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ABSTRACT. Improving earlier work of Balasubramanian, Conrey and Heath-Brown
[BCHBS85], we obtain an asymptotic formula for the mean-square of the Riemann zeta-
function times an arbitrary Dirichlet polynomial of length 7V/219 with § = 0.01515.. . ..
As an application we obtain an upper bound of the correct order of magnitude for
the third moment of the Riemann zeta-function. We also refine previous work of
Deshouillers and Iwaniec [DI84], obtaining asymptotic estimates in place of bounds.
Using the work of Watt [Wat95], we compute the mean-square of the Riemann zeta-
function times a Dirichlet polynomial of length going up to 7%/4 provided that the
Dirichlet polynomial assumes a special shape. Finally, we exhibit a conjectural esti-
mate for trilinear sums of Kloosterman fractions which implies the Lindel6f Hypothesis.

1. INTRODUCTION

We are interested in the mean-square of the product of the Riemann zeta-function
((s) with an arbitrary Dirichlet polynomial A(s). More precisely, we would like to
understand

(L.1) = [+ \A(%Jrz’t)fqb(i)dt
R T
with ¢(x) a smooth function supported in [1,2] and

As) =Y " a,<nt, <1,
n<T?

Asymptotic estimates for I have been used consistently to understand the distribution
of values of L-functions, the location of their zeros, and upper and lower bounds for the
size of L-functions. See, for example, [CGG86, Con89, Rad, Sou95|.

It is crucially important to allow 6 to be as large as possible. For example, if we could
take § = 1 — ¢ in (1.1) then the Lindel6f Hypothesis would follow.

Balasubramanian, Conrey and Heath-Brown obtained an asymptotic formula for [
when § < 3. For § < 1 and ¢(t) the indicator function of the interval [1,2], they show
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that

(1.2) I=T> [C;‘iz : (log<T§i’de€)2) + 27 +log4 — 1) +o(T).

d,e<T?

When A(s) is a mollifier, they show that one can go further and take 6§ < % + 3i4 =
0.529411... . Their motivation was to understand the location of the zeros of the
Riemann zeta-function. Specifically they deduce that at least 38% of the complex zeros
of ((s) are on the critical line $s = 1. Improvements on the admissible length of A(s)
will lead to a further understanding of the zeros of ((s) on the critical line. (See also
[Con89]).

In complete generality the formula (1.2) fails when 6 > 1. Balasubramanian, Conrey
and Heath-Brown conjecture that it remains true provided that 6 < 1. This is known
as the # = 1 conjecture. An important change occurs at § = % . When 0 < % only the
diagonal terms (in the sense of Section 3.1 below) contribute to I, while for 6 > % there
is also a contribution from the non-diagonal terms which seems difficult to manage given
the generality of the Dirichlet polynomial A(s). The main result of our paper consists
in breaking the % barrier for an arbitrary Dirichlet polynomial. In fact, we prove (1.2)
for < 2 =146 with § = & ~0.01515....

Theorem 1. Let I and A(s) be as above. If § < 5 + 8, with 6 = & then,

aqle t(d, 6)2 t 3 33 1
J = . 1 7 2 — T2 e N2 4 Tste
Z d, €] /R<Og< omde ) 77 ¢ T dt+0< * )’

d,e<T?

where N :=T?.

We notice that the off-diagonal terms contribute to the main term roughly those d
and e for which the logarithm in the above expression is negative.

Our main tool in the proof of Theorem 1 is an estimate for trilinear forms of Kloost-
erman fractions, which will appear in [BC|. This estimate improves a result of Duke,
Friedlander, Iwaniec in [DFI97al, dealing with bilinear sums. The use of Theorem 2
in their paper is also enough to break the % barrier, though with the smaller constant
9 =1/190 ~ 0.00526 in Theorem 1.

If we assume a general estimate for trilinear forms of Kloosterman fractions, such as,

(1.3)
am
Sann = X3S nanfee(5F)
a (m,n)=1
1. 1 1. 1.
<z lllIBIIVI(M + N)= = A"+ [|v]| Az <||Oé||<>o||5||1\72+ + [lll|BllecM2T )
where M <m <2M, N <n <2N,A<a <24 AK (NM)%%, and || - || and

|| - [|o denote the Ly and L., norms respectively, then the statement of Theorem 1 can
be replaced as follows.
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Theorem 2. Suppose that (1.3) is true for some r,t > 0. Then

a4ty t(d,e)? t 1openrl 1
I = A 1 N 2 — | dt O T +sN +r+2t T +e
Z[d,e]/m(og(zwe #21Jol Jarvo(rh vt ),

d,e<T?

for 0 < % + % and where N := T?.

The estimate of Duke, Friedlander, Iwaniec implies (1.3) with » = 23 and ¢ = £, while

the estimate of Bettin and Chandee allows us to take r = 29—0 and t = %. We conjecture
that (1.3) holds true for all r,¢ > 0.

Conjecture 1. Let A < (NM)ze. Then

1., 1 P Lte
(149) Sann < Il BIIAIOL+ N4 43 (ol BN + llal [8]d0H).

This conjecture essentially states that we expect square-root cancellation in the short-
est two sums, as long as the total saving does not exceed M or N. In the Appendix we
show that this is best possible, up to e-powers.

Using the estimate (1.4) and Theorem 2, we obtain an asymptotic formula for I valid
for any € < 1, and this implies the Lindelof hypothesis. We state this as a corollary
below.

Corollary 1. Suppose that Conjecture 1 holds. Then the Lindelof Hypothesis is true.

Conjecture 1 appears to be strictly stronger than the Lindelof Hypothesis. Indeed
Conjecture 1 implies (1.2) with # < 1, while the Lindel6f Hypothesis only gives the

cruder bound | ’2
I T1+€ n )
<y L

n<T?

The proof of Theorem 2, on which Corollary 1 depends, is the same as that of The-
orem 1 except that we use (1.3) instead of Proposition 1. The modification will be
discussed at the end of Section 3.

Duke, Friedlander and Iwaniec apply their estimate to obtain bounds for the twisted
second moment of a Dirichlet L-function [DFI97b]. They show that,

> LGOI PG <ot
x mod g

for Dirichlet polynomials D(s,y) with coefficients a,, < n° and of length ¢"/>* with
some ¢ > 0. Our proof of Theorem 1 would not extend to give an asymptotic formula
in this case, and additional input is needed.

As an application of Theorem 1 we obtain an upper bound of the correct order of
magnitude for the third moment of the Riemann zeta-function.

Corollary 2. We have,

o7
/ ‘C(% + it) |3dt < T(log T)"*.
T
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We further indicate in Section 6.1 how to refine this result to obtain correct upper
bounds for the 2k-th moment, when k has the form £ = 1+ 1/n. Previously Corollary 2
was known only on the assumption of the Riemann Hypothesis [HB81]. The only
sharp unconditional upper bounds that were previously known are for the classic cases
k=0,1,2 and for k = 1/n, due to Heath-Brown [HB8&1].

