz|

|z| · |z + T |

)

and the error term is bounded by O((log x)A(f;v) · v−1 · η(x)(loglog x)−1) (note that M is
in length ¿ η(x)/(log log x)1/2) which is negligible when compared to the expected size
of the main term. We parametrize the integral in (4.30) and perform a series of Taylor
expansions. Recall that z := v + it by convention, that 0 6 v = vf(x; ∆) 6 C whenever
1 6 ∆ 6 δσ(f; x) and that when z ∈ M then |t| 6 η(x) · (loglog x)−1/2. With this in mind,
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for z = v + it ∈M,

A(z)e−zc(f) = A(v)e−vc(f) + OC (|t|) = A(v)e−vc(f) + OC

(
η(x) · (loglog x)−1/2

)

= A(v)e−vc(f) · (1 + OC

(
η(x)(loglog x)−1/2

))

where the last line is justified by 1) the non-vanishing of A(x)e−xc(f) on the positive real
axis 2) the fact that v ³ ∆/σ(f; x) is bounded throughout 1 6 ∆ 6 cσ(f; x) (0 6 v 6 C).
We will not mention any further, the dependence on C in implicit constants. Proceeding
as in the previous equation, we find

Ψ̂(f; z) − Ψ̂(f; v) − it Ψ̂ ′(f; v) = −
(
t2/2

)
Ψ̂ ′′(f; v) + O

(
η(x)3 · (loglog x)−3/2

)

for z = v + it ∈M. Upon multiplying by loglog x and exponentiating, we obtain

(log x)
Ψ̂(f;z)−Ψ̂(f;v)−it Ψ̂ ′(f;v)

= e−(t2/2)Ψ̂ ′′(f;v) loglog x · (1 + O
(
η(x)3(loglog x)−1/2

))

By lemma 4.7 for z = v+ it ∈Mwe have |t/v| ¿ η(x)(loglog x)−1/2 ·v−1 ³ η(x) ·∆−1. Since
η(x) = logloglog x = o(∆) it follows that |t/v| = o(1) when v + it ∈ M. Since in addition
we will choose T → ∞, we have for z = v + it ∈M,

T

z · (z + T)
=

1

v + it
· 1

1 + (v + it)/T

=
1

v
· (1 + O (t/v)) · (1 + O (1/T))

=
1

v
· (1 + O

(
1/T + η(x)(loglog x)−1/2 · v−1

))

Collecting together the previous estimates, we conclude that for z = v + it ∈M,

A(z)e−zc(f) · (log x)
Ψ̂(f;z)−Ψ̂(f;v)−it Ψ̂ ′(f;v) · T

z(z + T)

= (A(v)e−vc(f)/v) · e−(t2/2)Ψ̂ ′′(f;v) loglog x · (1 + O
(
1/T + η(x)3 · (loglog x)−1/2 · v−1

))

Since v ³ ∆ · (loglog x)−1/2 the error term simplifies to E := 1/T + η(x)3 · ∆−1. Let ξ :=

η(x)·(loglog x)−1/2. Parametrizing the integral in (4.30) and using the previous asymptotic
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we find that the integral in (4.30) equals (where as usual z := v + it)

1

2π

∫ξ

−ξ

A(z)e−zc(f) · (log x)Ψ̂(f;z)−1−zΨ̂ ′(f;v) · Tdt

z(z + T)

= (log x)A(f;v) · 1

2π

∫ξ

−ξ

A(z)e−zc(f) · (log x)Ψ̂(f;z)−Ψ̂(f;v)−itΨ̂ ′(f;v) · Tdt

z(z + T)

= (log x)A(f;v) · (1/v)A(v)e−vc(f)

∫ξ

−ξ

e−(t2/2)Ψ̂ ′′(f;v)·loglog x · dt

2π
· (1 + O(E))

= (log x)A(f;v) · A(v)e−vc(f)

v(Ψ̂ ′′(f; v) loglog x)1/2

∫η(x)

−η(x)

e−u2/2 · du

2π
· (1 + O (E))

= (log x)A(f;v) · A(v)e−vc(f)

v(2πΨ̂ ′′(f; v) loglog x)1/2
·
(
1 + O

(
e−η(x)2/2 + E

))

Since E := 1/T +η(x)3/∆ À 1/
√

loglog x and η(x) À logloglog x the term e−η2/2 is absorbed
into O(E). The integral we just evaluated furnishes the main term in (4.30). We conclude
that

1

2πi

∫

M
A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) · Tdz

z(z + T)

= A(v)e−vc(f) · (log x)Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
·
(

1 + O

(
1

T
+

η(x)3

∆

))
(4.31)

2. Bound for (4.29) restricted to z = v + it ∈ R.

Recall our convention that z := v + it and v := vf(x;∆). By lemma 4.8, and the bound
A(z) ¿ 1 + |z|1/8 we have

A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) ¿ (1 + |z|1/8) · (log x)Re(Ψ̂(f;z)−1−vΨ̂ ′(f;v))

uniformly in 0 6 v := Re z 6 C and | Im z| 6 M := loglog x. Therefore
1

2πi

∫

R
A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) · Tdz

z(z + T)
(4.32)

¿ (log x)A(f;v) ·
∫

R
(1 + |z|1/8) · (log x)Re(Ψ̂(f;z)−Ψ̂(f;v)) · T · |dz|

|z| · |z + T |

and it remains to bound the second integral, above. To do so we consider its behaviour
in three ranges, R1 = {v + it : η(x) · (loglog x)−1/2 6 |t| 6 c} with c > 0 small enough,
R2 = {v + it : c 6 |t| 6 λ(x)} and R3 = {v + it : λ(x) 6 |t| 6 M}. We will fix c and λ(x) as
we proceed through the proof. Recall also that T = λ(x)1/2 and that η(x) = log log log x.

2.1. The range R1 = {v + it : η(x) · (loglog x)−1/2 6 |t| 6 c}
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Recall from lemma 4.12 that Re(Ψ̂(f; z) − Ψ̂(f; v)) 6 Re(Ψ̂(f; it) − 1). Choose c 6 1 small
enough so as to ensure that for z = v + it,

Re(Ψ̂(f; z) − Ψ̂(f; v)) 6 Re(Ψ̂(f; it) − 1) 6 −κt2/2

for some κ = κ(c) > 0. The existence of such a κ, for c small enough, is guaranteed by a
Taylor expansion. Once c 6 1 is chosen sufficiently small, we can bound

∫

R1

(1 + |z|1/8) · (log x)Re(Ψ̂(f;z)−Ψ̂(f;v)) · T |dz|

|z| · |z + T |

¿
∫

R1

(log x)−κt2/2 · Tdt

v(v + T)
¿ (1/v) exp(−κη(x)2/2)

The last line comes from |t| > η(x) · (loglog x)−1/2. Since η(x) = logloglog x it follows that
(4.32) restricted to the rangeR1 is¿ (log x)A(f;v) · (1/v)(loglog x)−1 and this is as negligible
as we want it to be.

2.2. The range R2 = {v + it : c 6 |t| 6 λ(x)}

Let c > 0 denote the constant that we fixed in the previous point. By lemma 4.14 there
is a λ0(x) → ∞ and a ξ(x) → ∞ such that

∫λ0(x)

c

∣∣∣eΨ̂(f;z)−Ψ̂(f;v)
∣∣∣
loglog x

· dt

t
¿ 1

ξ(x)
√

loglog x
, z := v + it

Let λ(x) := min(λ0(x), ξ(x), 1 + logloglog x). Note that λ(x) → ∞. By the above equation
and λ(x) 6 λ0(x) we get

∫λ(x)

c

∣∣∣eΨ̂(f;z)−Ψ̂(f;v)
∣∣∣
loglog x

· dt

t
¿ 1

ξ(x)
√

loglog x
(4.33)

We let T :=
√

λ(x). With this choice of T , we have T → ∞ and T ¿ logloglog x, and this is
the only information about T that we assumed a priori. By (4.33) we have

∫

R2

(1 + |z|1/8) · (log x)Re(Ψ̂(f;z)−Ψ̂(f;v)) · T |dz|

|z| · |z + T |

¿ λ(x)1/8 ·
∫

R2

∣∣∣eΨ̂(f;z)−Ψ̂(f;v)
∣∣∣
loglog x

· dt

t
¿ λ(x)1/8

ξ(x)
√

loglog x

Since λ(x) 6 ξ(x) the above is bounded by ξ(x)−7/8 · (loglog x)−1/2. It follows that (4.32)

resitricted to z ∈ R2 is bounded by (log x)A(f;v) · ξ(x)−7/8 · (loglog x)−1/2 and again this is
sufficiently negligible, for our purpose.

2.3. The range R3 := {v + it : λ(x) 6 |t| 6 M}.
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Since 0 6 v 6 C and z = v + it we have |z| ¿ |t|. It follows that
∫

R3

(1 + |z|1/8) · (log x)Re(Ψ̂(f;z)−Ψ̂(f;v)) · T · |dz|

|z| · |z + T |

¿
∫M

λ(x)

t1/8 ·
∣∣∣eΨ̂(f;z)−Ψ̂(f;v)

∣∣∣
loglog x

· Tdt

t · (t + T)

¿
∑

`>bλ(x)c

T

`7/8 · (` + T)

∫ `+1

`

∣∣∣eΨ̂(f;z)−Ψ̂(f;v)
∣∣∣
loglog x

dt (4.34)

We now show that the integral over ` 6 t 6 ` + 1 is ¿ (loglog x)−1/2 uniformly in ` > 0.
Let φκ(t) := |eΨ̂(f;κ+it)−Ψ̂(f;κ)| and ξ := loglog x, so |φv(t)|

ξ = |eΨ̂(f;z)−Ψ̂(f;v)|loglog x (v := Re z =
vf(x;∆)). By lemma 4.12 we have |φκ(t)| 6 |φ0(t)| for all κ > 0 and t ∈ R. Furthermore
by lemma 4.15 there is a c0 and a c1 such that meas({u ∈ I : |φ0(u)|2 > 1 − δ}) 6 c1 ·

√
δ for

all intervals I of length 6 c0. In particular meas({u ∈ [`; ` + 1] : |φ0(u)|2 > 1 − δ}) 6 K ·
√

δ

where K := (1/c0 + 1) · c1. Using these two observations we conclude that
∫ `+1

`

|φv(t)|
ξ · dt 6

∫ `+1

`

|φ0(t)|
ξ · dt = −

∫ 1

0

tξ/2 · d
(

meas
u∈[`;`+1]

(
|φ0(u)|2 > t

))

= (ξ/2) ·
∫ 1

0

tξ/2−1 · meas
u∈[`;`+1]

(
|φ0(u)|2 > t

)
dt

6 (ξ/2) · K
∫ 1

0

tξ/2−1 ·
√

1 − tdt ¿ ξ−1/2

We evaluate the last integral by noticing that the integrand is essentially constant on in-
tervals [1 − (A + 1)/ξ; 1 − A/ξ]. The long chain of inequalities proves that

∫ `+1

`

∣∣∣eΨ̂(f;z)−Ψ̂(f;v)
∣∣∣
loglog x

· dt =

∫ `+1

`

|φv(t)|
ξdt ¿ ξ−1/2 = (loglog x)−1/2

as desired. Hence the sum in (4.34) is bounded by

¿ 1√
loglog x

∑

`>bλ(x)c

T

`7/8 · (` + T)
¿ 1

λ(x)3/8
· 1√

loglog x

(Recall that T = λ(x)1/2). It follows that the integral in (4.32) restricted to z ∈ R3 is
bounded by (log x)A(f;v) · (loglog x)−1/2 · λ(x)−3/8, which is sufficiently negligible for our
purpose.

2.4. Final bound for (4.32).
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Collecting the previous bounds from 2.1, 2.2, and 2.3, we conclude that
∫

R
A(z)(log x)Ψ̂(f;z)−1 · e−z(µ+∆σ) · T · dz

z(z + T)

¿ (log x)A(f;v) ·
(

1

v loglog x
+

ξ(x)−7/8 + λ(x)−3/8

(loglog x)1/2

)

which is negligible compared to the estimate we obtained in (4.31), becauseA(v)e−vc(f) ³
1 and Ψ̂ ′′(f; v) ³ 1. The estimate A(v)e−vc(f) ³ 1 follows from the continuity and non-
vanishing ofA(x) on the positive real line, and the fact that the parameter v is confined to
a bounded interval 0 6 v 6 C.

3. Conclusion.

Comparing the bound we obtained in 2.4 with (4.31) it follows that

1

2πi

∫ v+iM

v−iM

A(z)(log x)Ψ̂(f;z)−1e−z(µ+∆σ) · Tdz

z(z + T)
(4.35)

= A(v)e−vc(f) · (log x)Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
· (1 + o(1))

uniformly throughout 1 6 ∆ 6 δσ(f; x). In the same way as we estimated the above
integral we estimate the integral appearing in the first error term in (4.28). Because of the
additional z + T in the denominator this integral will be negligible compared to (4.35).
Since the other error terms in (4.28) are negligible compared to (4.35) we finally conclude
that

P (Ω(f; x) > µ + ∆σ) ∼ A(v)e−vc(f) · (log x)
Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2

uniformly in 1 6 ∆ 6 δσ(f; x), as desired. ¤

4.5. Large deviations: (loglog x)ε ¿ ∆ ¿ σ(f; x) and Ψ(f; t) is lattice distributed. We
may assume by rescaling that Ψ(f; t) is lattice distributed on Z. Throughout this section
we write f = g + h with g, h two strongly additive functions defined by

g(p) =

{
f(p) if f(p) ∈ Z
0 otherwise and h(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

The goal is to prove the following “general” proposition.

Proposition 4.17. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Consider the
random variable Ω(f; x) :=

∑
p6x f(p)Zp where the Zp ∈ {0; 1} are random variables, not neces-

sarily independent, over a common probability space (Ωx,Fx,Px) which we allow to depend on x.
We denote by PFx and EFx the probability measure and the expectation in that probability space.
Suppose that
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1. Uniformly in 0 6 κ := Re s 6 C, | Im s| 6 log log x and uniformly in strongly additive
function H such that 0 6 H(p) 6 dh(p)e,

EFx

[
esΩ(g;x)+sΩ(H;x)

]
= EFx

[
esΩ(g;x)

] ·
∏
p6x

(
1 +

esH(p) − 1

p

)
+ OC (E(x; κ))

with an error term E(x;κ) := (log x)Ψ̂(f;κ)−3/2.
2. Given C > 0, we have, uniformly in 0 6 κ := Re s 6 C, | Im s| 6 2π,

EFx

[
esΩ(g;x)

]
= A(s) · (log x)Ψ̂(f;s)−1 + O

(
(log x)Ψ̂(f;κ)−3/2

)

whereA(s) is an analytic function in Re s > 0, which we assume to be non-zero on the positive
real axis.

Then, for any given c > 0, uniformly in 1 6 ∆ 6 cσ(f; x),

PFx

(∑
p6x

f(p)

[
Zp −

1

p

]
> ∆σ(f; x)

)
∼ A(v)e−vc(f) · Ph (ξf(x;∆); v) · Sf(x; ∆)

with v := vf(x;∆) and the rest of the notation defined in the table of section 3.

In the most important case, when Ωx = [1; x] and the random variables Zp(n) are the
indicator functions of the event p|n, proposition 4.17 can be proved by following the
method of [1]. The proof there is more natural, but unfortunately doesn’t adapt to a more
general situation, in particular to the case when the Zp are independent random variables.

We need a substantial amount of preparation before we can prove the lemma. We sub-
divide this section in three subsections. In 4.5.1 we gather information about the additive
function h. In 4.5.2 we evaluate a certain “saddle-point” integral. In 4.5.3 we prove propo-
sition 4.17.

4.5.1. Preliminary lemma on h. Denote by S(h) the set of primes for which h(p) 6= 0. Recall
that h(p) is equal to f(p) whenever f(p) 6∈ Z and equal to 0 otherwise. Since f(p) > 0 (by
definition of the class C) it follows that h(p) vanishes exactly when f(p) ∈ Z. Hence the
set S(h) = {p : h(p) 6= 0} is in fact equal to the set {p : f(p) 6∈ Z}.

Lemma 4.18. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. We have

|S(h) ∩ [1; x]| ¿A x · (log x)−A

Proof. By our remark above S(h) = {p : f(p) 6∈ Z}. By assumptions (1.4) we have for
arbitrary a ∈ Z

1

π(x)

∑

p 6 x

f(p) 6 a

1 = Ψ(f;a) + OA

(
(log x)−A−1

)
(4.36)
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Further since Ψ(f; t) is a distribution function it is right continuous, so
1

π(x)

∑

p 6 x

f(p) < a + 1

1 = lim
t↑a+1

Ψ(f; t) + OA

(
(log x)−A−1

)
(4.37)

Since Ψ(f; t) is lattice distributed on Z it is constant on the interval [a; a+1). Therefore the
right hand side of (4.36) and (4.37) are equal. Hence subtracting (4.36) from (4.37) yields

1

π(x)

∑

p 6 x

a < f(p) < a + 1

1 = OA

(
1

(log x)A+1

)
(4.38)

uniformly in a ∈ Z. By assumption (1.3) there are only O(1) primes p 6 x such that
f(p) > log x. Therefore

1

π(x)

∑

p 6 x

f(p) 6∈ Z

1 6
∑

06a6log x

1

π(x)

∑

p 6 x

a < f(p) < a + 1

1 +
1

π(x)

∑

p 6 x

f(p) > log x

1

by (4.38) the above sum is OA(log x · (log x)−A−1) as desired. ¤
As a consequence of the lemma

∏
p∈S(h)(1+1/p) converges and Ψ(f; t) = Ψ(g; t). In fact

we proved a little bit more.

Corollary. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Let A > 0 be given. The
sum ∑

p|n⇒p∈S(h)

(log n)A

n

converges.

Proof. For an integer n with prime factorization n = pα1
1 · . . . · pαk

k we have the inequality
log n 6

∏
`6k(α` · log p` + 1). Therefore

∑

p|n⇒p∈S(h)

(log n)A

n
6

∏

p∈S(h)

(
1 +

∑

α>1

(α log p + 1)A

pα

)
¿

∏

p∈S(h)

(
1 + K · (log p)A

p

)

for some constant K > 0. By lemma 4.18,
∑

p∈S(h)(log p)A ·p−1 < +∞ therefore the product
on the right is finite. ¤

We need more than mere convergence of the product
∏

p∈S(h)(1 − 1/p).

Lemma 4.19. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. The function

G(h; s) :=
∏

p∈S(h)

(
1 +

esh(p)

p − 1

)
·
(

1 −
1

p

)
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is entire and the product converges for all s ∈ C. Furthermore, given δ > 0, there is a x0(δ) such
that uniformly in Re s 6 δ and x > x0(δ),

∏

p 6 x

p ∈ S(h)

(
1 +

esh(p)

p − 1

)
·
(

1 −
1

p

)
= G(h; s) · (1 + Oδ

(
(log x)−1/2

))
(4.39)

Remark. Note that G(h; s) is the moment generating function of the random variable
X(h) :=

∑
p h(p)Xp. Indeed,

E
[
esX(h)

]
=

∏
p

(
1 −

1

p
+

esh(p)

p

)
=

∏

p∈S(h)

(
1 +

esh(p)

p − 1

)
·
(

1 −
1

p

)

In particular E
[
eκX(h)

]
is finite for any fixed κ > 0.

Proof. We are going to show that
∑

p>x,h(p)6=0 log
(
1 + (esh(p) − 1)/p

) ¿ (log x)−1/2 uni-
formly in Re s 6 δ, for all x large enough (we need to take x large enough to prevent
1 + (esh(p) − 1)/p from vanishing when Re s 6 δ and p > x). This bound admits two
consequences. First of all, it implies that the partial products

∏
p6x

(
1 +

esh(p)

p − 1

)
·
(

1 −
1

p

)
=

∏

p 6 x

h(p) 6= 0

(
1 +

esh(p) − 1

p

)
(4.40)

converge uniformly on compact subsets of C. Hence G(h; s) is an entire function. Sec-
ondly, since (4.40) converges to G(h; s) and its tails are 1+O((log x)−1/2) we obtain (4.39).
Thus it remains to bound the sum of log(1+(esh(p)−1)/p) over p > x. Assume without loss
of generality that δ > 2. By assumption (1.3), f(p) = o(log p). In particular h(p) = o(log p)

and thus |esh(p)| 6 eδh(p) = eo(log p) uniformly in Re s 6 δ. Hence esh(p)/p = o(1) and so
log(1 + (esh(p) − 1)/p) ¿ eδh(p)/p. Using this inequality and breaking up our sum into
“dyadic” intervals, we obtain, uniformly in Re s 6 δ,

∑

p > x

h(p) 6= 0

log

(
1 +

esh(p) − 1

p

)
¿

∑

p > x

h(p) 6= 0

eδh(p)

p
6

∑

k>log x

e−k
∑

ek 6 p 6 ek+1

h(p) 6= 0

eδh(p)

=
∑

k>log x

e−k ·
[ ∑

ek 6 p 6 ek+1

0 < h(p) 6 loglog p

eδh(p) +
∑

A>1

∑

ek 6 p 6 ek+1

A 6 h(p)/ loglog p 6 A + 1

eδh(p)

]
(4.41)

Bounding the sum over 0 < h(p) 6 loglog p boils down to using the previous lemma.
Note that under the condition p 6 ek+1 and h(p) 6 loglog p we have eδh(p) 6 (k + 1)δ.
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Therefore ∑

ek 6 p 6 ek+1

0 < h(p) 6 loglog p

eδh(p) 6 (k + 1)δ
∑

p 6 ek+1

h(p) 6= 0

1 = OC

(
kδ · ek · k−C

)

where in the last inequality we used Lemma 4.18. We chose C = 2δ, and conclude that
the sum over 0 < h(p) 6 loglog p in (4.41) is bounded by ek · k−δ.

