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Abstract. An arithmetic formula is an expression involving only the constant 1, and the
binary operations of addition and multiplication, with multiplication by 1 not allowed. We
obtain an asymptotic formula for the number of arithmetic formulas evaluating to n as n
goes to infinity, solving a conjecture of E. K. Gnang and D. Zeilberger [5]. We give also an
asymptotic formula for the number of arithmetic formulas evaluating to n and using exactly
k multiplications. Moreover, we consider arithmetic formulas in which also the operation of
exponentiation is allowed. Finally we analyze three distinct algorithms for producing arith-
metic formulas. For almost all integers n, we compare the lengths of the arithmetic formulas
for n that each algorithm produces, with the length of the shortest formula for n (which we
estimate from below). We briefly discuss the time-space tradeoff offered by each.

1. Introduction

1.1. Counting arithmetic formulas. Given a positive integer n, a quite natural question is
to study the well-formed arithmetic expressions only using the binary operators of addition,
multiplication, exponentiation and the constant 1, which return n as result. Since 1 is the
multiplicative identity, we restrict ourselves to consider only expressions where 1 is never an
argument of either a multiplication or an exponentiation. We call these expressions arithmetic
formulas for n. For example, 4 has exactly 7 arithmetic formulas, namely

1 + (1 + (1 + 1)), 1 + ((1 + 1) + 1), (1 + (1 + 1)) + 1,

((1 + 1) + 1) + 1, (1 + 1) + (1 + 1), (1 + 1)× (1 + 1), (1 + 1) ∧ (1 + 1).

A systematic study of arithmetic formulas was initiated by Patrick, Gnang and Zeilberger
[5] [10]. The number of arithmetic formulas for n using only addition corresponds to the
number of ways one can place a sequence of parentheses in the sum 1 + 1 + · · ·+ 1, containing
n times the number 1, i.e., it is Cn−1, where

Cm :=
1

m+ 1

(
2m
m

)
is a Catalan number [12, Ch. 6, Corollary 6.2.3]. On the other hand, the number of arithmetic
formulas for n using only additions and multiplications is more mysterious. It was conjectured
by Gnang and Zeilberger [5] that there is an asymptotic of the form c · ρn · n−3/2, with two
constants c > 0 and ρ > 4 (with ρ most likely a transcendental number). Our first result is
a proof of this conjecture. Let f(n) be the number of arithmetic formulas for n using only
additions and multiplications [7].

Theorem 1.1. There exists two constants c > 0 and ρ = 4.076561785276 . . . such that

f(n) ∼ cρn

n3/2
,

as n→∞.
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In fact our method gives an asymptotic expansion for f(n). We refer the reader to the proof
of Theorem 1.1 for more details. Theorem 1.1 is also motivated by some relations with the
factoring problem, see Section 1.2. We obtain a completely explicit characterization of the
constant ρ. It is determined as ρ := 1/ξ where 0 < ξ < 1/4 is the smallest positive solution to
the equation F̃ (ξ) = 1/4, with

F̃ (z) := z +
∞∑
d=2

f(d)(F (zd)− zd) and F (z) :=
∞∑
n=1

f(n)zn.

Finally Theorem 1.1 can be easily generalized to count the number of arithmetic formulas in
which also exponentiation is allowed, in that case we obtain ρ = 4.13073529514801 . . .

The proof of Theorem 1.1 depends on generating functions and complex analysis. A natural
idea is to produce an elementary proof of Theorem 1.1 by first asking for the number fk(n) of
arithmetic formulas for n using only additions and exactly k multiplications.

Theorem 1.2. For all integers k ≥ 0, we have

fk(n) ∼ σk

4
√
π k!

4nnk−3/2,

as n→ +∞, where

σ :=
∞∑
m=1

1
4m−1

∑
d |m

1<d<m

f0(d)f0(m/d).

