
THE RIEMANN ZETA FUNCTION ON VERTICAL ARITHMETIC
PROGRESSIONS

XIANNAN LI AND MAKSYM RADZIWIÃLÃL

Abstract. We show that the twisted second moments of the Riemann zeta function
averaged over the arithmetic progression 1

2 + i(an + b) with a > 0, b real, exhibits a
remarkable correspondance with the analogous continuous average and derive several
consequences. For example, motivated by the linear independence conjecture, we show
at least one third of the elements in the arithmetic progression an + b are not the
ordinates of some zero of ζ(s) lying on the critical line. This improves on earlier work
of Martin and Ng. We then complement this result by producing large and small values
of ζ(s) on arithmetic progressions which are of the same quality as the best Ω results
currently known for ζ( 1

2 + it) with t real.

1. Introduction

In this paper, we study the behavior of the Riemann zeta function ζ(s) in vertical
arithmetic progressions on the critical line. To be more precise, fix real numbers α > 0
and β. We are interested in the distribution of values of ζ(1/2 + i(α` + β)) as ` ranges
over the integers in some large dyadic interval [T, 2T ]. Here are some specific questions
of interest:

(1) How does the mean square
∑

`∈[T,2T ] |ζ(1
2

+ i`)|2 compare to
∫ 2T

T
|ζ(1

2
+ it)|2dt?

(2) Does the mean square of ζ(s) distinguish arithmetic sequences? That is, does∑
`∈[T,2T ] |ζ(1/2 + i(α` + β))|2 depend on α and β?

(3) What about the case
∑

`∈[T,2T ] |ζ(1
2

+ i(α` + β))B(1
2

+ i(α` + β))|2, where B(s)

is an arbitary Dirichlet polynomial? In the special when B(s) is a mollifier, the
continuous average of ζ(1

2
+ it)B(1

2
+ it) has been shown to be close to 1. Does

B(s) still act the same way when restricted to the discrete sequence 1
2
+ i(α`+β)?

For most - but not all - values of α and β our results suggest that the average behavior
of ζ(1

2
+ i(α` + β)) is similar to that of a unitary family such as L(1

2
; χ).

Besides being of independent interest the above three questions are motivated by the
linear independence conjecture, which we approach through two simpler questions:

(1) Can ζ(s) vanish at many (or most) of the points 1
2

+ i(α` + β)?

(2) Can ζ(s) be extremely large or small at a point of the form 1
2
+ i(α`+β)? Are the

extreme values at 1
2
+ i(α` + β) comparable to those of ζ(1

2
+ it) with t ∈ [T ; 2T ]?

We begin with some mean square results.

1.1. Mean value estimates. The distribution of values of ζ(s) on the critical line has
been studied extensively by numerous authors and in particular the moments of ζ(s) have
received much attention. Here, much effort has gone into the study of the continuous
moments both on the critical line and to the right of the critical line. Generally the study
of such moments is easier to conduct to the right of the critical line, and it is the critical
line which holds the most interest. For discrete averages of the type we consider, the
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fourth moment of ζ(s) has been studied to the right of the critical line by A. Good [3].
Consider a Dirichlet polynomial B(s) with,

(1) B(s) =
∑

n≤T θ

b(n)

ns
, and b(n) ¿ dA(n)

for some fixed, but arbitrary A > 0. Throughout we will assume that the coefficients
b(n) are real.

Theorem 1. Let B(s) be as above. Let φ(·) be a smooth compactly supported function,
with support in [1, 2]. If θ < 1

2
, then as T →∞.

∑

`

|ζ(1
2
+ i`)B(1

2
+ i`)|2 ·φ

(
`

T

)
=

∫

R
|ζ(1

2
+ it)B(1

2
+ it)|2 ·φ

(
t

T

)
dt+OA(T (log T )−A)).

Since ζ(s)B(s) oscillates on a scale of 2π/ log T it is interesting that we can reconstruct
accurately the continuous average of ζ(s)B(s) only by sampling at the integers. The
reader may be amused by examining the same statement for sin x or sin(log(|x| + 1)x),
which will be equivalent to the equidistribution of certain sequences modulo 1.

Theorem 1 depends on the fact that we are summing over the integers, and specifically
on the fact that the sequence e2π` cannot be well approximated by rational numbers. To
amplify this dependence, let us consider the second moment of ζ(s) averaged over an
arithmetic progression αn + β, with arbitrary α > 0 and β. In this context, our result
will depend on the diophantine properties of e2π`/α. Let

δ(α, β) =

{
0 if e2π`/α is irrational for all ` > 0

2 cos(β log(m/n))
√

mn−2
mn+1−2

√
mn cos(β log(m/n))

if e2π`/α is rational for some ` > 0

with m/n 6= 1 denoting the smallest reduced fraction having a representation in the form
e2π`/α for some ` > 0. Then we have the following asymptotic result for the second
moment of the Riemann zeta function.

Theorem 2. Let φ(·) be a smooth compactly supported function, with support in [1, 2].
Let α > 0, β be real numbers. Then, as T →∞,
∑

`

|ζ(1
2

+ i(α` + β))|2 · φ
(

`

T

)
=

∫

R
|ζ(1

2
+ i(αt + β))|2 · φ

(
t

T

)
dt · (1 + δ(α, β) + o(1))

In the above, o(1) denotes a quantity tending to 0 as T grows, which depends on the
diophantine properties of α and β. Our methods allow us to prove an analogous result for
the second moment of ζ(s) twisted by a Dirichlet polynomial over an arbitrary vertical
arithmetic progression and also to recover Good’s estimate [3] for the fourth moment of
the Riemann zeta-function off the half-line. See Propositions 1 and 2 for more details.

In contrast to Theorem 2, the dependence on the diophantine properties of α and β is
nullified when B is a mollifier. To be precise, let φ(·) be a smooth compactly supported
function, with support in [1, 2], and define

Mθ(s) :=
∑

n≤T θ

µ(n)

ns
·
(

1− log n

log T θ

)
.

Then we have the following Theorem.

Theorem 3. Let the mollified second moment be defined as

(2) J :=
∑

`

|ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))|2φ
(

`

T

)
.
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Let 0 < θ < 1
2

and a > 0 and b be real numbers. Then,

J =

∫

R

∣∣(ζ ·Mθ)(
1
2

+ i(αt + β))|2 · φ
(

t

T

)
dt + O

(
T

(log T )1−ε

)

The lack of dependence on the diophantine properties of α and β in Theorem 3 gives
the non-vanishing proportion of 1

3
in Theorem 4 below.

1.2. Non-vanishing results. One of the fundamental problems in analytic number the-
ory is determination of the location of the zeros of L-functions. Here, one deep conjecture
about the vertical distribution of zeros of ζ(s) is the Linear Independence Conjecture (LI),
which states that the ordinates of non-trivial zeros of ζ(s) are linearly independent over
Q. In general, it is believed that the zeros of L-functions do not satisfy any algebraic
relations, but rather appear to be “random” transcendental numbers. Classically, Ing-
ham [4] linked the linear independence conjecture for the Riemann zeta-function with
the oscilations of M(x) =

∑
n≤x µ(n), in particular offering a conditional disproof of

Merten’s conjecture that |M(x)| ≤ √
x for all x large enough. There are a number of

connections between LI and the distribution of primes. For instance, Rubinstein and
Sarnak [9] showed a connection between LI for Dirichlet L-functions and prime number
races, and this has appeared in the work of many subsequent authors.