To bound the double sum over A > 1 and A 6 h(p)/ loglog p 6 A + 1 in (4.41) we
will use assumption (1.3). Note that under the conditions ek 6 p 6 ek+1 and A 6
h(p)/ loglog p 6 A + 1 we have eδh(p) 6 (k + 1)δ(A+1). It follows that∑

A>1

∑

ek 6 p 6 ek+1

A 6 h(p)/ loglog p 6 A + 1

eδh(p) 6
∑

A>1

(k + 1)
δ(A+1)

∑

ek 6 p 6 ek+1

A loglog p 6 h(p)

1 (4.42)

Regarding the innermost sum we proceed as follows: since ek 6 p we overestimate a
little by replacing A loglog p 6 h(p) with A log k 6 h(p). Furthermore since A log k 6
h(p) implies A log k 6 f(p) we overestimate even more by replacing A log k 6 h(p) with
A log k 6 f(p). From there, it follows that the sum in (4.42) is bounded by

6
∑

A>1

(k + 1)δ(A+1)
∑

p 6 ek+1

A log k 6 f(p)

1 ¿B

∑

A>1

kδ(A+1) · eke−B(A log k) (4.43)

where in the last line we used the assumption (1.3). In our upper bound we choose B = 3δ

and then (4.43) becomes ¿ ek
∑

A>1 kδ(A+1)−3δA ¿ ek · k−δ, (A > 1). Collecting (4.42) and
(4.43) it follows that the double sum over A > 1 and A 6 h(p)/ loglog p 6 A + 1 in (4.41),
is bounded by ek · k−δ.

Putting together our bounds, we conclude that the whole sum in (4.41) is less than
¿ ∑

k>log x e−k · [ekk−δ + ekk−δ
] ¿ (log x)−δ+1 ¿ (log x)−1/2 since we assumed δ > 2. It

follows that
∑
p>x

log

(
1 +

esh(p) − 1

p

)
¿ (log x)−1/2

uniformly in Re s 6 δ (where δ > 2 without loss of generality). By the remarks made at
the beginning of the lemma, the claim follows. ¤

An important consequence of lemma 4.19 and lemma 4.18 is that L(g; s) is entire.

Lemma 4.20. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Then the function
L(g; z) is entire. Furthermore given C > 0, there is a x0(C) such that uniformly in | Re s| 6 C,
| Im s| 6 2π and x > x0(C),

∏
p6x

(
1 −

1

p

)Ψ̂(f;s) (
1 +

esg(p)

p − 1

)
= L(g; s) · (1 + OC

(
(log x)−1/2

))
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Proof. Because Ψ(f; t) is lattice distributed on Z it has jumps on the integers. Therefore
Ψ̂(f; z) =

∑
k>0 λke

zk with λk > 0. In particular Ψ̂(f; v + it) is 2π-periodic in the t variable.
Hence

L(g; v + it) =
∏

p

(
1 −

1

p

)Ψ̂(f;v+it) (
1 +

e(v+it)g(p)

p − 1

)

is 2π periodic in the t variable (if the above equation is not clear recall that Ψ(f; t) = Ψ(g; t)

by lemma 4.18, hence Ψ̂(f; z) = Ψ̂(g; z)). Therefore, to prove that L(g; s) is entire, it’s
enough to prove that L(g; s) is analytic in | Im s| 6 2π. Given C > 0, consider s in the
region D(C) := {s : | Re s| 6 C and | Im s| 6 2π}. Note that

∏
p6x

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esf(p)

p − 1

)

=
∏
p6x

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esg(p)

p − 1

) ∏

p 6 x

(
1 −

1

p

)
·
(

1 +
esh(p)

p − 1

)

By lemma 4.4 the first product equals L(f; s) · (1 + OC((log x)−1/2). By lemma 4.19 the
last product equals to G(h; s) · (1 + OC((log x)−1/2) (keeping the notation of lemma 4.19).
Both approximations hold uniformly in s ∈ D(C) and x > x0(C) with x0(C) large enough.
Dividing by G(h; s) on both sides we conclude that uniformly in s such that | Re s| 6
C, | Im s| 6 2π and G(h; s) 6= 0,

∏
p6x

(
1 −

1

p

)Ψ̂(f;s)

·
(

1 +
esg(p)

p − 1

)
=

L(f; s)

G(h; s)
· (1 + OC((log x)−1/2

)
(4.44)

Note that L(f; s)/G(h; s) is in fact analytic in D(C), because if G(h; s) vanishes then L(f; s)
vanishes to the same order. Thus, by continuity (4.44) extends to all of D(C). Since that
region is bounded, the function L(f; s)/G(h; s), being analytic, is bounded there. Hence
(4.44) guarantees that

∏
p6x(1 − 1/p)Ψ̂(f;s)(1 + esg(p)(p − 1)−1) converges uniformly in

| Re s| 6 C, | Im s| 6 2π. Thus L(g; s) is analytic in | Im s| 6 2π. Since L(g; v + it) is 2π peri-
odic in the t variable, it follows that L(g; s) is entire. In addition, by (4.44) we must have
L(g; s) = L(f; s)/G(h; s) and the second assertion of the lemma follows from (4.44). ¤

A further consequence of lemma 4.19 is that X(h) :=
∑

p h(p)Xp has an entire moment
generating function

E
[
esX(h)

]
=

∏
p

(
1 +

esh(p)

p − 1

)
·
(

1 −
1

p

)

Thus all moments of X(h) are finite, and in particular the variance of X(h) is finite. Hence
by Kolmogorov’s three series theorem X(h) =

∑
p h(p)Xp converges almost surely. In the

next lemma we give an explicit expression for P(X(h) > t).
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Lemma 4.21. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. We have

P (X(h) 6 t) =
∏

p∈S(h)

(
1 −

1

p

) ∑

n > 1

p|n ⇒ p ∈ S(h)

h(n) 6 t

1

n

Proof. Since Xp is a Bernoulli random variable with P (Xp = 1) = 1/p ,

E
[
esXp

]
= 1 −

1

p
+

es

p
=

(
1 −

1

p

)
·
(

1 +
es

p − 1

)

Since in addition the Xp’s are independent, and X(h) =
∑

p h(p)Xp,

E
[
esX(h)

]
=

∏
p

E
[
esh(p)Xp

]
=

∏
p

(
1 −

1

p

)
·
(

1 +
esh(p)

p − 1

)

Note if h(p) = 0 for a prime p then the corresponding term in the above product is 1.
Thus we can restrict the product to those primes p for which h(p) 6= 0 or equivalently to
the prime p ∈ S(h). Now let

F(t) =
∏

p∈S(h)

(
1 −

1

p

) ∑

n > 1

p|n ⇒ p ∈ S(h)

h(n) 6 t

1

n

We compute the Laplace transform
∫
R estdF(t) of F(·),

∫

R
est · dF(t) =

∏

p∈S(h)

(
1 −

1

p

) ∫

R
est · d

∑

n > 1

p|n ⇒ p ∈ S(h)

h(n) 6 t

1

n

=
∏

p∈S(h)

(
1 −

1

p

) ∑

n > 1

p|n ⇒ p ∈ S(h)

esh(n)

n

=
∏

p∈S(h)

(
1 −

1

p

)
·
(

1 +
esh(p)

p − 1

)

= E
[
esX(h)

]
=

∫

R
estdP (X(h) 6 t)

By uniqueness of Laplace transforms F(t) = P (X(h) 6 t) as desired. ¤
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By the discussion preceding the above lemma, we know that
∑
p6x

h(p)Xp −→
∑

p

h(p)Xp

almost surely. Thus the convergence also holds in distribution. In the next lemma we
investigate the speed of convergence in more detail.

Lemma 4.22. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Let

Vh(x; t) = P

(∑
p6x

h(p)Xp > t

)

Then Vh(x; t) = Vh(∞; t) + O(Vh(∞; t)1/4 · (log x)−1/2) uniformly in t ∈ R.

Proof. Let S(h) = {p : h(p) 6= 0}. Proceeding as in Lemma 4.21 we find that

Vh(x; t) =
∏

p ∈ S(h)

p 6 x

(
1 −

1

p

) ∑

n > 1

p|n ⇒ p ∈ S(h), p 6 x

h(n) > t

1

n
(4.45)

We first complete the product over p 6 x to a product over all primes in S(h). First of all∏
p>x,p∈S(1 − 1/p)−1 > 1. Upon expanding the Euler product we find

1 6
∏

p ∈ S(h)

p > x

(
1 −

1

p

)−1

6 1 +
∑

n > x

p|n ⇒ p ∈ S(h)

1

n
6 1 +

1

log x

∑

n > 1

p|n ⇒ p ∈ S(h)

log n

n

The rightmost sum converges by the corollary to lemma 4.18. Thus
∏

p>x,p∈S(h)(1 − 1/p)

equals to 1 + O(1/ log x). Hence (4.45) becomes

Vh(x; t) =
∏

p∈S

(
1 −

1

p

) ∑

n > 1

p|n ⇒ p ∈ S, p 6 x

h(n) > t

1

n
+ O

(
Vf(x; t)

log x

)

Forgetting about p 6 x in the above formula, we obtain, Vh(x; t) 6 Vh(∞; t)+O(Vh(x; t)/ log x).
Iterating this inequality gives Vh(x; t) 6 Vh(∞; t) + O(Vh(∞; t)/ log x). To obtain a lower
bound for Vh(x; t) we bound Vh(∞; t) − Vh(x; t) from above. By the previous equation

Vh(∞; t) − Vh(x; t) =
∏

p∈S

(
1 −

1

p

) ∑

p|n ⇒ p ∈ S(h)

∃p|n : p > x

h(n) > t

1

n
+ O

(
Vf(x; t)

log x

)
(4.46)

We overestimate the above sum by replacing the condition ∃p|n : p > x with n > x. Then
we apply Cauchy-Schwarz, singling out n > x in one term and the remaining condition
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in the second term. We select weights so as to make the sum over n > x convergent. In
more detail, we bound (4.46) by

(∑
n>x

1

n (log n)
2

)1/2

·
( ∑

m > 1

p|m ⇒ p ∈ S(h)

h(m) > t

(log m)2

m

)1/2

(4.47)

The sum on the left is ¿ 1/(log x). To bound the sum on the right we apply once again
Cauchy-Schwarz, obtaining the following bound

( ∑

m > 1

p|m ⇒ p ∈ S(h)

h(m) > t

1

m

)1/2

·
( ∑

m > 1

p|m ⇒ p ∈ S(h)

(log m)4

m

)1/2

(4.48)

By the corollary to lemma 4.18 the sum over m > 1 is O(1). By lemma 4.21 the sum on the
left is CP(X(h) > t) for some constant C > 0. Thus the above is bounded by ¿ P(X(h) >
t)1/2. By (4.46), (4.47) and (4.48), Vh(∞; t) − Vh(x; t) 6 O((log x)−1/2Vh(∞; t)1/4). On the
other hand 0 6 Vh(x; t) 6 Vh(∞; t) + O(Vh(∞; t)/ log x). The lemma follows. ¤

The next result is a rather technical corollary to the above lemma. It shows that we can
modify the random variable

∑
p6x h(p)Xp on the primes p > ξ(x) (ξ(x) → ∞) without

destroying uniform convergence (in distribution) to
∑

p h(p)Xp.

Corollary 4.23. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Let y → ∞ as x → ∞
but with y 6 x. Let H be a strongly additive function defined by

H(p) =

{ dh(p)e if p > y

h(p) otherwise

We have, uniformly in t ∈ R,

P

(∑
p6x

H(p)Xp > t

)
= P

(∑
p

h(p)Xp > t

)
+ OA

(
e−At

(log y)1/4

)

for any given A > 0.

Proof. We retain the notation Vh(x; t) from the previous lemma. Since H > h and x > y,

P

(∑
p6x

H(p)Xp > t

)
> P

(∑
p6y

h(p)Xp > t

)
= Vh(∞; t) + O

(
Vh(∞; t)1/2

(log y)1/4

)
(4.49)

where in the second equality we used the previous lemma. Further by lemma 4.19 X(h) :=∑
p h(p)Xp has an entire moment generating function. Hence, by Chernoff’s bound Vh(∞; t) 6

E[eAX(h)]e−At = OA(e−At) for any given A > 0. We conclude that the error term in (4.49) is
bounded by OA(e−At · (log y)−1/4). To derive the upper bound let us note that lemma 4.21
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and lemma 4.22 also holds for the additive function H (the important observation here is
that H(p) vanishes exactly when h(p) so H is a “small” additive function). Therefore

P

(∑
p6x

H(p)Xp > t

)
6 VH(∞; t) = VH(y; t) + O

(
VH(∞; t)1/2

(log y)1/4

)
(4.50)

Now X(H) :=
∑

p H(p)Xp also has an entire moment generating function. Hence by Cher-
noff’s bound VH(∞; t) = OA(e−At) for any given A > 0. It follows that the error term in
(4.50) is OA(e−At · (log y)−1/4). By definition of H we have the equality VH(y; t) = Vh(y; t).
By lemma 4.22 and the bound Vh(∞; t) ¿A e−At,

Vh(y; t) = Vh(∞; t) + OA

(
e−At · (log y)−1/4)

It follows that VH(y; t) = Vh(∞; t) + OA(e−At · (log y)−1/4). On combining this equality
with (4.50) we obtain the desired upper bound

P

(∑
p6x

H(p)Xp > t

)
6 Vh(∞; t) + OA

(
e−At

(log y)1/4

)

We also established a lower bound of the same quality, hence the lemma follows. ¤

4.5.2. Computing a “saddle-point integral”. The goal of this section is to prove the following
lemma.

Lemma 4.24. Let f ∈ C. LetA(s) be analytic in Re s > 0, and suppose thatA(x) does not vanish
for x > 0. Suppose that Ψ(f; t) is lattice distributed on Z. Let s := v + it with both v, t real and
v := vf(x; ∆). Given δ, ε > 0, we have

1

2π

∫π

−π

A(s) · (1/s)Ph(ξf(x; ∆); s) · (log x)
Ψ̂(f;s)−1 · e−sξf(x;∆) · dt (4.51)

= A(v)(1/v)Ph(ξf(x;∆); v) · (log x)
Ψ̂(f;v)−1−vΨ̂ ′(f;v)

(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f) · (1 + o(1))

uniformly for ∆ in the range (loglog x)ε ¿ ∆ 6 δσΨ(f; x).

First we need to show that Ph(a; s) behaves “as an analytic function”.

Lemma 4.25. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Given C > 0, uniformly
in |δ| 6 π, 0 6 v 6 C and 0 6 a 6 1,

Ph (a; v + δ) = Ph (a; v) + OC (δ)

Here δ is allowed to be a complex number. Furthermore v/(ev−1) 6 Ph(a; v) = OC(1) uniformly
in 0 6 a 6 1 and 0 6 v 6 C.

Remark. The restriction 0 6 a 6 1 is unnecessary because Ph(a; v) is 1-periodic in the a

variable.
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Proof. As usual write X(h) :=
∑

p h(p)Xp. By definition we have

Ph (a; v + δ) = (v + δ)
∑

`∈Z
e(v+δ)·(`+a) ·P (X (h) > ` + a)

We split the sum at ` < 0 and ` > 0 and handle separately the two ranges. When ` < 0 we
have P (X(h) > ` + a) = 1. Note also that z/(ez − 1) is analytic in the region {v + it : v ∈
R, |t| 6 π}. Therefore (v+δ)/(e(v+δ)−1) = v/(ev−1)+O(δ) (the implicit constant depends
on C, we won’t bother making that dependence explicit). With those two remarks in
mind, the sum over ` < 0 contributes

(v + δ)
∑

`>0

e(−`+a)·(v+δ) =
v + δ

ev+δ − 1
· ea·(v+δ)

=

(
v

ev − 1
+ O (δ)

)
· eav · (1 + O (δ))

=
v · eav

ev − 1
+ O (δ) = v

∑

`>0

e(−`+a)·v + O (δ) (4.52)

We split the sum over ` > 0,

(v + δ)
∑

`>0

e(v+δ)·(`+a) ·P (X (h) > ` + a) (4.53)

into 0 6 ` < |δ|−1 and ` > |δ|−1. When 0 6 ` 6 |δ|−1 we have

(v + δ)e(v+δ)(`+a) = ve(v+δ)(`+a) + O
(
δe(v+π)(`+1)

)

= vev(`+a) · (1 + O(δ`)) + O
(
δe(v+π)(`+1)

)

= vev(`+a) + O
(
δ`ev(`+1) + δe(v+π)(`+1)

)

= vev(`+a) + O
(
δ`e(v+π)(`+1)

)
(4.54)

Splitting the sum (4.53) into 0 6 ` < |δ|−1 and ` > |δ|−1, and using (4.54), we obtain that
(4.53) equals to

(v + δ)
∑

06`6|δ|−1

e(v+δ)(`+a) ·P (X(h) > ` + a) + O


 ∑

`>|δ|−1

e(v+π)(`+1)P (X(h) > `)




= v
∑

06`6|δ|−1

ev(`+a) ·P (X(h) > ` + a) + O

(∑

`>0

δ`e(v+π)(`+1)P (X(h) > `)

)

= v
∑

`>0

ev(`+a) ·P(X(h) > ` + a) + O

(∑

`>0

δ`e(v+π)(`+1)P (X(h) > `)

)
(4.55)

By lemma 4.19 X(h) has an entire moment generating function. Therefore for each fixed
A > 0, we have P(X(h) > t) 6 E[eAX(h)]e−At = OA(e−At). In particular we have
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P(X(h) > `) = OC(e−(C+2+π)(`+1)) = OC(e−(v+2+π)(`+1)). Thus the error term in (4.55) is
OC(δ). Adding up the estimate (4.55) and (4.52), the first assertion of the lemma follows.

The lower bound in the second assertion follows from

Ph (a; v) > v
∑

`60

ev(`+a) =
veav

ev − 1
> v

ev − 1

For the upper bound, recall that P(X(h) > `) = OC(e−(C+1)(`+1)). Therefore

Ph(a; v) 6 v
∑

`<0

ev(`+a) + v
∑

`>0

eC·(`+1) ·P(X(h) > `) ¿C
v

ev − 1
+ v = OC(1)

The lemma is now proven. ¤

Lemma 4.26. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Given ε > 0 there is a
δ > 0 such that

| exp(Ψ̂(f; v + it) − Ψ̂(f; v))| 6 1 − δ

for all π > |t| > ε and v > 0.

Proof. For any v, t ∈ R we have

Re
(
Ψ̂ (f; v + it) − Ψ̂ (f; v)

)
= Re

(∫

R
evu · (eitu − 1

)
dΨ(f;u)

)

=

∫

R
evu · (cos(tu) − 1) dΨ(f;u)

6
∫

R
(cos(tu) − 1) dΨ(f;u) = Re

(
Ψ̂ (f; it) − 1

)
(4.56)

Therefore | exp(Ψ̂(f; v + it) − Ψ̂(f; it))| 6 | exp(Ψ̂(f; it) − 1)| and it’s enough to show that
given ε > 0 there is a δ > 0 such that | exp(Ψ̂(f; it) − 1)| 6 1 − δ for all π > |t| > ε. Since
Ψ(f; t) is lattice distributed it has jumps at the integers 0, 1, 2, . . . (there are no jumps at the
negative integers because f > 0). Denote the size of each jump by λ0, λ1, . . . . Thus

Ψ̂(f; z) =

∫

R
eztdΨ(f; t) =

∑

k>0

λk · ezk

If Ψ(f; t) has all its mass concentrated at one integer k, then k = 1 and Ψ̂(f; z) = ez. In this
case the bound | exp(Ψ̂(f; it) − 1)| = exp(cos(t) − 1) 6 1 − δ for π > |t| > ε is trivial. In
the remaining case there are at least two k, ` for which λk > 0 and λ` > 0. Without loss of
generality we can assume that (k, `) = 1. Otherwise all the k for which λk > 0 would be
divisible by a common prime p; thus Ψ(f; t) would not be lattice distributed on Z (but on
pZ). Thus for two such k, `, we have

Re(Ψ̂(f; it) − 1) =
∑

r>0

λr · (cos(rt) − 1) 6 λk · (cos(kt) − 1) + λ` · (cos(`t) − 1) 6 0
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We claim that for |t| 6 π the upper bound is attained only at t = 0. Indeed suppose that
λk(cos(kt) − 1) + λ`(cos(`t) − 1) = 0. Then simultaneously cos(kt) = 1 and cos(`t) = 1.
Hence t = 2πα/` and t = 2πβ/k for some integer |α| 6 `/2 and some integer |β| 6 k/2,
because |t| 6 π. In particular 2πα/` = 2πβ/k. If t 6= 0 then α 6= 0 and β 6= 0, hence,
kα/` = β ∈ Z which is impossible because (k, `) = 1 and |α| < `. Thus Re(Ψ̂(f; it) − 1) < 0

for all 0 < |t| 6 π. Hence we have | exp(Ψ̂(f; it) − 1)| < 1 for all 0 < |t| 6 π. By continuity,
given ε > 0, there is a δ > 0 such that | exp(Ψ̂(f; it) − 1)| 6 1 − δ for all ε 6 |t| 6 π. Since

| exp(Ψ̂(f; v + it) − Ψ̂(f; v)| 6 | exp(Ψ̂(f; it) − 1)|

for all v ∈ R, the lemma follows. ¤

We are ready to prove the “general lemma”.