One would like to sum the above formula over all k, assuming sufficient uniformity, and
claim that ρ in Theorem 1.1 is equal to 4eσ. However ρ < 4eσ and therefore for large k
there occurs a significant break in the uniformity of Theorem 1.2. This is expected since, for
example, fk(n) = 0 for k > log n/ log 2.

1.2. Factoring. One motivation for our work comes from factoring. For a given positive
integer n one would like to understand the following graph Gn: The nodes of the graph Gn
correspond to the various arithmetic formulas for n and an edge is placed between two nodes if
one can pass from one formula to the other by using only one operation of either associativity,
distributivity or commutativity.

One can depict arithmetic formulas as full binary trees, so that the graph Gn is a graph
whose vertices correspond to certain special full binary trees. Various arithmetic algorithms
such as integer factoring algorithms can be depicted as walks starting from some particular
vertex of the graph Gn (say the one corresponding to the recursive Horner encoding, see below
for a definition of this encoding) and terminating at a vertex associated with a formula encoding
of n whose corresponding tree is rooted at a multiplication node.

A vertex v of Gn corresponding to an arithmetic formula using only additions has the largest
possible degree in Gn, precisely deg(v) = f0(n)−1. So in order to understand the connectivity
of the graph Gn we compare f0(n) − 1 to the order of the graph Gn. The order of the graph
Gn corresponds to the number f(n) of representations of n using only 1’s and operation of
addition and multiplication. Therefore as an immediate consequence of Theorem 1.1 we obtain
the following corollary.

Corollary 1.3. Let C = ρ/4 = 1.019140446319 . . .. Then, for some constant c > 0, as n→∞,

max
v∈Gn

deg(v) ∼ c · |Gn|
Cn

.

Of particular interest in the graph Gn are formulas which are short because they minimize
the space needed for encoding n.
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1.3. Shortest encodings. We proceed to discuss three special monotone formula encoding
schemes called the first canonical form or Goodstein encoding [6], the second canonical form
[5] and the Horner encoding. The Goodstein encoding consists in writing the binary expansion
of an integer n =

∑
i 2ai and recursively writing down the binary expansion for each integer

ai until we obtain a representation of n as formula involving only 2 and 1’s, the final step
will consist in replacing each 2 by 1 + 1 thereby obtaining a monotone formula encoding of n
which only uses additions (+) and exponentiations (∧) gates and has input 1. For example
the Goodstein encoding for the number 31 corresponds to

31 = (1 + 1)((1+1)(1+1)) +
(

(1 + 1)((1+1)+1) +
(

(1 + 1)(1+1) + ((1 + 1) + 1)
))

By contrast to the Goodstein encoding, the second canonical form of an integer n is slightly
more intricate. We start by writing down the prime factorization n = pα1

1 · · · pαr
r and subse-

quently we express each prime as 1 + (pi − 1). Finally we recursively apply this scheme to
every (pi − 1) and every exponent αi. Thus we obtain a monotone formula encoding for n
which uses a combination of addition (+), multiplication (×), and exponentiation gates (∧)
and input restricted to 1. As an example we express the second canonical form associated to
2430

2430 =
(

(1 + 1)× ((1 + 1) + 1)((1+1)(1+1)+1)
)
×
(

(1 + 1)(1+1) + 1
)

In [5] it was observed that for most integers n the second canonical form is smaller than the
Goodstein encoding. Our next result provides some theoretical validation for this empirical
observations. Let Sshort (n) denote the length of the shortest monotone formula encoding of n,
let SSCF (n) and SFCF (n) denote respectively the size of the first and second canonical form
encoding of n. The special interest in formula sizes stems from the connection between circuit
complexity and integers encoding schemes. Building on a sequence of constructions by Cheng
[2] and Koiran [9], Burgisser [1] showed that if the sequence of integers {n!}n∈N is hard to
compute, then any algebraic circuits for computing the permanent of an {Zn×n}n∈N matrices
using addition (+) and multiplication (×) gates with input restricted to {−1, 1}, must have
superpolynomial size.
Also related results results (for example, for circuits) have been obtained in [3] and [4]. We
refer the reader to the references there-in for further information on this topic.