With further applications in mind we investigate how much 6 can be increased when
the Dirichlet polynomial A(s) is specialized.

1.1. Products of two Dirichlet polynomials. When A(s) can be written as a prod-
uct of two Dirichlet polynomials B(s)C(s), one can appeal to stronger estimates for
sums of Kloosterman sums due to Deshouillers and Iwaniec. In [DI84], Deshouillers and
Iwaniec consider the product of {(s) with two Dirichlet polynomials,

(L5) J:/\g(gﬂf)f. A+ it)[* - | B +if)[Par
R
with
(1.6) A(s) =" B(s):=Y_ % where a,, < nf, B < k°.
nenN k<K

They show that if N > K, then
J LT (T+TVAN3MK + TVANKY? + NTAK3?).

Their proof depends on estimates for incomplete Kloosterman sums as developed in
[DI84]. Proceeding similarly as in the proof of Theorem 1, and using Deshouillers and
Iwaniec’s estimate, we refine their bound to an asymptotic estimate.

Theorem 3. Let J, A(s) and B(s) be as defined in (1.5) and (1.6), and let N > K.

Then,
_ (qlc t(d, e)? t
J = Z d e /R(log( e +2v )¢ T dt
de<NK

+ O(TE . (T1/2N3/4K +T1/2NK1/2 + ]\/'7/4](3/2))7

with ag =, _ 4 0k

When the length of N and K is chosen suitably, Theorem 3 allows us to take 6 < %—l—%.

1.2. Specializing one of the Dirichlet polynomials. A specific case of interest is
A(s)B(s) with A(s) of length N = +/T and smooth coefficients, and B(s) arbitrary and
as long as possible. One can think of such estimates as estimates for the twisted fourth
moment of the Riemann zeta-function. In this case we can go further by combining the
trilinear sums estimate used to prove Theorem 1 with Watt’s strengthening [Wat95] of

the groundbreaking work of Deshouillers-Iwaniec on estimates for sums of Kloosterman
sums [DI83].
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Theorem 4. Let J, A(s) and B(s) be as defined in (1.5) and (1.6). Let N < Tzte
for all ¢ > 0 and assume that o, = ¥(n) with ¢¥(x) a smooth function such that
WO)(z) <; x79 for all j > 0. Let K < T3 and B, < k° for all ¢ > 0. Moreover

assume «,, is supported on [NT~% 2N] and By, is supported on [KT~%2, 2K], where
0<& <1 0<& < 4. Then,

- 5 () )

de<NK

+O(T%+EK2 —G—KN%T%+E—|— T?;g-i—éfl-&-gﬁz-i-a)?

where ag =Y, . _ 0,0

Remark. Theorem 4 yields an asymptotic formula for 5§, + 16§, < 1 (and N < T%,
K< T%_E). We remark that this range could be enlarged with a little more work.

We notice that Theorem 4 allows us to take 6§ < % for Dirichlet polynomials of
the form A(s)B(s) with A(s) pretending to be ((s) and B(s) of length up to T'/4~=.
Thus, following the work of Radziwilt [Rad12], Theorem 4 could be applied to give
a sharp upper bound for the 2k-th moment of the Riemann zeta function for 2k <
5, conditionally on the Riemann hypothesis (however, we remark that this has been
recently proven for all £ > 0 by Harper [Har]). It would be interesting to investigate if
Theorem 4 has other applications, for example to the study of large gaps between the
zeros of the Riemann zeta-function (see [Bre]).

Theorem 4 refines upon Watt’s result, who uses his Kloosterman sum estimate to give
(essentially) an upper bound of the form J < T+ 4+ TY2+< K2 for a,,b, supported
on dyadic intervals. Theorem 4 should also be compared with the asymptotic formula
for the twisted fourth moment of Hughes and Young [HY10]. Their result allows to get

an asymptotic formula for the second moment of ¢?(s)B(s) with B(s) of length up to
Tl/ll—a.
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2. ESTIMATES FOR SUMS OF KLOOSTERMAN SUMS

Remark. Throughout the paper, we use the common convention in analytic number
theory that € denotes an arbitrarily small positive quantity that may vary from line to
line.

In this section, we collect the estimates for sums of Kloosterman sums that will be
used to prove the theorems.
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The following Proposition is from [BC], and we will use it when dealing with the
contribution of the off-diagonal terms in Theorem 1 and 4.

Proposition 1. Let «a,,, Bn, v, be complex numbers, where M < m < 2M, N < n <
2N, and A < a < 2A. Then for any € > 0, we have

(2.1)

S5 vanne( D) < a8l (1 + 5orc)

a (m,n)=1
x«AMN%ﬁM%kmi+MMNﬁ%MN+AMﬁ>
where || - || denotes the Ly norm.

The off-diagonal terms in Theorem 3 will be estimated using the following bound,
due to Deshouillers and Iwaniec [DI84].

Proposition 2 (Deshouillers, Iwaniec). Let L, J,U,V > 1 and |c(u,v)| < 1. We then
have

S O3S S dune(ut?)

1<0<L 1<5<J [1<u<U 1<v<V
(4,05)=1 (v,0)=1

< (LJUV>1/2+6{(LJ)1/2 + (U+V)1/4[LJ(U+QV)(L+ QV2) +QUV2J2]1/4}.

Finally, to estimate the off-diagonal terms in Theorem 4, we will use the following
Proposition, which can be derived easily from Proposition 4.1 of Watt [Wat95].

Proposition 3 (Watt). Let H,C,P,V,R,S > 1 and § < 1. Assume that for some

e > 0 we have
RVSP\?
X = ( ) > (RSPV)®,

(2.2) HC

(RS):>nmx(Hﬂcf%§(RSPV)>

Moreover, assume that o(x), f(x) are complex valued smooth functions, supported on
the intervals [1/2, H] and [1/2,C] respectively, such that

0¥ (a), A9(z) < (62)7

for all j > 0. Assume a,,bs are sequences of complex numbers supported on [R/2, R],
[S/2,S] respectively and are such that a, < ¢, by < s°. Finally, assume that for all
i, >0,

dti

dyld ]/y’l‘s(l‘ y) <<ij y
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where for all v and s, v, s(x,y) is supported on [V/2,V] x [P/2, P]. Then
(2.3)
1353030353 LI NNINANN ety
s~S, r~R h,c,p,v, p
(rv,sp)=1
. HC\: P\Z/. H)(CPX2\*
2 H X)) 14+ — 14— 14— H PS)%e.
K0 2HCR(V+ S )( +RS) ( +VR) ( + T > (HCRV PS)

Proof. Firstly using smooth partitions of unity, we can assume that a(z),5(x) are
supported on [H/2, H] and [C/2,C], since the bound (2.3) is weaker (and the con-
ditions (2.2) stricter) for larger values of H and C'. Moreover, by dividing by R® and
S¢ if necessary, we can assume a,., by < 1.