Proof of Lemma 4.24. The function ω(f; t) is continuous, hence the parameter v := vf(x;∆) =
ω(f;∆/σΨ(f; x)) is bounded throughout 1 6 ∆ 6 δσΨ(f; x), the bound depending only
on δ. To evaluate (4.51) we proceed with the saddle-point method. As is usually done
we split the integral into two ranges. The “tiny” range |t| 6 λ(x)(loglog x)−1/2 denoted
by M, because this range will contribute the main term, and the remaining range |t| >
λ(x)(loglog x)−1/2 denotedR. Here we choose λ(x) to be any function such that (logloglog x)4 ¿
λ(x) ¿ (logloglog x)5. Let us confine attention to how the integrand in (4.51) behaves
when t ∈M. First of all, when t ∈M, upon expanding Ψ̂(f; v + it) into a Taylor series we
obtain

Ψ̂(f; v + it) = Ψ̂(f; v) + it Ψ̂ ′(f; v) −
t2

2
· Ψ̂ ′′(f; v) + Oδ

(
λ(x)3(log2 x)−3/2

)

The δ in the error term comes from the bound 0 6 v = Oδ(1) on v. We will not indicate
the dependence on δ in our error terms. Using the above expansion and Lemma 4.8 we
conclude that

(log x)
Ψ̂(f;v+it) · e− it ξf(x;∆)

= (log x)
Ψ̂(f;v)+itΨ̂ ′(f;v)−t2/2·Ψ̂ ′′(f;v)

e−itξf(x;∆)
(
1 + O(λ(x)3(log2 x)−1/2)

)

= (log x)
Ψ̂(f;v)+itΨ̂ ′(f;v)−t2/2·Ψ̂ ′′(f;v)

(log x)
−itΨ̂ ′(f;v)

e−itc(f)
(
1 + O(λ(x)3(log2 x)−1/2

)

= (log x)
Ψ̂(f;v)−(t2/2)·Ψ̂ ′′(f;v)

e−itc(f)
(
1 + O

(
λ(x)3(log2 x)−1/2

))

= (log x)
Ψ̂(f;v)−(t2/2)·Ψ̂ ′′(f;v) · (1 + O

(
λ(x)3(log2 x)−1/2

))
(4.57)

where in the last line we used the expansion eitc(f) = 1 + O(t · c(f)) together with the
bound |t| 6 λ(x)(log2 x)−1/2. Note that |t/v| 6 |λ(x) · (loglog x)−1/2 · v−1| = o(1) because
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v ³ ∆ · (loglog x)−1/2 and λ(x) = o(∆). By lemma 4.25, when t ∈M,

(1/(v + it)) · Ph (ξf(x;∆); v + it)

= v−1 · (1 + O(t · v−1)) · (Ph(ξf(x;∆); v) + O(t))

= v−1 · Ph(ξf(x;∆); v) · (1 + Oδ(t)) · (1 + O(t · v−1))

= v−1 · Ph(ξf(x;∆); v) · (1 + O(λ(x) · (loglog x)−1/2 · v−1) (4.58)

The third line is justified by the bound Ph(a; v) Àδ 1 which follows from the inequality
Ph(a; v) > v/(ev − 1) of lemma 4.25 and v = Oδ(1). Finally by analyticity of A(z), for
t ∈M, we have

A(v + it) = A(v) + O(t)

= A(v) + O
(
λ(x) · (loglog x)−1/2

)

= A(v) · (1 + O
(
λ(x) · (loglog x)−1/2

))
(4.59)

where the last line is justified by the non-vanishing of A(v) (because A(x) 6= 0 for x > 0

and 0 6 v 6 Oδ(1) we have A(v) Àδ 1 by continuity of A(·)). From the equations (4.57),
(4.58), (4.59) and lemma 4.8, we conclude that

A(v + it) · (1/(v + it))Ph(ξf(x; ∆); v + it) · (log x)
Ψ̂(f;v+it)−1 · e−(v+it)ξf(x;∆)

= A(v) · (1/v)Ph(ξf(x;∆); v) · (log x)Ψ̂(f;v)−1−(t2/2)Ψ̂ ′′(f;v) · e−vξf(x;∆) · (1 + O(E))

= A(v) · (1/v)Ph(ξf(x;∆); v) · (log x)
A(f;v)−(t2/2)Ψ̂ ′′(f;v) · e−vc(f) · (1 + O (E)) (4.60)

where A(f; v) = Ψ̂(f; v) − 1 − vΨ̂ ′(f; v) and E := E (x; v) := λ(x)3(loglog x)−1/2 · v−1. In view
of the above relation to estimate (4.51) over t ∈M, it remains to note that∫

M
(log x)

−(t2/2)·Ψ̂ ′′(f;v) · dt

2π

=

∫

M
exp

(
−

t2

2
· Ψ̂ ′′(f; v) loglog x

)
· dt

2π

=
1

(Ψ̂ ′′(f; v) loglog x)1/2

∫λ(x)

−λ(x)

e−t2/2 · dt

2π

=
1

(Ψ̂ ′′(f; v) loglog x)1/2
·
(∫

R
e−t2/2 · dt

2π
+ o(1)

)

=
1

(2πΨ̂ ′′(f; v) loglog x)1/2
· (1 + o(1)) (4.61)

Together from (4.60) and (4.61) we conclude that the integral (4.51) restricted to t ∈M is
equal to

A(v)(1/v)Ph(ξf(x; ∆); v) · (log x)Ψ̂(f;v)−1−vΨ̂ ′(f;v)

(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f) · (1 + o(1) + O (E(x; v))
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where E(x; v) := λ(x)3(loglog x)−1/2v−1. As we noticed λ(x)3(loglog x)−1/2v−1 = o(1) be-
cause λ(x)3 = o(∆) and v ³ ∆/(loglog x)1/2. Therefore the above formula furnishes the
desired main term. It remains to bound the integral (4.51) restricted to t ∈ R. By lemma
4.25 we have Ph(a; v + it) = Ph(a; v) + O(|t|) ¿ 1 uniformly in 1 6 ∆ 6 cσ(f; x) be-
cause v ³ ∆/σ(f; x) belongs to a bounded range. Further since A(·) is analytic we have
A(v + it) ¿ 1 because v + it lies in a bounded domain. Thus (writing s = v + it)

∫

R
A(s)(1/s)Ph(ξf(x;∆); s) · (log x)Ψ̂(f;s)−1 · e−sξf(x;∆) · dt

¿ (1/v) · (log x)Ψ(f;v)−1 · e−vξf(x;∆) ·
∫

R
(log x)Re(Ψ̂(f;v+it)−Ψ̂(f;v)) · dt (4.62)

Given ε > 0, by lemma 4.26 there is a δ > 0 such that | exp(Ψ̂(f; v + it) − Ψ̂(f; v))| 6 1 − δ

for all π > |t| > ε. Exponentiating we get (log x)Re(Ψ̂(f;v+it)−Ψ̂(f;v) 6 (log x)log(1−δ) which
is sufficient to bound the part |π| > |t| > ε of the integral in (4.62). We are left with
bounding the remaining range λ(x) · (loglog x)−1/2 6 |t| 6 ε. As in the proof of Lemma
4.26, we observe that since Ψ(f; t) is lattice distributed, we have

Ψ̂ (f; z) =
∑

k>0

λk · ezk

Hence Re(Ψ̂(f; v+ it)−Ψ̂(f; v)) =
∑

k>0 λk ·evk ·(cos(kt)−1) 6 λ`(cos(`t)−1) where ` > 0 is
the first integer for which λ` > 0. In the range |t| 6 ε we have cos(`t)− 1 6 −ct2 provided
that ε is sufficiently small (of course c depends on ε and `). We reduce ε if necessary and
fix it, once it’s small enough (note that our bound over π > |t| > ε is negligible as long as
ε is fixed). Thus Re(Ψ̂(f; v + it) − Ψ̂(f; v)) 6 −ct2 for |t| 6 ε. Hence∫

R∩{|t|6ε}

(log x)
Re(Ψ̂(f;v+it)−Ψ̂(f;v)) dt

6 2

∫ ε

λ(x)·(loglog x)−1/2

exp
(
−ct2 · loglog x

)
dt 6 2 · e−cλ(x)2

Thus by (4.62) and our earlier remarks, the integral in (4.51) restricted to t ∈ R, turns out
to be bounded by

(1/v) · (log x)
Ψ̂(f;v)−1 · e−vξf(x;∆) ·

[
exp(−c · λ(x)2) + (log x)

log(1−δ)
]

which is negligible because λ(x) À logloglog x and ξf(x;∆) = Ψ̂ ′(f; v) log log x + O(1) by
lemma 4.8. Hence the integral (4.51) restricted to R is negligible. This, together with the
asymptotic for “(4.51) restricted to M” finishes the proof of the lemma. ¤

4.5.3. Proof of Proposition 4.17. We are now ready to prove Proposition 4.17.

Proof of Proposition 4.17. Let y := y(x) 6 (1/8) log log log x be a parameter growing to in-
finity so slow so as to have 1 − (log log x)−1/8 > |{h(p)} − {h(q)}| > (log log x)−1/8 for any
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two prime p, q 6 y with {h(p)} 6= {h(q)}. (Here {h(p)} denotes the fractional part of h(p)).
Let H be a strongly additive function defined by

H(p) =

{ dh(p)e if p > y

h(p) otherwise

as in corollary 4.23. For an additive function g we let Ω(g; x) =
∑

p6x g(p)Zp. Since
Ω(f; x) = Ω(g; x) + Ω(h; x) and H > h > 0, Zp > 0 we have

Ω(g; x) + Ω(h; y) 6 Ω(f; x) 6 Ω(g; x) + Ω(H; x)

Therefore, for all t ∈ R,

PFx (Ω(g; x) + Ω(h; y) > t) 6 PFx (Ω(f; x) > t) 6 PFx (Ω(g; x) + Ω(H; x) > t)

Now set t := ξf(x; ∆) = µ(f; x) + ∆σ(f; x). Our goal is to show that both the upper and
lower bound are asymptotic to the (asymptotic) expression given in proposition 4.17. We
will carry out the proof only for the upper bound, because the proof for the lower bound
is almost identical. Let v = vf(x;∆). By lemma 4.7 the parameter v is bounded when
1 6 ∆ 6 cσ(f; x). Denote by δ > 0 a real such that 0 6 v 6 δ uniformly in 1 6 ∆ 6 cσ(f; x).
Finally set s := v + it = vf(x; ∆) + it. By assumptions

EFx

[
esΩ(g;x)+sΩ(H;x)

]
= EFx

[
esΩ(g;x)

] ·
∏
p6x

(
1 −

1

p
+

esH(p)

p

)
+ O (E(x; v)) (4.63)

where E(x; v) = (log x)Ψ̂(f;v)−3/2. Note that because Zp ∈ {0; 1} and Ω(g; x) ∈ Z all the values
taken by Ω(g; x)+Ω(H; x) lie in the setN+Dh(y) whereDh(y) is the set of fractional parts
{
∑

p6y H(p)εp} = {
∑

p6y h(p)εp} , εi ∈ {0; 1} (if it seems strange that in the fractional part
we consider only the primes p 6 y then recall that by definition H(p) ∈ Z for p > y). In
particular |Dh(y)| 6 2π(y) 6 2y ¿ (log log x)1/8 (because y 6 (1/8) log log log x). Therefore
we can write

EFx

[
esΩ(g;x)+sΩ(H;x)

]
=

∑

ω∈N+Dh(y)

PFx (Ω(g; x) + Ω(H; x) = ω) · esω (4.64)

And this sum converges because it’s finite. In the same vein the main term in (4.63) is the
Laplace transform of the distribution function

F(x; t) =
∑

k∈Z
PFx (Ω(g; x) = k) ·PI

(∑
p6x

H(p)Xp 6 t − k

)
(4.65)

Here the Xp are independent Bernoulli random variable over some probability space
(Θ; I). Their distribution is given by P(Xp = 1) = 1/p and P(Xp = 0) = 1 − 1/p. All
the “jumps” of F(x; t) are contained in the set N + Dh(y). Thus the main term in (4.63)
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admits an expansion
∑

ω∈N+Dh
δω · esω similar to the one in (4.64). Consider the “kernel”

K(s; t) =
∑

ω ∈ N+Dh(y)

ω > t

e−sω =
∑

k ∈ Z
k > t − 2

e−sk
∑

d ∈ Dh(y)

k + d > t

e−sd

which is in modulus bounded by ¿ (1/v)e−vt · |Dh(y)| ¿ (1/v)e−vt · (log log x)1/8. Let
ξ := ξf(x;∆). We will keep this abbreviation in use. Multiplying the left hand side of
(4.63) by K(s; ξ) and integrating with (2 log log x)−1

∫log log x

− log log x
. . . dt we obtain

∑

ω∈N+Dh(y)

PFx(Ω(g; x) + Ω(H; x) = ω)
∑

ω ′∈N+Dh(y),ω ′>ξ

ev(ω−ω ′)

2 log log x

∫ log log x

− log log x

eit(ω−ω ′)dt

If ω 6= ω ′ (with ω,ω ′ ∈ N + Dh(y)) then by our choice of y we have 1 − (log log x)−1/8 >
|{ω} − {ω ′}| > (log log x)−1/8. It follows that (2 log log x)−1

∫log log x

− log log x
eit(ω−ω ′)dt = Iω=ω ′ +

O((log log x)−7/8). (Here Iω=ω ′ is the indicator function of ω = ω ′). Hence the previous
equation simplifies to

PFx(Ω(g; x) + Ω(H; x) > ξ) + O(EFx

[
ev(Ω(g;x)+Ω(H;x))

]
(1/v)e−vξ · |Dh(y)| · (log log x)−7/8)

and by our assumptions and lemma 4.8 the error term is¿ (1/v)(log x)A(f;v)·(log log x)−3/4,
where as usual A(f; v) = Ψ̂(f; v) − vΨ̂ ′(f; v) − 1. Similarly, multiplying the right hand side
of (4.63) by K(s; ξ) and then integrating over (2 log log x)

∫log log x

− log log x
. . . dt gives

1 − F(x; ξ) + O((1/v)(log x)A(f;v) · (log log x)−3/4)

(Where F(x; t) is defined by (4.65)). Therefore multiplying both sides of (4.63) by K(s; ξ)
and integrating as we’ve done before, we obtain the equality

PFx (Ω(g; x) + Ω(H; x) > ξ) = 1 − F(x; ξ) + O((1/v)(log x)A(f;v) · (log log x)−3/4) (4.66)

Note that the error term is negligible compared to the (expected) size of the main. Thus in
view of (4.66) and our earlier remark it remains to estimate 1−F(x; ξ). To ease notation let
ΩX(H; x) =

∑
p6x H(p)Xp where the Xp are independent Bernoulli random variables over

the probability space (Θ; I). Rewriting (4.65) and using Cauchy’s formula, we obtain

1 − F(x; ξ) =
∑

k∈Z
PFx (Ω(g; x) = bξc− k) ·PI (ΩX(H; x) > {ξ} + k)

=
∑

k∈Z

[∫π

−π

EFx

[
esΩ(g;x)

]
e−sbξc+sk · dt

2π

]
·PI (ΩX(H; x) > {ξ} + k)

=

∫π

−π

EFx

[
esΩ(g;x)

]
e−sbξc ·

∑

k∈Z
eskPI (ΩX(H; x) > {ξ} + k) · dt

2π
(4.67)
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We massage the above expression. Let X(h) :=
∑

p h(p)Xp. By Corollary 4.23,
∑

k>0

esk ·PI (ΩX (H; x) > {ξ} + k)

=
∑

k>0

esk ·
[
PI (X(h) > {ξ} + k) + Oδ

(
e−(2δ+1)k

(log y)1/4

)]
(4.68)

Since Re s = v 6 δ the error term simplifies to O((log y)−1/4). Also, note that for k < 0

we trivially have PI(ΩX(H; x) > {ξ} + k) = 1 = PI(X(h) > {ξ} + k). Thus the identity∑
k<0 eskPI(ΩX(H; x) > {ξ}+k) =

∑
k<0 eskPI(X(h) > {ξ}+k) holds. Adding this identity

to (4.68), we obtain
∑

k∈Z
eskPI (ΩX(H; x) > {ξ} + k) =

∑

k∈Z
eskPI (X(h) > {ξ} + k) + Oδ

(
(log y)−1/4

)

= e−s{ξ} · (1/s)Ph(ξ; s) + Oδ

(
(log y)−1/4

)

Inserting the above into (4.67) yields

1 − F(x; ξ) =

∫π

−π

EFx

[
esΩ(g;x)

] Ph(ξ; s)dt

esξ · 2πs
+ O

(∫π

−π
|EFx[e

sΩ(g;x)]|dt

evξ · (log y)1/4

)
(4.69)

Since 0 6 v 6 δ we have EFx

[
esΩ(g;x)

] ¿δ (log x)Re(Ψ̂(f;s))−1 + (log x)Ψ̂(f;v)−3/2, by assump-
tions, because A(s) is analytic hence bounded in the (bounded) region 0 6 Re s 6 δ and
| Im s| 6 2π. Therefore the error term in (4.69) is bounded by

(log x)Ψ̂(f;v)−1

(log y)1/4
· e−vξ

∫π

−π

(log x)Re(Ψ̂(f;s)−Ψ̂(f;v)) · dt + (log x)Ψ̂(f;v)−3/2 · e−vξ (4.70)

Since Ψ(f; t) is lattice distributed we have Ψ̂(f; s) =
∑

k>0 λke
zk with λk > 0 not all zero.

Thus Re(Ψ̂(f; v + it) − Ψ̂(f; v)) 6 λk(cos(kt) − 1) for some k with λk > 0. Hence the
integral in (4.70) is 6

∫
(log x)λk(cos(kt)−1)dt ¿ (loglog x)−1/2. Thus, (4.70) is bounded by

(log x)Ψ̂(f;v)−1e−vξ(loglog x)−1/2 · (log y)−1/4 which is ¿ (log x)A(f;v)(log log x)−1/2(log y)−1/4

by lemma 4.8. Furthermore we have
∫π

−π

EFx

[
esΩ(g;x)

]
e−sξ · Ph(ξ; s)

s
· dt

2π
(4.71)

=

∫π

−π

A(s) (log x)
Ψ̂(f;s)−1

e−sξ · Ph(ξ; s)

s
· dt

2π
+ Oδ

(
(1/v)(log x)Ψ̂(f;v)−3/2e−vξ

)

becauseEFx

[
esΩ(g;x)

]
= A(s)(log x)Ψ̂(f;s)−1+O((log x)Ψ̂(f;v)−3/2) by assumptions, |Ph(a; s)| =

Oδ(1) by lemma 4.25 and A(s) = Oδ(1) because s = v + it lies in a bounded domain and
A(s) is an analytic function. By lemma 4.8 the error term in (4.71) is¿ (1/v)(log x)A(f;v)−1/2.
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Collecting (4.66), (4.69) and (4.71) gives

PFx (Ω(g; x) + Ω(H; x) > ξ) =

∫π

−π

A(s) (log x)
Ψ̂(f;s)−1

e−sξPh(ξ; s)dt

2πs
+ O (Err) (4.72)

where Err := (1/v)(log x)A(f;v)·(loglog x)−1/2·(log y)−1/4 (and A(f; v) = Ψ̂(f; v)−vΨ̂ ′(f; v)−1).
By lemma 4.24 the integral in (4.72) is asymptotic to

A(v)(1/v)Ph(ξf(x;∆); v) · (log x)
Ψ̂(f;v)−1−vΨ̂ ′(f;v)

(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f) · (1 + o(1)) (4.73)

uniformly in (loglog x)ε ¿ ∆ ¿ σ(f; x). Since 0 6 v 6 δ is bounded we have A(v) Àδ 1

because A(·) is continuous and non-zero on the positive real axis, and Ph(ξ; v) Àδ 1 by
lemma 4.25. Thus A(v)Ph(ξ; v) Àδ 1. Since in addition log y −→ ∞ the error term Err in
(4.72) is negligible compared to (4.73). By (4.72) and (4.73), it follows that PFx(Ω(g; x) +
Ω(H; x) > ξ) is asymptotic to (4.73). Because

PFx (Ω(f; x) > ξ) 6 PFx (Ω(g; x) + Ω(H; x) > ξ)

this gives an upper bound for PFx(Ω(f; x) > ξ) that is “asymptotically” correct. In
the same way as above we establish that PFx(Ω(g; x) + Ω(h; y) > ξ) is asymptotic to
(4.73). Since PFx(Ω(g; x) + Ω(h; y) > ξ) 6 PFx(Ω(f; x) > ξ) this gives a lower bound for
PFx(Ω(f; x) > ξ) that is “asymptotically” correct. The proposition follows. ¤

5. AN ASYMPTOTIC FOR Df(x; ∆)

The object of this section is to prove Theorem 2.8. This theorem turns out to be con-
sequence of the three general propositions from the previous section. We break down
the proof into three parts, corresponding to the case when (loglog x)ε ¿ ∆ ¿ σ(f; x) and
Ψ(f; t) is not lattice distributed, the case when (loglog x)ε ¿ ∆ ¿ σ(f; x) and Ψ(f; t) is lat-
tice distributed on αZ, and the remaining case when ∆ is in the range 1 6 ∆ = o(σ(f; x)).