Theorem 1.4. For almost all positive integers n we have

Sshort (n) ≥ log n
log 4

.

Precisely, given ε > 0, the number of integers n ≤ x such that

Sshort (n) ≤ (1− ε) log n
log 4

is O(x1−ε), as x→ +∞.

Theorem 1.5. For almost all positive integers n,

SFCF (n) ≥ 1
4 log 2

· log n log log n,

as n→ +∞.

Theorem 1.6. For all integers n ≥ 2, we have

SSCF (n) ≤ 6
log n
log 2

.

In conclusion, while the first canonical form is rapid it provides formulas of sub-optimal
length compared to the shortest formula. The second canonical form is more computationally
intensive but gives rise to shorter formulas, of quality comparable to the shortest formula. The
drawback is computational complexity, and this drawback is alleviated by the Horner encoding,
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which is obtained from a recursive factoring of the Goodstein encoding. We write below the
recursive Horner encoding of the integer 53376

53376 =
((

((1 + 1) + 1)(1 + 1)(1+1) + 1
)

(1 + 1)(1+1)(1+1)+1 + 1
)

(1 + 1)((1+1)+1)(1+1)+1

The properties of the recursive Horner encoding are similar to the second canonical form. For
example we obtain essentially the same results for SHor(n) as for SSCF(n). We suspect however
that the second canonical form gives on average slightly shorter formulas than the Horner
encoding. We think it’s an interesting question but we didn’t pursue it. Finally we note that
one can efficiently recover recursive Horner encodings from Goodstein encodings.

Notation. Hereafter, N denotes the set of positive integers and N0 := N ∪ {0}. We use the
Landau–Bachmann o and O symbols, as well as Vinogradovs � notation, with their usual
meanings. We adopt the usual convention that empty sums and empty products, e.g.

∑y
n=x

and
∏y
n=x with x > y, have values 0 and 1, respectively. Moreover, we employ the convention

that a binomial coefficient
(
a
b

)
= 0 if a < b. Finally, if g and h are two arithmetic functions,

we write g ∗′ h for their proper Dirichlet convolution (cf. [8, Ch. 2]), i.e., the function defined
by

(g ∗′ h)(n) :=
∑
d |n

1<d<n

g(d)h(n/d), n ∈ N,

where the sum runs over all the proper divisors d of n.

2. Preliminaries

First of all, we need a rigorous formal definition of what arithmetic formulas are.

Definition 2.1. Let n be a positive integer. An arithmetic formula A for n is an N-valued
{+,×}-labeled full binary tree such that:

(i). The value of the root is n.
(ii). The value of each leaf is 1.
(iii). Every node but the leaves has label + (additive node) or × (multiplicative node).
(iv). The value of each additive node is a+ b, where a and b are the values of its children.
(v). The value of each multiplicative node is ab, where a and b are the values of its children.
(vi). If a and b are the values of the children of a multiplicative node, then a, b ≥ 2.

Similarly, an arithmetic exponential formula E for n is an N-valued {+,×,∧}-labeled full
binary tree that satisfies all the previous points, only with (iii) slightly modified to

(iii’). Every node but the leaves has label + (additive node), × (multiplicative node) or ∧
(exponential node).

and furthermore

(vii). The value of an exponential node is ab, where a and b are the values of its left and right
children, respectively.

(viii). If a and b are the values of the children of an exponential node, then a, b ≥ 2.

Finally, we say that a multiplicative node of A or E is primitive if it has no multiplicative
ancestor.

We state the following lemma, which follows immediately from Stirling’s formula.

