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Problem 1. (1) We prove that a closed set is a G5 set. Let D be a closed set. We set

C%::{xzd@gD)<:%} (1)

where d(z, D) = inf{|z —y| : y E D}. And we can write D = ()2, Op. Here we prove O, is an
open set. Let 2 € Op. Set v’ = L —d(z, D). VVe consider the open bdll B(z,r"). Let z € B(z,r").
d(z,D) < d(z,z) + d(z, D) < v’ +d(z,D) = £ —d(z,D) + d(z,D) = L. So B(z,7') C O, = O,
is open.

Then we prove that a open set is Fy set. D is closed, then D¢ is open.

D= ([ on) =] O (2)
n=1 n=1

O,, is open so OF is closed. Thus, an open set is a Fj set.
n n 3

We have the set of rational numbers Q. which is a Fy set but not a G set. Since every singleton
in Q is closed and Q is the countable union of singletons, which unphes that Q is a Fj set. Now,.
suppose that @ is the countable intersection of open sets. i.e. Q = ﬂn 1 On.(where 1 <k < x)
Pick z € (\*_, On. Then there must exist a 7 > 0 such that B(z,r) C N:_, On. In other
words, B(x,r) C Q By density of irrational numbers, we can always find some irrational number
o € B(z,r), which implies that B(z,r) ¢ Q. Contradiction. Thus, Q is a Fs set but not a G set.

Problem 2. First, for each n, we pick the sequence ¢, such that
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By (3), we have that Y~ ME,) < co. We set E = {2 : 2 € E,, for infinitely many k}. By
Borel-Cantelli lemma, we have that A(F) = 0. This implies that ¢, is a sequence such that

raanl IS }12 for almost everywhere in [0, 1]. And then we let n — 0. So
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= 0 for almost everywhere [0, 1]




Problem 3. We suppose that f(z) = 1 y)(x} almost everywhere. We look at the mterv(xl (-— 0)yu
(0, 4 ) Since f(z) = 11)(z) almost everywhere, we can always find two p01nt< xo € (-~ 0) and
yo € (0, 5) Note that we also have f(zg) = 0 and f(yo) = 1. New, we take ¢ = % and let yo € (0, 2)
be given. But for z¢ € (-§,O), |f(zo) = f(yo)] = 1 > e. Thus, this f(z) can not be continuous
everywhere.

Problem 4. Let D be an arbitrary open disc in R?. And we denote the open rectangle R; =
(a;, b;) x (c;,d;) with R; C D for all i. And we claim that the boundary dR; does not belong to any
rectangles but it is in the open disc D.

Proof of the Claim. We pick a point x € R;. First, z € D. Suppose that x € R; for some j # 1.
Since R; is open, we can always find an open ball B(z,7) C R;. But z € 9R;, which means
B(z,r) N'R; # 0. This is clearly a contraction since R; and R; are disjoint.(B(x,r) C R; ==
B(z,r)NR; = 0). O

By the proof of the claim we can deduce that an open disc in R? is not a disjoint union of open
rectangles.

Problem 5. (1) First, we have f(0) = f(0+0) = f(0) + f(0) = 2f(0) = f(0) = 0 and
ft (o) = fl@) + f(=2) =0 = f(z) = —f(~2).

Claim A: f is continuous at 0.

Proof of the Claim A. We prove by contraction. Suppose f(x) is not continuous at 0. We fix &q.
Then for any § > 0, there exists |x| < ¢ such that |f(z)| > £0.(f(0) = 0) Now, since f is lebesgue
measurable and finite value on (—k, k)(k € R), we apply the Lusin Theorem and let g, — 0. There
must exist a closed set F, C (—k,k) with A\(F.,) = 2k such that f|p, is continuous. Also f is
uniformly continuous on F;,. Now, since f is uniformly continuous on Fsk we fix such 0 < ¢ <
2e0 — f(0), then we can find a d, such ’rhat Vz,y € Fy, such that |z —y| < . = |f(z)— f(y)| <e.
Let 6 = 5F There must exist a zg € (—2 %, %) such that |f(zg)] > eo. Without loss of generality,
we have f(:co) > 0. So we have f(zg) > co. f(—z0) = f(0) — f(zo) < f(0) — €¢. This implies
|f(zo) — f(—z0)| > 20 — f(0) > e. But f(x) is uniformly continuous on F, . Contradiction.

Remark: Here for safety I keep f(0) since I don’t know whether 0 is in F,,_ or not. But it
doesn’t matter since we can have the freedom to choose this f(0) < 2e¢ to make all the proof works.
But you might ask how could we guarantee the existence of xg € F;,. We can pair the (zg, —zo)
. If only one of them exists then we clearly can’t choose this xg. but if there are no zy and —xg
that both exists, we can’t have this lebesgue measure equals to 2k, it has to be k. That’s why I let
ep — 0. ]

Now we prove f is continuous on R.

Proof. Let ¢ € R and € > 0 be arbitrary. Since f is continuous at 0, 36 > 0 such that |z| < 0 =
If(x)] < e If |z —c| <38, then |f(z) — f(c)| = |f(z) + f(—¢)| = |f(x —¢)] < e. Since ¢ > 0 is
arbitrary, we conclude that f is continuous at ¢. And since ¢ € R is arbitrary, we conclude that f
is continuous on K. : rr 0

(2) We prove that f(x) = zf(1).



Proof. By induction we can easily show tha% flev+zo+ cxp) = f(z1) + fz2) + ... + fap). Let
m € N. Then f(1) = fO-1,(1/m)) =37, f(1/m) = mf(1/m) and we deduce that f(1/m) =
(1/m)f(1). Let n € N, then f(n/m) = fO2L,(1/m)) = 33, f(1/m) = nf(1/m) = (n/m)[(1).
Since (n,m) € N? so we can deduce that f(q) = qf(1) for all ¢ € Q. Since f(z) = —f(—z) for
all . we can conclude that f(r) =rf(1) for all r € Q.

Let now ¢ € R be arbitrary. By density of rational numbers, we can find a sequence (r,,) such
that r, € @ for all n € N and lim,,oc 7, = ¢f(1). Since [ is continuous at ¢, by the sequential
criterion, f(c) = limp oo f(rn) = limy 00 7 = ¢f(1). Thus, we conclude that f(z) = 2 f(1) for all
r € R.
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