5.1. Df(x;∆) when Ψ(f; t) is not lattice distributed.

Lemma 5.1. Let f ∈ C. For any given κ > 0 the function 1/Γ(Ψ̂(f; z)) is uniformly bounded in
Re z 6 κ.

Proof. We have |Ψ̂(f; z)| 6 Ψ̂(f; κ) for Re z 6 κ. The function 1/Γ(z) is entire, hence
bounded for |z| 6 Ψ̂(f; κ). It follows that 1/Γ(Ψ̂(f; z)) is bounded for Re z 6 κ. ¤

Proof of Part (3) of Theorem 2.8. Consider a random variable Ω(f; x) with distribution func-
tion

P (Ω(f; x) 6 t) = (1/bxc)
∑

n 6 x

f(n) 6 t

1 (5.1)
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Since f ∈ C, by the mean-value theorem of Proposition 4.1

E
[
esΩ(f;x)

]
=

1

bxc
∑
n6x

esf(n)

=
L(f; s)

Γ(Ψ̂(f; s))
· (log x)Ψ̂(f;s)−1 + O

(
(log x)Ψ̂(f;κ)−3/2

)
(5.2)

uniformly in 0 6 κ := Re s 6 C, | Im s| 6 loglog x, for any given C > 0. By lemma 4.4
the function L(f; s) is entire, and bounded by L(f; s) = OC,ε(1 + | Im s|ε) uniformly in 0 6
Re s 6 C. Furthermore, from the product representation for L(f; z), it is clear that L(f; x)

does not vanish for any x > 0. The same properties hold true for 1/Γ(Ψ̂(f; s)). Indeed, by
lemma 4.2 the function Ψ̂(f; s) is entire, hence 1/Γ(Ψ̂(f; s)) is. All the zeroes of 1/Γ(s) are
located in Re s 6 0. Hence 1/Γ(Ψ̂(f; x)) does not vanish, because Ψ̂(f; x) > Ψ̂(f; 0) > 0 for
x > 0. Finally by Lemma 5.1 the function 1/Γ(Ψ̂(f; s)) is uniformly bounded in Re s 6 C,
for any given C > 0. It follows that the product

A(s) :=
L(f; s)

Γ(Ψ̂(f; s))

is entire, non-vanishing on the positive real line, and A(s) = OC,ε(1 + | Im s|ε) uniformly
in 0 6 Re s 6 C, for any given C > 0. In addition (5.2) holds. Hence our second “general
result” – proposition 4.10 – applies, and we obtain that uniformly in (loglog x)ε ¿ ∆ 6
cσ(f; x),

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)
∼

L(f; v)

Γ(Ψ̂(f; v))
· (log x)

Ψ̂(f;v)−1−vΨ̂ ′(f;v)
e−vc(f)

v(2πΨ̂ ′′(f; v) loglog x)1/2
, v = vf(x;∆)

By (5.1) the term on the left hand side equals to Df(x; ∆). The result follows. ¤

5.2. Df(x;∆) when Ψ(f; t) is lattice distributed on Z. As usual when Ψ(f; t) is lattice dis-
tributed we introduce the strongly additive functions g and h defined by

g(p) =

{
f(p) if f(p) ∈ Z
0 otherwise and h(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

Of course f = g+h. The next lemma is proved by a rather standard convolution argument
(note that by lemma 4.4, we already have an asymptotic for

∑
n≤x esf(n)).

Lemma 5.2. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Given C > 0, uniformly
in 0 6 κ := Re s 6 C, | Im s| 6 log log x and strongly additive functions H(·) such that 0 6
H(p) 6 dh(p)e,

1

x

∑
n6x

esg(n)+sH(n) =
1

x

∑
n6x

esg(n) ·
∏
p6x

(
1 +

esH(p) − 1

p

)
+ OC

(
(log x)Ψ̂(f;κ)−3/2

)
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Furthermore, for any given C > 0, uniformly in 0 6 κ := Re s 6 C, | Im s| 6 2π,

1

x

∑
n6x

esg(n) =
L(g; s)

Γ(Ψ̂(f; s))
· (log x)

Ψ̂(f;s)−1
+ OC

(
(log x)Ψ̂(f;κ)−3/2

)

Proof. Let S(h) = {p : h(p) 6= 0} . Using the definition of g and h we find

∑

n>1

ezf(n)

ns
=

∏

p 6∈S(h)

(
1 +

ezg(p)

ps − 1

)
·

∏

p∈S(h)

(
1 +

ezh(p)

ps − 1

)

=
∑

n>1

ezg(n)

ns
·

∏

p∈S(h)

(
1 +

ezh(p) − 1

ps

)

Note that H(p) vanishes when h(p) does. Hence H(p) = 0 when p 6∈ S(h). Therefore we
can write

∑

n>1

ezg(n)+zH(n)

ns
=

∏

p 6∈S(h)

(
1 +

ezg(p)

ps − 1

) ∏

p∈S(h)

(
1 +

ezH(p)

ps − 1

)

=
∑

n>1

ezg(n)

ns

∏

p∈S(h)

(
1 +

ezH(p) − 1

ps

)

=
∑

n>1

ezf(n)

ns

∏

p∈S(h)

1 + (ezH(p) − 1) · p−s

1 + (ezh(p) − 1) · p−s

=
∑

n>1

ezf(n)

ns
·
∑

n>1

g(z;n)

ns
(5.3)

Here the function g(z; n) is multiplicative, and given explicitly by g(z;pα) = (−1)α ·
(ezh(p) − 1)α−1 · (ezh(p) − ezH(p)). To proceed we need to make a few simple remarks about
g(z;n). Since 0 6 H(p) 6 h(p) + 1 we have for 0 6 κ := Re z,

|g(z;pα)| 6
(
2eκh(p)

)α−1 · 2eκ(h(p)+1) 6 (2eκ)α · eκh(p)α

Hence |g(z;n)| 6 (2eκ)Ω(n) · eκh(n) where h(n) is an additive function defined by h(pα) =

h(p)α. In particular |g(z;n)| 6 (2eC)Ω(n) · eCh(n) in the half-plane Re z 6 C. Note also that
g(z;pα) = 0 whenever p 6∈ S(h). Therefore g(z; n) = 0 unless all the prime factors of n

belong to S(h). We are now ready to start the proof of the lemma. Because of (5.3),

∑
n6x

ezg(n)+zH(n) =
∑

d6x

g(z; d) ·
∑

n6x/d

ezf(n)
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To evaluate the above sum we use proposition 4.1. By proposition 4.1, for any fixed C > 0,
the above sum equals to

L(f; z)

Γ(Ψ̂(f; z))

∑

d6x

g(z; d)

d

(
log

x

d

)Ψ̂(f;z)−1

+ O


∑

d6x

|g(z; d)|

d
· (log x)

Ψ̂(f;κ)−3/2
+

∑

d>√x

|g(z;d)|

d


 .

(5.4)
uniformly in 0 6 κ := Re z 6 C and | Im z| 6 log log x. We’ll see in a second (see discussion
after equation (5.6)) that

∑
d>√x |g(z; d)| · d−1 ¿ (log x)−1. As for the remaining sum in

the error term, we bound
∑

d6x |g(z; d)| · d−1 by an Euler product, and inside the Euler
product we bound |g(z; pα)| by (2eC)α · (eCh(p)α). Note that the Euler product will be taken
over the primes p ∈ S(h) because g(z;d) = 0 unless all the primes factors of d are in S(h).
Thus

∑

d6x

|g(z; d)|

d
6

∏

p∈S(h)

(
1 +

∑

α>1

(2eC)α · eCh(p)α

pα

)

Since h(p) = o(log p) (to see this: by (1.3) f(p) = o(log p) hence h(p) = o(log p)) there is
an constant K := K(C) > 0 such that the above product is bounded by

∏
p∈S(h)(1 + K ·

eCh(p) · p−1). This last product is finite by lemma 4.19. Hence the error term in (5.4) is
¿ (log x)−1 + (log x)Ψ̂(f;κ)−3/2 ¿ (log x)Ψ̂(f;κ)−3/2. It remains to estimate the main term in
(5.4). First we rewrite the main term as

L(f; z)

Γ(Ψ̂(f; z))
· (log x)

Ψ̂(f;z)−1
∑

d6x

g(z; d)

d
·
(

1 −
log d

log x

)Ψ̂(f;z)−1

(5.5)

We split the sum over d 6 x into two ranges. The range 1 6 d 6 y := exp
(
(log x)1/4

)
and the remaining range d > y on which we simply bound by

∑
d>y |g(z;d)| · d−1. In the

range d 6 y we use (1 − log d/ log x)Ψ̂(f;z)−1 = 1 + O((log x)−3/4), which is valid because
|Ψ̂(f; z)| 6 Ψ̂(f; C) and log d ¿ (log x)1/4. Thus

∑

d6x

g(z;d)

d
·
(

1 −
log d

log x

)Ψ̂(f;z)−1

(5.6)

=
∑

d6y

g(z;d)

d
·
(

1 + O

(
1

(log x)3/4

))
+ O

(∑

d>y

|g(z;d)|

d

)

=
∏

p

(
1 +

∑

α>1

g(z;pα)

pα

)
+ O

(
1

(log x)3/4

∑

d6y

|g(z; d)|

d

)
+ O

(∑

d>y

|g(z;d)|

d

)

We bound the second error term in the exactly the same way as before, getting a bound
of O((log x)−3/4). The third error term requires a different approach. Recall that g(z;n)
vanishes if not all the prime factors of n are in S(h). Therefore to the sum

∑
d>y |g(z;d)| ·
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d−1 we can add the condition p|d ⇒ p ∈ S(h) without altering its value. Furthermore
using the inequality |g(z;n)| 6 (2eC)Ω(n) · eCh(n) and then applying Cauchy-Schwarz’s
inequality we obtain

∑

d > y

p|d ⇒ p ∈ S(h)

|g(z;d)|

d
6

( ∑

p|n⇒p∈S(h)

(
4e2C

)Ω(n)

n

)1/2

·
( ∑

n > y

p|n ⇒ p ∈ S(h)

e2Ch(n)

n

)1/2

The first sum warps into an Euler product which is finite by lemma 4.18 (and some ele-
mentary bounding). To the second sum we apply once again a Cauchy-Schwarz inequal-
ity, thus obtaining the upper bound

6
( ∑

p|n⇒p∈S(h)

e4Ch(n)

n

)1/2

·
( ∑

p|n ⇒ p ∈ S(h)

n > y

1

n

)1/2

Again the first sum can be rewritten as a (finite) Euler product. The second sum is
bounded by ¿ (log y)−A ·∑p|n⇒p∈S(h)(log n)A · n−1 ¿ (log y)−A where the second bound
comes from the corollary to lemma 4.18. It now follows that

∑
d>y |g(z;d)|·d−1 ¿ (log y)−A.

Inserting this estimate in (5.6) yields

∑

d6x

g(z; d)

d
·
(

1 −
log d

log x

)Ψ̂(f;z)−1

=
∏

p

(
1 +

∑

α>1

g(z; pα)

pα

)
+ O

(
1

(log x)3/4

)

=
∏

p

1 + (ezH(p) − 1) · p−1

1 + (ezh(p) − 1) · p−1
+ O

(
1

(log x)3/4

)

In the second line we simply use the definition of g(z;pα) (see (5.3)). By lemma 4.4 and
lemma 5.1 we have L(f; z)/Γ(Ψ̂(f; z)) ¿C 1+ | Im z| ¿C log log x uniformly in 0 6 Re z 6 C,
| Im z| 6 log log x. Multiplying both sides of the above equation by L(f; z)/Γ(Ψ̂(f; z))(log x)Ψ̂(f;z)−1

gives an asymptotic for (5.5). In turn an asymptotic for (5.5) allows us to evaluate (5.4)

(because (5.5) is the main term for (5.4)). Since (5.4) is equal to (1/x)
∑

n6x ezg(n)+zH(n) we
conclude that

1

x

∑
n6x

ezg(n)+zH(n) =
L(f; z)

Γ(Ψ̂(f; z))

∏
p

1 + (ezH(p) − 1)p−1

1 + (ezh(p) − 1)p−1
· (log x)

Ψ̂(f;z)−1
+ O (E(x;κ))

=
L(g; z)

Γ(Ψ̂(f; z))

∏
p

(
1 −

1

p
+

ezH(p)

p

)
· (log x)

Ψ̂(f;z)−1
+ O (E(x;κ))

where E(x;κ) := (log x)
Ψ̂(f;κ)−3/2. The second line follows from the definition of L(f; z) and

the fact that Ψ̂(f; z) = Ψ̂(g; z) when Ψ(f; t) is lattice distributed on Z. The above formula
holds uniformly in strongly additive functions H such that 0 6 H(p) 6 dh(p)e. Choosing
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H = 0 yields the second claim of the lemma. Choosing H arbitrary (with the restriction
H(p) = 0 for p > x) and comparing the resulting asymptotic with an asymptotic for∑

n6x ezg(n) we obtain the first claim of the lemma. ¤

Proof of Part (4) of Theorem 2.8. Let Ωx := [1, x] ∩ N and Fx = P(Ωx), where P(Ωx) is the
power-set of Ωx. Then (Ωx,Fx) equipped with the measure PFx(A) = (1/bxc) · Card(A)
forms a probability space. Define the random variables

Zp(n) :=

{
1 if p|n

0 otherwise

so that

PFx

(∑
p6x

f(p)Zp(n) > t

)
=

1

bxc ·#
{
n 6 x : f(n) > t

}
(5.7)

By lemma 5.2, for any given C > 0, we have uniformly in 0 6 κ := Re s 6 C, | Im s| 6
log log x and uniformly in strongly additive H(·) such that 0 6 H(p) 6 dh(p)e,

EFx

[
esΩ(g;x)+sΩ(H;x)

]
=

1

bxc
∑
n6x

esg(n)+sH(n)

=

(
1

bxc
∑
n6x

esg(n)

)∏
p6x

(
1 −

1

p
+

esH(p)

p

)
+ O (E(x; κ))

= EFx

[
esΩ(g;x)

] ·
∏
p6x

(
1 −

1

p
+

esH(p)

p

)
+ O (E(x; κ)) (5.8)

with E(x;κ) := (log x)Ψ̂(f;κ)−3/2. By the same lemma

EFx

[
esΩ(g;x)

]
=

L(g; s)

Γ(Ψ̂(f; s))
· (log x)

Ψ̂(f;s)−1
+ O (E(x;κ)) (5.9)

uniformly in 0 6 κ := Re s 6 C and | Im s| 6 2π. The function G(s) := L(g; s)/Γ(Ψ̂(f; s))
is entire by lemma 4.20 and lemma 4.2. In addition G(x) 6= 0 for x > 0 – on the one
hand it is clear that L(g; x) 6= 0 for x > 0, just by looking at its product representation;
on the other hand Ψ̂(f; x) > Ψ̂(f; 0) = 1 for x > 0, hence 1/Γ(Ψ̂(f; x)) 6= 0 for x > 0,
because 1/Γ(z) vanishes only in the Re z 6 0 half-plane. Thus by (5.8), (5.9) and the two
properties of G(s) we just mentioned, the assumptions of proposition 4.17 are satisfied.
Applying proposition 4.17 we obtain the desired asymptotic for (5.7) when t := ξf(x;∆) =
µ(f; x) + ∆σ(f; x). ¤

5.3. Df(x;∆) when 1 6 ∆ 6 o(σ(f; x)). The desired asymptotic for Df(x; ∆) (the one indi-
cated in part 2 of theorem 2.8) follows in the range (loglog x)ε ¿ ∆ 6 o(σ(f; x)) from part
3 and part 4 of theorem 2.8. There is some care needed in adapting those asymptotics to
the desired form. Also the case when Ψ(f; t) is lattice distributed on αZ (α 6= 1) requires
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a little bit of additional work. The two lemmata below are a preparation to handle this
case.

Lemma 5.3. Let f ∈ C. For real α > 0 define vα := vf/α(x;∆) and v := vf(x;∆). We have
Ψ̂(k)(f/α; z) = (1/α)k · Ψ̂(k)(f; z/α) and vα/α = v. In particular Ψ̂(f/α; vα) = Ψ̂(f; v).

Proof. Note that Ψ(f/α; t) = Ψ(f;αt). Therefore Ψ̂(f/α; z) = Ψ̂(f; z/α). Differentiating we
obtain Ψ̂(k)(f/α; z) = (1/α)k · Ψ̂(k)(f; z/α). It remains to prove that vα/α = v. By definition

Ψ̂ ′(f/α; vα) = Ψ̂ ′(f/α; 0) +
∆

σΨ(f/α; x)
· Ψ̂ ′′(f/α; 0)

Note that σΨ(f/α; x) = (1/α)σΨ(f; x). Thus the above formula transforms into

(1/α)Ψ̂ ′(f; vα/α) = (1/α)Ψ̂ ′(f; 0) + (1/α) · ∆

σΨ(f; x)
· Ψ̂ ′′(f; 0)

By definition of v, the right hand side equals to (1/α)Ψ̂ ′(f; v). Thus we obtain Ψ ′(f; vα/α) =

Ψ̂ ′(f; v). The function Ψ̂ ′(f; x) is strictly increasing for x > 0. It follows that vα/α = v as
desired. ¤
Lemma 5.4. Let α > 0 be given and f ∈ C. For all x,∆ > 1,

Sf(x;∆) = Sf/α(x;∆)

Proof. Let vα := vf/α(x; ∆) and v := v1. By the previous lemma

Ψ̂(f/α; vα) − vα · Ψ̂ ′(f/α; vα) = Ψ̂(f; v) − vΨ̂ ′(f; v)

Furthermore vα · Ψ̂ ′′(f/α; vα)1/2 = v · Ψ̂ ′′(f; v)1/2. Therefore

(log x)Ψ̂(f/α;vα)−vαΨ̂ ′(f/α;vα)−1

vα · (2πΨ̂ ′′(f/α; vα) loglog x)1/2
=

(log x)Ψ̂(f;v)−vΨ̂ ′(f;v)−1

v · (2πΨ̂ ′′(f; v) loglog x)1/2

The right hand side equals to Sf(x;∆), while the left hand side to Sf/α(x; ∆). It follows that
Sf(x;∆) = Sf/α(x;∆) as desired. ¤
Proof of Part (1) and Part (2) of Theorem 2.8. When ∆ 6 o(σ(f; x)) then by lemma 4.7 v =
vf(x;∆) ³ ∆/σΨ(f; x) = o(1). We claim that

L(f; v)e−vc(f)/Γ(Ψ̂(f; v)) = 1 + o(1) (5.10)

L(g; v)e−vc(f)/Γ(Ψ̂(f; v)) = 1 + o(1) (5.11)
Ph(a; v) = 1 + o(1) uniformly in 0 6 a 6 1 (5.12)

Let G(z) := L(f; z)e−zc(f)/Γ(Ψ̂(f; z)). The function G(z) is entire by lemma 4.4 and lemma
4.2. Therefore G(v) = G(0) + O(v) = 1 + o(1). The same proof goes for (5.11). Recall that

Ph(a; v) =
v

ev − 1
+ v

∑

k>0

ev(k+a) ·P (X(h) > k + a)
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We have v/(ev − 1) = 1 + O(v). Also the sum on the right is O(1) throughout 0 6 v 6 1/2

(because by lemma 4.19, E[eX(h)] < ∞ henceP(X(h) > k) 6 e−k ·E[eX(h)]). Thus Ph(a; v) =
1 + O(v) uniformly throughout 0 6 v 6 1/2. Now, if Ψ(f; t) is not lattice distributed and
(loglog x)ε ¿ ∆ 6 o(σ(f; x)) then by (5.10) and part 3 of theorem 2.8

Df(x;∆) ∼
L(f; v) · e−vc(f)

Γ(Ψ̂(f; v))
· Sf(x; ∆) ∼ Sf(x; ∆)

If Ψ(f; t) is lattice distributed on Z and (loglog x)ε ¿ ∆ 6 o(σ(f; x)) then by (5.11), (5.12)
and part 4 of theorem 2.8,

Df(x; ∆) ∼
L(g; v)e−vc(f)

Γ(Ψ̂(f; v))
· Ph(ξf(x; ∆); v) · Sf(x;∆) ∼ Sf(x; ∆)