Lemma 2.1. We have,

f0(n) = Cn−1 ∼ 1
4
√
π

4n

n3/2
,

as n→ +∞.
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3. Proof of Theorem 1.1

We start with a couple of lemmas. For all integers n ≥ 2, we denote by f+(n), respectively
f×(n), the number of arithmetic formulas for n which root node is additive, respectively
multiplicative. We set also f+(1) := 1 and f×(1) := 0. Thus, obviously, f(n) = f+(n)+f×(n),
for all positive integers n. Moreover, it is easily seen that

Lemma 3.1. For all integers n ≥ 2, it results

f+(n) =
n−1∑
h=1

f(n− h)f(h)

and f×(n) = (f ∗′ f)(n).

The next lemma is a first upper bound on f(n) which we need to be sure that the radius of
convergence of F (z) is positive.

Lemma 3.2. We have f(n) < 8n, for each positive integer n.

Proof. Consider that an arithmetic formula for n, thought of as a full binary tree, has at most
n − 1 non-leaf nodes. For any nonnegative integer k there are exactly Ck full binary trees
with k non-leaf nodes. Given one of them, its non-leaf nodes can be labeled (as additive or
multiplicative) in 2k different ways. In conclusion, since Ck ≤ 4k, we get

f(n) ≤
n−1∑
k=0

2kCk ≤
n−1∑
k=0

8k < 8n.

�

As for the analytic input into our proof we will need the following version of “Darboux’s
method”.

Lemma 3.3 (Darboux’s method). Let v(z) be analytic in some disk |z| ≤ 1 + η, and suppose
that in a neighborhood of z = 1 it has the expansion v(z) =

∑
j vj(1−z)j. Let β /∈ {0, 1, 2, . . .}.

Then, the n-th coefficient of (1− z)βv(z) is equal to
m∑
j=0

vj

(
n− β − j − 1

n

)
+O(n−m−β−2).

Proof. See [13, Theorem 5.3.1]. �

We will also need the following classical result of Pringsheim.

Lemma 3.4. Let f(z) be a power-series with finite radius of convergence R > 0. If all of the
coefficients of f(z) are non-negative, then, z = R is a singular point.

Proof. See [11, Chapter 8]. �

We will use the following immediate consequence of Pringsheim’s theorem: if f(z), a power
series with non-negative coefficients, has an analytic continuation to |z| < R + η, for some
η > 0, then the abscissa of the first singularity of f(z) on the axis x > 0 is equal to the radius
of convergence R. Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let R be the radius of convergence of the generating function F (z).
First of all R ≤ 1/4 since f(n) ≥ f0(n) and f0(n) > (4 − ε)n for any ε > 0 and all n large
enough. On the other hand from Lemma 3.2 we know that R ≥ 1/8. For each integer d ≥ 2,
it results that F (zd) − zd has radius of convergence R1/d ≥ R1/2. Hence, for any δ > 0 and
|z| < R1/2 − δ we have |F (zd) − zd| �δ |z|2d and f(d) < (1/R + ε)d for sufficiently large d.
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Therefore, the series F̃ (z) converges absolutely for |z| < R1/2 and it is analytic in that region,
note also that R1/2 > R. For |z| < R, from Lemma 3.1 we obtain

∞∑
n=1

f+(n)zn = z +
∞∑
n=2

n−1∑
k=1

f(n− k)f(k)zn = z + F (z)2,

while
∞∑
n=1

f×(n)zn =
∞∑
n=1

∑
d |n

1<d<n

f(d)f(n/d)zn =
∞∑
d=2

f(d)
∞∑
m=2

f(m)zdm =
∞∑
d=2

f(d)(F (zd)− zd).

Thus,

F (z) =
∞∑
n=1

f(n)zn =
∞∑
n=1

f+(n)zn +
∞∑
n=1

f×(n)zn = F (z)2 + F̃ (z),

so that

(1) F (z)2 − F (z) + F̃ (z) = 0.

Taking into account that F (0) = F̃ (0) = 0, we can solve the quadratic equation (1) and get

(2) F (z) =
1−

√
1− 4F̃ (z)

2
, for |z| < R.