By Poisson’s formula,
* heru
S e(sE) %

hcro
> pe(£"00) - z
1 u (mod sp) v=u (mod sp)

(vrsp)=
* heru \ 1 lu V4

= Y e(i )—Ze<——)/7(y,p)e(—y)dy
sp ) sp & sp) Jr sp

u (mod sp)

=Y S(her, FL, 5p) / Y(ysp, p) e(ty) dy.
V4 R

¥(v, p)

If ¢ = 0, the Kloosterman sum reduces to a Ramanujan sum, and one has S(hcr, F¢, sp) <
(he, sp). Thus, the contribution to (2.3) coming from the terms ¢ = 0 is bounded by

S S Y amstan "y < gvicrery.

s~S, r~R h,c,p
(r,sp)=1

Also, integrating by parts repeatedly, we see that the terms with ¢ > %(RSPV)E give
a negligible contribution. For the remaining terms, we introduce a smooth partition of

unity
1= 0.(x)
L

where 6, () is supported in [L/2,3L] (with L < 3Z(RSPV)), satisfies 6 (z)? <; L™
for all j > 0, and is such that >, _ 1 < log(2 + X) for all X > 1. Thus, we need to
bound -

Ve > 1,

22220 2

s~S, r~R h,c.p, 0<[¢|<3E(RSPV)=
(r,sp)=1

2 I HHH BB

SP s~S,r~R h,c,p, 4L
(r, sp) 1

a(R)B(c)arb,S(heF, 0, p) / (ysp,p) e(ly) dy

R

w(l,y)a,bsS(her, FL, sp) fs(p,y) dy,
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where fi(p,y) = v(ysp,p), w(l,y) = 0({) (éy) and Y denotes the sum over the
ﬁ, we have —fs(p, y) < p7, and that

Lw(l,y) < (L™ + g5) < L7I(RSPV)#. By Proposition 4.1 of Watt [Wat95], the
sums inside the integral are bounded by

. HC\ ? L\2 H2OLX2\ 4
~3 LP)**HCL(RSX)'*(1+ == 1 14—
§~2(RVLP):*HCL(RSX) ( +<RS> ( +_RS) ( + (79 ) ,

partltlons of unity. We remark that for y ~

and summing over L and integrating over y completes the proof of the proposition. [

3. THE PROOF OF THEOREM 1

We start by expressing ‘C (% + z't) |2 as a sum of length approximately 7', Let G(w)
be an entire function with rapid decay along vertical lines, that is G(z + iy) < y~* for
any fixed z and A > 0. Suppose G(—w) = G(w),G(0) = 1,G(1/2) = 0. We will use the

following form of the approximate functional equation for |((s)|?.

Lemma 1 (Approximate functional equation). For T < t < 2T, we have

(e - (22 e

m1,ma mlmg 2 2
where
1 d
W(x) == —,/ TG (w) 2
27TZ (2) w

and where we use the notation f(c) to mean an integration up the vertical line from
c— 100 to ¢+ 100.

The proof of the lemma can be found in Lemma 3 of [LR].

Remark. Notice that W) (z) <4 min(1,274) forz >0 and all ¢ € N .
The error term in Lemma 1 produces an error term bounded by T%JFE, and thus

a it

E n, @ MmNy 2T Mme t .
[=2 — 1 /( ) 4! <—> (—) dt + O T3te
(mymaning)2 Jr \Mam ¢ ¢ T ( )

ni,n2,mi,ma

— D+ S8+0(T5+),

where the sum is over ni,ny < N, D is the sum when min, = mgn;, and S is the sum
when ming # mon;.

3.1. Diagonal terms. Firstly, we consider the diagonal terms min, = msn;. For
J = 1,2, we write m; = {n}, where n} The contribution of the diagonal term

(m n2)
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18
(3.1)

Uy Ty (M1, 102) 2mlnin} t
D=2 e ) 2 R S =

ni,ng,l
2 Ay Ay (11, 112) 2mlning\ " dw
_ : ) G dt
271 . Ining // < (W)= w ¢ T

ni,n2,

2 aman2 ni, No) // dw t
= — 1+ 2w)G(w)—ao| = | dt.
2mi - n1N2 ) 27rn1n2 C( +2w)G(w) w ¢ T

ni,

This term will be later combined with a contribution from the off-diagonal terms.
Together, they give the main term in Theorem 1.

3.2. Off-Diagonal terms. In this section, we consider the terms with mny # mon;.
We write ming — mon, = A.

Since W(x) < =4 when x > 1, we can truncate the sum over mq, ms to when
mims < T . We introduce a smooth partition of unity

(3.2) 1= Y Fyle), T70<e<T

where Fjs(x) is smooth, supported in [M/2,3M], and it satisfies FJS) (z) <; 75 for all
4 > 0. Moreover we can choose a partition of unity which satisfies Y, 1 < log(2 +T).
Therefore

(3.3)

/ / / anlan2

SEED DD D DD DI D m—

Ny Na M A#O ni,n2,mi,ma (m1m2n1n2> 2
mins—meoni=A

y (/R (1 + mfnl)“w(Mﬁ(%) dt) Fiv, (1) Fx, (1) Fag (ms) + O(1),

where Ny, Ny < N and M < T'te,
Next we show that the terms with [A| > D, D := 281 give a negligible contribution.
In fact,

dt 2mmyme 1 2mrmyme -4
Bl 7 vl i ) 1 2f2
at’ ( / ) Seag mm( ( ; ’
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whence, integrating by part ¢ times, we have
/ U, G, A\ 2mrmym t
DD DD DD D m— /<1+ ) W(—1 2)¢(—)dt
(mimaning)z \ Jr many t T

N1,N2,M |A|>D ni,mz n2,mi
mins—meoni=A

T—t+14e —£

S DIDIEDY 2

X P’N1 (TL1>FN2 (nQ)FM(mQ)
Ni,M |A|>D ni~Ni,mo~M  my <T1+e
n2<N,

A
log( 1+
many
mino—maoni=A

1 1 ¢ -
< Z/ 2. 2 N 2 \/n2m1T B (%) €ae T

N1,M |A|>D ni~Ni,ma~M my<T1te
nQSNv
mins—meoni=A

(mlmznﬂh)%

where ¢ is large enough.
Now, if |A| < D, then —2— <« ﬁ, and

mani

:m2n1+A ’I’Ll<1+ A )

= m2—
n2 ng many

my

Hence for T' < t < 2T,

1 T A 1
il 1 — 1) :
mp o MmNy ( man - (TQ_E))
it . _ A2
14 A _ eztlog(1+m§n1> _ eztﬁ 1_ % L0 1 ’
Mmany 2msng T2%—=

27TMy M 2mrman, 2rmo A __ [ 2rmi3n, 1
Wl ——— ) =W |74 O .
( t ) ( tng + tng tng + T2=