Now consider the case when Ψ(f; t) is lattice distributed on αZ (α 6= 1) and ∆ is in the
range (loglog x)ε ¿ ∆ 6 o(σ(f; x)). Let vα := vf/α(x;∆). We reduce this case to the pre-
vious one. Note that Df(x;∆) = Df/α(x;∆) and that Ψ(f/α; t) is lattice distributed on Z.
Therefore, using part 4 of theorem 2.8,

Df(x; ∆) = Df/α(x; ∆) ∼
L(gf/α; vα)e−vαc(f/α)

Γ(Ψ̂(f/α; vα))
· Phf/α

(ξf/α(x;∆); vα) · Sf/α(x; ∆)

By lemma 5.3, vα := vf/α(x;∆) = αv = o(1). Thus the terms on the left to Sf/α(x;∆)
are 1 + o(1). It follows that the right hand side in the above equation is asymptotic to
Sf/α(x;∆). But by lemma 5.4, Sf/α(x; ∆) = Sf(x; ∆). Hence Df(x;∆) ∼ Sf(x;∆) as desired.
It remains to show that Df(x;∆) ∼ (1/

√
2π)

∫∞
∆

e−u2/2 · du when ∆ is in the range ∆ 6
o(σ(f; x)1/3) = o((loglog x)1/6). This is a consequence of proposition 4.9. Indeed, let the
random variable Ω(f; x) be defined by P(Ω(f; x) 6 t) = (1/bxc)#{n 6 x : f(n) 6 t}. Then,
by proposition 4.1,

E
[
esΩ(f;x)

]
=

1

bxc
∑
n6x

esf(n) =
L(f; s)

Γ(Ψ̂(f; s))
· (log x)

Ψ̂(f;s)−1
+ O

(
(log x)Ψ̂(f;κ)−3/2

)

uniformly in |s| 6 ε for any given ε > 0. Since L(f; s)/Γ(Ψ̂(f; s)) is entire (by lemma 4.4
and lemma 4.2) and non-zero at s = 0 proposition 4.9 is applicable. It follows that

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)
∼

1√
2π

∫∞

∆

e−u2/2 · du

uniformly in 1 6 ∆ 6 o(σ(f; x)1/3). Since the left hand is equal toDf(x; ∆) we are done. ¤

6. THE “STRUCTURE THEOREM”

We break down the proof of Theorem 1.1 into three parts corresponding to the range
1 6 ∆ 6 o(σα), 1 6 ∆ 6 o(σ) and 1 6 ∆ ¿ σ. Throughout (just as in the statement of
theorem 1.1) σ := σ(x) stands for a function such that σ(f; x) ∼ σ(x) ∼ σ(g; x).
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6.1. The 1 6 ∆ 6 o(σ(x)α) range. We now prove Part (1) and Part (2) of Theorem 1.1.
The rough idea of the proof is this: We show that Df(x;∆) ∼ Dg(x;∆) holds in the range
1 6 ∆ 6 o(σα) if and only if the first ρ(α) := d(1 + α)/(1 − α)e coefficients of some power
series agree. Then we relate the equality of those coefficients to the equality of moments∫

tkdΨ(f; t) =
∫

tkdΨ(g; t) for k = 3, 4, . . . , ρ(α).
Let us also note at the outset that the function we will be dealing with, namely ω(f; z)
and A(f; z) are respectively analytic in a neighborhood of R+ ∪ {0} (lemma 4.7) and entire
(lemma 4.2).

Lemma 6.1. Let f ∈ C. Given ε > 0, uniformly in (loglog x)ε ¿ ∆ 6 o(σ(f; x)),

Df(x;∆) ∼ (1/
√

2π∆) · (log x)
E(f;∆/σΨ(f;x))

where E(f; z) := A(f;ω(f; z)). The functions A(f; z) and ω(f; z) are defined in section 3.

Proof. Let v := vf(x;∆). By lemma 4.7, v ∼ ∆/σΨ(f; x) when ∆ 6 o(σ(f; x)), and in particu-
lar v = o(1). Thus Ψ̂ ′′(f; v) = Ψ̂ ′′(f; 0) + o(1) and

v(2πΨ̂ ′′(f; v) loglog x)1/2 ∼ (∆/σΨ(f; x)) · (2π · Ψ̂ ′′(f; 0) loglog x)1/2 =
√

2π∆ (6.1)

the last equality comes from σΨ(f; x)2 = Ψ̂ ′′(f; 0) loglog x. By definition of v and ω(f; ·) we
have v = ω(f; ∆/σΨ(f; x)), and so

Ψ̂(f; v) − 1 − vΨ̂ ′(f; v) = A(f; v) = E(f;∆/σΨ(f; x)) (6.2)

By part 2 of theorem 2.8, uniformly in (loglog x)ε ¿ ∆ 6 o(σ(f; x)),

Df(x;∆) ∼
(log x)

Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
, v := vf(x; ∆)

By (6.1), (6.2) the right hand side is asymptotic to (
√

2π∆)−1(log x)E(f;∆/σΨ(f;x)) ¤
We now relate the asymptotic behaviour of Df(x; ∆) to the coefficients of E(f; z) =∑
k>0 akz

k.

Lemma 6.2. Let f, g ∈ C. Let ε > 0 be given. Suppose that σΨ(f; x) = σΨ(g; x) and denote by
σΨ = σΨ(x) a function such that σΨ(f; x) = σΨ(x) = σΨ(g; x). The asymptotic relation

Df(x; ∆) ∼ Dg(x;∆)

holds uniformly in the range (loglog x)ε ¿ ∆ 6 o(σα
Ψ) if and only if the first ρ(α) := d(1 + α)/(1 − α)e

coefficients of E(f; z) := A(f;ω(f; z)) and E(g; z) := A(g; ω(g; z)) agree.

Proof. By lemma 6.1Df(x;∆) ∼ Dg(x;∆) holds uniformly in (loglog x)ε ¿ ∆ 6 o(σα
Ψ) if and

only if
loglog x · (E(f;∆/σΨ) − E(g;∆/σΨ)) = o(1) (6.3)

throughout (loglog x)ε ¿ ∆ 6 o(σα
Ψ). Let e(z) := E(f; z) − E(g; z) and denote by an the

n-th coefficient in the Taylor expansion of e(z) about z = 0.
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Suppose to the contrary that (6.3) holds in (loglog x)ε 6 ∆ 6 o(σα
Ψ) but am 6= 0 for some

integer m 6 ρ(α). Let m be the first such integer. Then

e(∆/σΨ) = am · (∆/σΨ)
m · (1 + O (∆/σΨ)) (6.4)

In (6.4) choose ∆ = σ
1−2/m
Ψ . This choice of ∆ is allowed (i.e we have ∆ = o(σα

Ψ)) because
ρ(1 − 2/m) = m − 1 < ρ(α), hence 1 − 2/m < α and thus ∆ = σ

1−2/m
Ψ = o(σα

Ψ). With this
choice of ∆ by (6.4), equation (6.3) becomes am · (loglog x/σ2

Ψ) = o(1). Hence am = o(1)
because σ2

Ψ ³ loglog x. Letting x → ∞ we obtain am = 0, a contradiction with our initial
assumption am 6= 0.

Conversely, suppose that the first ` := ρ(α) coefficients of E(f; z) and E(g; z) are equal.
Thus

e(∆/σΨ) = E(f; ∆/σΨ) − E(g; ∆/σΨ) = O((∆/σΨ)`+1) (6.5)
uniformly in 1 6 ∆ 6 o(σΨ). Using (6.5) and σ2

Ψ ³ loglog x we obtain for ∆ 6 o(σα
Ψ),

loglog x · (E(f; ∆/σΨ) − E(g;∆/σΨ)) ¿ loglog x · (∆/σΨ)`+1

6 σ2
Ψ · o(σ

(α−1)(`+1)
Ψ ) = o(σ

2+(α−1)(`+1)
Ψ )

The right hand side is in fact o(1) because 2 + (α − 1)(` + 1) 6 0. By the remark right
above equation (6.3) this shows that Df(x;∆) ∼ Dg(x;∆) in (loglog x)ε ¿ ∆ 6 o(σα

Ψ). A
quick way to check 2 + (α − 1)(` + 1) 6 0 is the following. Note that

ρ(α) :=

⌈
1 + α

1 − α

⌉
> 1 + α

1 − α
=

2

1 − α
+

α − 1

1 − α
=

2

1 − α
− 1

Upon rewriting the above we find 2 + (α − 1)(ρ(α) + 1) 6 0 as desired. ¤

The next lemma is crucial.

Lemma 6.3. Let f, g ∈ C. Suppose that Ψ̂ ′′(f; 0) = Ψ̂ ′′(g; 0). Let α ∈ (1/3, 1) be given. The first
ρ(α) coefficients of A(f; ω(f; z)) and A(g;ω(g; z)) are equal if and only if the k − th moments
(3 6 k 6 ρ(α)) of Ψ(f; t) and Ψ(g; t) are equal, that is

∫

R
tkdΨ(f; t) =

∫

R
tkdΨ(g; t) for 3 6 k 6 ρ(α)

Proof. Since α > 1/3 we have ρ(α) > 3. We work formally with power series and write
O(z`) to indicate terms of order > `. Denote by ak and bk the coefficients in the expansion
around 0 of the power series A(f;ω(f; z)) and A(g;ω(g; z)), respectively. Suppose that
ak = bk for k 6 ` := ρ(α). Then

A(f; ω(f; z)) = A(g;ω(g; z)) + O(z`+1) (6.6)

Differentiating on both sides we obtain −Ψ̂ ′′(f; 0)ω(f; z) = −Ψ̂ ′′(g; 0)ω(g; z) + O(z`). Di-
viding by Ψ̂ ′′(f; 0) = Ψ̂ ′′(g; 0) on both sides, we get

ω(f; z) = ω(g; z) + O(z`)
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Expanding A(g;ω(g; z)) into a Taylor series about ω(f; z), we find that

A(g; ω(g; z)) = A(g; ω(f; z) + (ω(g; z) − ω(f; z)))

= A(g; ω(f; z)) +
∑

k>1

1

k!
· (ω(g; z) − ω(f; z))

k ·A(k)(g;ω(f; z))

Since ω(g; z) − ω(f; z) = O(z`) the term k > 2 contribute O(z2`). The term k = 1 equals to
−ω(f; z)Ψ̂ ′′(g;ω(f; z)) · (ω(g; z) − ω(f; z)) and thus contributes O(z`+1) because ω(f; z) =
O(z). We conclude that

A(g; ω(g; z)) = A(g; ω(f; z)) + O(z`+1) (6.7)

Inserting (6.7) into (6.6) we obtain

A(f; ω(f; z)) = A(g;ω(f; z)) + O
(
z`+1

)

In this relation we substitute z 7−→ ω−1(f; z). Since ω−1(f; z) is zero at z = 0 we have
ω−1(f; z) = O(z). Therefore, after substitution A(f; z) = A(g; z) + O(z`+1). Differentiating
on both sides we obtain zΨ̂ ′′(f; z) = zΨ̂ ′′(g; z)+O(z`). Upon division by z we get Ψ̂ ′′(f; z) =

Ψ̂ ′′(g; z) + O
(
z`−1

)
. Since

Ψ̂(f; z) =
∑

k>0

∫

R
tkdΨ(f; t) · zk

k!

and Ψ̂ ′′(f; z) = Ψ̂ ′′(g; z) + O(z`−1) with ` = ρ(α) we conclude that
∫

R
tkdΨ(f; t) =

∫

R
tkdΨ(g; t) for k = 2, 3, . . . , ρ(α) (6.8)

Conversely, let us suppose that
∫
R tkdΨ(f; t) =

∫
R tkdΨ(g; t) holds for all k = 3, . . . , ρ(α).

Since in addition (by assumptions) Ψ̂ ′′(f; 0) = Ψ̂ ′′(g; 0) we obtain

Ψ̂ ′′(f; z) = Ψ̂ ′′(g; z) + O
(
z`−1

)

with ` := ρ(α). Multiplying both sides by z and integrating gives A(f; z) = A(g; z) +
O(z`+1). Since ω(f; z) = O(z), upon substituting z 7−→ ω(f; z) in the last relation, we
obtain

A(f; ω(f; z)) = A(g;ω(f; z)) + O
(
z`+1

)
(6.9)

With this in mind, we evaluate the difference ω(f; z) − ω(g; z). Given any h ∈ C, by
definition ω(h; z) equals to

(Ψ̂ ′)−1(Ψ̂ ′(h; 0) + z · Ψ̂ ′′(h; 0)) =
∑

k>0

zk · Ψ̂ ′′(h; 0)k

k!

[
(Ψ̂ ′)−1

](k) (
Ψ̂ ′(h; 0)

)
(6.10)

where (Ψ̂ ′)−1 denote the inverse function (under composition) to Ψ̂ ′(h; z) and f(k) stands
for the k-th derivative of f. The term k = 0 contributes 0. The term k = 1 contributes z,
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since

[(Ψ̂ ′)−1](1)(z) =
1

Ψ̂ ′′(h; (Ψ̂ ′)−1(h; z))

so that at z = Ψ̂ ′(h; 0) that simplifies to 1/Ψ̂ ′′(h; 0). However, the important point here, is
that the higher derivatives [(Ψ̂ ′)−1](k)(Ψ̂ ′(h; 0)) will involve only the terms Ψ̂(k+1)(h; 0), . . . , Ψ̂ ′′(h; 0).
By assumption we have Ψ̂(k)(f; 0) = Ψ̂(k)(g; 0) for 2 6 k 6 ` := ρ(α) therefore the power
series (6.10) taken respectively for h = f and h = g will agree up to the (` − 1)-th term.
This gives

ω(f; z) = ω(g; z) + O
(
z`

)
(6.11)

Expanding A(g;ω(f; z)) into a Taylor series about ω(g; z), we find that

A(g;ω(f; z))

= A(g;ω(g; z) + (ω(f; z) − ω(g; z))

= A(g;ω(g; z)) + A ′(g; ω(g; z)) · (ω(f; z) − ω(g; z)) + O
(
(ω(f; z) − ω(g; z))2

)

By (6.11) the third term is bounded by O(z2`), while the second term is bounded by
O(z`+1) because A ′(g; ω(g; z)) = O(z) since A ′(g; ω(g; 0)) = A ′(g; 0) = 0. It follows that
A(g; ω(f; z)) = A(g;ω(g; z)) + O(z`+1). On combining this with (6.9) we conclude that
A(f; ω(f; z)) = A(g;ω(g; z)) + O(z`+1) as desired. ¤

Proof of Part (1) and Part (2) of Theorem 1.1. By part (1) of theorem 2.8Df(x; ∆) ∼ (1/
√

2π)
∫∞

∆
e−u2/2du

for ∆ in the range 1 6 ∆ 6 o(σ(f; x)1/3). Therefore we will always haveDf(x; ∆) ∼ Dg(x;∆)

uniformly in 1 6 ∆ 6 o(σ1/3). This proves part (1) of theorem 1.1.
By assumptions σ(f; x) ∼ σ(g; x). Note that

σ2(f; x) = Ψ̂ ′′(f; 0) · loglog x + O(1)

Therefore σ(f; x) ∼ σ(g; x) gives Ψ̂ ′′(f; 0) = Ψ̂ ′′(g; 0) and also σΨ(f; x) = σΨ(g; x) be-
cause σΨ(f; x)2 = Ψ̂ ′′(f; 0) loglog x. Thus the assumptions of lemma 6.2 and lemma 6.3
are satisfied. Since Df(x;∆) ∼ (1/

√
2π)

∫∞
∆

e−u2/2 · du when 1 6 ∆ 6 o(σ1/3), the rela-
tion Df(x;∆) ∼ Dg(x;∆) holds in the range 1 6 ∆ 6 o(σα) if and only if it holds in the
range (loglog x)ε ¿ ∆ 6 o(σα) (0 6 ε < 1/6). By lemma 6.2, Df(x;∆) ∼ Dg(x; ∆) holds
in that range if and only if the first ρ(α) coefficients of the power-series A(f; ω(f; z)) and
A(g; ω(g; z)) coincide. By lemma 6.3 they do coincide if and only if

∫

R
tkdΨ(f; t) =

∫

R
tkdΨ(g; t)

for all k = 3, 4, . . . , ρ(α). This chain of if and only if’s proves Part (2) of Theorem 1.1. ¤
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6.2. The 1 6 ∆ 6 o(σ) range.

Proof of Part (3) of Theorem 1.1. One direction is clear: By Theorem 2.8, when 1 6 ∆ 6
o(σ(f; x)) the asymptotic for Df(x; ∆) depends only on Ψ(f; t). Hence if Ψ(f; t) = Ψ(g; t)
then Df(x;∆) ∼ Dg(x;∆) throughout 1 6 ∆ 6 o(σ).

Now we focus on the converse direction. If Df(x;∆) ∼ Dg(x;∆) holds throughout 1 6
∆ 6 o(σ) then it also holds in the smaller range 1 6 ∆ 6 o(σα) for any 0 < α < 1. Hence
by part 2 of Theorem 1.1, ∫

R
tkdΨ(f; t) =

∫

R
tkdΨ(g; t) (6.12)

for all k = 3, 4, . . . , ρ(α) = d(1 + α)/(1 − α)e. Letting α → 1 it follows that (6.12) holds
for all k > 3. Recall that

Ψ̂(f; z) = 1 +
∑

k>1

∫

R
tkdΨ(f; t) · zk

k!

Therefore Ψ̂(f; z) − Ψ̂(g; z) = az2 + bz for some a, b ∈ R. In particular

a2t4 + b2t2 = |Ψ̂(f; it) − Ψ̂(g; it)|2

The right hand side is bounded by 4 because |Ψ̂(f; it)| 6 1 and |Ψ̂(g; it)| 6 1. Letting
t → ∞ in the above equation it follows that a = 0 = b. Hence Ψ̂(f; it) = Ψ̂(g; it). By
Fourier inversion (or using probabilistic terminology, by “uniqueness of characteristic
functions”) Ψ(f; t) = Ψ(g; t). ¤

6.3. The 1 6 ∆ 6 cσ range. We prove part 4 of theorem 1.1. We break down the proof
into two cases, depending on whether Ψ(f; t) is or is not lattice distributed.

6.3.1. Ψ(f; t) is not lattice distributed.

Lemma 6.4. Let f, g ∈ C. Suppose that σ(f; x) ∼ σ(g; x). As usual denote by σ = σ(x) a function
such that σ(f; x) ∼ σ(x) ∼ σ(g; x). If there is a δ > 0 such that Df(x; ∆) ∼ Dg(x;∆) uniformly in
1 6 ∆ 6 δσ, then Z (L(f; z)) = Z(L(g; z)) where Z(h) denote the zero set of h(·) (the zeroes are
counted without multiplicity).

Proof. By assumptions Df(x;∆) ∼ Dg(x; ∆) uniformly in 1 6 ∆ 6 δσ. Hence by part 3 of
theorem 1.1, Ψ(f; t) = Ψ(g; t). Therefore Sf(x;∆) = Sg(x;∆) for x,∆ > 0 and vf(x;∆) = v =
vg(x; ∆) since both depend only on Ψ(f; t) and Ψ(g; t). Thus by part 3 of theorem 2.8 the
assumption Df(x; ∆) ∼ Dg(x;∆) simplifies to

L(f; v) · e−vc(f) ∼ L(g; v) · e−vc(g) uniformly in 1 6 ∆ 6 δσ (6.13)

Pick a 0 < κ 6 δ/2 and fix ∆ = κσΨ(f; x) in (6.13) (since σΨ(f; x) = σ(f; x) + o(1) and
κ < δ this is allowed). We have v = vf(x; ∆) = ω(f; ∆/σΨ(f; x)) = ω(f;κ). Letting x → ∞
in (6.13) we obtain L(f;ω(f;κ))e−ω(f;κ)c(f) = L(g;ω(f;κ))e−ω(f;κ)c(g). Since 0 < κ 6 δ/2

was arbitrary and ω(f; x) is increasing (with ω(f; 0) = 0), the functions L(f; z)e−zc(f) and
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L(g; z)e−zc(g) coincide on the interval [0; ω(f; δ/2)]. Both functions are entire by lemma
4.4. Hence by analytic continuation L(f; z)e−zc(f) = L(g; z)e−zc(g) for all z ∈ C. Since
exponentials never vanish we obtain Z(L(f; z)) = Z(L(g; z)). ¤

Lemma 6.5. Let f, g ∈ C. If Z(L(f; z)) = Z(L(g; z)) then f = g, where Z(h) denotes the zero
set of h(·) (the zeroes are counted without multiplicity).