Since the coefficients of F (z) are all positive, by Pringsheim’s theorem F (z) has a singularity
at z = R. As observed before, in the region |z| < R1/2 the function F̃ (z) is analytic and
R1/2 > R, thus providing an analytic continuation of F (z) to the larger region |z| < R1/2.
From (2) we expect that the first singularity of F (z) on the positive real axis occur at the
point ξ at which we have F̃ (ξ) = 1/4. Such ξ clearly exists because F̃ (x) > x, for x > 0, so
that ξ < 1/4, while F̃ (z) is analytic in |z| < 1/

√
8 ≤ R1/2. We notice also that the root ξ is

simple, because F (x) is increasing and analytic on the segment 0 ≤ x < 1/
√

8. Thus we can
write,

1− 4F̃ (z) = (1− z/ξ)G(z)

for some G(z), analytic in |z| < 1/
√

8 and non-vanishing on 0 ≤ x < 1/
√

8. As mentioned
earlier, the formula

F (z) =
1−√(1− z/ξ)G(z)

2
provides an analytic continuation of F (z) to the larger disc |z| < 1/

√
8, since the radius of

convergence of F (z) satisfies R ≤ 1/4 < 1/
√

8. As an immediate application of Pringsheim’s
theorem the first singularity of F (z) on the positive real axis corresponds to the radius of
convergence R. Thus R = ξ. Before applying Darboux’s method we need to say a few things
about the location of the zeros of G(z). Since F̃ (z) has positive and never vanishing coefficients,
we have |F̃ (reiθ)| < F̃ (r) ≤ F̃ (R) for all θ 6= 0 and r ≤ R. Using this we notice that for z 6= ξ,
and |z| ≤ ξ,

|1− 4F̃ (z)| ≥ 1− 4|F̃ (z)| > 1− 4F̃ (ξ) = 0.
It follows that G(z) has no zeros in |z| ≤ ξ. By analyticity this implies that there exists a
neighborhood |z| ≤ ξ+η for some η > 0, whereG(z) doesn’t vanish, in particular

√
G(z) is well-

defined and doesn’t vanish there. Now, applying Darboux’s method to F (zξ), or rather more
precisely applying Darboux’s method to −√(1− z)G(zξ)/2 (which has radius of convergence
equal to 1 and differs from F (z) only at the constant term) we conclude that for any m > 0,
and n→∞,

f(n)ξn = −
m∑
j=0

cj

(
n− j − 3/2

n

)
+O(n−m−5/2)
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where the coefficients cj are obtained by writting√
G(zξ) =

∑
j≥0

cj(1− z)j

in a small neighborhood of z = 1. Since, as n→∞,(
n− j − 3/2

n

)
∼ aj

nj+3/2

with aj 6= 0, the claim follows. �

4. Proof of Theorem 1.2

Actually, we prove a result stronger than Theorem 1.2, but before state it we need to define
the concept of k-trace, which is apparently unrelated with arithmetic formulas.

Definition 4.1. Let k be a positive integer. A k-trace is triple (p, l, r) where p is a positive
integer and l, r ∈ Np

0 are such that `1 + r1 + . . . + `p + rp + p = k. We denote by Tk the set
of all k-traces. We define also T0 := {(0, 0, 0)} so that (0, 0, 0) can be thought of as the only
0-trace.

We are ready to state our asymptotic formula for fk(n).

Theorem 4.1. For all integers k ≥ 0, we have

fk(n) ∼ 1
4
√
π

4n

n3/2

∑
(p,l,r)∈Tk

np

p!

p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
,

as n→ +∞.

Observe that Theorem 1.2 follows immediately from Theorem 4.1, since for any k ∈ N the
only (p, l, r) ∈ Tk with p ≥ k is (k,0,0). The next definition connects k-traces to arithmetic
formulas.

