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The ending lamination space of the five-punctured sphere
is the Nöbeling curve

Sebastian Hensel and Piotr Przytycki

Abstract

We prove that the ending lamination space of the five-punctured sphere is homeomorphic to the
Nöbeling curve.

1. Introduction

Let Sg,p be the orientable surface of genus g with p punctures. The set of essential simple
closed curves on the surface Sg,p can be arranged into the curve complex C = C(Sg,p). The
combinatorics of this intricate object is used, in particular, to study the mapping class group
of Sg,p. The curve complex is particularly useful in view of the result of Masur and Minsky
[17, Theorem 1.1], which says that C is hyperbolic in the sense of Gromov. Hence, using the
Gromov product (see [3, Chapter III.H]), one can define the Gromov boundary ∂C in the usual
way. Note that the boundary ∂C is in general not compact, since the curve complex C is not
locally finite. Hence, the topology of ∂C can be a rich subject to explore.

Interestingly, the boundary ∂C arises naturally also from another construction; namely,
Klarreich [13, Theorem 1.3] (see also [9, Section 1]) proved that ∂C is homeomorphic, by
an explicit homeomorphism, to the ending lamination space EL = EL(Sg,p). To define this
space, we need to recall some standard notions.

We denote the space of geodesic laminations on Sg,p as usual by L = L(Sg,p). An ending
lamination is a minimal filling geodesic lamination. The set of all ending laminations is denoted
by EL ⊂ L. It remains to describe the topology on the set EL. Let PML denote the space of
projective measured laminations. Let φ : PML → L be the measure-forgetting map that maps
a projective measured lamination to its support. Note that φ is not surjective, because there
are geodesic laminations that do not admit a transverse measure of full support. However,
every ending lamination admits a transverse measure of full support, so EL is contained in the
image of φ. Let MPML ⊂ PML be the preimage of EL under φ. The space EL is naturally
equipped with the topology induced from MPML by the quotient map φ.

Here is a short account on what is known about the ending lamination space EL depending on
g and p. We call ξ = 3g − 3 + p the complexity of the surface. The cases where the complexity
is at most one are easy and well known, in particular for ξ = 1 (that is, in the case where the
surface is the four-punctured sphere or the once-punctured torus) we have EL � R \ Q. Assume
now ξ > 1, that is, the surface in question is hyperbolic and non-exceptional. In this case, Gabai
[7] showed that EL is connected, locally path connected and cyclic, which concluded a series
of results in this direction. Previously, Leininger–Schleimer [15] proved that EL is connected,
provided g � 4, or g � 2 and p � 1. Moreover, Leininger–Mj–Schleimer [14] proved that if g � 2
and p = 1, then EL is locally path connected.
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In spite of the fact that so little about EL is known so far, we were encouraged by Mladen
Bestvina to address the following.

Conjecture 1.1. The ending lamination space of Sg,p is homeomorphic to the (ξ − 1)-
dimensional Nöbeling space.†

Definition 1.2. The m-dimensional Nöbeling space N2m+1
m is the topological space

obtained from R2m+1 by removing all points with at least m + 1 rational coordinates.

In this terminology, the ending lamination space of the four-punctured sphere (and the
once-punctured torus) is homeomorphic to the 0-dimensional Nöbeling space. This agrees with
Conjecture 1.1.

The Nöbeling curve is the 1-dimensional Nöbeling space, that is, the topological space
obtained from R3 by removing all points with at least two rational coordinates. The main
result of this article is to confirm Conjecture 1.1 in the following case.

Theorem 1.3. The ending lamination space of the five-punctured sphere is homeomorphic
to the Nöbeling curve.

Since EL is homeomorphic to the Gromov boundary of the curve complex, which is the same
(as a simplicial complex) for the twice-punctured torus and the five-punctured sphere (see [16,
Lemma 2.1(a)]), we have the following.

Corollary 1.4. The ending lamination space of the twice-punctured torus is homeomor-
phic to the Nöbeling curve.

