Assignment & 23

1 Problems

1.1 Problem I

First note that f(x-y)g(y) is measurable on \mathbb{R}^2 by Proposition 3.9 (p. 86), Corollary 3.7 (p. 85) and the fact that products of measurable functions are measurable. So we can apply Tonelli theorem (Theorem 3.2, pp 80-81) to |f(x-y)g(y)| and obtain the chain $\int_{\mathbb{R}^2} |f(x-y)||g(y)|dxdy = \int_{\mathbb{R}} |f(x-y)||g(y)|dxdy = \int_{\mathbb{R}} |f(x)||g(y)|dydy = \int_{\mathbb{R}} |f(x)||g(y)|dydy = \int_{\mathbb{R}} |f(x)||g(y)|$

10/10

1.2 Problem II

This is just by untangling definitions using Fubini, Problem 1 and the fact that $e^{-2\pi ixt}$ is bounded and measurable $\forall x$: $\widehat{f}\star g(x)=\int_{\mathbb{R}}(\int_{\mathbb{R}}f(t-y)g(y)dy)e^{-2\pi ixt}dt=\int_{\mathbb{R}}g(y)(\int_{\mathbb{R}}f(t-y)e^{-2\pi ixt}dt)dy=\int_{\mathbb{R}}g(y)(\int_{\mathbb{R}}f(t-y)e^{-2\pi ixt}dt)e^{-2\pi ixt}dy=\int_{\mathbb{R}}g(y)e^{-2\pi ixy}(\int_{\mathbb{R}}f(t)e^{-2\pi ixt}dt)dy=(\int_{\mathbb{R}}g(y)e^{-2\pi ixy}dy)(\int_{\mathbb{R}}f(t)e^{-2\pi ixt}dt)=\widehat{f}(x).$ $\widehat{g}(x)$, which is what we wanted.

Therefore under the supposition that there is an integrable I such that for any $f \in L_1$, $f \star I = f$, we get by considering a collection $f_k = \chi_{[-k,k]}$, $k \geq 1$ of integrable functions that $\forall k$, $\hat{f}_k(x) \cdot \hat{I}(x) = \hat{f}_k(x) \Rightarrow \hat{I}(x) = 1$ on [-k,k], and thus in general $\hat{I}(x) = 1$ on \mathbb{R} . Hence for the function I we have the relation $\int_{\mathbb{R}} I(t)e^{-2\pi ixt}dt = 1$, $\forall x \in \mathbb{R}$. But this violates Riemann-Lebesgue lemma if we take $x \to \infty$, thus such an I does not exist.

1.3 Problem III

Let me first show that there is some open (bounded) interval I such that $\int_I |f| > 0$ when f is assumed not identically zero. By definition of integrability having f not identically zero means that there is some positive measure set E such that for any $x \in E$, $f(x) \neq 0$, that is on E, |f| > 0. Also this implies that there is some $\delta > 0$ and a positive measure set $F \subset E$ such that for any $x \in F$ we have in fact $|f(x)| > \delta$. To see why this is true consider the collection of measurable sets (since f is assumed integrable and thus measurable) $F_n = \{x \in E : |f(x)| > \frac{1}{n}\}$ defined over \mathbb{N} , then $E = \bigcup_n^\infty F_n$. Suppose that $\forall n$ we had $\lambda(F_n) = 0$, then we would have $\lambda(E) = 0$, a contradiction. Hence for some N, $\lambda(F_N) > 0$ and we have $F = F_N$ with $\delta = \frac{1}{N} > 0$. Also then by considering the family $F^n = F \cap [-n, n]$ over \mathbb{N} along the same lines, we find a bounded measurable set $K \subset F$ such that $\lambda(K) > 0$. Taking any bounded open interval $I \supset K$ with $[-1, 1] \subset I$ we obviously have $\int_I |f| > 0$.

Now the main result follows quickly: by construction of our bounded I we have $c = \frac{1}{\lambda(I)} \int_I |f| > 0$ such that for any $x \in Z = I \cap (-1,1)^c$, $f^*(x) > c \ge \frac{c}{|x|}$, because in the sup we can just take the "ball" I for each of these x. For $x \in Z^c$ we can simply dilate I by a factor $|x| \ge 1$ so that $x \in |x|I$ (having the usual dilation set meaning) and obtain by using $\lambda(|x|I) = |x|\lambda(I)$ that also for those xs $f^*(x) > \frac{1}{|x|\lambda(I)} \int_{|x|I} |f| \ge \frac{1}{|x|} \frac{1}{\lambda(I)} \int_I |f| = \frac{c}{|x|}$.

Therefore f^* is not integrable when $f \neq 0$. This is because $\int_{\{x \in \mathbb{R}: |x| \geq 1\}} \frac{c}{|x|} = \infty$ by elementary calculus for any constant c > 0, and the monotonicity property of Lebesgue integrals.

10/10

1.4 Problem IV

E is measurable and therefore there exist $\forall \epsilon > 0$ open sets $O_{\epsilon} \supset E$ such that $\lambda(O_{\epsilon} - E) < \epsilon$, and for each of these sets $\lambda(O_{\epsilon}) = \lambda(O_{\epsilon} - E \cup E) = \epsilon$ $\lambda(O_{\epsilon}-E)+\lambda(E)=\lambda(O_{\epsilon}-E)<\epsilon$. Let $P_n=O_{1/2^n}$ and define the measurable non-negative functions $f_n=\chi_{P_n}$ and $f=\sum_{n=1}^{\infty}f_n$, then $\int_{\mathbb{R}}f=1<\infty$ and thus f is integrable. Pick an arbitrary $x\in E$ and consider an arbitrary trary sequence of open intervals I_m containing x such that $\lambda(I_m) \to 0$ as $m \to \infty$. Now by the openness of P_n and the fact that $x \in P_n$ by conwe are such that whenever $m \geq N$ then $m \geq$

1.5 Problem V

We look at the set $K = E^c \cap (0,1)$ and prove that $\lambda(K) = 0$, obviously then $\lambda(E)=1$ and we have established the result. Reducing a little further: by the Lebesgue differentiation theorem (Theorem 1.4) applied to the characteristic function of E there is a measure zero set F such that for any $x \in K \subset E^c$ either x has the property that $\lim_{\lambda(I)\to 0, x\in I} \frac{\lambda(I\cap E)}{\lambda(I)} = 0$ or $x\in F$. I show that it must be the case that $x \in F$ and hence $K \subset F \Rightarrow \lambda(K) = 0$. Taking any arbitrary sequence of intervals $I_k \to 0$ as $k \to \infty$, each containing x and being contained in [0,1], we see that, since $\forall k, \frac{\lambda(I_k \cap E)}{\lambda(I_k)} \geq \alpha > 0$, we have a limit $\lim_{k\to\infty}\frac{\lambda(I_k\cap E)}{\lambda(I_k)}>0$. But this contradicts the property as for any $x \in K \subset (0,1)$ such a limit under the conditions $\lambda(I) \to 0, x \in I$ will eventually have all its intervals contained in [0,1]. Thus necessarily $x \in F$.

10/10