Since mymy < T we have mao(mang + A) < nyTHe. Hence M < T1/2+5,/%—f, and
the error term from using the above approximations in (3.3) is
T / / / 1
B 50 D S Sl Sl o=

N1 No 1/2 No O<|A|§D ni~Ny mo~M
M<T/2+e Ny na~Na

- / MNN,  /TN32N;? N?
< Z Z Z T2—¢ < T2« < T3/2—¢’
N1 N prepi/ate /Na /Ny

using that D = MN;/T'~¢ and that M < T"/?*¢, /82, Thus, we have

and

N2
S_A—i-g—f—O(l—Fm),
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where

! ! ’ A . Q.
2EE) DD DD DD DR DI D"
many
N1 N2 M§T1/2+5 No 0<|A|§D n1,n2 nimo=—A (mod TLQ)

(3.4) N1 a0
([ (o) s

and

(3.5)

e=23"%" % D 3 %FM(mg)FM(nl)FM(m)x

N1 Na propijeve [Nz O<|A|SD n1,n2 nime=—A (mod n2)
- Ny mo>0

A 2mm? A it A2 2 A 2mm?
() Y C0) G )+ S (el
R\ 2mmaong tno 2meny  2many tno tno T

since the rest of the terms arising from the above approximations also give a contribution
which is O (N?T3/21¢).

First, we consider A. Giving an eligible bound for £ is easy and we will do it in the
next section.

Extracting the common divisor d of n; and ng, we re-write the sum (3.4) as

./4 =2 Z é Z/ Z/ Z Z adnﬁdm }WN1 (dnl)FN2 (dng)AMJvi (nl, Nno, A),

d<N N1,No<N Ny 0<|A <D n1,n2
M§T1/2+E /]\% <‘ ‘—d (n17n2):1

where

_ Far(ma) At 2mmgn ) (L
A, (n1,n2, A) = Z maony (/ﬂ§e<2ﬂm2n1)w( tna ’ T “)

mo=—n1A (mod n2)

By Poisson summation formula,

A, (n,ng, A) = 1 Ze _hﬁlA o _@ FM(I’)X
o ninsg %) 0 N9 T

h€EZ

At 2wx’ng t
o) (o e

After the change of variable x — =, this becomes

1 ~
ZAM,Ni(h;nlan% A) e(

mne =

-AM,Ni<n17 N2, A) =

B hni A
Mo ’

where

- o0 ha \ P 5y At 22 /
AMN,(h,nl,nz,A):/ e<_ 5”) ( >/e<—>W( ™ )¢<—> dt du.
w 0 NNy T r \ 271z ninat T

To understand the contribution of Ja/M, N; (hyn1,me, A), we consider the following three
cases.
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Case 1: h = 0. The contribution to A from h =0 is

Ay =2 Z Z/ Z/ Z/ Z Z Adn,y Cdny F]C\gl(ldzl)FNQ (dng)

d<N N1<N N><N N. n1,n2
< 1< 250 pr<ri/ete /Nf 0<\A|<d (n1,m2)=1

o T At 2rx? \ dw
Ful| — W dt.
% /R/O M(nl) e(27rx) (anth) T qb(T)
Now, we can extend the sum over A to A € Z\ {0}, since it can be shown as before

that the terms |A| > D/d give a negligible contribution. Making the change of variables
y = t/x and integrating by parts twice we see that the second line of (3.6) is equal to

L () o)
LA GG )

where R(t,m) = {y | T7' < ;= < T/2%e, [82} and where we estimated trivially the

part of the integral over y Wlth y € Roo \ R(t,n1), using the properties of W and Fj,
(and n; < T'). Thus, summing over M we have

’ 00 A 2 2
S ) ) () Se(r) -
IY; ny 2rx nnot /| T
d? 2rt \ 1 t log(2 + T)>
= —— W - d —dt+ O ———
//tnl) ( ) dy? ( (”17123/2)19) y¢<T) ( Az
B 2t \ 1 t log(2+ 1)
A2 /]R/O e(%) dy? (W<n1n2y2) y) dw(T) e O( A? )
Therefore, summing over Ny, Ny, we have

adnladng 27Tt 1 t
-9 %% - ]d — | dt
Ao Z Z Z dnlngAQ// ( ) ( (n1n2y2>y> y¢(T
d<N [A[#0 ny o<ty
(nl,nz):l

(3.6)

+O0(T7)
o admddm d2 2mt 1 t
=2 Z Z dniny // Z AQ ( ) (W<n1n2y2) y) dy(b(T) i
d<N g my< N A£0
(n1 ng) 1
+O(T%)

= AO,-‘:— + AO,— + O(Ta)a
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where we can take the sum over A inside the integrals since they converge absolutely,
and after a change of variables

Adn, adn ° & ; i d2 27TA2t
Ags = =2 o [ ezuew_(w(—
0,+ C;Vn nZ dnan ® Jo Azﬂ( >dy2 y y¢

n1ngy?
d
(n1,n2)=1

ninsy?

B Ay Gy (101, 12) d? 21 At
=2 Z n1n2 // Z2cos(y)d—y2(W( >y> dy¢< >
ni,ne<N A=1

where we recall that n* =

) for + = 1,2. We notice that

o0

d? 2 A% 1 2 A%\ S dw
Zd_y?(w(nmzy >_) o Z/ ( nins ) (2 = 1)@ = 2™ Clw)
A=1

w
1

2t \ w3 dw
[ com(5) w = bizw -2

o
For 0 < R(s) < 1, we have

211

/000 cos(y)y* 'dy = T'(s) cos(%)

(see, for example, [GRO7], formula 3.381, 5., page 346), whence we are left with

= [ rew e (25) e &

* *
() ning

where we used the multiplication formula for the gamma function, the identity cos(z —
7) = —cos(z), and we moved the line of integration without encountering any pole, due
to the assumption that G(w) vanishes at w = £. Thus,

Ay +O(T7)

2

anl ang ni, n2

2mt \ dw [t
o 2 . // 2 cos(mw) 2w)§(2w)( ) <w)3¢<f) dt

nin;
-2 ny Oy (101, t h t
_ 22 Odny Ty (71, 72) / (1 —|—2w)< > G(w)—w¢(—)dt
2me = ning (-1 2mning w T

where we used the functional equation of the Riemann zeta function (e.g. Chapter 10
in [Dav00]), and then we made the change of variables w — —w and use the fact that
G(w) = G(—w).
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From (3.1), we have

amang ni,ng) dw
DAy =~ Z n1MNo // (27m nz) C(1+2w)G(w)= = w ¢(T> dt

nl

2 Ay Gy (01, N2) dw ([t
- — 142 —o¢| = + O(T*
2mi ning // (—1/4) (27m1n2) o w)G(w) w ¢(T) dt+O(T7)

ni,n2

o anlanz ('I’Ll, n?) t v e
- Z—n /R(l g27m1n2+27)¢(T> dt + O(T?),

1N2
ni,n2

since
G(w)

1
Resy—02"¢(1 + 2w)—— = 5 log z + .
w

Now we have the main term. The rest of the off-diagonal terms contribute to the error
term as shown in the following two cases.