LI appears to be far out of reach of current technology. However, it implies easier
conjectures which may be more tractable. One of these is that the vertical ordinates of
nontrivial zeros of ζ(s) should not lie in an arithmetic progression. To be more precise,
for fixed α > 0, β ∈ R, let

Pα,β(T ) =
1

T
· Card{T ≤ ` ≤ 2T : ζ(1

2
+ i(α` + β)) 6= 0}.

Then what kind of lower bounds can we prove for Pα,β(T ) for large T? Recently, improving
on the work of numerous earlier authors, Martin and Ng [8] showed that Pα,β(T ) Àα,β

(log T )−1 which misses the truth by a factor of log T . In this paper, we prove the following
improvement.

Theorem 4. Let α > 0 and β be real. Then, as T →∞,

Pα,β(T ) ≥ 1

3
+ o(1).

The proof of Theorem 4 leads easily to the result below.

Corollary 1. Let α > 0 and β be real. Then, as T →∞,

|ζ(1
2

+ i(α` + β)| ≥ ε(log `)−1/2

for more than (1
3
− Cε)T integers T ≤ ` ≤ 2T , with C an absolute constant.

Theorem 4 is proven by understanding both a mollifed discrete second moment (see
Theorem 3) and a mollified discrete first moment. Our methods extend without modifi-
cation to prove the analogous result for Dirichlet L-functions. The constants 1

3
represents

the limits of the current technology - see for example [5] for the case of non-vanishing of
Dirichlet L-functions at the critical point.

Of course, we expect that Pα,β(T ) = 1 + O(T−1). Assuming the Riemann Hypoth-
esis (RH), Ford, Soundararajan and Zaharescu [2] showed Pα,β(T ) ≥ 1

2
+ o(1) as T →

∞. Assuming RH and Montgomery’s Pair Correlation Conjecture they showed [2] that
Pα,β(T ) ≥ 1 − o(1) as T → ∞. Assuming a very strong hypothesis on the distribution
of primes in short intervals, it is possible to show that Pα,β(T ) = 1 − O(T−δ) for some
δ > 0.
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Note that the rigid structure of the arithmetic progression is important. Since there
is a zero of ζ(s) in every interval of size essentially (log log log T )−1 in [T, 2T ] (see [7])
minor perturbations of the arithmetic progression renders our result false.

1.3. Large and small values. We now complement Theorem 4 by exhibiting large and
small values of ζ(s) at discrete points 1

2
+ i(α` + β) using Soundararajan’s resonance

method [10]. Previously A. Good pointed out in [3] that his result imply that ζ(σ +
i(α` + β)) = Ω(1) for fixed σ > 1

2
and infinitely many `’s.

Theorem 5. Let α > 0 and β be real. Then, for infinitely many ` > 0,

|ζ(1
2

+ i(α` + β))| À exp

(
(1 + o(1))

√
log `

6 log log `

)

and for infinitely many `,

|ζ(1
2

+ i(α` + β))| ¿ exp

(
− (1 + o(1))

√
log `

6 log log `

)
.

The o(1) in this result is independent of the diophantine properties of α and β. Since
we expect ζ(1

2
+ i(α` + β)) 6= 0 for essentially all `, it is interesting to produce values

of ` at which ζ(1
2

+ i(α` + β)) is extremely small. Furthermore, the large values of

ζ(1
2
+ i(α` + β)) over a discrete set of points above are almost of the same quality as the

best results for large values of ζ(1
2

+ it) with t real. In the latter case, the best result is
due to Soundararajan [10]. We have not tried to optimize in Theorem 5 and perhaps the
same methods might lead to the constant 1 rather than 1/

√
6.

1.4. Technical propositions. The proofs of our Theorems rests on a technical Propo-
sition, and its variant, which may be of independent interest. With B(s) defined as in
(1), consider the difference between the discrete average and the continuous average,

E :=
∑

`

|(ζ ·B)(1
2

+ i(α` + β))|2φ
(

`

T

)
−

∫

R
|(ζ ·B)(1

2
+ i(αt + β))|2φ

(
t

T

)
dt.

Proposition 1 below shows that understanding E boils down to understanding the behavior
of sums of the form

(3) F (a`, b`, t) :=
∑
r>1

1

r

∑

h,k6T θ

b(k)b(h)
∑

m,n>1
mk=a`r
nh=b`r

W

(
2πmn

αt + β

)

where W (x) is a smooth function defined as

W (x) :=
1

2πi

∫

(ε)

x−w ·G(w)
dw

w

with G(w) an entire function of rapid decay along vertical lines G(x + iy) ¿x,A |y|−A,

such that G(w) = G(−w), G(0) = 1, and satisfying G(w̄) = G(w) (to make W (x) real

valued for x real). For example we can take G(w) = ew2
. Notice that W (x) ¿ 1 for

x ≤ 1 and W (x) ¿A x−A for x > 1.
Of course, the expression in (3) should not depend on the choice of W . In fact,

F (al, bl, t) can also be written as

(4)
∑

m,n≤T θ

b(m)b(n)

mn
· (ma`, nb`) · H

(
(αt + β) · (ma`, nb`)

2

2πma`nb`

)
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where H(x) is a smooth function such that,

H(x) =

{
1
2
· log x + γ + OA(x−A) if x À 1

OA(xA) if x ¿ 1

As seen in a theorem of Balasubramanian, Conrey and Heath-Brown [1] the continuous
t average over T ≤ t ≤ 2T of |ζ(1

2
+ it)B(1

2
+ it)|2 gives rise to (4) with a` = 1 = b`. For

technical reasons it is more convenient for us to work with the smooth version (3).

Proposition 1. Let 0 < θ < 1/2. For each ` > 0, let (a`, b`) denote (if it exists) the
unique tuple of co-prime integers such that a`b` > 1, b` < T 1/2−εe−π`/α and

(5)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−ε
.

If such a pair (a`, b`) exists, then let

H(`) =
(a`/b`)

iβ

√
a`b`

∫ ∞

−∞
φ

(
t

T

)
· exp

(
− 2πit

(
α log a`

b`

2π
− `

))
· F (a`, b`, t)dt,

and otherwise set H(`) = 0. Then,

E = 4Re
∑

`>0

H(`) + O(T 1−ε).

More generally we can consider

E ′ =
∑

`

|B(1
2

+ i(α` + β))|2φ
(

`

T

)
−

∫

R
|B(1

2
+ i(αt + β))|2φ

(
t

T

)
dt.

In this case our results depend on

F ′(a`, b`) :=
∑
r≥1

b(a`r)b(b`r)

r

where we adopted the convention that b(n) = 0 for n > T θ. Then the analogue of
Proposition 1 is stated below.

Proposition 2. Let 0 < θ < 1. For each ` > 0 let (a`, b`) denote (if it exists) the unique
tuple of co-prime integers such that a`b` > 1, b` < T 1/2−εe−π`/α and

(6)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−ε
.

Then,

E ′ = 2<
∑

`>0

(a`/b`)
iβ

√
a`b`

· φ̂
(

α log a`

b`

2π
− `

)
F
′
(a`, b`) + O(T 1−ε)

where in the summation over ` we omit the terms for which the pair (a`, b`) does not
exist.