We point out that our proof of Theorem 1.3 relies on Gabai’s proof of the local path
connectedness of EL (see [7]). We do not know at the moment how to prove local k-
connectedness with appropriate k for the surfaces of higher complexity. We believe that once
this is established, the techniques developed in the present paper can be generalized to confirm
Conjecture 1.1.

The article is organized as follows. In Section 2, we provide a topological characterization
of the Nöbeling curve, which we use in the proof of Theorem 1.3. In Section 3, using train
tracks, we choose a convenient neighbourhood basis for the ending lamination space. Then, in
Section 4, we give an account on Gabai’s method for constructing paths in EL.

The proof of Theorem 1.3 splits into two parts. In Section 5, we begin the proof and, in
particular, we obtain a dimension bound. The main part of the proof is to obtain a universality
property, with which we conclude in Section 6.

2. The Nöbeling curve

In this section, we give a useful characterization of the Nöbeling curve following from
Kawamura–Levin–Tymchatyn [12]. We learned about this characterization and the way to
derive it from [12] using a standard topological argument from Andrzej Nagórko.

†This conjecture has now been corrected by Gabai [8, Conjecture 6.8].
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Theorem 2.1. If a Polish space of dimension 1 is connected, locally path connected and
satisfies the locally finite 1-discs property, then it is homeomorphic to the Nöbeling curve.

Recall that a topological space is Polish if it is separable and admits a complete metric. A
topological space has dimension 0 or dimension at most m, for m > 0, if each point has a basis
of neighbourhoods with empty boundaries or with boundaries of dimension at most m − 1,
respectively. A space has dimension m, for m > 0, if it has dimension at most m, but does
not have dimension m − 1. In the case of a Polish space, this coincides with the usual covering
dimension (see [6, Theorem 1.7.7]).

Definition 2.2. A topological space X satisfies the locally finite m-discs property if we
have the following. For any family of continuous maps {fn : Im = [0, 1]m → X}n∈N, and any
open cover U of X, there is a family of continuous maps {gn : Im → X}n∈N such that:

(i) for each x ∈ X there is a neighbourhood U � x satisfying gn(Im) ∩ U = ∅ for sufficiently
large n;

(ii) for each t ∈ Im, n ∈ N, there is U ∈ U such that both fn(t) and gn(t) lie in U (we say
that such fn and gn are U-close).

If additionally gn(Im) are required to be pairwise disjoint, then X satisfies the discrete m-discs
property.

In the remaining part of this section, we explain how to derive Theorem 2.1 from the
following.

Theorem 2.3 [12, Theorem 2.2]. A 1-dimensional Polish space is the Nöbeling curve if
and only if it is an absolute extensor in dimension 1 and strongly universal in dimension 1.

In fact, in order to address Conjecture 1.1 in the future, we have decided to discuss the
higher dimensional analogue of Theorem 2.3.

Theorem 2.4 [19, Topological rigidity theorem]. An m-dimensional Polish space is the
m-dimensional Nöbeling space if and only if it is an absolute extensor in dimension m and
strongly universal in dimension m.

A metric space X is an absolute extensor in dimension m, if every continuous map into X
from a closed subset of an at most m-dimensional metric space extends over the entire space.
Assume now that X is locally k-connected for every k < m (see [5, Definition 3.1]; for m = 1
this means that X is locally path connected). In that case, by Dugundji [5, Theorem 9.1], X
is an absolute extensor in dimension m if and only if all of its homotopy groups in dimension
less than m vanish. For m = 1 this means that X is connected. Summarizing, if a metric space
is locally k-connected for every k < m, and all of its homotopy groups in dimension less than
m vanish, then it is an absolute extensor in dimension m. In particular, if a metric space is
connected and locally path connected, then it is an absolute extensor in dimension 1.