Case 2: |h| > £2T¢. In this case and in Case 3, we define Hy := 22T¢. By changing
variable t = xy, we have

1 ~ 1 A h 2
Ay, (hyng,ng, A) = / 2y / el — v Fy X |74 e ¢(%> dx dy.
n1Na n1Na 2 nNo ny ningy T

Since Fy; is supported in [M/2,3M], v < 82X Moreover, % < 1 < NILM due to the

support of ¢, and oy K TTSI = %_51\14 because of the rapid decay of WW. Hence integrating
by parts £ + 1 times, for T' <t < 27T we have

1 & h 2
[ () )
nins Jo NNy ny NNy T

d2 n1in9 d1T*1 e MN1
N1 Ns h MN; d

T\ N\
<(%) (i)
Therefore, the contribution to & when |h| > Hy is

< Z Z Z Z admadnz FN1 sddnl FN2 d?’LQ Z th (]C\l/'j;: > 14

d<N N1 N2<N 0<|A|7% ni, n271 |h|>Hd
M<LT/2+e (n1,n2)=

<<€,s

< T4,

when / is sufficiently large. Thus, the terms |h| > H, give a negligible contribution.
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Case 3: 0 < |h| < Hy. It is sufficient to consider the terms 0 < h < H,. By changing
variables t = yx, and x to xnin., we will consider the dyadic contribution

Abi vy N, = Z Z Z Adny Qdny Fvy (ddnl)FN2<dn2) y

o ociaiz 005

X e(—hfl) /OOO e(—hx)FM(:Eng)[Re(i—:)w<2zx)gb<y$?n2>dydx.

We write ¢ in term of its Mellin transform %, to separate the variables n; and ns.

Let hA =a, A= DHd =% and v, y(a) = YA . e(—ha + %) Therefore we have

vt L () 5 v

0<|a|<A

y Z Ay Ty FNl(dm)FNz(dnz)FM(wn?)e(_anl)g(w) r dw dy dx.

W gy W Wy w
n1.mo nyng No vy

(n1,n2)=1

T
zning MN

Since F) is supported in [M/2,3M], = =< %. Moreover, y < because ¢ is

supported in [1,2]. Thus, using Proposition 1, we have

(3.7)

VNN, K 5 /dM/

i

dio—¢ di di—e ds

( (N Ny A) 5+ (N + No) . (N1 N, A)5+ (AN, +AN2)§> dy ds

MN1
NN Ny N,)# 1
¢ (T%%Q(M INAE I SR LI N N2)8)
20 8

Summing over dyadic intervals for M < T1/2+¢ %, N; < N, and d < N, we have that

the contribution to A when |h| < Hy, is bounded by T2t N% + T¢N's . Therefore we
take NV up to T < to obtain an eligible error term in Theorem 1.

3.3. A trivial bound for £. Extracting the common divisor d from n; and ns, applying
Poisson summation formula, and changing variables, we can write (3.5) as

E=2 Zé Z/ Z, Z Z Qdny Qdny Fny (dna) En, (dng)Enn, (01, 12, A),

d<N ~ N1,Na<N /N7 0<|A|l<D  T1m2

where

Enn,(n1,ng, A) = ! Ze(—hﬁlA>/ e(— hix >FM(£>/e<£)¢(i)x
T n1No o 0 NNy ny r \27mx T

heZ

2ma? A itA? 2rA 2mx?
W —— = w’ dt dz.
8 [ <n1n2t> ( 222 223 ) * ninat (nlngt)] v
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Integrating by parts, as in Case 2 of the previous section, we see that the contribution
coming from the terms with |h| > H,; is O(1). Thus, estimating trivially the rest of the
terms we have

Te N
. A 1+ —
Emn, (N1, ng, A) K mm( + dM)

whence
&< T—1/2+€N + T—1+8N2 < NT¢
and the proof of Theorem 1 is complete.

3.4. The proof of Theorem 2. The proof of Theorem 2 is the same as Theorem 1
except that we use (1.3) instead of Proposition 1 in (3. 7) Notice that (1.3) is applicable,

MM < (NlNZ) Tt by NN < Tt s, Thus, we obtain that

d2T71—¢
\/NlNQ ((Nl + N2)2+rAt> n AN, ANQ

= Noy ]WN

(Nl + N2)5 "(N1Np)! e Ny Ny
d3+rt2t 2

since A =

dy dx

Summing over dyadic intervals for M, N;, we have that the contribution to A from these
terms is T2t N2++2 4 N1+¢ and Theorem 2 follows.

4. PROOF OF THEOREM 3

The proof of Theorem 3 follows the proof of Theorem 1 except the last part when
0 < |h| < Hy. Here we only modify the last part of the proof using the same arguments
by Deshouillers and Iwaniec in [DI84]. By the same change of variables, we have to
consider

Abv Ny = Z Z Z Ay Gy Fvy (dny ) Fiv, (dng) X

nne 0| Al<D 0<|h|<Hq

(nl,nz)zl
hn A > Ay 27X TYN Mo
- —ha)F W ( ) dy dz.
o) [ et () (55 )a(CHp) v
We now write agy,, as a,;B,,, where u|d>®, (d,j) =1, ny = orj, v = ﬁ and o = ﬁ.

Therefore, we have to bound

SiY Y Y Y Y A Yo & a5

d<T “NUN2 Mo pld™® 0<|A|<D 0<[BI<Hy (n2.0)=1  (jdno)=1  (rina)=1
v=d/(p.d)

(4.1)
X FNl(dgrj)FNQ(dng)/Oooe(—hx)FM(xng)/ @f)w(zzxﬁ(wy@g"?) dy dz,

where the sums over Ni, Ny, M are dyadic sums up to NK, NK, and T2\ /N, /Nj.
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To bound the above sum, we use Proposition 2. However, first we need to apply
Mellin’s transform to Fly, and ¢ to separate variables ns, 7, j. The technique is standard,
so we skip the details. From Proposition 2, the sum over ¢ is the sum over no, and
L= %. The sum over j is the sum over j, and J < % The sum over u is the sum over

hA, and U = dévjlf\féa. Finally the sum over v is the sum over r, and V' < % Moreover,

we note that JV < ]j—;. Applying Proposition 2, we obtain that (4.1) is bounded by

(after summing over dyadic M)

_ NiN, NoN\'* /NNy, K\
<ry ¥ XY G ) (e s)

d<T  p|d> d[L
v=d/(u,d)
NoN (NiNy | oK (Ny oK?\  oN,N,N2K27"*
dp \ Td? v d V2 d?T 12v?
T%-l—a NQK 1/2 N2K2 K 1/4
<<d<z,; 2; de{( dp > +< d*T +7) g
<T pld
v=d/(1sd)
| [NK (N?K? oK\ (NE oK . oNiK4 YA
du Td? v d v? A>T p2v?
1
< Ta(T1/2N3/4K + T1/2NK1/2 + N7/4K3/2 Z Z d5/4 1/4
A<T  pld>®
v=d/(1.d)

< TE(T1/2N3/4K—|—T1/2NK1/2—|—N7/4K3/2)7

and this completes the proof of Theorem 3.