The proof of Proposition 2 is very similar (in fact easier!) than that of Proposition 1,
and for this reason we omit it. To recover Good’s result [3] for the fourth moment of
the Riemann zeta-function off the half-line, we only need Proposition 2 for a Dirichlet
polynomial of length T ε.

One can ask about the typical distribution of log ζ(1
2

+ i(α` + β)) . This question is
out of reach if we focus on the real part of log ζ(s) since we cannot even guarantee that
almost all 1

2
+ i(α` + β) are not zeros of the Riemann zeta-function. On the Riemann
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Hypothesis, using Proposition 2 and Selberg’s methods, one can prove a central limit
theorem for S(α` + β) with T ≤ ` ≤ 2T . We will not pursue this application here.

We deduce Theorems 1 and 2 from Proposition 1 in Section 2. We then prove Theorem
3 in Section 3, complete the proof of Theorem 4 in Section 4, and prove Theorem 5 in
Section 5. Finally, we prove Proposition 1 in Section 6.

2. Proof of Theorems 1 and 2

Proof of Theorem 1. Set α = 1 and β = 0. By Proposition 1 it is enough to show that
E ¿ T (log T )−A. Since W (x) ¿ x−A for x > 1 and W (x) ¿ 1 for x ≤ 1, we have, for
T ≤ t ≤ 2T

F (a`, b`, t) ¿ 1 +
∑
r≥1

1

r

∑

h,k≤T θ

|b(k)b(h)|
∑

m,n≤T 1+ε

mk=a`r
nh=b`r

1 ¿
∑

r≤T 2

c(a`r)c(b`r)

r
+ 1

where c(n) :=
∑

d|n |b(d)| ¿ dA+1(n). Therefore F (a`, b`, t) ¿ (a`b`)
εT (log T )B. for some

large B > 0. It thus follows by Proposition 1, that

E ¿ T (log T )B ·
∑

`>0

(a`b`)
−1/2+ε

Because of (6) we have a`b` À e2π`. Therefore the `’s with ` ≥ (log log T )1+ε contribute
¿A T (log T )−A. We can therefore subsequently assume that ` ¿ (log log T )1+ε. In order
to control a` and b`, when ` ≤ (log log T )1+ε we appeal to a result of Waldschmidt (see
[11], p. 473),

(7)

∣∣∣∣eπm − p

q

∣∣∣∣ ≥ exp

(
− 272 log(2m) log p · log log p

)
.

Therefore if condition (6) is satisfied then e2π`T−1+ε ≥ exp(−c(log `) · (log a`)(log log a`))
Therefore, using that ` ≤ (log log T )1+ε we get (log a`) · (log log a`) À log T/(log log T )ε,
and hence log a` À log T/(log log T )1+ε. Notice also that (6) implies that a`b` À e2π`, so
that

∑
`>0(a`b`)

−α = Oα(1) for any α > 0. Combining these observations we find
∑

0<`<(log log T )1+ε

(a`b`)
−1/2+ε ¿ e−c log T/(log log T )1+ε

∑

`>0

(a`b`)
−1/4 ¿ e−c log T/(log log T )1+ε

.

Thus E ¿A T (log T )−A for any fixed A > 0, as desired. ¤

It is possible to generalize this theorem to other progressions, for example to those
for which 2π/α is algebraic. We refer the reader to [11] for the necessary results in
diophantine approximation.

Proof of Theorem 2. Set B(s) = 1 in Proposition 1. Then, keeping notation as in Propo-
sition 1, we get

∑

`

|ζ(1
2

+ i(α` + β))|2 · φ
(

`

T

)
=

∫

R
|ζ(1

2
+ i(αt + β))|2 · φ

(
t

T

)
dt + E

The main term is ∼ φ̂(0)T log T . It remains to understand E .

First case. First suppose that e2π`/α is irrational for all ` > 0. Since b(k) = 1 if
6



k = 1 and b(k) = 0 otherwise it is easy to see that F (a`, b`, t) ¿ T log T uniformly in
a`, b` and T ≤ t ≤ 2T . Thus,

E ¿ T log T
∑

`>0

(a`b`)
−1/2

It remains to show that
∑

`>0(a`b`)
−1/2 = o(1) as T → ∞. Let ε > 0 be given. Since

a`b` À e2π`/α we can find an A such that
∑

`>A(a`b`)
−1/2 ≤ ε. For the remaining integers

` ≤ A notice that e2π`/α is irrational for each ` ≤ A. Therefore for each ` ≤ A,

(8)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−ε

implies that a`b` → ∞. It follows that
∑

`≤A(a`b`)
−1/2 ≤ ε once T is large enough. We

conclude that
∑

`>0(a`b`)
−1/2 = o(1), and hence that E = o(T log T ) as desired.

Second case. Now consider the case that e2π`0/α is rational for some `0. Write

(9) α =
2π`0

log(m/n)

with co-prime m and n and |m| minimal. Let k be the maximal positive integer such
that m/n = (r/s)k with r, s co-prime. Then,

α =
`0

k
· 2π

log(r/s)
.

Let d = (`0, k). Note that d = 1 since otherwise, we may replace `0 by `0/d and m and
n by m1/d and n1/d in (9) which contradicts the minimality condition on |m|.

For each ` divisible by `0 the integers a` = m`/`0 and b` = n`/`0 satisfy (8) because
e2π`/α = (m/n)`/`0 . For the remaining integers ` not divisible by `0, e2π`/α = (r/s)k`/`0 is
irrational, since `0|k` if and only if `0|`. We split E accordingly

E = 4Re
∑

`>0
`0|`

H(`) + 4Re
∑

`>0
`0-`

H(`)

The second sum is o(T log T ) as can be seen by repeating the same argument as in the
first case. As for the first sum, we find that for each ` divisible by `0,

H(`) = 2Re

(
(m/n)iβ

√
mn

)`/`0

· φ̂(0)T log T + O

(
` log mn

(mn)`/2`0
· T

)
.

Therefore

∑

`>0
`0|`

H(`) = 2φ̂(0)T log T ·
∑

`>0

(
(m/n)iβ

√
mn

)`

+ O(T )

= φ̂(0)T log T · 2 cos(β log(m/n))
√

mn− 2

mn + 1− 2
√

mn cos(β log(m/n))
+ O(T )

giving the desired estimate for E . ¤
7



3. Proof of Theorem 3

Recall that in the notation of Proposition 1,

F (a`, b`, t) :=
∑
r>1

1

r

∑

h,k6T θ

b(k)b(h)
∑

m,n>1
mk=a`r
nh=b`r

W

(
2πmn

αt + β

)

The lemma below, provides a bound for F when the coefficients b(n) are the coefficients
of the mollifiers Mθ(s), that is

b(n) = µ(n) ·
(

1− log n

log T θ

)

and b(n) = 0 for n > T θ.

Lemma 1. For any a`, b` ∈ N with (a`, b`) = 1 and a`b` > 1, uniformly in T ≤ t ≤ 2T ,
we have that

F (a`, b`, t) ¿ (a`b`)
ε · T (log T )−1+ε.