A Polish space X is strongly universal in dimension m if any continuous map f : Y → X
from an at most m-dimensional Polish space Y to X is approximable by closed embeddings.
This means that, for any open cover U of X, there is a closed embedding g : Y → X such that
f and g are U-close. We discuss below under what hypothesis strong universality in dimension
m follows from the locally finite m-discs property.
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By [4, Discussion after Theorem 2.4], any Polish space X satisfying the locally finite m-discs
property satisfies also the discrete m-discs property. Bowers [2, Theorem in Appendix, part (2)]
proves that the latter implies strong universality in dimension m, under the hypothesis that X
is an absolute neighbourhood retract (ANR). Recall that a topological space X is an ANR if,
for each closed subset A ⊂ X, which is normal, there is an open neighbourhood U ⊂ X such
that A is a retract of U . Unfortunately, Nöbeling spaces are not ANR, hence Bowers’ theorem
as stated is not sufficient for our purposes. However, his proof yields the following.

Theorem 2.5. Let X be a Polish space which is locally k-connected for all k < m. If X
satisfies the discrete m-discs property, then it is strongly universal in dimension m.

In other words, we can replace the ANR hypothesis in [2, Theorem in Appendix] by local k-
connectedness for all k < m. Indeed, the only two places in the proof, where the ANR hypothesis
is used, are lines 1 and 5 on p. 129, in the proof of Lemma C. However, in both cases the
argument only requires the following property (which is satisfied if X is an ANR); namely, let
k < m and let Sk be the k-sphere. Bowers’ argument requires that, for every open cover U of
X, there is a refinement U ′, such that if f0, f1 : Sk → X are U ′-close, then there is a homotopy
between f0 and f1 with each track contained in some U ∈ U . By [5, Theorem 5.1] this property
follows from local k-connectedness. This concludes the argument for Theorem 2.5.

By Theorems 2.4 and 2.5 and by the preceding discussion, we conclude with the following,
which in the case of m = 1 amounts exactly to Theorem 2.1.

Corollary 2.6. Let X be a Polish space of dimension m which is locally k-connected for
every k < m, and all of whose homotopy groups in dimension less than m vanish. Assume that
X satisfies the locally finite m-discs property. Then X is homeomorphic to the m-dimensional
Nöbeling space.

3. Train track partitions

Our strategy of proving Theorem 1.3 is to use the topology of PML, the space of projective
measured laminations, to obtain information about the topology of the ending lamination
space EL. To this end, we construct a sequence of finer and finer partitions of PML into
polyhedra using Thurston’s notion of train tracks (see [21, Section 8.9]). We then show that
these polyhedra project to a convenient neighbourhood basis of EL.

For a thorough treatment of train tracks, as well as the basic definitions, we refer the reader
to the book of Penner and Harer [20]. However, note that, in contrast to the treatment in [20],
for us every train track is generic (that is, each switch is at most trivalent). In the following,
we briefly recall some definitions and statements important to the current work.

Let τ be a recurrent train track. We denote by P (τ) the polyhedron of projective measures
of τ , that is, the set of all projective measured laminations that are carried by τ . The set P (τ)
has the structure of an affine polyhedron, where the faces of P (τ) correspond to recurrent
proper subtracks τ ′ < τ (see [20, pp. 116–117]). The inclusion map P (τ) ⊂ PML, where
P (τ) is equipped with the topology coming from the polyhedral structure, is continuous. In
particular, for any train track τ the polyhedron of projective measures P (τ) is a closed set
in PML. The interior of P (τ) is its interior with respect to the polyhedral structure, that
is, the set of transverse measures which put positive mass on each branch of τ . Note that
in general this is not the interior of the set P (τ) ⊂ PML with respect to the topology of
PML. In what follows, we denote the interior of the polyhedron of projective measures by
V (τ) ⊂ PML. We denote the boundary P (τ) \ V (τ) of the polyhedron of projective measures
by ∂V (τ). From now on, the expression boundary of X will always mean FrX = X \ intX
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(the boundary in the topological sense). Note that in this terminology ∂V (τ) might not be the
boundary of V (τ) ⊂ PML. Let

U(τ) = φ(V (τ) ∩MPML),

(equivalently, U(τ) is the set of ending laminations which are fully carried by τ). We denote
the inverse correspondence between (families of) these sets by Ψ, that is, Ψ(U(τ)) = V (τ).