Proof. From the definition of L(f; z) we find explicitly

Z(L(f; z)) =

{
(2k + 1)πi

f(p)
+

log(p − 1)

f(p)
: k ∈ Z and p prime

}

(note that f(p) > 0 because f ∈ C). Therefore if Z(L(f; z)) = Z(L(g; z)) then

{
(2k + 1)πi

g(p)
+

log(p − 1)

g(p)

}
=

{
(2` + 1)πi

f(q)
+

log(q − 1)

f(q)

}
(6.14)

for k, ` ∈ Z and p, q going through the set of primes. Looking at the common zero of
real part 0 and smallest imaginary part we conclude that f(2) = g(2). Now, fix p an odd
prime. Because of (6.14) there is a prime q such that

(2k + 1)πi

g(p)
+

log (p − 1)

g(p)
=

(2` + 1)πi

f(q)
+

log(q − 1)

f(q)

hence
f(q)

g(p)
=

2` + 1

2k + 1
=

log(q − 1)

log(p − 1)
(6.15)

Write p − 1 = mr with r > 1 maximal and m a positive integer. Necessarily r = 2a with
a > 0, otherwise p would factorize non-trivially. Further exponentiating (6.15) we get

q − 1 = (p − 1)
2`+1
2k+1 = mr· 2`+1

2k+1

Note that r · 2`+1
2k+1

∈ N since mr(2`+1)/(2k+1) is an integer and r > 1 was chosen maximal.
Therefore r · 2`+1

2k+1
= 2a · 2`+1

2k+1
must be a power of two, otherwise q would factorize non-

trivially. Therefore the ratio (2`+1)/(2k+1) is a power of two, but then ` = k necessarily.
By (6.15) it follows that p = q and g(p) = f(p). Therefore f(p) = g(p) for all prime p.
Hence f = g since f, g are strongly additive. ¤

Proof of Part (4) of Theorem 1.1 when Ψ(f; t) is not lattice distributed. One direction is clear if
f = g then Df(x; ∆) = Dg(x;∆). Conversely, suppose that Df(x; ∆) ∼ Dg(x; ∆) throughout
1 6 ∆ 6 δσ, then by lemma 6.4 the zero set of L(f; z) and L(g; z) coincide. Hence by lemma
6.5, f = g, as desired. ¤
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6.3.2. Ψ(f; t) is lattice distributed. Suppose that Ψ(f; t) is lattice distributed on αZ for some
α > 0. Then Ψ(f/α; t) is lattice distributed on Z. Since Df(x; ∆) = Df/α(x; ∆) we can
assume without loss of generality (for the purpose of proving Part (4) of Theorem 1.1)
that Ψ(f; t) is lattice distributed on Z. To such a f we associate two strongly additive
function f and hf defined by

f(p) =

{
f(p) if f(p) ∈ Z
0 otherwise and hf(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

In particular f(n) = f(n) + hf(n). Similarly to an additive function g we associate g and
hg with g and hg defined in the same way as f and hf.

Lemma 6.6. Let f, g ∈ C. Suppose that Ψ(f; t) = Ψ(g; t) and that Ψ(f; t) is lattice distributed on
Z. If Df(x;∆) ∼ Dg(x;∆) throughout 1 6 ∆ 6 δσ for some δ > 0, then,

L (f; v) e−vc(f) · Phf
(ξf(x;∆); v) = L (g; v) e−vc(g) · Phg (ξg (x;∆) ; v) + o(1) (6.16)

uniformly throughout 1 6 ∆ 6 δσ(x), with v = vf(x;∆) = vg(x; ∆).

Proof. Since Ψ(f; t) = Ψ(g; t) we have Sf = Sg and vf = v = vg. Plugging the as-
ymptotic of part 4 of theorem 2.8 into Df(x; ∆) ∼ Dg(x; ∆) and cancelling Sf(x; ∆) =
Sg(x;∆) on both sides, we obtain (6.16) but with the right hand side multiplied by an
1 + o(1), instead of an error term of o(1). To obtain the o(1) it suffices to prove that
L(g; v)e−vc(f)Phg (ξg (x;∆) ; v) = O (1). The function L(g; v)e−vc(f) is continuous and the pa-
rameter v ³ ∆/σ(f; x) = Oδ(1) (because ∆ 6 δσ(x)), by lemma 4.7. Therefore L(g; v)e−vc(f) =

Oδ(1). By lemma 4.25, Phg(ξf(x;∆); v) = Oδ(1). The claim L(g; v)e−vc(f)Phg(ξf(x;∆); v) =
Oδ(1) follows. ¤
Lemma 6.7. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Given C > 0, uniformly
in 0 6 v 6 C we have

∫ 1

0

Phf
(a; v) da =

∏

p:hf(p)6=0

(
1 +

evhf(p)

p − 1

)
·
(

1 −
1

p

)

Proof. To ease notation let X(hf) :=
∑

p hf (p) Xp. By definition of Phf
(a; v),

∫ 1

0

Phf
(a; v) da = v

∑

k∈Z

∫ 1

0

ev(k+a) ·P (X (hf) > k + a) da

= v
∑

k∈Z

∫k+1

k

eva ·P (X (hf) > a) da

= v

∫

R
eva ·P (X (hf) > a) da

where we are allowed to interchange summation and integral because all the terms in-
volved are positive. In the above integral write evada = (1/v)d(eva) and integrate by
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parts

v

∫

R
eva ·P (X (hf) > a) da = [evaP (X (hf) > a)]

∞
−∞ −

∫

R
evadP (X (hf) > a)

By lemma 4.19 we have E[eAX(h)] < +∞ for any fixed A > 0. Therefore by Cher-
noff’s bound P(X(h) > t) 6 E[eAX(h)]e−At decays faster than any power of e−t. Hence
[evaP(X(hf) > a]∞−∞ vanishes (because 0 6 v 6 C). It remains to note that −dP (X(hf) > a) = d (1 −P (X (hf) < a)) = dP (X (hf) < a) .
Thus, the second term in the above equation equals to∫

R
evadP (X (hf) < a) = E

[
evX(hf)

]

the Laplace transform of X (hf) =
∑

p hf (p) Xp ! By independence of the Xp,

E
[
evX(hf)

]
=

∏
p

E
[
evhf(p)Xp

]
=

∏
p

(
1 +

evhf(p)

p − 1

)
·
(

1 −
1

p

)

When hf(p) = 0 the relevant term in the product simply equals to 1, therefore we can add
the condition hf (p) 6= 0, in the product, without altering its value. ¤
Lemma 6.8. Let f, g ∈ C. Suppose that Ψ(f; t) = Ψ(g; t) and that Ψ(f; t) is lattice distributed on
Z. If (6.16) holds uniformly throughout 1 6 ∆ 6 δσΨ(f; x) for some δ > 0, then

L (f; κ) e−κc(f) = L (g; κ) e−κc(g)

for all κ > 0 sufficiently small.

Proof. Let us start by remarking that since Ψ(f; t) = Ψ(g; t) we have σΨ(f; x) = σΨ(g; x). It
will be convenient to denote the common value by σΨ(x). As usual denote vf(x; ∆) by v.
Since ω(f; x) is increasing and ω(f; 0) = 0, for any sufficiently small κ > 0 we can find a λ

such that ω(f; λ) = κ and 0 < λ < δ. We restrict ∆ to the range λσΨ 6 ∆ 6 λσΨ + 1/σΨ. In
this range

v = ω(f; ∆/σΨ) = ω(f; λ) + O(1/σ2
Ψ) = κ + O(1/σ2

Ψ)

because by lemma 4.7 the function ω(f; z) is analytic in a neighborhood of R+∪ {0}. Hence
by “analyticity” of L(f; v)e−vc(f) (see lemma 4.20) and lemma 4.25,

L(f; v)e−vc(f) = L(f; κ)e−κc(f) + O(1/σ2
Ψ)

Phf
(ξf(x;∆); v) = Phf

(ξf(x; ∆); κ) + O
(
1/σ2

Ψ

)

Of course the same relations are valid with f replaced by g. Multiplying the two relations
above, we see that when ∆ is confined to λσΨ 6 ∆ 6 λσΨ + 1/σΨ we can rewrite (6.16) in
the following equivalent form

L(f; κ)e−κc(f)Phf
(ξf(x; ∆); κ) = L(g; κ)e−κc(g)Phg (ξg (x;∆) ; κ) + o(1) (6.17)

If the above relation was true uniformly for a common 0 6 a 6 1 in place of the con-
ceivably distinct ξf(x; ∆) and ξg(x; ∆) it would be enough to integrate the above over
0 6 a 6 1, use lemma 6.7 and conclude. Unfortunately, such a simplifying device is
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not present, so we have to be slightly more careful. Let b ∈ R be arbitrary. Recall that
{ξf(x; ∆)} = {µ(f; x) + ∆σ(f; x)} is 1/σ(f; x) periodic in ∆. Hence, by a change of variable
and the preceding lemma

∫b+1/σ(f;x)

b

Phf
(ξf(x;∆);κ)d∆ =

1

σ(f; x)

∫ 1

0

Phf
(a;κ) da

=
1

σ(f; x)

∏

p:hf(p) 6=0

(
1 +

eκhf(p)

p − 1

)
·
(

1 −
1

p

)

By lemma 4.25, Phf
(ξf (x;∆) ; κ) = Oδ (1). Therefore

∫b+1/σΨ

b

Phf
(ξf (x; ∆) ; κ) d∆ =

(∫b+1/σ(f;x)

b

+

∫b+1/σΨ

b+1/σ(f;x)

)
Phf

(ξf (x; ∆) ; κ) d∆

We just computed the first integral. The second integral is bounded by O(1) times the
length of the interval [b + 1/σ(f; x); b + 1/σΨ]. That length being ¿ 1/σ2

Ψ the second
integral is bounded by O

(
1/σ2

Ψ

)
. Now take b = λσΨ and integrate the left hand side of

(6.17) over λσΨ 6 ∆ 6 λσΨ + 1/σΨ. We obtain

L(f; κ)e−κc(f)

σ(f; x)

∏

p:hf(p) 6=0

(
1 +

eκhf(p)

p − 1

)(
1 −

1

p

)
+ O

(
σ−2

Ψ

)
=

L(f; κ)e−κc(f)

σ(f; x)
+ O

(
σ−2

Ψ

)

The same result is true with f replaced by g. Therefore integrating (6.17) over λσΨ 6 ∆ 6
λσΨ + 1/σΨ yields

1

σ(f; x)
· L(f; κ)e−κc(f) =

1

σ(g; x)
· L(g; κ)e−κc(g) + o

(
1

σΨ

)

Since σ(f; x) ∼ σ(g; x) and σ(f; x) ∼ σΨ(f; x) letting x → ∞ we conclude L(f;κ)e−κc(f) =

L(g;κ)e−κc(g). Since κ > 0 was an arbitrary, sufficiently small real number, it follows that
L(f;κ)e−κc(f) = L(g;κ)e−κc(g) holds for all κ > 0 sufficiently small. ¤
Proof of Part (4) of Theorem 1.1 when Ψ(f; t) is lattice distributed. If f = g thenDf(x;∆) = Dg(x;∆)
for all x,∆ > 1. Conversely, suppose that Ψ(f; t) is lattice distributed on αZ and that
Df(x;∆) ∼ Dg(x;∆) for 1 6 ∆ 6 cσ(x). Since Df(x; ∆) ∼ Dg(x; ∆) also holds in 1 6 ∆ 6
o(σ), by part 3 of theorem 1.1, we have Ψ(f; t) = Ψ(g; t). Note that Ψ(f/α; t) = Ψ(f; tα) =
Ψ(g; tα) = Ψ(g/α; t) is lattice distributed on Z. In addition Df/α(x; ∆) = Df(x; ∆) ∼

Dg(x;∆) = Dg/α(x;∆) holds throughout 1 6 ∆ 6 cασα(x) where σα(x) := (1/α)σ(x) ∼

σ(f/α; x) ∼ σ(g/α; x). Thus we can assume without loss of generality that Ψ(f; t) = Ψ(g; t)
is lattice distributed on Z. Hence by lemma 6.6 relation (6.16) holds and thus lemma 6.8 is
applicable. By lemma 6.8, L(f; κ)e−κc(f) = L(g;κ)e−κc(g) for all κ > 0 sufficiently small. By
analytic continuation L(f; z)e−zc(f) = L(g; z)e−zc(g) for all z ∈ C, because L(f; z) and L(g; z)
are entire by lemma 4.4. It follows that the zero set of L(f; z) and L(g; z) coincides. Thus
f = g by lemma 6.5. ¤
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7. KUBILIUS MODEL – THEOREMS 2.1 AND 2.2

LetA(f; z) denote the function defined in theorem 2.2. SinceA(f; z) is analytic inR+∪{0}

and A(f; 0) = 1 we have A(f; ∆/σ) = 1 + o(1) for 1 6 ∆ 6 o(σ). Thus Theorem 2.1
is a consequence of Theorem 2.2. The overall strategy in our proof of theorem 2.2 is to
establish an asymptotic for

P

(∑
p6x

f(p)

[
Xp −

1

p

]
> ∆σ(f; x)

)
(7.1)

and compare it with the asymptotic for Df(x; ∆) from theorem 2.8. We will deduce an as-
ymptotic for (7.1) from the three general propositions established in section 4. Through-
out this section the Xp’s will denote independent Bernoulli random variables, distributed
according to

P(Xp = 1) = 1/p and P(Xp = 0) = 1 − 1/p

We break down the proof of an asymptotic for (7.1) into three cases. The proof of theorem
2.2 is in section 7.4.

7.1. (loglog x)ε ¿ ∆ ¿ σ(f; x) and Ψ(f; t) is lattice distributed on Z. Throughout write
f = g + h with g and h two strongly additive functions defined by

g(p) =

{
f(p) if f(p) ∈ Z
0 otherwise and h(p) =

{
f(p) if f(p) 6∈ Z
0 otherwise

Lemma 7.1. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed onZ. Define the random variable
Ω(g; x) =

∑
p6x g(p)Xp. Given C > 0, we have uniformly in the region −C 6 κ := Re s 6 C,

| Im s| 6 2π,

E
[
esΩ(g;x)

]
= L(g; s) · eγ(Ψ̂(f;s)−1) · (log x)

Ψ̂(f;s)−1
+ OC

(
(log x)Ψ̂(f;κ)−3/2

)

as x → ∞.

Proof. Since the Xp are independent Bernoulli random variables, we have

E
[
esΩ(g;x)

]
=

∏
p6x

E
[
esg(p)Xp

]
=

∏
p6x

(
1 −

1

p

)
·
(

1 +
esg(p)

p − 1

)

=

[∏
p6x

(
1 −

1

p

)Ψ̂(f;s) (
1 +

esg(p)

p − 1

)]
·
∏
p6x

(
1 −

1

p

)−(Ψ̂(f;s)−1)

(7.2)

The product on the right equals eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 · (1 + O((log x)−1)
)

by Mertens’s
formula (we use that |Ψ̂(f; s)| 6 Ψ̂(f;C)). On the other hand since x → ∞, lemma 4.20 is
applicable and so the product on the left hand side equals L(g; s) ·(1+O((log x)−1/2). Thus

E
[
esΩ(g;x)

]
= L(g; s)eγ(Ψ̂(f;s)−1) · (log x)

Ψ̂(f;s)−1 ·
(
1 + O

(
1/

√
log x

))
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By lemma 4.20 the function L(g; s) is entire. Therefore L(g; s) is bounded in the region
| Re s| 6 C, | Im s| 6 2π because this region is bounded. The function eγ(Ψ̂(f;s)−1) is bounded
in Re s 6 C because of the inequality |Ψ̂(f; s)| 6 Ψ̂(f; Re s). It follows that the previous
equation simplifies to

E
[
esΩ(g;x)

]
= L(g; s)eγ(Ψ̂(f;s)−1) · (log x)

Ψ̂(f;s)−1
+ O

(
(log x)Ψ̂(f;κ)−3/2

)

which proves the lemma. ¤

Lemma 7.2. Let f ∈ C. Suppose that Ψ(f; t) is lattice distributed on Z. Given a δ, ε > 0 we have,
uniformly in (loglog x)ε ¿ ∆ 6 δσ(f; x),

Df(x;∆) ∼
e−γ(Ψ̂(f;v)−1)

Γ(Ψ̂(f; v))
·P

(∑
p6x

f(p)

[
Xp −

1

p

]
> ∆σ(f; x)

)
(7.3)

where v := vf(x;∆).

Proof. Let Xp be independent Bernoulli random variables, distributed according to

P(Xp = 1) =
1

p
and P (Xp = 0) = 1 −

1

p

Denote by (Ω,F ,P) the underlying probability space. Given a strongly additive function
g, define Ω(g; x) =

∑
p6x g(p)Xp. Let H be a strongly additive function such that 0 6

H(p) 6 dh(p)e. Note that H(p) vanishes when h(p) does. Thus g and H are “supported”
on two disjoint sets of primes and as a consequence the random variables Ω(g; x) and
Ω(H; x) are independent. Therefore

E
[
esΩ(g;x)+sΩ(H;x)

]
= E

[
esΩ(g;x)

] ·E [
esΩ(H;x)

]

= E
[
esΩ(g;x)

] ·
∏
p6x

(
1 −

1

p
+

esH(p)

p

)

Furthermore by the previous lemma for 0 6 κ := Re s 6 C and | Im s| 6 2π,

E
[
esΩ(g;x)

]
= L(g; s)eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 + O

(
(log x)

Ψ̂(f;κ)−3/2
)

By lemma 4.20 and 4.2 the functions L(g; s) and eγ(Ψ̂(f;s)−1) are entire. From the product
representation it is clear that L(g; x) 6= 0 for x > 0. Therefore the function L(g; s)eγ(Ψ̂(f;s)−1)

is in addition non-vanishing on the positive real axis. Therefore the assumption of propo-
sition 4.17 are satisfied. It follows that the expression

P

(∑
p6x

f(p) ·
[
Xp −

1

p

]
> ∆σ(f; x)

)
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is asymptotic to

L(g; v)eγ(Ψ̂(f;v)−1) · (1/v)Ph(ξf(x;∆); v) · (log x)
Ψ̂(f;v)−1−vΨ̂ ′(f;v)

(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f) (7.4)

uniformly in (loglog x)ε ¿ ∆ 6 cσ(f; x) where v := vf(x; ∆). Furthermore, by part 4 of
theorem 2.8, Df(x;∆) is asymptotic to

L(g; v)

Γ(Ψ̂(f; v))
· (1/v)Ph(ξf(x;∆); v) · (log x)Ψ̂(f;v)−1−vΨ̂ ′(f;v)

(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f) (7.5)

throughout (loglog x)ε ¿ ∆ 6 cσ(f; x). Comparing (7.4) and (7.5) proves the lemma. ¤

7.2. (loglog x)ε ¿ ∆ ¿ σ(f; x) and Ψ(f; t) is not lattice distributed.

Lemma 7.3. Let f ∈ C. Let Ω(f; x) :=
∑

p6x f(p)Xp. Given C > 0, uniformly in −C 6 κ :=

Re s 6 C and | Im s| 6 loglog x,

E
[
esΩ(f;x)

]
= L(f; s)eγ(Ψ̂(f;s)−1) · (log x)

Ψ̂(f;s)−1
+ O

(
(log x)Ψ̂(f;κ)−3/2

)

as x → ∞.

Proof. This is the same proof as in lemma 7.1. There is a minor twist because L(f; s) is no
more bounded and we use lemma 4.4 instead of lemma 4.20. We give the proof anyway.
Since the Xp are independent Bernoulli random variable

E
[
esΩ(f;x)

]
=

∏
p6x

E
[
esf(p)Xp

]
=

∏
p6x

(
1 −

1

p

)(
1 +

esf(p)

p − 1

)

=

[∏
p6x

(
1 −

1

p

)Ψ̂(f;s) (
1 +

esf(p)

p − 1

)]
·
∏
p6x

(
1 −

1

p

)−(Ψ̂(f;s)−1)

The product on the right equals eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 · (1 + O((log x)−1)) by Mertens’s
formula. On the other hand since x → ∞ by lemma 4.4, the product on the left equals to
L(f; s) · (1 + O((log x)−1)). Thus

E
[
esΩ(f;x)

]
= L(f; s)eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 · (1 + O((log x)−1))

By lemma 4.4 we have L(f; s) ¿C 1+ loglog x uniformly in | Im s| 6 loglog x and | Re s| 6 C.
The function eγ(Ψ̂(f;s)−1) is bounded in Re s 6 C because of the inequality |Ψ̂(f; s)| 6 Ψ̂(f;κ).
Thus the previous equation simplifies to

E
[
esΩ(f;x)

]
= L(f; s)eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 + O

(
(log x)Ψ̂(f;κ)−3/2

)

(where κ := Re s 6 C) which is the claim. ¤
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Lemma 7.4. Let f ∈ C. Suppose that Ψ(f; t) is not lattice distributed. Let δ, ε > 0 be given. We
have, uniformly in (loglog x)ε ¿ ∆ 6 δσ(f; x),

Df(x;∆) ∼
e−γ(Ψ̂(f;v)−1)

Γ(Ψ̂(f; v))
·P

(∑
p6x

f(p)

[
Xp −

1

p

]
> ∆σ(f; x)

)

Here, as usual v := vf(x; ∆).