Proof. For notational ease, let N = T θ. We first express the conditions in the sum above
in terms of Mellin transforms. To be specific since

W (x) =
1

2π

∫

(ε)

x−wG(w)
dw

w

with G(w) rapidly decaying along vertical lines, and such that G(w) = G(−w), G(0) = 1,
we have

S =
1

2πi

∫

(2)

∑
m,n≥1

∑

h,k≤N

b(h)b(k)
∑
r≥1

nk=b`r
mh=a`r

1

r

(
αt + β

2πmn

)w

G(w)
dw

w

=

(
1

2πi

)3 ∫

(2)

∫

(2)

∫

(2)

∑
m,n≥1

1

(mn)w

∑

h,k

µ(h)µ(k)

hz1kz2

∑
r≥1

nk=b`r
mh=a`r

1

r

(
αt + β

2π

)w

G(w)
dw

w

N z1dz1

log Nz2
1

N z2dz2

log Nz2
2

.

The sum over m,n, h, k and r inside the integral may be factored into an Euler product
as

∑
r≥1

1

r

( ∑

nk=b`r

1

nw

µ(k)

kz2

)( ∑

mh=a`r

1

mw

µ(h)

hz1

)

=
∏

p

(
1 +

1

p

(
1

pw
− 1

pz2

) (
1

pw
− 1

pz1

))
F (a`b`, w, z1, z2)η(w, z1, z2).
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Here η(w, z1, z2) is an Euler product which is absolutely convergent in the region delimited
by Re w, Re z1, Re z2 > −1/2 and we define

F (a`b`, w, z1, z2) =
∏

pj ||a`

1

p(j−1)w

(
1

pw
− 1

pz1

)(
1 +

1

p1+w

(
1

pw
− 1

pz2

))

∏

pj ||b`

1

p(j−1)w

(
1

pw
− 1

pz2

)(
1 +

1

p1+w

(
1

pw
− 1

pz1

))

∏

p-a`b`

(
1 +

1

p

(
1

pw
− 1

pz2

)(
1

pw
− 1

pz1

))−1

.

Further, we may write

∏
p

(
1 +

1

p

(
1

pw
− 1

pz2

)(
1

pw
− 1

pz1

))
η(w, z1, z2) =

ζ(1 + 2w)ζ(1 + z1 + z2)

ζ(1 + w + z1)ζ(1 + w + z2)
η̃(w, z1, z2),

where η̃ denotes an Euler product which is absolutely convergent in the region delimited
by Re w, Re z1, Re z2 > −1/2 and does not depend on a` or b`. Thus,

S =

(
1

2πi

)3 (∫

(2)

)3
ζ(1 + 2w)ζ(1 + z1 + z2)

ζ(1 + w + z!)ζ(1 + w + z2)
η̃(w, z1, z2)F (a`b`, w, z1, z2)

(
αt + β

2π

)w

G(w)
dw

w

N z1dz1

log Nz2
1

N z2dz2

log Nz2
2

and shifting contours to Re w = −δ, Re z1 = Re z2 = δ + δ2 gives, since αt + β ³ T ,

S = I1 + I2 + I3 + O

(
(a`b`)

δN2δ+2δ2

T δ

)

with I1, I2, I3 specified below. Since N < T 1/2−ε the error term is ¿ (a`b`)
εT−ε provided

that δ is chosen small enough. Writing

H(z1, z2) =
ζ(1 + z1 + z2)

ζ(1 + z1)ζ(1 + z2)
η̃(0, z1, z2)F (a`b`, 0, z1, z2)

we have

I1 =
log(αt + β)

2

1

(2πi)2

∫

(1/4)

∫

(1/4)

H(z1, z2) · N z1dz1

log Nz2
1

N z2dz2

log Nz2
2

,

I2 = −1

2

1

(2πi)2

∫

(1/4)

∫

(1/4)

(
ζ ′

ζ
(1 + z1) +

ζ ′

ζ
(1 + z2)

)
·H(z1, z2) · N z1dz1

log Nz2
1

N z2dz2

log Nz2
2

,

and

I3 =
1

2

1

(2πi)2

∫

(1/4)

∫

(1/4)

(
d

dw
η̃(w, z1, z2)F (a`b`, w, z1, z2)

)
w=0

η̃(0, z1, z2)F (a`b`, 0, z1, z2)
·H(z1, z2)·

· N z1dz1

log Nz2
1

N z2dz2

log Nz2
2

.

Bounding the integrals is now a standard exercise. As they can be bounded using the
exact same procedure, we will focus our attention to I1 (note in particular, that I3 is
smaller by a factor of log T compared with the other integrals).
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For ease of notation, write G(z1, z2) = η̃(0, z1, z2)F (a`b`, 0, z1, z2). Then

I1 =
log(αt + β)

2

∑
n≤N

1

n

1

(2πi)2

∫

(1/ log N)

∫

(1/ log N)

ζ(1 + z1)
−1ζ(1 + z2)

−1G(z1, z2)·

·
(

N

n

)z1+z2 dz1

log Nz2
1

dz2

log Nz2
2

,

Let M = exp(B(log log T )2) for B a parameter to be determined shortly. We split the
sum in n above to n ≤ N/M and n > N/M .

If n > N/M , then shift both contours to the line with real-part (log M)−1 and bound
the integrals trivially. The contribution of terms with n > N/M is

¿ log T (log M)5(log N)−2(a`b`)
ε ¿ (a`b`)

ε

(log T )1−ε
.

Now, for the terms with n ≤ N/M , first truncate both contours at height log4 T with
an error ¿ (a`b`)

ε · (log T )−1. Since a`b` > 1, we assume without loss of generality that
a` > 1. This in turn implies that F (a`b`, 0, 0, z2) = 0, so that the integrand is holomorphic
at z1 = 0. From the classical zero free region for ζ(s), there exists a constant c > 0 such
that (ζ(1 + z1))

−1 < log(|z1| + 1) for Re z1 ≥ −c(log log T )−1 and |Im z1| ≤ log4 T . We
now shift the integral in z1 to Re z1 = −c(log log T )−1 with an error ¿ (a`b`)

ε(log T )−1

and bound the remaining integral trivially by

M
−c

log log T log T · (log log T )2(a`b`)
ε ¿ exp(−cB log log T )(log T )1+ε(a`b`)

ε.

The result follows upon picking B = 2
c
. ¤

Proof of Theorem 3. Let B(s) = Mθ(s) with 0 < θ < 1
2
. Inserting the bound in Lemma

1 into Proposition 1 we obtain

E ¿ T

(log T )1−ε
·
∑

`>0

1

(a`b`)1/2−ε
+ O(T 1−ε).

The sum over ` > 0 is rapidly convergent: Because of (6) we have a` ³ b`e
2π`/α and

therefore a`b` À e2π`/α. It follows that the sum over ` > 0 contributes O(1) and we
obtain E ¿ T (log T )−1+ε as desired. ¤

4. Proof of Theorem 4

Recall that

Mθ(s) :=
∑
n≥1

b(n)

ns

with coefficients

b(n) := µ(n) ·
(

1− log n

log T θ

)
,

for n ≤ T θ and b(n) = 0 otherwise. Define the mollified first moment as

(10) I :=
∑

`

ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))φ

(
`

T

)
,

and recall that

J :=
∑

`

|ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))|2φ
(

`

T

)
.

10



By Cauchy-Schwarz and 0 ≤ φ ≤ 1, we have

|I| ≤ (Pα,β(T ) · T )1/2 · J 1/2.

Then our Theorem 4 follows from the following Proposition 3 and Theorem 3.

Proposition 3. Let α > 0, β be real numbers. With I as defined in (10), and for T
large,

|I| = T φ̂(0) + O

(
T

log T

)
.