Unless stated otherwise, from now on we restrict to the case of S0,5, where PML is
3-dimensional. We call a train track η complete if it is recurrent, transversely recurrent and
maximal. Recall that if η is complete, then V (η) is 3-dimensional, hence open in PML (see,
for example, [20, Lemma 3.1.2]) and consequently U(η) is open in EL. In particular, we have
∂V (η) = FrV (η). We call a train track σ nearly complete, if it is birecurrent and carries an
ending lamination, and P (σ) is 2-dimensional (in particular, σ is not complete).

Remark 3.1. Let μ0 and μ1 be measured geodesic laminations that do not intersect
transversally. Suppose that, for some train track, τ its polyhedron of projective measures P (τ)
contains a projective class of μt = (1 − t)μ0 + tμ1 for some t 	= 0, 1. Then the whole interval
{μt}t∈[0,1] projects into P (τ). This is because the support of μt equals φ(μ1) ∪ φ(μ2) except
maybe for t = 0 or 1, and projective measured laminations are carried by train tracks if and
only if their supports are.

Here is one specific way in which Remark 3.1 will be used; namely, if μ0 is in the interior of
P (τ) for a complete train track τ , then μt meets P (τ) for some t 	= 0, 1, and hence μt lies in
P (τ) for all t.

We shall need the following lemma, which shows how MPML can intersect the polyhedron
of projective measures of a complete or nearly complete train track.

Lemma 3.2. (i) Let σ be a nearly complete train track. Then ∂V (σ) contains no filling
lamination. In particular, ∂V (σ) is disjoint from MPML.

(ii) Let η be a complete train track. Then the 1-skeleton of ∂V (η) contains no filling
lamination. In particular, the intersection of the 1-skeleton of ∂V (η) with MPML is empty.

(iii) Let σ be a nearly complete train track. Then U(σ) is closed in EL.

Proof. (i) Let σ be a nearly complete train track. Recall that ∂V (σ) is the union of P (τ)
over all recurrent proper subtracks τ < σ. We show that no proper subtrack of σ is filling, that
is, that for each proper subtrack of σ there is an essential simple closed curve disjoint from it.
This immediately implies assertion (i).

Since σ is nearly complete, it carries a filling lamination. Hence, its complementary regions
are topological discs or once-punctured discs. Thus, on a five-punctured sphere a nearly
complete train track has at least five complementary regions. Each of those regions gives a
contribution of at least −1

2 to the (generalized) Euler characteristic of S0,5, with a contribution
of exactly − 1

2 if and only if the component is a triangle or a once-punctured monogon.
If σ had more than five complementary regions, the fact that χ(S0,5) equals −3 would imply

that these regions have to be five once-punctured monogons and one triangle, which would
mean that σ was complete.

Hence, σ has four once-punctured monogons and one once-punctured bigon as complemen-
tary regions. A proper subtrack τ < σ needs to erase at least one branch of σ, and hence join
two of these regions (or one to itself). Thus, some complementary region of τ contains either
two punctures or an essential curve, hence τ is not filling.

(ii) Let η be complete. The 1-skeleton of ∂V (η) is the union of P (τ) over recurrent τ < η,
which are obtained from η by removing at least two branches. Now assertion (ii) follows with
the same Euler characteristic argument as in the proof of assertion (i).
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(iii) Let σ be a nearly complete train track. The polyhedron of projective measures P (σ)
is a closed set in PML. Since the topology of EL is induced by the map φ, the set
φ(P (σ) ∩MPML) is closed in EL. However, by assertion (i), we have P (σ) ∩MPML =
V (σ) ∩MPML and hence U(σ) = φ(V (σ) ∩MPML) is closed in EL.