Definition 4.2. Suppose that A is an arithmetic formulas for n with k multiplicative nodes.
If k = 0 then the trace of A is (0, 0, 0). If k ≥ 1, let N1, . . . , Np be the primitive nodes of
A, ordered from the left to the right (there is no ambiguity since no primitive node is the
ancestor of another primitive node). For i = 1, . . . , p, let `i, respectively ri, be the number of
multiplicative nodes in the left, respectively right, subtree of Ni. Then the trace of A is the
triple (p, l, r), with l = (`1, . . . , `p) and r = (r1, . . . , rp). Finally, for all k ∈ N0 and (p, l, r) ∈ Tk
we denote by f(p,l,r)(n) the number of arithmetic formulas for n with trace (p, l, r).

It is easy to see that Definition 4.1 and 4.2 are consistent to each other, i.e., if A is an
arithmetic formula with k multiplicative nodes then the trace of A is actually a k-trace.

We give now a combinatorial formula for f(p,l,r) in terms of f0 and f`i , fri .

Lemma 4.2. For k ∈ N and (p, l, r) ∈ Tk, we have

f(p,l,r)(n) =
∑

n1+···+np+m=n+p

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni),

where the sum runs over all n1, . . . , np,m ∈ N such that n1 + · · ·+ np +m = n+ p.

Proof. The general arithmetic formula A for n with trace (p, l, r) is as in Fig. 1, where n1, . . . , np
are all the primitive multiplicative nodes of A (we identify the nodes with their values since
there is no risk of confusion). Set m := n− (n1 + · · ·+np) + p. On the one hand, if we remove
from A all the nodes below n1, . . . , np we get a full binary tree with m leaves. There are
exactly f0(m) such trees (addition is associative) and the nodes n1, . . . , np can be attached to
the leaves of each of them in

(
m
p

)
different ways. On the other hand, any subtree of A with root

ai, respectively bi, is an arithmetic formula for ai, respectively bi, and there are exactly f`i(ai),
respectively fri(bi), such arithmetic formulas. Hence, since aibi = ni, there are (f`i ∗′ fri)(ni)
possible subtrees of ni. All these choices are independent so the claim follows. �
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n

n1

×
a1 b1

np

×
ap bp

Only additive nodes here...

· · ·

Figure 1. An arithmetic formula for n.

The next lemma is an easy upper bound on the proper Dirichlet convolution of two arithmetic
functions.

Lemma 4.3. Let g and h be arithmetic functions such that g(n), h(n)� 4nns for n ∈ N, with
C > 0 and s ∈ R. Then (g ∗′ h)(n)� 3n for n ∈ N.

Proof. We have

(g ∗′ h)(n) =
∑
d |n

1<d<n

g(d)h(n/d)� ns
∑
d |n

1<d<n

4d+n/d � 2nns
∑
d |n

1<d<n

1

� 2nns+1 � 3n,

since d+ n/d ≤ 2 + n/2 for all proper divisors d of n. �

At this point, we have all the tools to prove Theorem 4.1. We proceed by strong induction
on k. For k = 0, the claim follows immediately from Lemma 2.1. Suppose k ≥ 1 and that
the statement holds for all nonnegative integers k′ < k. Therefore, as n → +∞, it results
fl(n), fr(n) � 4nnk−3/2 for all nonnegative integers l, r < k and applying Lemma 4.3 we
conclude that (fl ∗′ fr)(n)� 3n. In particular, the series

∞∑
t=1

(fl ∗′ fr)(t)
4t−1

converges. Since Tk is finite and, obviously,

fk(n) =
∑

(p,l,r)∈Tk

f(p,l,r)(n),

it is sufficient to prove that for all (p, l, r) ∈ Tk we have

(3) f(p,l,r)(n) ∼ 1
4
√
πp!