Proof. Let Ω(f; x) :=
∑

p6x f(p)Xp. By the previous lemma for any given C > 0, we have
uniformly in 0 6 κ := Re s 6 C and | Im s| 6 loglog x,

E
[
esΩ(f;x)

]
= L(f; s)eγ(Ψ̂(f;s)−1) · (log x)

Ψ̂(f;s)−1
+ O

(
(log x)Ψ̂(f;κ)−3/2

)

By lemma 4.4 the function L(f; s) is entire and L(f; s) = OC,ε(1 + | Im s|ε) throughout 0 6
Re s 6 C. From the product representation for L(f; x) is it clear that L(f; s) doesn’t vanish
on R+. The function exp(γ(Ψ̂(f; s) − 1) is entire by lemma 4.2, never zero, and bounded
in Re s 6 C, because |Ψ̂(f; s)| 6 Ψ̂(f; Re s). It follows that proposition 4.10 is applicable.
Therefore

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)
∼ L(f; v)eγ(Ψ̂(f;v)−1) · (log x)

Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f)

with v := vf(x; ∆) uniformly in (loglog x)ε ¿ ∆ 6 cσ(f; x). On the other hand, by part 3 of
theorem 2.8,

Df(x; ∆) ∼
L(f; v)

Γ(Ψ̂(f; v))
· (log x)Ψ̂(f;v)−1−vΨ̂ ′(f;v)

v(2πΨ̂ ′′(f; v) loglog x)1/2
· e−vc(f)

with v := vf(x;∆). On comparing the two asymptotics, the lemma follows. ¤

7.3. The range 1 6 ∆ ¿ (loglog x)1/12.

Lemma 7.5. Let f ∈ C. Uniformly in 1 6 ∆ ¿ (loglog x)1/12,

P

(∑
p6x

f(p)

[
Xp −

1

p

]
> ∆σ(f; x)

)
∼ Df(x; ∆)

Proof. Let Ω(f; x) :=
∑

p6x f(p)Xp. By lemma 7.3, we have

E
[
esΩ(f;x)

]
= L(f; s)eγ(Ψ̂(f;s)−1) · (log x)Ψ̂(f;s)−1 + O

(
(log x)Ψ̂(f;κ)−3/2

)

uniformly in |s| 6 ε, for any given ε > 0. Since L(f; 0)eγ(Ψ̂(f;0)−1) = 1 6= 0, and L(f; z)eγ(Ψ̂(f;z)−1)

is entire (by lemma 4.4 and 4.2), proposition 4.9 is applicable. Therefore

P
(

Ω(f; x) − µ(f; x)

σ(f; x)
> ∆

)
∼

1√
2π

∫∞

∆

e−u2/2 · du
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uniformly in 1 6 ∆ 6 o((loglog x)1/6). On the other hand, by part 1 of theorem 2.8 we
know that Df(x;∆) ∼ (1/

√
2π)

∫∞
∆

e−u2/2 · du for 1 6 ∆ 6 o((loglog x)1/6). The lemma
follows. ¤

7.4. Proof of Theorem 2.2.

Proof of Theorem 2.2. By lemma 7.2, lemma 7.4 and lemma 7.5, theorem 2.2 holds in all
cases except when Ψ(f; t) is lattice distributed on αZ with α 6= 1. So, suppose that Ψ(f; t)
is lattice distributed on αZ (α 6= 1). Then Ψ(f/α; t) is lattice distributed on Z. Hence, by
our earlier work, uniformly in 1 6 ∆ 6 cσ(f/α; x) = (c/α)σ(f; x),

Df/α(x; ∆) ∼
e−γ(Ψ̂(f/α;vα)−1)

Γ(Ψ̂(f/α; vα))
·P

(∑
p6x

f(p)

α

[
Xp −

1

p

]
> ∆σ(f/α; x)

)
(7.6)

where vα := vf/α(x; ∆). Note that Df/α(x;∆) = Df(x;∆) and that similarly the probability
term in (7.6) is invariant under multiplication by α. It remains to show that Ψ̂(f/α; vα) =

Ψ̂(f; v) where v := vf(x; ∆) but this follows from lemma 5.3. ¤

8. PROOF OF PROPOSITION 2.4

As usual, we denote by f(n; y) a truncated additive function

f(n; y) =
∑

p|n

p 6 y

f(p)

The following lemma is due to Barban and Vinogradov (see [4], lemma 3.2, p. 122). It
improves the error term obtained by Kubilius in his theorem.

Lemma 8.1. Let f be a strongly additive function. Let u = log x/ log y. Then, uniformly in
t ∈ R,

1

x
·# {

n 6 x : f(n;y) > t
}

= P

(∑
p6y

f(p)Xp > t

)
+ O

(
u−u/8

)
(8.1)

We will use theorem 2.2 and theorem 2.8 to show that when f ∈ C and u ³ log log x,
t ³ µ(f; x) the main term on the right hand side of (8.1) is dominating.

Proof of Proposition 2.4. In lemma 8.1 take f ∈ C and in (8.1) choose t := ξf(y;∆) and
u ³ loglog x. In the range 1 6 ∆ 6 cσ(f; y) we have,

P

(∑
p6y

f(p)

[
Xp −

1

p

]
> ∆σ(f;y)

)
> P

(∑
p6y

f(p)

[
Xp −

1

p

]
> cσ2(f; y)

)
(8.2)

Let w := vf(x; cσ(f; y)). First of all note that w = ω(f; c)+o(1) by definition of ω(f; z) and
its analyticity. Therefore Ph(a;w) À 1 uniformly in a > 0 by lemma 4.25 and the remark
right after the statement. Also L(f;w)e−wc(f) 6= 0 because L(f; x)e−xc(f) is never zero on the
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positive real line. It follows by theorem 2.2 and theorem 2.8 that the right hand side of
(8.2) is

À (log x)Ψ̂(f;w)−1−wΨ̂ ′(f;w) · (loglog x)−1/2

Hence (8.2) is dominating over the error term in (8.1) when t := ξf(y;∆), u ³ loglog x and
∆ is allowed to vary throughout 1 6 ∆ 6 cσ(f; y). It follows that,

1

x
·#

{
n 6 x :

f(n; y) − µ(f;y)

σ(f;y)
> ∆

}
∼ P

(∑
p6y

f(p)

[
Xp −

1

p

]
> ∆σ(f;y)

)

uniformly in 1 6 ∆ 6 cσ(f;y) as desired. ¤

9. INTEGERS TO PRIMES

The goal of this section is to prove theorem 2.6. Throughout we will work with

B2(f; x) =
∑
p6x

f(p)2

p

rather than with σ2(f; x). Of course B2(f; x) = σ2(f; x) + O(1) so there is little difference
between the two. Let us also define D×

f (x; ∆) by

D×
f (x;∆) :=

1

x
·#

{
n 6 x :

f(n) − µ(f; x)

B(f; x)
> ∆

}

This is simply Df(x;∆) with a different normalization.

9.1. Large deviations for D×
f (x; ∆) and P(ZΨ(x) > t). We will usually need to “adjust”

some of the results taken from the literature. Our main tool will be Lagrange inversion.

Lemma 9.1. Let C > 0 be given. Let f(z) be analytic in |z| 6 C. Suppose that f ′(z) 6= 0 for all
|z| 6 C and that in |z| 6 C the function f(z) vanishes only at the point z = 0. Then, the function
g defined implicitly by f(g(z)) = z is analytic in a neighborhood of 0 and its n-th coefficient an in
the Taylor expansion about 0 is given by

an =
1

2πi

∮

γ

ζf ′(ζ)

f(ζ)n+1
dζ

where γ is a circle about 0, contained in |ζ| 6 C. The function g(z) is given by

g(z) =
1

2πi

∮

γ

ζf ′(ζ)

f(ζ) − z
· dζ

and again γ is a circle about 0, contained in |ζ| 6 C.

The desired asymptotic for D×
f (x;∆) is contained in Maciulis’s paper ([14], lemma 1A).
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Lemma 9.2. Let f be an additive function. Suppose that 0 6 f(p) 6 O(1) and that B(f; x) −→ ∞
(or equivalently σ(f; x) → ∞). Let B2 = B2(f; x). Uniformly in the range 1 6 ∆ 6 o(σ(f; x))
we have

D×
f (x;∆) ∼ exp

(
−

∆3

B

∞∑

k=0

λf(x; k + 2)

k + 3
· (∆/B)

k

) ∫∞

∆

e−u2/2 · du√
2π

where the coefficients λf(x; k) are defined recursively by λf(x; 0) = 0, λf(x; 1) = 1 and

λf(x; j) = −

j∑

i=2

1

i!
·
(

1

B2(f; x)

∑
p6x

f(p)i+1

p

) ∑

k1+...+ki=j

λf(x; k1) · . . . · λf(x;ki)

Further there is a constant C = C(f) such that |λf(x;k)| 6 Ck for all k, x > 1.

Proof. Except the bound |λf(x; k)| 6 Ck, the totality of the lemma is contained in Maciulis’s
paper ([14], lemma 1A). Let us prove that |λf(x;k)| 6 Ck for a suitable positive constant
C > 0. To do so, we consider the power series

Gf (x; z) =
∑

j>2

λf (x; j) · zj + z

Let us look in more detail at the sum over j > 2. By making use of the recurrence relation
for λf(x; j) we see that the sum in question equals to

= −
∑

j>2

j∑

i=2

1

i!
·
(

1

B2 (f; x)

∑
p6x

f(p)i+1

p

) ∑

k1+...+ki=j

λf (x; k1) · . . . · λf (x; ki) · zj

= −
∑

i>2

1

i!
·
(

1

B2 (f; x)

∑
p6x

f(p)i+1

p

)
·
(∑

k>0

λf (x; k) zk

)i

= −
1

B2(f; x)

∑
p6x

f(p)

p

∑

i>2

1

i!
· f(p)i · Gf (x; z)

i

= −
1

B2 (f; x)

∑
p6x

f(p)

p
· (ef(p)Gf(x;z) − f(p)Gf(x; z) − 1

)

The above calculation reveals that Ff(x;Gf(x; z)) = z where Ff(x; z) is defined by

Ff(x; z) = z +
1

B2(f; x)

∑
p6x

f(p)

p
· (ef(p)z − f(p)z − 1

)

=
1

B2(f; x)

∑
p6x

f(p)

p
· (ef(p)z − 1

)

Since all the f(p) are bounded by some M > 0, we have Ff(x; z) = z + O
(
Mz2

)
when z

is in a neighborhood of 0, furthermore the implicit constant in the big O, depends only
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on M. Therefore Ff(x; z) À 1 for z in the annulus B/2 6 |z| 6 B, where B is a sufficiently
small constant, depending only on M. Let us also note the derivative

d

dz
· Ff(x; z) =

1

B2(f; x)

∑
p6x

f(p)2

p
· ef(p)z

doesn’t vanish and is bounded uniformly in |z| 6 B for B sufficiently small, depending
only on M. Hence by Lagrange inversion the function Gf(x; z) is for each x > 1 analytic in
the neighborhood |z| 6 B of 0, and in addition, its coefficients λf(x; k) are given by

λf(x;k) =
1

2πi

∮

|ζ|=B/2

ζ · (d/dζ)Ff(x; ζ)

Ff(x; ζ)k+1
dζ

However we know that Ff(x; ζ) À 1 and that (d/dζ)Gf(x; ζ) ¿ 1 on the boundary |ζ| =
B/2 with the implicit constant depending only on M. Therefore, the integral is bounded
by Ck, for some C > 0 depending only on M. Hence |λf(x;k)| 6 Ck. ¤

From Hwang’s paper [11] – itself heavily based on the same methods as used by Maci-
ulis [14] – we obtain the next lemma. Since Hwang’s lemma is not exactly what is stated
below, we include the deduction.

Lemma 9.3. Let Ψ be a distribution function. Suppose that there is an α > 0 such that Ψ(α) −
Ψ(0) = 1. Let B2 = B2(x) → ∞ be some function tending to infinity. Uniformly in the range
1 6 ∆ 6 o(B) we have

P
(ZΨ

(
B2

)
> ∆B

)
∼ exp

(
−

∆3

B

∞∑

k=0

Λ(Ψ;k + 2)

k + 3
· (∆/B)

k

) ∫∞

∆

e−u2/2 · du√
2π

the coefficients Λ(Ψ;k) satisfy Λ(Ψ; 0) = 0, Λ(Ψ; 1) = 1 and the recurrence relation

Λ(Ψ; j) = −
∑

26`6j

1

`!

∫

R
t`−1dΨ(f; t)

∑

k1+...+k`=j

Λ(Ψ;k1) · . . . ·Λ(Ψ;k`)

Furthermore there is a constant C = C(Ψ) > 0 such that |Λ(Ψ;k)| 6 Ck for k > 1.

Proof. Let u(z) = u(Ψ; z) =
∫
R(ezt −zt−1) · t−2dΨ(t). Note that u(z) is entire because Ψ(t)

is supported on a compact interval. By Hwang’s theorem 1 (see [11])

P
(ZΨ

(
B2

)
> ∆B

)
∼ exp

(
−B2

∑

k>0

Λ(Ψ; k + 2)

k + 3
· (∆/B)k

) ∫∞

∆

e−u2/2 · du√
2π
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uniformly in 1 6 ∆ 6 o(B(x)) with the coefficients Λ(Ψ; k) given by Λ(Ψ; 0) = 0, Λ(Ψ; 1) =
1 and for k > 0,

Λ(Ψ; k + 2)

k + 3
= −

1

k + 3
· 1

2πi

∮

γ

u ′′(z) ·
(

u ′(z)
z

)−k−3

· dz

zk+2

= −
1

k + 3

∮

γ

zu ′′(z)
u ′(z)k+3

· dz

2πi

(we set m = k + 3, k > 0, qm = Λ(Ψ;k + 2)/(k + 3) in equation (7) of [11] and rewrite
equation (8) in [11] in terms of Cauchy’s formula). Here γ is a small circle around the ori-
gin. First let us show that the coefficients Λ(Ψ; k + 2) are bounded by Ck for a sufficiently
large (but fixed) C > 0. Around z = 0 we have u ′(z) =

∫
R(ezt − 1) · t−1dΨ(t) = z + O(z2).

Therefore if we choose the circle γ to have sufficiently small radius then u ′(z) À 1 for z on
γ. Hence looking at the previous equation, the Cauchy integral defining Λ(Ψ; k+2)/k+3

is bounded in modulus by ¿ Ck+3 for some constant C > 0. The bound |Λ(Ψ;k)| ¿ Ck

ensues (perhaps with a larger C than earlier). Our goal now is to show that Λ(Ψ;k) satis-
fies the recurrence relation given in the statement of the lemma. Multiplying by ξk+3 and
summing over k > 0 we obtain

∑

k>0

Λ(Ψ;k + 2)

k + 3
· ξk+3 = −

∑

k>0

ξk+3

k + 3

∮

γ

zu ′′(z)
u ′(z)k+3

· dz

2πi

= −

∮

γ

zu ′′(z)
∑

k>0

1

k + 3
·
(

ξ

u ′(z)

)k+3

· dz

2πi

=

∮

γ

zu ′′(z) ·
(

−
ξ

u ′(z)
−

1

2
· ξ2

u ′(z)2
− log

(
1 −

ξ

u ′(z)

))
· dz

2πi

Differentiating with respect to ξ on both sides yields

GΨ(ξ) =
∑

k>0

Λ(Ψ; k + 2)ξk+2 =

∮ (
zu ′′(z)

u ′(z) − ξ
−

zu ′′(z)
u ′(z)

−
ξzu ′′(z)
u ′(z)2

)
dz

2πi

By Lagrange inversion this last integral is equal to (u ′)−1(ξ) − 0 − ξ where (u ′)−1 denotes
the inverse function to u ′(z). Hence

∑

k>0

Λ(Ψ;k)ξk = (u ′)−1(ξ) (9.1)

Let us compose this with u ′(·) on both sides and compute the resulting left hand side.
First of all we expand u ′(z) in a power series. This gives

u ′(z) =

∫

R

ezt − 1

t
dΨ(t) =

∑

`>1

1

`!

∫

R
t`−1dΨ(t) · z`
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Therefore, composing (9.1) with u ′(·) yields

ξ = u ′
(∑

k>0

Λ(Ψ; k)ξk

)
=

∑

`>1

1

`!

∫

R
t`−1dΨ(t) ·

(∑

k>0

Λ(Ψ;k)ξk

)`

=
∑

`>1

1

`!

∫

R
t`−1dΨ(t) ·

( ∑

k1,...,k`>1

Λ(Ψ; k1) · . . . ·Λ(Ψ;k`) · ξk1+...+k`

)

=
∑

m>1

( ∑

16`6m

1

`!

∫

R
t`−1dΨ(t)

∑

k1+...+k`=m

Λ(Ψ; k1) · . . . ·Λ(Ψ; k`)

)
· ξm

Thus the first coefficient Λ(Ψ; 1) is equal to 1, as desired, while for the terms m > 2 we
have ∑

16`6m

1

`!

∫

R
t`−1dΨ(t)

∑

k1+...+k`=m

Λ(Ψ;k1) · . . . ·Λ(Ψ; k`) = 0

The first term ` = 1 is equal to Λ(Ψ;m). It suffice to move it on the right hand side of the
equation, to obtain the desired recurrence relation. ¤

Finally we will need one last result “from the literature”. Namely a weak form of the
method of moments. For a proof we refer the reader to Gut’s book [8], p. 237. (Note that
the next lemma follows from the result in [8] because in our case the random variables
are positive, and bounded, in particular their distribution is determined uniquely by their
moments).

Lemma 9.4. Let Ψ be a distribution function. Suppose that there is an a > 0 such that Ψ(a) −
Ψ(0) = 1. Let F(x; t) be a sequence of distribution functions, one for each x > 0. If for each k > 0,

∫

R
tk dF(x; t) −→

∫

R
tkdΨ(t)

Then F(x; t) −→ Ψ(t) at all continuity points t of Ψ(t).

9.2. A transfer lemma. The following lemma will allow us to transfer any results estab-
lished with the B(f; x) normalization to corresponding results with a σ(f; x) normalization.

Lemma 9.5. Let f be a strongly additive function such that 0 6 f(p) 6 O(1) and B(f; x) → ∞.
Let Ψ be a distribution function. Suppose that there is an a > 0 such that Ψ(a) − Ψ(0) = 1. We
have, uniformly in 1 6 ∆ 6 o(σ(f; x)),

D×
f (x; ∆) ∼ Df (x;∆)

P
(ZΨ

(
σ2(f; x)

)
> ∆σ(f; x)

)
∼ P

(ZΨ

(
B2(f; x)

)
> ∆B(f; x)

)

Proof. Both results are consequences of lemma 9.3 and lemma 9.2 respectively. Let us first
prove that D×

f (x; ∆) ∼ Df(x; ∆) holds. Note that

D×
f (x;∆ · σ(f; x)/B(f; x)) = Df(x;∆)
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Therefore using the asymptotic of Lemma 9.2 we conclude that

Df(x;∆) ∼ exp

(
−

σ3

B3
· ∆3

B

∑

k>0

λf(x;k + 2)

k + 3
· (∆σ/B2

)k

) ∫∞

∆

e−u2/2 · du√
2π

(9.2)

where we used the abbreviation B := B(f; x) and σ := σ(f; x). Further the coefficients
λf(x; k + 2) are defined in Lemma 9.2, and satisfy |λf(x; k)| ¿ Ck for some fixed C > 0

depending only on f. Because of that bound on λf(x;k), the function

Gf(x; z) =
∑

k>0

λf(x; k + 2)

k + 3
· zk

is analytic in |z| < 1/C for all x > 0. Therefore

Gf(x; ∆/B · σ/B) = Gf (x;∆/B) + (∆/B · (σ/B − 1)) · G ′f(x; ξ) (9.3)

for some ∆/B · σ/B 6 ξ 6 ∆/B. Derivatives are always taken with respect to the second
argument – that is G ′f(x; ξ) := (d/dξ)Gf(x; ξ). Upon using the inequality λf(x;k) ¿ Ck we
find the bound G ′f(x; ξ) ¿ (1 − C∆/B)−1 which is O(1) because ∆ 6 o(B(f; x)). Further
∆/B(1 − σ/B) ¿ ∆/B3 because σ2 = B2 + O(1) hence σ/B = 1 + O(B−2). It now follows
from (9.3) that Gf(x; ∆/B · σ/B) = Gf(∆/B) + O

(
∆/B3

)
. Note also that Gf(x; ∆/B) ¿ 1

uniformly in 1 6 ∆ 6 o(B). Using these two estimates, we find that

−(σ/B)3 · (∆3/B) · Gf(x;∆/B · σ/B)

= −(σ/B)3 · (∆3/B) · (Gf(x; ∆/B) + O
(
∆/B3

))

= −
(
1 + O

(
1/B2

)) · ∆3/B · Gf(x;∆/B) + O
(
(∆/B)4

)

= −∆3/B · Gf(x; ∆/B) + O
(
(∆/B)3 + (∆/B)4

)

Since ∆ 6 o(σ(f; x)) the error term is o(1). The previous equation, together with (9.2)
leads to

Df(x; ∆) ∼ exp
(
−(σ/B)3 · (∆3/B) · Gf(x;∆/B · σ/B)

) · (1 − Φ(∆))

∼ exp
(
−(∆3/B) · Gf(x;∆/B)) · (1 − Φ(∆)) ∼ D×

f (x; ∆)

uniformly in 1 6 ∆ 6 o(σ(f; x)) and where 1−Φ(∆) :=
∫∞

∆
e−u2/2 ·du. The above equation

establishes the first part of the lemma. The proof of the second part is along similar lines,
but easier. Denote by

GΨ (z) :=
∑

k>0

Λ(Ψ;k + 2)

k + 3
· zk

with the coefficients Λ(Ψ; k) defined as in Lemma 9.3. The coefficients Λ(Ψ;k) are bounded
by Ck, for some suitable C > 0, therefore GΨ(z) is analytic in |z| < 1/C. Hence GΨ (∆/B) =

GΨ (∆/σ) + O (∆/B − ∆/σ) = GΨ (∆/σ) + O
(
∆/σ3

)
, where in the error term we used the
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estimate B = σ + O(1/σ). Therefore

−(∆3/B) · GΨ (∆/B) = −(∆3/B) · (GΨ (∆/σ) + O
(
∆/σ3

))

= −(σ/B) · (∆3/σ) · GΨ (∆/σ) + O
(
(∆/σ)4

)

= −
(
1 + O(1/σ2)

) · (∆3/σ) · GΨ (∆/σ) + O
(
(∆/σ)4

)

= −(∆3/σ) · GΨ(∆/σ) + O
(
(∆/σ)4 + (∆/σ)3

)

and the error term is o(1) because ∆ 6 o(σ(f; x)). Therefore, using lemma 9.3 we conclude
that

P (ZΨ (σ) > ∆σ) ∼ exp
(
−(∆3/σ) · GΨ(∆/σ)

) · (1 − Φ(∆))

∼ exp
(
−(∆3/B) · GΨ (∆/B)

) · (1 − Φ(∆)) ∼ P (ZΨ (B) > ∆B)

uniformly in 1 6 ∆ 6 o(σ(f; x)) and where 1 − Φ(∆) =
∫∞

∆
e−u2/2 · du/

√
2π. The above

equation establishes the second part of the lemma. ¤

9.3. Proof of the “integers to primes” theorem.

Proof of Theorem 2.6. By assumptionsDf(x;∆) ∼ P(ZΨ(σ2(f; x)) > ∆σ(f; x)) holds through-
out 1 6 ∆ 6 o(σ(f; x)). Thus, by lemma 9.5, D×

f (x; ∆) ∼ P(ZΨ(B2(f; x)) > ∆B(f; x))
uniformly in 1 6 ∆ 6 o(B(f; x)). We are going to work with this last condition.