In the remaining part of this section, our aim is to find a convenient neighbourhood basis
for EL, determined by a certain set of train tracks.

Definition 3.3. Let T be a finite collection of complete train tracks and let Σ be a finite
collection of nearly complete train tracks. The pair (T,Σ) is called a train track partition if all
V (τ) are pairwise disjoint, for τ ∈ T ∪ Σ, and together cover all of MPML.

Note that, in particular, all U(τ) are pairwise disjoint, for τ ∈ T ∪ Σ, and cover all of EL.

Examples 3.4. (i) Let P be any pants decomposition for S0,5. Let T be the set of complete
standard train tracks with respect to P (see [20, Section 2.6]) and let Σ be the set of their
nearly complete subtracks.

We claim that (T,Σ) is a train track partition. To this end, first note that the P (η), for
η ∈ T, cover all of PML and each projective measured lamination λ is fully carried by a
unique subtrack τ of one of the η ∈ T (see [20, Sections 2.7 and 2.8]). In particular, V (τ)
are disjoint for all τ ∈ T ∪ Σ. By Lemma 3.2(ii), every λ ∈ MPML lies in V (τ) for some
τ ∈ T ∪ Σ.

We call such a pair (T,Σ) a standard train track partition.
(ii) Let (T,Σ) be a train track partition and let η ∈ T be a complete train track. Denote

by ηL and ηR the left and right splits, respectively, of η along some large branch b. Note that
splitting η amounts to cutting P (η) along a hyperplane, so that we have P (η) = P (ηL) ∪ P (ηR)
and P (ηL) ∩ P (ηR) = P (σ) for a common subtrack σ of ηL and ηR.
If both ηL and ηR are complete, then define T′ by replacing η ∈ T by {ηL, ηR}. Then, if σ is
nearly complete, add σ to Σ to obtain Σ′. If only one of the two train tracks ηL and ηR is
complete, replace η ∈ T by this train track to get T′ and set Σ′ = Σ.
Note that in both cases the resulting pair (T′,Σ′) is a train track partition. (In the case where,
say, ηL is complete and ηR is not, this follows from the fact that the cutting hyperplane contains
P (ηR) and hence ηL carries all laminations carried by ηR.) We say that (T′,Σ′) is obtained
from (T,Σ) by a complete splitting move along b.

(iii) Let (T,Σ) be a train track partition. Let σ ∈ Σ be any nearly complete train track.
Consider the left or right split σL or σR, respectively, along some large branch b. As above
we have P (σ) = P (σL) ∪ P (σR) and P (σL) ∩ P (σR) = P (τ) for a common subtrack τ of σL

and σR. If both σL and σR are nearly complete, define Σ′ by replacing σ ∈ Σ by {σL, σR}.
Otherwise, replace σ by the train track σL or σR which is nearly complete. Note that in both
cases, by Lemma 3.2(i), the resulting pair (T,Σ′) is a train track partition. We say that (T,Σ′)
is obtained from (T,Σ) by a nearly complete splitting move along b.

We now use the above examples to obtain the following.

Theorem 3.5. There exists a sequence S = ((Tk,Σk))∞k=0 of train track partitions
satisfying the following two properties.

(Subdivision) Let K � k � 0. For each η ∈ TK there is an η′ ∈ Tk satisfying V (η) ⊂ V (η′).
For each σ ∈ ΣK there is a τ ∈ Tk ∪ Σk satisfying V (σ) ⊂ V (τ).

(Fineness) For each ending lamination λ and each open set W in PML containing φ−1(λ)
there is an open set V in PML satisfying W ⊃ V ⊃ φ−1(λ) of the following form.
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Figure 1. The case where V = V (η1) ∪ V (σ) ∪ V (η2); we draw V (σ) thick just to emphasize its
presence; note that for simplicity the configuration is depicted in dimension 2 instead of 3.