Proof. Uniformly in 0 ≤ t ≤ 2aT we have,

ζ(1
2

+ it) =
∑

n≤2aT

1

n1/2+it
+ O

(
1

T 1/2

)
,

Since in addition |M(1
2

+ it)| ¿ T θ/2+ε for all t, we get

I =
∑

`

∑
n≤2αT

1

n1/2+i(α`+β)
·M(1

2
+ i(α` + β))φ

(
`

T

)
+ O

(
T θ/2+1/2+ε

)

=
∑

m≤T θ

b(m)√
m

∑
n≤2αT

1√
n
· (mn)−ib

∑

`

(mn)−ia`φ

(
`

T

)
+ O(T 3/4)

=
∑

m≤T θ

b(m)√
m

∑
n≤2αT

1√
n
· (mn)−ib

∑

`

T φ̂

(
T

(
α log(mn)

2π
− `

))
+ O(T 3/4),

by Poisson summation applied to the sum over `.
Note that φ̂ (Tc) ¿A T−A for any |c| > T−1+ε,which is an immediate result of φ̂

being a member of the Schwarz class. Hence, the sum above may be restricted to |`| ≤
α
2π
· log(2αT 1+θ)+O(T ε−1). The terms with ` = 0 contributes a main term of T φ̂(0) when

mn = 1, and the terms with other values of mn contributes O(T−A).
Now consider ` 6= 0. Terms with |a log(mn)−`| > T ε−1 contribute O(T−A). Otherwise,

suppose that

(11) α =
2π`

log n0

+ O(T ε−1)

for some integer n0 > 1, and fix such a n0 The term mn = n0 contributes

T

n
1/2+ib
0

∑

m|n0

b(m)φ̂ (T (α log(n0)− `))

for T large. This term is bounded by

¿a
T

log T
· d(n0) log n0√

n0

because b(m) = µ(m) + O(log m/ log T ) for all m, and thus,

∑

m|n0

b(m) ¿ d(n0) log n0

log T

For a fixed `, the number of n0 satifying (11) is bounded by n0T
−1+ε + 1. Thus the total

contribution of all the terms is

¿ T
n

1/2+ε
0

T
· T ε + T

d(n0)√
n0

log n0

log T
¿ T 3/4+ε + T

d(n0)√
n0

log n0

log T
.
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We sum this over all the |`| ¿ log(2αT 1+θ). Such a short sum does not affect the size
of the first term above. As for the second term, since n0 ³ e2πa`, the sum over ` 6= 0 is
bounded by

T

log T

∑

|`|>0

|`|
e|aπ`|(1−ε)

¿ T

log T
.

From this we have that

I = φ̂(0)T + O

(
T

log T

)

¤

Proof of Theorem 1. Appealing to a result of Balasubramanian, Conrey and Heath-Brown

[1] to compute
∫ 2T

T
|(ζ ·Mθ)(

1
2
+i(αt+β))|2dt, we have by Theorem 3 J ≤ T ·(1+ 1

θ
+o(1)).

Combining this with the inequality

I ≤ (Pα,β(T ) · T )1/2 · J 1/2

and Proposition 3, we obtain

φ̂(0)T (1 + o(1)) ≤ (Pα,β(T ) · T )1/2 · (T · (1
θ

+ 1 + o(1)))1/2

Hence,

Pα,β(T ) ≥ θ

θ + 1
φ̂(0) + o(1)

for all 0 < θ < 1
2
. Now we set φ(t) = 1 for t ∈ [1 + ε, 2− ε] so that φ̂(0) ≥ 1− 2ε. Letting

θ → 1
2

−
and ε → 0, we obtain the claim. ¤

In order to prove the Corollary we need the lemma below.

Lemma 1. We have,

∑

`

|Mθ(
1
2

+ i(α` + β))|2φ( `

T

) ¿ T log T

Proof. Using Proposition 2 we find that the above second moment is equal to
∫

R
|Mθ(

1
2

+ i(αt + β))|2φ( t

T

)
dt + O

(
T φ̂(0)

∑

`>0

1√
a`b`

· |F ′(a`, b`)|
)

where a`, b` denotes for each ` > 0 the unique (if it exists!) couple of co-prime integers
such that a`b` > 1, b` < T 1/2−εe−π`/α and

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−ε

and where

F ′(a`, b`) =
∑
r≤T

b(a`r)b(b`r)

r
¿ log T

since the coefficients of Mθ are bounded by 1 in absolute value. Since
∫
R |Mθ(

1
2

+ i(αt +
β))|2φ(t/T )dt ¿ T log T the claim follows. ¤
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Proof of the Corollary. Following [5] let H0 be the set of integers T ≤ ` ≤ 2T at which,

|ζ(1
2

+ i(α` + β))| ≤ ε(log `)−1/2

and let H1 be the set of integers ` at which the reverse inequality holds. Notice that,

C0 :=

∣∣∣∣
∑

`∈H0

ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))φ
( `

T

)∣∣∣∣

≤ ε(log T )−1/2T 1/2 ·
( ∑

`

|Mθ(
1
2

+ i(α` + β))|2φ( `

T

))1/2

≤ CεT φ̂(0)

for some absolute constant C > 0. Hence by Proposition 3 and the Triangle Inequality,

C1 :=

∣∣∣∣
∑

`∈H1

ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))φ
( `

T

)∣∣∣∣ ≥ (1− Cε)φ̂(0)T

while by Cauchy’s inequality,

C1 ≤
(

Card(H1)

)1/2

·
( ∑

`

|ζ(1
2

+ i(α` + β))Mθ(
1
2

+ i(α` + β))|2φ( `

T

))1/2

As in the proof of Theorem 1, by Theorem 5 and a result of Balasubramanian, Conrey
and Heath-Brown, the mollified second moment is ≤ T · (1+1/θ+o(1)) as T →∞. Thus

|H1| ≥ φ̂(0)
1− Cε

1 + 1/θ
T

Taking θ → 1
2

−
and letting φ(t) = 1 on t ∈ [1 + ε; 2− ε], so that φ̂(0) ≥ 1− 2ε we obtain

the claim on taking ε → 0. ¤

5. Large and small values: Proof of Theorem 5

Let 0 ≤ φ ≤ 1 be a smooth function, compactly supported in [1, 2]. Let

A(s) =
∑
n≤T

1

ns

and let

B(s) =
∑
n≤N

b(n)n−s

be an arbitrary Dirichlet polynomial of length N . Consider,

R :=

∑
` A(1

2
+ i(α` + β))|B(1

2
+ i(α` + β))|2φ(

`
T

)
∑

` |B(1
2

+ i(α` + β))|2φ(
`
T

) .

Following Soundararajan [10], and since ζ(1
2

+ it) = A(1
2

+ it) + O(t−1/2),

max
T≤`≤2T

|ζ(1
2

+ i(α` + β))|+ O(T−1/2) ≥ |R| ≥ min
T≤`≤2T

|ζ(1
2

+ i(α` + β))|+ O(T−1/2)

Thus, to produce large and small values of ζ at discrete points 1
2
+ i(a` + b) it suffices to

choose a Dirichlet polynomial B that respectively maximizes/minimizes the ratio R. Fix
ε > 0. Consider the set S1 of tuples (a`, b`), with ` ≤ 2 log T , such that

∣∣∣∣
α log a`

b`

2π
− `

∣∣∣∣ ≤
1

T 1−ε
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and a`b` > 1 and both a`, b` are less than T 1/2−ε. In particular for each ` there is at most
one such tuple so |S1| ≤ 2 log T . From each tuple in S1 we pick one prime divisor of a`

and one prime divisor of b` and put them into a set we call S.
We define our resonator coefficients r(n) by setting L =

√
log N log log N and

r(p) =
L√

p log p

when p ∈ ([L2; exp((log L)2)] and p 6∈ S. In the remaining cases we let r(p) = 0. Note in
particular that the resonator coefficients change with T .