4nnp−3/2
p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
,

as n → +∞. For fix ε > 0 and N ∈ N. In the light of Lemma 2.1 and since
(
m
p

) ∼ mp

p! as
m→ +∞, there exists a positive integer nε,N > N such that(

m

p

)
f0(m) ≥

(
1

4
√
πp!
− ε
)

4mnp−3/2,
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for all positive integers n ≥ nε,N and m ∈ [n−N + p, n]. As a consequence, using Lemma 4.2,
we obtain

f(p,l,r)(n) ≥
∑

n1+···+np+m=n+p
n1+···+np≤N

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)

≥
(

1
4
√
πp!
− ε
)
np−3/2

∑
n1+···+np+m=n+p

n1+···+np≤N

4m
p∏
i=1

(f`i ∗′ fri)(ni)

≥
(

1
4
√
πp!
− ε
)

4nnp−3/2
∑

n1+···+np≤N

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

for n ≥ nε,N , so that

lim inf
n→∞

f(p,l,r)(n)
4nnp−3/2

≥
(

1
4
√
πp!
− ε
) ∑
n1+···+np≤N

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

.

Therefore, as ε→ 0 and N → +∞, we get that

lim inf
n→∞

f(p,l,r)(n)
4nnp−3/2

≥ 1
4
√
πp!

∑
(n1,...,np)∈Np

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

(4)

=
1

4
√
πp!

p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

On the other hand, there exists mε ∈ N such that(
m

p

)
f0(m) ≤

(
1

4
√
πp!

+ ε

)
4mmp−3/2,

for all m ≥ mε. Then, ∑
n1+···+np+m=n+p

m≥mε

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)(5)

≤
(

1
4
√
πp!

+ ε

) ∑
n1+···+np+m=n+p

m≥mε

4mmp−3/2
p∏
i=1

(f`i ∗′ fri)(ni)

≤
(

1
4
√
πp!

+ ε

)
4nnp−3/2

∑
n1+···+np≤n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

≤
(

1
4
√
πp!

+ ε

)
4nnp−3/2

p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

Now we claim that

(6)
∑

n1+···+np>n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

= o(np−3/2),

as n→ +∞. In fact, this is straightforward if p ≥ 2, since the left hand side of (6) is bounded
and np−3/2 → +∞, while if p = 1 then∑

n1>n+1−mε

(f`1 ∗′ fr1)(n1)
4n1−1

= O((3/4)n) = o(n−1/2),
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as n→ +∞. Hence, ∑
n1+···+np+m=n+p

m<mε

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)(7)

≤
(

max
m<mε

4−m
(
m

p

)
f0(m)

) ∑
n1+···+np+m=n+p

m<mε

4m
p∏
i=1

(f`i ∗′ fri)(ni)

� 4n
∑

n1+···+np>n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

= o(4nnp−3/2)

as n→ +∞. Therefore, summing (5) and (7), using Lemma 4.2, we obtain

lim sup
n→∞

f(p,l,r)(n)
4nnp−3/2

≤
(

1
4
√
πp!

+ ε

) p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

In conclusion, as ε→ 0, we get

lim sup
n→∞

f(p,l,r)(n)
4nnp−3/2

≤ 1
4
√
πp!

p∏
i=1

( ∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
,

this and (4) give (3) and complete the proof.

5. Proof of Theorem 1.4

Set c := (1− ε)/ log 4 and for x > 0 define

E(x) := {n ≤ x : Sshort(n) < c log n}.
For each positive integer k, let `(k) be the number of arithmetic formulas of length k. Writing
such formulas in Polish notation we see that `(k) ≤ 4k. In fact, for each of the k symbols
of the Polish notation we have at most 4 choices, corresponding to addition, multiplication,
exponentiation or 1. Furthermore, observe that if An denote a shortest length arithmetic
formula for n, then clearly Am 6= An for all m 6= n. In conclusion,

|E(x)| ≤
∑

k<c log x

`(k) ≤
∑

k<c log x

4k = O(x1−ε),

which is our claim.

6. Proof of Theorem 1.5

Throughout this section we will write n < 2N as

n =
∑
j<N

εj(n)2j .

with εj(n) = 0 or εj(n) = 1. We first need the lemma below.

Lemma 6.1. Let ε > 0 be given. As N →∞, for almost all n < 2N the number of j ≤ N for
which εj = 0 is bigger than (1/2− ε)N and less than (1/2 + ε)N .