5. PROOF OF THEOREM 4

The proof of Theorem 4 follows the proof of Theorem 1 except the last part when
0 < |h| < Hq.
We recall that we have a, = >, _, o,0), and we assume that o, is supported on

[NT=%1 2N], where N < T3+ and 0 < & < % Moreover [, is supported on k &€

[KT7%,2K], and 0 < & < s=. Let & + & = & We introduce smooth partitions of
unity in the sums over n and k (without indicating it, to save notation). Thus, n; ~ N;,
k; ~ K; (note that in the notation of Section 3 N; was the size of b = nk, so N;K; in
the current notation). Thus, db; < N;K;. Moreover, we assume that «,, = 1(n), where

¥ (x) is a smooth function such that 9 (z) <; x77 for j > 0.
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We have to bound

P D VD VD S 2

d<NK Ni,N2,K1,K2 I4e [NaKy brba  goaA|<MMNEL g N2K2T5
M<T N1K1 (b1,b2)=1 Al gr= Ihl<

Adb, Adby FN1K1 (dbl)FN2K2 (dbg) hl_)lA /OO hx FM (%)
el — e\ —
dbl bg b2 0 ble

At 2ma? t

After the change of variables y = % and then z =

X
T

-
higy 1t becomes

=23 3X Y X 2

d<NK N1,N2,K1,K> t+e /MoKy biba g A< MNLEY 0<h<w
M<T24e\[R22 sy OSIAISZr=eh o<l

e 6 () P 2) e(_hiﬂ JACEELESE
2 0

e )

Firstly we claim that we can truncate the sum over d at height Y := (N, K} NQKQ)%/T%”
for some small n > 0, up to an error term with a power saving. This is because for
larger values of d we are essentially left with the contribution coming from a Dirichlet
polynomial of length T' %“7, which we can bound using the method used to prove The-

orem 1. More precisely, by (3.7), we have that the contribution from the terms with
d > Y is bounded by

(5.1)

<

Z XI(M Mm+mmﬁmmm&ﬁ+
dzo

N1,N2,K1,Ko Y<d<NK

+T°

(M&+M&WMMM&%)
d%

: w N K, NoEKo\® us.us o (NUK;  NoKy\ 16
TT+2 n+e 141 2432 TT+*77+5 141 2432
< ) ( OO(%&*mm e NG TR

N1,N2,K1,K2

< Tiotantséte 4 T}—g+%n+%ﬁs+57
since T7¢ < % < T¢.
For the remaining part of the proof we use Watt’s arguments in [Wat95]. We write

Qdy;, = E , ahi/Bki = E : afiﬂiﬁgﬂ’z‘?

hiki;=db; figi=b; 3 pivi=d,
(945 71.):1
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so that f; < N;/p; and g; < K;/v;. We will apply Proposition 3 to bound

' o)

PO SIS Sl N

+e [N3K d<Y M1, V17H27V2» MN K,
M<T2 8\/ N?K? pivi=pava=d
——— (hAfig
aflﬂlﬂglVlaf2H2692V2 € Fa0s
91,92 f1,f2 0<|A|<MN1K1 0<W<N2K2T€

drl—¢

<9i7,,%.>=1 (f191,f292)=

2
Wyzf}f2glg2>’dydz.

X Fyy i, (frgimvn) Fng i, (fagapave) e(—hz) e(Ay) Far (2 f292) ¢ (

Before using Proposition 3 (with H = Agjlyllf?, C = %, r=g1,8S= 92,0 = f1,p=

f2 in the proposition respectively), we verify that X? = % = T1=¢ > T*, which
is clearly satisfied if ¢ is small enough, and that

(K1K2)2 o NPEENo KM (K1K2)2 o MK

Ko N- Ky N
TE — 2—2N1Tg: 22 2mpe

— Nipgrs dN, N,

1402 d3T?-= ’ 1402

-

Since M < T%+€(N2K2/N1K1)% and d < M the first condition is implied

T3+7
by T?7¢ > N2NZT=" which is true if 26 < 1. The second condition is equivalent

to KIK, > V11/2T8N2. This is true as long as n > %52 + %5, since N; < T2+,
Ks/K1 < T€, and

15 3 3 1
N o _ NENGK T :

N2 € 3 € 1 2 K.
V1ly NIT < d NIT T3/2 < K K2K§
1

T 4e—3n < K%K2T4€_3n+%2.

Applying Proposition 3 with 6! = max(2C,yH) + 1 < T¢ and using that p;,v; <

1
d < WIANIG)E e obtain that (5.2) is bounded by
T2+77

Z’ Z Te Z dM dT NlNQKlKQ K1 N1 K2T
L R A<y d L1, L2502, N2K2 MNlKl Td2 1241 ,Lbl 120}
M§T7+€\/ﬁ - pivi=pove=d
1 NlNQI/ll/Q % 1 dNQ 2 1 MN1N22V%V22 i
“UTT7e KN T K K)2dT 2
2233 SRAG (K1K>) 2%
! Te K1 N1 KQ dN2
- S, P ) (e 222
< ¥ vy 2w (ams
M§T§+E ﬁ = piv1=pave=d
KK.TS KN, K°NSN;  KiK;TiNFN;
<<Z Z (12+ldl+311321+121312+
e fit e K5 Ts vidi

N

N[

1
(1 N MN,N2v3v2 )4
(1 K2)2dT 3

d<y H1,V1,42,V2,
p1v1=pove=d
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1 1 1 5 9 9 5
K KgTzN KZNZNg NENSd2 TSNSKS$
- 1 "33 3.1 ;" 3.1, 171
ViV PN d2 pg pips K3 Ky Ts Ny Kpdavipg
K8N8N8 3 5 1 5 K%KTL“EN%
< KT 4 KGN T+ =22 [ RGTRENS N, =122 22y
KSTs™ N?

7 9 s
NFNy K7 | THNSKS
KST3+3— NPKP
Summing over K; and V;, we obtain that (5.2) is bounded by

r 1 1
+ KENENGZT® +

K2T3%e 4 T4+ 4e 4 KNITS e 4 g3Ts+tetS L pi+%-Fte 4 g NITEHE R
Theorem 4 then follows by taking n = %’ + 3¢ and collecting the error term (5.1).
6. PROOF OF COROLLARY 2
The proof of Corollary 2 requires the following two lemmas.