Either V = V (η), with η ∈ Tk, for some k � 0, or V = V (η1) ∪ V (σ) ∪ V (η2), with ηi ∈ Tki

and σ ∈ Σk, for some k1, k2, k � 0. In the latter case, we additionally require P (σ) ⊂ ∂V (η1) ∩
∂V (η2) (see Figure 1).

We denote by V(S) the family of all open sets V of the above type.

Before we begin the proof of Theorem 3.5, we record the following.

Remark 3.6. If we have a sequence of train track partitions so that each (Tk+1,Σk+1)
is obtained from (Tk,Σk) by a complete splitting move or a nearly complete splitting
move (see Examples 3.4(ii, iii)), then they satisfy property (Subdivision). Moreover, property
(Subdivision) is preserved under passing to a subsequence.

Definition 3.7. We call sequences S = ((Tk,Σk))∞k=0 satisfying (Subdivision) and
(Fineness) good partition sequences. In this terminology, Theorem 3.5 says that there exists a
good partition sequence.

Remark 3.8. If ((Tk,Σk))∞k=0 is a good partition sequence, then, for any K � 0, the
sequence ((Tk,Σk))∞k=K is also a good partition sequence.

Properties (Subdivision) and (Fineness) have the following immediate consequences for the
sets U(τ) in the ending lamination space.

Corollary 3.9. Let S = ((Tk,Σk))∞k=1 be a good partition sequence. Then (Subdivision)
holds after replacing each V (τ) with U(τ). Furthermore, let U(S) = {φ(V ∩MPML)}V ∈V(S).
Then U(S) is a neighbourhood basis of EL.

We denote by Ψ: U(S) → V(S) the map extending the map Ψ(U(η)) = V (η) by Ψ(U(η1) ∪
U(σ) ∪ U(η2)) = Ψ(U(η1)) ∪ Ψ(U(σ)) ∪ Ψ(U(η2)).

The remaining part of this section is devoted to the proof of Theorem 3.5. We need to recall
some facts about full splitting sequences.

Let b1, . . . , bl be the large branches of a train track τ . Note that if τ ′ is obtained from τ
by a split at bi, then every bj is still a large branch of τ ′ for j 	= i. A full split of τ (see
[11, Section 5]) is a train track that is obtained from τ by splitting at each large branch bi

exactly once (we also say that this train track is obtained from τ by a full split). A full splitting
sequence is a sequence of train tracks (τ i)i such that τn+1 is obtained from τn by a full split.
For an ending lamination λ carried by τ , a full λ-splitting sequence of τ is a full splitting
sequence (τ i)i with τ0 = τ and such that each τ i carries λ.
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Figure 2. The open neighbourhood as in property (Adjacency).

The following immediate consequence of [18, Theorem 8.5.1] is the central part of the
upcoming proof of Theorem 3.5. (A similar theorem is obtained in [11].)

Theorem 3.10. Let λ be an ending lamination and (τ i)i be a full λ-splitting sequence of
some train track τ . Then we have

∞⋂

i=1

P (τ i) = φ−1(λ).

In particular, for any open neighbourhood W of φ−1(λ) in PML, there is some i0 > 0 such
that, for all i > i0, we have P (τ i) ⊂ W .

Proof of Theorem 3.5. Let P be a pants decomposition for S0,5 and (T0,Σ0) be the
associated standard train track partition. We now describe an inductive procedure for building
(Tk,Σk), where k � 0, which will satisfy property (Subdivision) and the following two
additional properties.