We then choose b(n) =
√

nr(n) or b(n) = µ(n)
√

nr(n) depending on whether we
want to maximize or minimize the ratio R. For either choice of coefficients we have the
following lemma.

Lemma 2. Write D(s) =
∑

n≤T
a(n)
ns with the coefficients a(n) ¿ 1. If N = T 1/2−δ with

δ > 10ε, then,

∑

`

D(1
2
+i(α`+β))|B(1

2
+i(α`+β))|2φ( `

T

)
=

∫

R
D(1

2
+i(αt+β))|B(1

2
+i(αt+β))|2φ( t

T

)
dt

+ O(T 1+(1−3δ)/2+4ε)

Proof. By Poisson summation we have,

∑

`

D(1
2

+ i(α` + β))|B(1
2

+ i(α` + β)|2φ( `

T

)
=

= T
∑

`

∑
m,n≤N

h≤T

b(m)b(n)a(h)√
mnh

(
m

nh

)iβ

φ̂

(
T

(
α log m

nh

2π
− `

))

The term ` = 0 contributes the main term (the continuous average). It remains to bound

the remaining terms ` 6= 0. Since φ̂(x) ¿ (1 + |x|)−A the only surviving terms are those
for which, ∣∣∣∣

α log m
nh

2π
− `

∣∣∣∣ ≤
1

T 1−ε

which in particular implies that |`| ≤ 2 log T . We split our sum into two ranges, nh <
T 1/2−ε and nh > T 1/2−ε.
First range. In the first range, for (m,nh) = 1, the real numbers log m/(nh) are spaced
by at least T−1+ε apart. Among all co-prime tuples with both a`, b` less than T 1/2−ε there
is at most one tuple satisfying,

∣∣∣∣
α log a`

b`

2π
− `

∣∣∣∣ ≤
1

T 1−ε

Grouping the terms m,n, h according to m = a`r and nh = b`r, we re-write the first sum
sum over the range nh ≤ T 1/2−ε as follows,

T
∑

` 6=0

1√
a`b`

∑
r

1

r

∑
m,n≤N

nh≤T 1/2−ε

m=a`r
nh=b`r

b(m)b(n)a(h)

(
m

nh

)iβ

φ̂

(
T

(
α log m

nh

2π
− `

))

However by our choice of r we have b(a`) = 0, hence by multiplicativity b(m) = 0, and it
follows that the above sum is zero.
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Second range. We now examine the second range nh > T 1/2−ε. The condition nh >
T 1/2−ε and n ≤ T 1/2−δ imply that h > T δ−ε. For fixed m, n we see that there are at most
T ε values of h such that ∣∣∣∣

α log m
nh

2π
− `

∣∣∣∣ ≤
1

T 1−ε

Putting this together we have the following bound for the sum over nh > T 1/2−ε,

T

∣∣∣∣∣∣∣∣

∑

6̀=0

∑

m,n≤N,h≤T
T 1/2−ε<nh

b(m)b(n)a(h)√
mnh

(
m

nh

)iβ

φ̂

(
T

(
α log m

nh

2π
− `

))
∣∣∣∣∣∣∣∣

¿ T
∑

|`|≤2 log T

∑
m,n≤N

|b(m)b(n)|√
mn

· T−δ/2+εT ε

¿ T 1−δ/2+3ε ·N
∑
n≤N

|b(m)|2
n

Then ∑
n≤N

|b(m)|2
m

≤
∏

p≥L2

(
1 +

L2

p log2 p

)
¿ T ε

because L2
∑

p>L2 p−1(log p)−2 ¿ log N/ log log N = o(log T ). Therefore the sum in the

second range is bounded by T 1−δ/2+4εN = T 1+(1−3δ)/2+4ε. ¤
In the above lemma we take δ = 1/3 + 4ε, so that N = T 1/6−4ε and the error term is

negligible (that is ¿ T 1−ε). Setting consecutively D(s) = A(s) and D(s) = 1 we get,

R =

∫
R A(1

2
+ i(αt + β))|B(1

2
+ i(αt + β))|2φ(

t
T

)
dt∫

R |B(1
2

+ i(αt + β))|2φ(
t
T

)
dt

plus a negligible error term. The above ratio was already worked out by Soundararajan
in [10] (see Theorem 2.1). Proceeding in the same way, we obtain that the above ratio is
equal to,

R = (1 + o(1))
∏

p

(
1 +

b(p)

p

)

Suppose that we were interested in small values, in which case b(n) = µ(n)
√

nr(n). Then,

R = (1 + o(1))
∏

p6∈S

(
1− L

p log p

)

Since
∑
p∈S

L

p log p
=

∑

L2≤p≤L2+2 log T

L

p log p
= o

(√
log N

log log N

)

we find that

R = exp

(
− (1 + o(1))

√
log N

log log N

)

Recall that N = T 1/6−4ε. Letting ε → 0 we obtain the claim since R ≥ minT≤`≤2T |ζ(1
2
+

i(α` + β))|+ O(T−1/2). The large value estimate for the maximum of ζ(1
2
+ i(α` + β)) is

obtained in exactly the same way by choosing r(n) =
√

nr(n) instead.
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6. Proof of the technical Proposition 1

Let G(·) be an entire function with rapid decay along vertical lines, that is G(x+ iy) ¿
|y|−A for any fixed x and A > 0. Suppose also that G(−w) = G(w), G(0) = 1 and

G(w) = G(w̄). An example of such a function is G(w) = ew2
. For such a function G(x)

we define a smooth function

W (x) :=
1

2π

∫

(ε)

x−wG(w) · dw

w
.

Notice that W is real.

Lemma 3 (Approximate function equation). We have, for T < t < 2T ,

|ζ(1
2

+ it)|2 = 2
∑

mn<T 1+ε

1√
mn

·
(

m

n

)it

W

(
2πmn

t

)
+ O(T−2/3).

Remark. Of course we could work with the usual smoothing V involving the Gamma fac-
tors on the Mellin transform side. We believe the smoothing W (2πmn/t) to be (slightly)
more transparent.

Proof. By a standard argument (see [6], Theorem 5.3),

(12) |ζ(1
2

+ it)|2 =
2

2πi

∫

(ε)

ζ(1
2

+ it + w)ζ(1
2
− it + w)π−wG(w) · gt(w)

dw

w
.

with gt(w) = Γ(1
4

+ it
2

+ w
2
)Γ(1

4
− it

2
+ w

2
)/

(
Γ(1

4
+ it

2
)Γ(1

4
− it

2
)
)

By Stirling’s formula
gt(w) = (t/2)w · (1 + O((1 + |w|2)/t)) uniformly for w lying in any fixed half-plane and
t large. Using Weyl’s subconvexity bound, on the line Re w = ε we have ζ(1

2
+ it +

w)ζ(1
2
− it + w) ¿ |t|1/3 + |w|1/3. Therefore, the error term O((1 + |w|2)/t) in Stirling’s

approximation contributes an error term of O(T−2/3) in (12). Thus

|ζ(1
2

+ it)|2 =
2

2πi

∫

(ε)

ζ(1
2

+ it + w)ζ(1
2
− it + w) ·

(
t

2π

)w

G(w) · dw

w
+ O(T−2/3).