Lemma 2. Let G be a compactly supported function. If F'= —G' for x > 0 and F is
three times continuously differentiable and compactly supported, then,

log n

ZG 1ng /CS—I—w 7 zwlogx d_w)
ns " o 27 w

n

for ¢ > max(1 — R(s),0) and x > 1, where F denotes the Fourier transform of I,

o0

F(z) := / F(u)e 2™ dy.

—00

Proof. First of all ﬁ(.r) is entire because F' is compactly supported. We expand the
function ((s + w) into its Dirichlet series and compute

1 ~( wl d
(6.1) - n_w_F(_zw og:v)_w.
21 J (o) 2m w

~ o 1 0
F( B 1w Ogl') _ / F(u)x“wdu
2m oo

Inserting this representation into (6.1) and inter-changing integrals, we obtain

o 1 u\ " o 1
/ Flu) - — ("’”_> R / F(u)du = G( Og”).
o 2mi Jg\ w log n log x

log =

Notice that

In order to justify the interchange of the two integrations we truncate the integral
in (6.1) at a large height X, committing an error which goes to zero as X — oo (since
the Fourier transform F will decay sufficiently fast), and interchange. Then, we use
a Perron formula with error term in order to compute the conditionally convergent
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Perron integral appearing above. Taking the height X — oo returns the desired result,
as stated. OJ

Lemma 3. Let A> 0 and let 0 <n < é be fized constants. Let v € R and x < TY?+7,
Let s = o +it, whereaz%—l—@ and T <t <2T. Then

27
dl/g(n)
() - ~
/T ; nstw
where dyj5(n) are the coefficients of the Dirichlet series expansion

di2(n)

2
dt < T(logT)"4,

((s)2 = ;T, R(s) > 1.
Proof. Let _
aals) = ) 3 2l
and -
s —

fi(s) = ?1) exp ((s —it)?).

Then, by Gabriel’s convexity theorem (see [HB81], Lemma 3)

S —

5/2—0o
2

/\@x,v(a—l—iu)ft(a—i-iu)ﬁdu < (/ \@I,v(%—i-iu)ft(%—i-iu)\Qdu)

o—1/2

54 qu) f(2 +du)|?
x(/R@x,UQ i) fi(3 + i) du)

We now integrate both sides over T' < t < 27" and use Holder’s inequality to get
/ D, (0 + iw)| 2 fr (o + iu)du < (/ 1B, (2 + i) 2 (L + iu)du)
R R

([ 10t + PTG + i)
R
where
_ o7
fr(o+iu) = / | fi(o + du)|?dt.
T
Clearly fr(o +iu) < 1if T < u < 2T. In addition

1 if T/2 <u<3T

e~ lul otherwise.

fT(O' + zu) < {
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We also note that ®,,(s) < (1 + |s])"/*** . v/T. Therefore the previous inequality
becomes

5/2—0c
2

2T 3T
/T @, (0 +it)|dt < (/ |c1>x,v(§+z't)|2dt+0(T))

T/2

o—1/2
2

3T

« </ 1@,,(5/2 + i) [2dt + O(T)>
T/2

According to Theorem 1 the first integral on the right-hand side is O (T (log T')*/*) while

the second integral on the right hand side is O(T).
O

Let 6 > 0 be a small positive real number to be chosen later. We pick a parameter
close to 1, with 0 < 6 < 1, and define

2mi(1-6)z N
Bz) = emio-ns (€70 1
2mi(1 —6)z

with some bounded N > 10. We see that F' is compactly supported on [0 — §,0 — ¢ +
(1 — 0)N]. Define for = > 0,

Glz) = 1— /0 " Plu)du,

and G(z) = 0 for z < —1. Moreover, we let G(z) decay smoothly until 0 on the interval
[—1,0]. This way F' = —G’ for x > 0. We notice that G(z) =1 for 0 <z < 6 —§ and
that G(z) = 1— F(0) = 0 for > 6 — 6+ (1 — #)N. Finally we notice that G is N times
differentiable, and consequently that G(z) < (1 + |z|)~V.

Now we make a choice for # and 0. Let 6 = logy/log x with y = T"/**? and x chosen
so that @ —5+(1—0)N < 1. We pick 1—6 = (6/2)/(N —1) so that x = y'/(1=(0/2)/(N=1)),
Then, we choose § small enough but positive so as to ensure that z < T/2+001,

Note that
= iwlog x 5 (z/y)* —1 \"
Fl — = w I -
( 21 > (ya™") (w(l —0)logx

Letsza—l—itwiththanda:%—l—

contours to R(w) = 5 — o we get

@, with A > 0. Using Lemma 2 and shifting

G ( ten —0y1/2—0 oo L it +dv)|dv
((s) = Z—(logx)Jm(le)N(yx i / <G +ittiv)ld +O(T™)

(dlogz)V J_o ((o - %)2 JrUg)(f\f+1)/2

where O(1/T) is the contribution from the pole at w = 1 — s and with |x] < 1. Let
c(m) =3 je fo<a d1/2(€)d12(f). Importantly, notice that ¢(m) =1 for m < z. Since
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in addition G(v) =0 for v > 1 we get

Z (?) _ Z C(n)GQ;i%)

log x c¢(n) ~fvlogz
= — =~ . G d
2w /R zn: nsti ( 2m !
log x dy/2(n) * (vlogz
— : dv.
2T /R (Z nstw G 2 v

n<x

Combining the above two equations, we have obtained the following inequality
di/2(n) > | A fvlogz
<l . |G d
Cl < toga [ |30 2T S50 ) o

n<x
+<4N>N(yx*5)1/2*" /OO |C(%+it+iv)|dv
(dlogz)V J_o ((o - %>2 JrUg)(NH)/?

[

+O(1)T).

Therefore we have obtained

2T
[ i <o [ (7o)
g R 2

where
£ < @NW,@fﬂ”%”/“<

2
dtdv + € + O(T7),

di/2(n)
Z ns—‘riv

n<x

dv
((0_ . %)2 + 02)(N+1)/2~

By Holder’s inequality and the bound [((3 + it)| < (1 + [t])Y/67, for |v| < T we
have

/TQT 1C(s)2[¢ (3 + it + iv) |dt < (/TZT !C(s)lSdt) " (/;T C(1/2 + it + iv)|? dt>

< Ma(o, T)2/3~ (M;;(%,T) +O(|U!T1/2+€))1/37

/2T|§(s)|2 ¢ (3 +z‘t+z‘v)\dt) :

(6.2)
(0logz)™ J oo \Jr

1/3

where
2T
mumTy:/ C(o + it) Pt
T
By a minor modification of Lemma 4 in Heath-Brown’s paper [HB81] we have
M;(3,T) < C- TPV N (0, T).