Proof. Let X1, . . . , XN be a sequence of independent random variables with P(Xi = 1) =
P(Xi = 0) = 1/2. Then,

#{n < 2N : εj = 1 at exactly k positions} = 2N · P(X1 + . . .+XN = k)

By the weak law of large numbers, for any fixed ε > 0,

P
(∣∣∣X1 + . . .+XN

N
− 1
∣∣∣ > ε

)
→ 0
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as N → ∞. Therefore for almost all n < 2N (i.e all but at most o(2N ) integers n < 2N ) we
have at least (1/2− ε)N indices j at which εj = 1 and at most (1/2 + ε)N such indices. Since
εj can only be 1 or 0, we get the same claim for the number of indices at which εj = 0. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let ε > 0 be given. According to Lemma 6.1 for almost all n < 2N at
least (1/2− ε)N of the εj(n) in the representation

n =
∑
j<N

εj(n) · 2j

are non-zero. Write 2k ≤ N ≤ 2k+1 and pick N large enough so that for at least (1 − ε)2k of
the n < 2k at least (1/2− ε)k of the indices εj(j) in the representation

n =
∑
j<k

εj(k) · 2j

satisfy εj(k) = 1. We have,

SFCF(n) ≥
∑
j<N

εj(n)=1

SFCF(j) ≥
∑
j<N

εj(n)=1

∑
`<j

ε`(j)=1

1

And by our construction this is at least

(1− ε)2k × (1/2− ε)k ≥ (1/2− 10ε) · N
2
· logN

log 2

for all N large enough. �

7. Proof of Theorem 1.6

Fix a positive integer n. In the second canonical form of n, we replace any occurrence of
(1 + 1) by the symbol 2. For example, after this process the second canonical form of 51
becomes (1 + 2)(1 + 222

). Now let t(n) be the number of 2’s in this formula for n. Then,
upon ignoring every addition, and by repeatedly using the inequality 2y ≥ 2 · y, it follows that
n ≥ 2t(n). To continue the example,

51 = (1 + 2)(1 + 222
) ≥ 2 · 222 ≥ 2 · 22·2 ≥ 2 · (2 · (2 · 2)).

Hence t(n) ≤ log n/ log 2 and to prove Theorem 1.6 it is sufficient to show that SSCF(n) ≤
6t(n)− 1 for each integer n ≥ 2. We proceed by strong induction on n. For n = 2 and n = 3
the claim is true, hence assume n ≥ 4 and that the inequality holds for all integers in [2, n−1].
If n is a prime number then we have three cases:

(i). n = 1 + (1 + 1) ·m, with m an odd integer such that 2 ≤ m < n.
(ii). n = 1 + (1 + 1)s, with s ≥ 2 an integer.
(iii). n = 1 + (1 + 1)s ·m, with m and s integers such that m is odd, 2 ≤ m < n and s ≥ 2.

We do only case (iii), the others are similar. It results t(n) = 1 + t(s) + t(m), so by inductive
hypothesis

SSCF(n) = 7 + SSCF(s) + SSCF(m) ≤ 7 + (6t(s)− 1) + (6t(m)− 1) = 6t(n)− 1.

If n is composite, let n = p1 · · · pkqb11 · · · qbhh be its prime factorization, with bi ≥ 2. We have

t(n) =
k∑
i=1

t(pi) +
h∑
j=1

(t(qj) + t(bj)).
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Since 2 ≤ pi, qj , bj < n for all i = 1, . . . , k and j = 1, . . . , h, by inductive hypothesis we obtain

SSCF(n) = k + 2h− 1 +
k∑
i=1

SSCF(pi) +
h∑
j=1

(SSCF(qj) + SSCF(bj))

≤ 6
k∑
i=1

t(pi) + 6
h∑
j=1

(t(qj) + t(bj))− 1

= 6t(n)− 1,

hence the proof is complete.
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