Shifting the line of integration to Re w = 1 + ε we collect a pole at w = 1
2
± it, it is

negligible because G(1
2
±it) ¿ |t|−A. Expanding ζ(1

2
+ it+w)ζ(1

2
−it+w) into a Dirichlet

series on the line Re w = 1 + ε we conclude that

|ζ(1
2

+ it)|2 = 2
∑

m,n≥1

1√
mn

·
(

m

n

)it

W

(
2πmn

t

)
+ O(T−2/3).

Notice that W (x) = OA(x−A) for x > 1. Since T ≤ t ≤ 2T if mn > T 1+ε then
2πmn/t À T ε. Therefore we can truncate the terms with mn > T 1+ε making an error
term of at most ¿ T−A. The claim follows. ¤

Recall also that

B(s) :=
∑

n6T θ

b(n)

ns
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Therefore,

J :=
∑

`∈Z
|ζ(1

2
+ i(α` + β))B(1

2
+ i(α` + β))|2 · φ(

`

T
)

= 2
∑

mn<T 1+ε

1√
mn

∑

h,k6T θ

b(h)b(k)√
hk

∑

`∈Z

(
mh

nk

)i(α`+β)

W

(
2πmn

α` + β

)
φ
( `

T

)
+ O

(
T 5/6+ε

)

= 2
∑

mn<T 1+ε

1√
mn

∑

h,k6T θ

b(h)b(k)√
hk

·
(

mh

nk

)iβ ∑

`∈Z
f̂m,n,T

(
α log mh

nk

2π
− `

)
+ O(T 5/6+ε)(13)

using Poisson summation in the sum over `, with

fm,n,T (x) := W

(
2πmn

αx + β

)
· φ( x

T

)

6.1. The main term ` = 0. Consider the sum with ` = 0,

2
∑

mn<T 1+ε

1√
mn

∑

h,k6T θ

b(h)b(k)√
hk

·
(

mk

nh

)iβ

· f̂m,n,T

(
α log mk

nh

2π

)

= 2
∑

mn<T 1+ε

1√
mn

∑

h,k≤T θ

b(h)b(k)√
hk

·
∫

R

(
mk

nh

)i(αt+β)

W

(
2πmn

αt + β

)
φ

(
t

T

)
dt

Interchanging the sums and the integral, this becomes

(14)

∫

R
|B(1

2
+ i(αt + β))|2 · 2

∑

mn<T 1+ε

1√
mn

·
(

m

n

)i(αt+β)

W

(
2πmn

αt + β

)
φ
( t

T

)
dt

By the approximate functional equation,

2
∑

mn<T 1+ε

1√
mn

(
m

n

)i(αt+β)

W

(
2πmn

αt + β

)
= |ζ(1

2
+ i(αt + β)|2 + O(T−2/3).

Therefore (14) is
∫

R
|B(1

2
+ i(αt + β))ζ(1

2
+ i(αt + β))|2φ

(
t

T

)
dt + O(T 1−ε)

as desired.

6.2. The terms ` 6= 0. Since

f̂m,n,T

(
α log mh

nk

2π
+ `

)
= f̂m,n,T

(
α log nk

mh

2π
− `

)

we can re-write the sum over ` 6= 0 so as to have ` > 0 in the summation,

J0 = 2
∑

`>0

∑

mn<T 1+ε

h,k≤T θ

b(h)b(k)√
mnhk

· 2Re

((
mh

nk

)iβ

f̂m,n,T

(
α log mh

nk

2π
− `

))

Differentiating repeatedly and using that W and all derivatives of W are Schwarz class,

we find that for mn < T 1+ε, f
(k)
m,n,T (x) ¿ T−k for all x. Therefore for any fixed A > 0,

f̂m,n,T (x) ¿A T
(
1 + T |x|)−A

17



It follows that the only integers m,n, k, h, ` that contribute to J0 are the m,n, k, h, ` for
which ∣∣∣∣

α

2π
· log

mh

nk
− `

∣∣∣∣ ≤ T−1+η.

for some small, but arbitrary η > 0. This condition implies that

(15)

∣∣∣∣
mh

nk
− e2π`/α

∣∣∣∣ ≤ e2π`/αT−1+η

and we might as-well restrict the sum in J0 to those m,n, k, h, ` satisfying this weaker,
but friendlier, condition. Thus,

(16) J0 = 4Re
∑

`>0

∑

mn<T 1+ε

h,k≤T θ

m,n,h,k satisfy (15)

b(h)b(k)√
mnhk

·
(

mk

nh

)iβ

f̂m,n,T

(
α log mk

nh

2π
−`

)
+OA

(
1

TA

)
.

Now for a fixed ` > 0, consider the inner sum over m,n, h, k in (16). We group to-
gether terms in the following way: If the integres m,n, k, h satisfy (15) then we let
a` = mk/(mk, nh) and b` = nh/(mk, nh) so that (a`, b`) = 1. We group together all
multiples of a`, b` of the form mk = a`r and nh = b`r with a common r > 0. The a`, b`

are co-prime and satisfy

(17)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ <
e2π`/α

T 1−η
.

This allows us to write

(18) J0 = 4Re
∑

`>0

∑

a`,b`>1
(a`,b`)=1

satisfy (17)

∑
r>1

∑

mn6T 1+ε

h,k6T θ

nh=a`r
mk=b`r

b(h)b(k)√
mknh

·
(

a`

b`

)iβ

· f̂m,n,T

(
α log(a`/b`)

2π
− `

)
.

It is useful to have a bound for the size of b` in the above sum. Equation (17) implies
that a` ³ b` · e2π`/α. Furthermore, since mn < T 1+ε, h, k 6 T θ and a`r = mk, b`r = nh
we have a` · b` < mnkh < T 1+2θ+ε. Combining a` ³ b` · e2π`/α and a`b` < T 1+2θ+ε we
obtain b` < T 1/2+θ+ε · e−π`/α. Let

K` := T 1/2−ηe−π`/α

M` := T 1/2+θ+εe−π`/α

We split the sum according to whether b` < K` or b` > K`, getting

J0 = 4Re
∑

`>0

∑

b`<M`
a`>1

(a`,b`)=1
satisfy (17)

(a`/b`)
iβ

√
a`b`

∑
r>1

1

r

∑

mn6T 1+ε

h,k6T θ

nh=b`r
mk=a`r

f̂m,n,T

(
α log(a`/b`)

2π
− `

)
= 4Re (S1 + S2)

where S1 is the sum over b` ≤ K` and S2 is the corresponding sum over M` > b` > K`. To
finish the proof of the Proposition it remains to evaluate S1 and S2. The sum S1 can give
a main term contribution in the context of Theorem 2 depending on the Diophantine
properties of a, while bounding S1 as an error term in the context of Theorem 4 is
relatively subtle. In contrast, S2 is always negligible.

We first furnish the following expression for S1.
18



Lemma 4. For each ` > 0 there is at most one tuple of co-prime integers (a`, b`) such
that a`b` > 1 , b` < K` = T 1/2−ηe−π`/α and such that

(19)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−η
.