The proof is in three steps. Retaining the notation of Lemma 9.3 and Lemma 9.2 we
first show that λf(k; x) −→ Λ(Ψ;k) for all k > 2 (for k = 1 this is trivial). Then, we deduce
from there that

1

B2(f; x)

∑

p 6 x

f(p) 6 t

f(p)k+2

p
−→

∫

R
tkdΨ(t) (9.4)

Finally by the method of moments (and an elementary manipulation)

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
−→ Ψ(t) (9.5)

The last step being the easy one. To prove our first step we will proceed by induction on
k > 0. We will prove the stronger claim that

λf(x;k + 2) = Λ(Ψ; k + 2) + Ok

(
B−2−(k+1)

)

where we write B = B(f; x) to simplify notation. By Lemma 9.2 and 9.3, our assumption
D×

f (x;∆) ∼ P(ZΨ(B2(f; x)) > ∆B(f; x)) (for 1 6 ∆ 6 o(B(f; x))) reduces to

−
∆3

B

∑

m>0

λf (x;m + 2)

m + 3
· (∆/B)

m
= −

∆3

B

∑

m>0

Λ(Ψ; m + 2)

m + 3
· (∆/B)

m
+ o(1) (9.6)
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valid throughout the range 1 6 ∆ 6 o(σ(f; x)). Let us first establish the base case λf(x; 2) =

Λ(Ψ; 2) + O(B−1/2). In (9.6) we choose ∆ = B1/2. Because of the bounds |λf(x;m)| 6 Cm

and |Λ(Ψ;m)| 6 Cm (see lemma 9.2 and 9.3) the terms m > 1 contribute O(1). The m = 0

term is ³ B1/2. It follows that λf(x; 2) = Λ(Ψ; 2) + O(B−1/2) and so the base case follows.
Let us now suppose that for all ` < k, (k > 1)

λf (x; ` + 2) = Λ (Ψ; ` + 2) + O`

(
B−2−(`+1)

)

Note that we can assume (in the above equation) that the implicit constant depends on k,
by taking the max of the implicit constants in O`(B

−2−(`+1)
) for ` < k. In equation (9.6) let’s

choose ∆ = B1−2−(k+1) . With this choice of ∆ the terms that are > k + 1 in (9.6) contribute
at most (

∆3/B
) · (C · ∆/B)

k+1 ¿k B2 · B−3·2−(k+1) · B−(k+1)·2−(k+1)

on both sides of (9.6). On the other hand, we see (by using the induction hypothesis) that
the terms m 6 k − 1 on the left and the right hand side of (9.6) differ by no more that

−
∆3

B
·
(∑

`<k

(∆/B)`

` + 3
· (λf (x; ` + 2) − Λ (Ψ; ` + 2))

)

= Ok

(
B2 · B−3·2−(k+1) ·

(∑

`<k

B−`·2−(k+1)

` + 3
· B−2−(`+1)

))

= Ok

(
B2 · B−3·2−(k+1) ·

∑

`<k

1

` + 3
· B−2−(k+1)·(`+2k−`)

)

Note that for each integer ` < k we have `+2k−` > k+1. Therefore the above error term is
bounded by Ok(B

2 ·B−3·2−k ·B−(k+1)2−(k+1)
). With these two observations at hand, relation

(9.6) reduces to

−
∆3

B
· (∆/B)

k

k + 3
[λf (x;k + 2) − Λ (Ψ;k + 2)] = Ok

(
B2−3·2−(k+1) · B−(k+1)·2−(k+1)

)
+ o(1)

where ∆ = B1−2−(k+1) . Dividing by ∆3/B · (∆/B)
k ³ B2−3·2−(k+1) · B−k·2−(k+1) on both sides,

we conclude that λf(x; k + 2) − Λ(Ψ; k + 2) = Ok(B
−2−(k+1)

) as desired, thus finishing the
inductive step. Now, we will prove that λf(x;k) −→ Λ(Ψ; k) implies

Mf(x; `) :=
1

B2(f; x)

∑
p6x

f(p)`+2

p
−→

∫

R
t`dΨ(t) (9.7)

for each fixed ` > 0. This follows almost immediately from the recurrence relation for
λf(x; k) and Λ(Ψ;k). Indeed let us prove (9.7) by induction on k > 0. The base case k = 0

is obvious, for the left hand side and right hand side of (9.7) are both equal to 1. Let us
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now suppose that (9.7) holds for all ` < k. We will prove that convergence also holds for
` = k. By definition of λf(x; k + 1) we have

λf(x;k + 1) = −

k∑

j=2

Mf(x; j − 1)

j!

∑

`1+...+`j=k+1

λf(x; `1) . . . λf(x; `j) −
Mf(x;k)

(k + 1)!
(9.8)

(we single out j = k + 1 on the right hand side). By induction hypothesis Mf(x; j − 1) −→∫
tj−1dΨ(t) as x → ∞, for j 6 k. Further as we’ve shown earlier λf(x; i) −→ Λ(Ψ; i) for all

i > 0. Therefore the whole double sum on the right hand side of (9.8) tends to

−

k∑

j=2

1

j!

∫

R
tj−1dΨ(t)

∑

`1+...+`j=k+1

Λ(Ψ; `1) · . . . ·Λ(Ψ; `j)

which, by definition of Λ(Ψ;k) is equal to Λ(Ψ;k + 1) + 1/(k + 1)!
∫
R tkdΨ(t). But also

λf(x; k + 1) −→ Λ(Ψ;k + 1) because λf(x; i) −→ Λ(Ψ; i) for all i > 0. Thus the left hand
side of (9.8) tends to Λ(Ψ;k + 1) while the double sum on the right hand side of (9.8)
tends to Λ(Ψ;k + 1) + 1/(k + 1)!

∫
R tkdΨ(t). Therefore equation (9.8) transforms into

Λ(Ψ;k + 1) = Λ(Ψ;k + 1) +
1

(k + 1)!

∫

R
tkdΨ(t) −

Mf(x; k)

(k + 1)!
+ ox→∞(1)

andMf(x;k) → ∫
R tkdΨ(t) (x → ∞) follows. This establishes the induction step and thus

(9.7) for all fixed ` > 0. Now we use the method of moments to prove that

F(x; t) :=
1

B2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
−→
x→∞

Ψ(t)

holds at all continuity points t of Ψ(t). Let us note that, the k-th moment of the distribu-
tion function F(x; t), is given by Mf(x;k), and as we’ve just shown this converges to the
the k-th moment of Ψ(t). That is

∫

R
tkdF(x; t) =

1

B2(f; x)

∑
p6x

f(p)k+2

p
−→

∫

R
tkdΨ(t)

Since Ψ(a)−Ψ(0) = 1 for some a > 0, the distribution function Ψ satisfies the assumption
of Lemma 9.4, hence, by Lemma 9.4 (the method of moments) we have F(x; t) −→ Ψ(t) at
all continuity points t of Ψ. Finally, we deduce that

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
−→ Ψ(t) (9.9)

at all continuity points of Ψ. This is almost trivial, because B2(f; x) and σ2(f; x) differ only
by an O(1), and the sum

∑
f(p)2/p2 = O(1) because the f(p) are O(1). Hence, by a simple
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computation

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
= F(x; t) + O

(
1

B2(f; x)

)

And since F(x; t) −→ Ψ(t) at all continuity points of Ψ, it follows that (9.9) must be true.
¤

10. PRIMES TO INTEGERS

We keep the same notation as in the previous section. Namely we let

B2(f; x) :=
∑
p6x

f(p)2

p
and D×

f (x;∆) :=
1

x
·#

{
n 6 x :

f(n) − µ(f; x)

B(f; x)
> ∆

}

We first need to modify a little some of the known large deviations results for D×
f (x;∆)

and P(ZΨ(B2(f; x)) > ∆B(f; x)).

10.1. Large deviations for D×
f (x;∆) and P(ZΨ(x) > t) revisited. First we require the

result of Maciulis ([14], theorem) in a “saddle-point” version.

Lemma 10.1. Let g be a strongly additive function such that 0 6 g(p) 6 O(1) and B(g; x) → ∞.
We have uniformly in 1 6 ∆ 6 o(B(g; x)),

D×
g (x; ∆) ∼ exp

(∑
p6x

eηg(p) − ηg(p) − 1

p
− η

∑
p6x

g(p)(eηg(p) − 1)

p

)
e∆2/2

√
2π

∫∞

∆

e−t2/2dt

where η = ηg(x; ∆) is defined as the unique positive solution of the equation
∑
p6x

g(p)eηg(p)

p
= µ(g; x) + ∆B(g; x)

Furthermore ηg(x; ∆) = ∆/B(g; x) + O(∆2/B(g; x)2).

Proof. Only the last assertion needs to be proved, because it is not stated explicitly in
Maciulius’s paper. Fortunately enough, it’s a triviality. Indeed, writing η = ηg(x; ∆), we
find that

0 6 ηg(x;∆)
∑
p6x

g(p)2

p
6

∑
p6x

g(p)(eηg(p) − 1)

p
= ∆B(g; x)

Dividing by B2(g; x) on both sides 0 6 ηg(x; ∆) 6 ∆/B(g; x) follows. Now expanding
eηg(p) − 1 = ηg(p) + O(η2g(p)2) and noting that O(η2g(p)2) = O(η2g(p)) because g(p) =
O(1), we find that

∆B(g; x) =
∑
p6x

g(p)(eηg(p) − 1)

p
= η

∑
p6x

g(p)2

p
+ O

(
η2

∑
p6x

g(p)2

p

)
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Again dividing by B2(g; x) on both sides, and using the bound η = O(∆/B(g; x)) the claim
follows. ¤

Adapting Hwang’s [11] result we prove the following.

Lemma 10.2. Let Ψ be a distribution function. Suppose that there is an α > 0 such that Ψ(α) −
Ψ(0) = 1. Let B2 = B2(x) → ∞ be some function tending to infinity. Then, uniformly in
1 6 ∆ 6 o(B(x)) the quantity P

(ZΨ(B2) > ∆B
)

is asymptotic to

exp

(
B2

∫

R

eρu − ρu − 1

u2
dΨ(u) − B2 · ρ

∫

R

eρu − 1

u
dΨ(u)

)
· e∆2/2

√
2π

∫∞

∆

e−t2/2 dt

where ρ = ρΨ(B(x); ∆) is defined implicitly, as the unique positive solution to

B2(x)

∫

R

eρu − 1

u
dΨ(u) = ∆ · B(x)

Proof. We keep the same notation as in lemma 9.3. While proving lemma 9.3 we estab-
lished the following useful relationship (see (9.1))

∑

k>0

Λ(Ψ;k + 2)ξk+2 = (u ′)−1(ξ) − ξ where u(z) =

∫

R

ezt − zt − 1

t2
dΨ(t)

Here (u ′)−1 denotes the inverse function of u ′. Integrating the above gives
∑

k>0

Λ(Ψ;k + 2)

k + 3
· ξk+3 = −

ξ2

2
+ ξ · (u ′)−1(ξ) − u((u ′)−1(ξ))

Now choose ξ = ∆/B, then by definition ρ = ρΨ(B(x); ∆) = (u ′)−1(ξ). Thus the above
formula becomes

∑

k>0

Λ(Ψ;k + 2)

k + 3
· (∆/B)k+3 = −

(∆/B)2

2
+

∆

B
· ρ −

∫

R

eρt − ρt − 1

t2
dΨ(t)

Also, note that by definition ∆/B =
∫
R(eρt − 1)/t · dΨ(t). Using the above formula (in

which we replace (∆/B) · ρ by ρ
∫
R(eρt − 1)/t · dΨ(t)) and lemma 9.3

P(ZΨ(B2) > ∆B) ∼ exp

(
−B2

∑

k>0

Λ(Ψ;k + 2)

k + 3
· (∆/B)

k+3

) ∫∞

∆

e−u2/2 · du√
2π

= exp

(
B2

∫

R

eρt − ρt − 1

t2
dΨ(t) − B2 · ρ

∫

R

eρt − 1

t
dΨ(t)

)
· e∆2/2

√
2π

∫∞

∆

e−u2/2du

This is the claim. ¤
Before we prove Theorem 2.5, we need to show that the parameters ηg(x;∆) and ρΨ(B(f; x);∆)

(as defined respectively in Lemma 10.1 and Lemma 10.2) are “close” when the distribu-
tion of the g(p)’s resembles Ψ(t). The “closeness” assertion is made precise in the next
lemma.
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Lemma 10.3. Let Ψ(·) be a distribution function. Let f be a positive strongly additive function.
Suppose that 0 6 f(p) 6 O(1) for all primes p. Let

Kf(x; t) :=
1

B2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p

If Kf(x; t) − Ψ(t) ¿ 1/B2(f; x) uniformly in t ∈ R, then

ρΨ(B(f; x); ∆) − ηf(x;∆) = o(1/B2(f; x))

uniformly in 1 6 ∆ 6 o(B(f; x)). The symbols ρΨ(B(x); ∆) and ηf(x;∆) are defined in lemma
10.2 and lemma 10.1 respectively.

Proof. Let η = ηf(x; ∆). Recall that by lemma 10.1, η = o(1) in the range 1 6 ∆ 6 o(B(f; x)).
This will justify the numerous Taylor expansions involving the parameter η. With Kf(x; t)
defined as in the statement of the lemma, we have

∑
p6x

f(p)eηf(p)

p
− µ(f; x) =

∑
p6x

f(p)(eηf(p) − 1)

p

= B2(f; x)

∫

R

eηt − 1

t
dKf(x; t) (10.1)

Let M > 0 be a real number such that 0 6 f(p) 6 M for all p. Since the f(p) are bounded,
for each x > 0 the distribution function Kf(x; t) is supported on [0; M]. Furthermore since
Kf(x; t) → Ψ(t) the distribution function Ψ(t) is supported on exactly the same interval.
From these considerations, it follows that

∫

R

eηt − 1

t
dKf(x; t) =

∫M

0

eηt − 1

t
dKf(x; t)

=

∫M

0

eηt − 1

t
dΨ(t) +

∫M

0

(
Kf(x; t) − Ψ(t)

) ·
[
eηt − ηt · eηt − 1

t2

]
dt (10.2)

By a simple Taylor expansion eηt − ηt · eηt − 1 = O(η2t2). Therefore the integral on the
right hand side is bounded by O(η2/B2(f; x)). We conclude from (10.1) and (10.2) that

∑
p6x

f(p)eηf(p)

p
− µ(f; x) = B2(f; x)

∫

R

eηt − 1

t
dΨ(t) + O

(
η2

)
(10.3)

By definition of ρΨ and ηf,

B2(f; x)

∫

R

eρΨ(B;∆)t − 1

t
dΨ(t) = ∆B(f; x) =

∑
p6x

f(p)eηf(x;∆)f(p)

p
− µ(f; x) (10.4)
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From (10.3) and (10.4) it follows that

B2(f; x)

∫

R

eρΨ(B;∆)t − eηf(x;∆)t

t
dΨ(t) = O

(
η2

f(x; ∆)
)

(10.5)

Since Ψ(t) is supported on [0; M] we can restrict the above integral to [0; M]. By lemma
10.1, we have ηf(x;∆) ∼ ∆/B(f; x) = o(1) in the range ∆ 6 o(B(f; x)). Also 0 6 ρΨ(x; ∆) 6∫

[0;M]
(eρΨ(x;∆)t−1)/t·dΨ(t) = ∆/B(f; x) = o(1) for ∆ in the same range. Write ρ := ρΨ(B;∆)

and η := ηf(x;∆). For 0 6 t 6 M, we have

(1/t)
(
eρt − eηt

)
= (1/t)eρt · (1 − e(η−ρ)t)

= eρt · (η − ρ) + O((η − ρ)2) ³ η − ρ

because ρ = o(1), η = o(1). Inserting this estimate into (10.5) we get η−ρ = O(η2/B2(f; x)) =
o(1/B2(f; x)) since η2 = o(1). The lemma is proved. ¤

10.2. Proof of the “primes to integers” theorem.

Proof of Theorem 2.5. Note that

1

σ2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
·
(

1 −
1

p

)
=

1

B2(f; x)

∑

p 6 x

f(p) 6 t

f(p)2

p
+ O

(
1

B2(f; x)

)

and denote the main term on the right hand side by Kf(x; t). By assumption, the left
hand side in the above equation, differs from Ψ(t) by¿ 1/σ2(f; x) ³ 1/B2(f; x). Hence
Kf(x; t) = Ψ(t) + O(1/B2(f; x)). Let η = ηf(x; ∆) be the parameter from lemma 10.1.
Proceeding as in the proof of the previous lemma, we get

∑
p6x

eηf(p) − ηf(p) − 1

p
= B2(f; x)

∫

R

eηu − ηu − 1

u2
dΨ(u) + o(1) (10.6)

η
∑
p6x

f(p) · (eηf(p) − 1)

p
= B2(f; x)η

∫

R

eηu − 1

u
dΨ(u) + o(1) (10.7)

throughout the range 1 6 ∆ 6 o(B(f; x)). Let ρ := ρΨ(B(f; x); ∆) denote the parameter
from Lemma 10.2. The functions on the right of (10.6) and (10.7) are analytic. Therefore,
by lemma 10.3,

B2(f; x)

∫

R

eηu − ηu − 1

u2
dΨ(u) = B2(f; x)

∫

R

eρu − ρu − 1

u2
dΨ(u) + o(1) (10.8)

B2(f; x)η

∫

R

eηu − 1

u
dΨ(u) = B2(f; x)ρ

∫

R

eρu − 1

u
dΨ(u) + o(1) (10.9)
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uniformly in 1 6 ∆ 6 o(B(f; x)). On combining (10.6) with (10.8) and (10.7) with (10.9)
we obtain

∑
p6x

eηf(p) − ηf(p) − 1

p
− η

∑
p6x

f(p)(eηf(p) − 1)

p

= B2(f; x)

∫

R

eρu − ρu − 1

u2
dΨ(u) − B2(f; x)ρ

∫

R

eρu − 1

u
dΨ(u) + o(1)

By lemma 10.1, lemma 10.2 and the above equation, we get

D×
f (x; ∆) ∼ P

(ZΨ

(
B2(f; x)

)
> ∆B(f; x)

)

uniformly in 1 6 ∆ 6 o(B(f; x)). By lemma 9.5, it follows that

Df(x;∆) ∼ P
(ZΨ(σ2(f; x)) > ∆σ(f; x)

)

uniformly in 1 6 ∆ 6 o(σ(f; x)). This proves the theorem. ¤
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Bordeaux 6 (1994), no. 2

[4] P. D. T. A. Elliott, Probabilistic number theory. Vol I, Grundlehren der mathematischen Wissenschaften
239, Springer-Verlag, 1980

[5] P. D. T. A. Elliott, Probabilistic number theory. Vol II, Grundlehren der mathematischen Wissenschaften
240, Springer-Verlag, 1980

[6] P. D. T. A. Elliott, Duality in analytic number theory, Cambridge Tracts in Mathematics 122, Cambridge
University Press, 1997

[7] A. S. Fainleb, B. V. Levin, Application of some integral equations to problems of number theory, Uspehi. Mat.
Nauk. 22 (1967), no. 3, 119-197

[8] A. Gut, Probability: A graduate course, Springer-Verlag, New York, 2005
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