Therefore,

2T 1 1/3
/ IC(s)PIC(E + it + iv)| dt < Ms(o, T)? - (CT<3/2><"5>M3<0, T) + 0<\v\T1/”5>)

T
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< cTWR0Y). - (Ms(o,T) + O(T"9)).

The contribution of |v] > T/ to (6.2) is negligible, provided that N is chosen to be
large enough. We conclude that

1
P C(4N)N (T1/2m5)02 Ms(o,T)

oN Y
Using Lemma 3, we find that

Jle() e

We have obtained the inequality

log x

1
N 1/2,.6\ 972 T
Mg(O’, T) < T(lOgT)9/4 + OA(Tlfg) + C<4N> ) (T i ) ) Mg(O’, )

o y (0 = Dlog o)™
the third term on the right-hand

Recall that y = TV/?*2 <z < T. Since 0 = 1 +
side in the above equation is less than
< C(8NJANSNe A My (0, T)

with C' an absolute constant. Thus, if A is large enough (but bounded) then the third
term on the right-hand side in the above equation is absorbed into the left-hand side,
and we conclude that

logT’

M;s(o,T) < T(log T)"*.

1
Since M5(3,7T) « TE2=3) 6, 0,T) by Lemma 4 of Heath-Brown |[HB81] and since
2

_1 A .
0 =35+ g7 WE obtain that

Ms(3,T) < T(log T)"/*.

6.1. Moments of the form k = 1+1/n. Since we do not claim the result for moments
with k =14 1/n we only sketch the necessary modifications of the previous argument,
for the convenience of the interested reader. In order to adapt our argument above to
moments of the form 1+ 1/n, it suffices to prove the inequality

2
1S
mstotiv/logz

2/n

¢(s) 2/ <<10gT dvdo

27r s
(yx~ ) (1/2— U/n gT/ / |Co—+zt—|—zv)|2/” dvdo
(6 log z)2N/n U2>(N+1)/n y
where o_ = %— @, oL =3 5+ 10 = and with the 1mph(31t constant depending at most on

n, N and the same choice of parameters 0,x,y,06. This is sufficient because the previous
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argument does not depend on some specific quantification of the dependence on N.
First we note that

G ( loen no

Combining this with Lemma 2, and using the same choice of parameters 6, z,y,0 as
before, it follows that

s < [ 16(5)] |2

Taking the 2/n power on both sides, it remains to show that

dl/n !
( 27T ‘Z ms+w/logm U) < lOgT/ /‘G 27’(’

and that

¢} + it +dv)|dv 2/n 1C( a+zt+zv)\2/"dv
(6.3) (/ 2 — <<10gT/ / do
(N+1)/2 (N+1)/n
o ((0—3)" +v?) +1?)

O'__

dl/n(m)

mstotiv/logz
x

(yx=0)/2=e / ¢ (3 + it + iv) |dv
(0logz)N [k ((U _ %)2 N Ug)(NJrl)/?'

% dl/n( )

ms+a+w/ log x

m<z

2
dvdo,

We will only show how to prove the second inequality since the proof of the first is very
similar. We bound the integral

(3 + it + w)|dv N M,
<(0—3) s
/oo (0 3)7 +02) 07 ’ Z (1+ [N+

where M, is the maximum of {(5 + it +iv) over the interval v — k(o — 3)| < (o — 3)/2.
Therefore

(6.4) (/ (5 + it + iv)|dv ) / <(o— %)72(]\“1)/” Z Mk/
—oo ((a _ %)2 N 1}2)(N+1)/2 - (1 + |k|)2@v+D)/n
By sub-harmonicity,

(k+1)( 0’—
2/n<<logT/ / 1C(o + it +iz)[¥" dx do.
We conclude that

2/n
(0_ . 1>72(N+1)/nz Mk/
: (1 [k

< logT/ /k“><0 4 C(o + it + ix)[*™ da do
o T une-by (0= 3)+ (k(o — 5))2)XN+D/n

|C( a+zt+zv)|2/”dv
< logT/ / " )(N+1)/n do.
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Combining these equations together, we obtain the desired inequality (6.3).

APPENDIX A. ON CONJECTURE 1

Proposition 4. Let A, M,N >1 and let A < (MN)z*=. Then
mELX|SAMN| > (AMN)7_6<M+N) —f—A(M—f—N)

for all e > 0, where the mazximum is taken over all choices of coefficients cy,, By, Vo <K 1.

Proof. By the reciprocity relation % = —7% + % (mod 1) we can assume M > N.
Moreover, we can assume N, A > M¢ for some small € > 0 and M arbitrary large, since
otherwise the result is easy.

First, we consider the case M'~° > N for some § > 0 and we take a,, = f(m) for
some smooth function f : [M,2M] — [0, 1] which is such that ¥ (z) <; x77 for all
j>0and [, f(z) = KM, for some K > 0. Also, let 8, = —7,, where 7, is the indicator
function of the primes congruent to 1 (mod 4) in [N,2N], and let v, be the indicator
function of the primes congruent to 3 (mod 4) in [A, 2A].

By Poisson summation, we have

> st o) = Ky enla) + O,

= (5 ) 7

(b,n):71

where

is the Ramanujan sum. It follows that

Samn = K% Z Z BuvVa(cn(a) + O(M~'7))

- K% Z Enj Ynva(l+OM1)) > (MA)

We now prove

max [ uv| > M(AN)E ™,

which then implies the Proposition even in the case M=% < N for all § > 0.
By choosing «,,, appropriately, we have

S Froipw,
mgx ISl > ) P

where

Fass = | 3 e ()]

a (n,m)=
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First, notice that we have

max Fopy 2 L Z Z Fonsgta) wixe)
m

2
@(Q) X1,x2 (mod q) m

with ¢ any prime greater than 4(A* + N*) and where 3(x1), v(x2) denotes sequences
defined by B(x1)n = x1(n) and v(x2)e = Xx2(a) respectively. Moreover, by Holder’s
inequality,

1 1 3
Z Z m;B(x1)v X2) =\ ()2 Z Z Frisoa)wvie) | %
d q) m

2 2
QO(CD X1,X2 (mO SO(Q) X1,X2 modq m

1 3
ola)? Z Z m;B(x1)v(xz) :

2
('D(Q) x1,x2 (mod gq) m
The left hand side is

1
©(q)? Z Z miB(x1)v(x2) ZZ Z 1> MAN,

X1,x2 (mod gq) m a (n,m)=

and we also have

1
¢(q)? Z Z Fé;B(Xl)J/(XQ) - Z Z Z 1 < M(AN)**.

X1,X2 (mod g) m m a1a2=a3a4 MN2=NIN,
(m,ning)=1

Thus,
1 1_
w(q)? Y Fuptarie) > M(AN)Z™
x1,x2 (mod g)
and the proposition follows. O
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