We denote by
∑∗

` the sum over `’s satisfying the above condition. Then,

S1 = T ·
∑

`>0

∗ (a`/b`)
iβ

√
a`b`

∫ ∞

−∞
φ

(
t

T

)
· exp

(
− 2πit

(
α log a`

b`

2π
− `

))
· F (a`, b`, t)dt

where

F (a`, b`, t) :=
∑

h,k≤T θ

b(h)b(k)
∑
r≥1

1

r

∑
m,n≥1
mk=a`r
nh=b`r

W

(
αt + β

2πmn

)

=
∑

m,n≤T θ

b(m)b(n)

mn
· (ma`, nb`) · H

(
(αt + β) · (ma`, nb`)

2

2πma`nb`

)

and

H(x) =
1

2πi

∫

(ε)

ζ(1 + 2w) · xwG(w) · dw

w
=

{
1
2
· log x + γ + OA(x−A) if x À 1

OA(xA) if x ¿ 1

Proof Given `, there is at most one b` 6 K` for which there is a co-prime a` such
that (19) holds, because Farey fractions with denominator < K` are spaced at least
K−2

` = e2π`/αT−1+2η far apart. Thus for each `, the sum over a`, b` in S1 consists of at
most one element (a`, b`),

S1 =
∑

`>0

∗ (a`/b`)
ib

√
a`b`

∑
r>1

1

r

∑

mn6T 1+ε

h,k6T θ

nh=b`r
mk=a`r

b(h)b(k)√
mknh

· f̂m,n,T

(
α log(a`/b`)

2π
− `

)

To simplify the above expression we write

f̂m,n,T (x) =

∫ ∞

−∞
W

(
2πmn

αt + β

)
φ

(
t

T

)
e−2πixtdt

The sum S1 can be now re-written as,

T
∑

`>0

∗ (a`/b`)
ib

√
a`b`

∫ ∞

−∞
φ

(
t

T

)
exp

(
− 2πit

(
α log mh

nk

2π
− `

))
·

∑
r>1

1

r

∑

h,k6T θ

b(h)b(k)
∑

mn<T 1+ε

nh=b`r,mk=a`r

W

(
2πmn

αt + β

)
dt.

Since W (x) ¿ x−A for x > 1 and at + b ³ T we complete the sum over mn < T 1+ε

to m,n > 1 making a negligible error term ¿A T−A. To finish the proof it remains to
understand the expression

(20)
∑

h,k≤T θ

b(h)b(k)
∑

r

1

r

∑
m,n≥1
mk=a`r
nh=b`r

W

(
2πmn

αt + β

)

19



We notice that

(21)
∑

r

1

r

∑
m,n≥1
nh=b`r
mk=a`r

W

(
2πmn

αt + β

)
=

1

2π

∫

(ε)

∑
r

1

r

∑
m,n≥1
nh=b`r
mk=a`r

1

(mn)w
·
(

αt + β

2π

)w

G(w)
dw

w

Furthermore nh = b`r and mk = a`r imply that mkb` = nha`. On the other hand since
a` and b` are co-prime the equality mkb` = nha` implies that there exists a unique r such
that nh = b`r and mk = a`r. We notice as-well that this unique r can be expressed as
((a`b`)/(mknh))−1/2. Therefore we have the equality,

∑
r

1

r

∑
m,n≥1
nh=b`r
mk=a`r

1

(mn)w
=

∑
m,n≥1

nha`=mkb`

1

(mn)w
·
√

a`b`

mknh

We express the condition nha` = mkb` as ha`|kb`m and n = kb`m/(ha`) so as to reduce
the double sum over m,n to a single sum over m. Furthermore the condition ha`|kb`m
can be dealt with by noticing that it is equivalent to ha`/(ha`, kb`)|m. Using these
observations we find that,

∑
m,n≥1

nha`=mkb`

1

(mn)w
·
√

a`b`

mknh
=

(ha`, kb`)

hk
· ζ(1 + 2w) ·

(
(ha`, kb`)

2

ha`kb`

)w

Plugging the above equation into (21) it follows that
∑
r≥1

1

r

∑
m,n≥1
mk=b`r
nh=a`r

W

(
2πmn

αt + β

)
=

(ha`, kb`)

hk
· H

(
αt + β

2πmn

)

An easy calculation reveals that H(x) = (1/2) log x + γ + OA(x−A) for x À 1 and that
H(x) = OA(xA) for x ¿ 1. We conclude that equation (20) equals to

∑

h,k≤T θ

b(h)b(k)

hk
· (ha`, kb`) · H

(
αt + β

2πmn

)

as desired. ¤
The second sum S2 can be bounded directly.

Lemma 5. We have S2 ¿ T 1/2+θ+ε.

Proof Recall that the a`, b` are always assumed to satisfy the condition

(22)

∣∣∣∣
a`

b`

− e2π`/α

∣∣∣∣ ≤
e2π`/α

T 1−η
.

Recall also that

K` := T 1/2−ηe−π`/α

M` := T 1/2+θ+εe−π`/α

Then,

(23) S2 =
∑

`∈Z

∑

K`<b`<M`
a`>1

(a`,b`)=1
satisfy (22)

(a`/b`)
iβ

√
a`b`

∑
r>1

1

r

∑

h,k6T θ

b(h)b(k)
∑

mn6T 1+ε

nh=b`r
mk=a`r

f̂m,n,T

(
α log(a`/b`)

2π
− `

)
.
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We split the above sum into dyadic blocks b` ³ N with K` < N < M`. The number of
(a`, b`) = 1 with b` ³ N and satisfying (22) is bounded by

¿ e2π`/α

T 1−η
·N2 + 1

because Farey fractions with denominators of size ³ N are spaced at least N−2 apart.
Therefore, for a fixed `, using the bounds b(n) ¿ nε and f̂m,n,T (x) ¿ T , the dyadic block
with b` ³ N contributes at most,

(24) ¿ T 1+ε
∑

b`³N
a`>1

(a`,b`)=1
a`,b`satisfy (22)

1

(a`b`)1/2

∑

r<T 2

1

r

∑

m,n,h,k
mk=a`r
nh=b`r

1 ¿ T 1+ε
∑

b`³N
a`>1

(a`,b`)=1
a`,b` satisfy (22)

1

(a`b`)1/2−ε

because ∑

r≤T 2

1

r

∑

m,h,k,n
mh=a`r
nk=b`r

1 =
∑

r≤T 2

d(a`r)d(b`r)

r
¿ (Ta`b`)

ε.

Since a` ³ b` · e2π`/α the sum (24) is bounded by,

¿ T

N
· (TN)εe−(1−ε)π`/α ·

(
e2π`/α

T 1−η
·N2 + 1

)
.

Keeping ` fixed and summing over all possible dyadic blocks K` < N < M` shows that
for fixed ` the inner sum in (23) is bounded by

¿ T ε+η · eπ(1+ε)`/α ·M1+ε
` + T 1+ε ·K−1+ε

` · e−(1−ε)π`/α(25)

¿ T 1/2+θ+ε+η · eε`/α + T 1/2+η+ε · eε`/α.

The condition (22) restricts ` to 0 < ` < 2α log T . Summing (25) over all 0 < ` < 2α log T
we find that S2 is bounded by T 1/2+θ+2ε+η + T 1/2+η+ε. Since θ < 1

2
and we can take η, ε

arbitrarily small, but fixed, the claim follows. ¤
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