(Adjacency) If μ ∈ MPML lies in V (σ), where σ ∈ Σk for some k � 0, then there are
η 	= η′ ∈ Tk such that μ lies in P (η) ∩ P (η′). Moreover, the set obtained from

V (η) ∪ V (η′) ∪ (∂V (η) ∩ ∂V (η′)),

by removing the 1-skeleta of P (η) and P (η′) is an open neighbourhood of μ (see Figure 2).
(Full splits) If τ ∈ Tk ∪ Σk for some k � 0 and τ ′ is a complete or nearly complete train

track obtained from τ by a full split, then τ ′ belongs to Tk+1 ∪ Σk+1.
Note that the standard train track partition (T0,Σ0) satisfies property (Adjacency).

Moreover, by Lemma 3.2(ii), a train track partition obtained by a complete splitting move
or a nearly complete splitting move (see Examples 3.4(ii, iii)) from another train partition
satisfying property (Adjacency), satisfies property (Adjacency) itself.

We now describe our inductive procedure. Suppose that the train track partition (Tk,Σk)
has already been defined. Roughly speaking, we now perform the following operation. For each
η ∈ Tk we use complete splitting moves along all large branches of η to obtain (T′

k,Σ′
k). In

the second step, we perform nearly complete splitting moves for each σ ∈ Σk along all large
branches of σ to obtain (Tk+1,Σk+1).

More precisely, let η ∈ Tk be a complete train track. Denote the large branches of η by
b1, . . . , bl. We now perform a complete splitting move along b1 to obtain a new partition
(T1

k,Σ1
k). The set T1

k contains one or two train tracks corresponding to the two possible splits
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of η along b1. Each of those still contains b2, . . . , bl as large branches. We perform complete
splitting moves along b2 for those (one or two) train tracks in T1

k to obtain the partition
(T2

k,Σ2
k). The set T2

k contains now up to four train tracks corresponding to the possible splits
of η along b1 and b2. We split all these (up to four) train tracks along b3 and continue this way
for all large branches b1, . . . , bl until we terminate with (Tl

k,Σl
k).

Note that this partition now contains every full split η1 of η, if η1 is a complete train track.
Moreover, we have Tk \ {η} ⊂ Tl

k. We now repeat the same procedure for all η′ ∈ Tk \ {η}. The
resulting partition (T′

k,Σ′
k) contains, for every η ∈ Tk, all of its full splits which are complete.

In the second step, we obtain (Tk+1,Σk+1) from (T′
k,Σ′

k) by performing the analogous
operation with all elements of Σk ⊂ Σ′

k. Note that Tk+1 = T′
k. This completes the definition

of S = ((Tk,Σk))∞k=0.
Since all (Tk,Σk) are obtained from (T0,Σ0) by a sequence of complete splitting moves and

nearly complete splitting moves, S satisfies property (Adjacency). By Remark 3.6, S satisfies
also property (Subdivision). Furthermore, by construction, S satisfies property (Full splits).
We now use this information to derive property (Fineness).

Let λ ∈ EL, and let W ⊂ PML be any open set containing φ−1(λ). Let (ηi)i be a full
λ-splitting sequence of some η0 ∈ T0 carrying λ. By property (Full splits), we have ηk ∈ Tk.
By Theorem 3.10, for sufficiently large k we have V (ηk) ⊂ W . Hence, if φ−1(λ) ⊂ V (ηk), then
we are done. Otherwise, φ−1(λ) is contained in ∂V (ηk).

Then the strategy is roughly speaking the following. We consider the polyhedron P (η′k)
‘on the other side’ of the face of P (ηk) containing φ−1(λ). We then split η′k until P (η′K) is
contained in W . The face of P (η′K) containing φ−1(λ) might not itself be a train track occurring
in our partition sequence. However, there is some nearly complete train track σK ∈ ΣK carrying
λ. We split σK until its polyhedron of projective measures lies in the interior of the appropriate
faces of both P (ηK) and P (η′K). Then the resulting three train tracks define the required
neighbourhood.

More precisely, by property (Adjacency), there is η′k ∈ Tk with φ−1(λ) ⊂ P (ηk) ∩ P (η′k).
By Theorem 3.10 and property (Full splits), there are some K � k and η′K ∈ TK with
φ−1(λ) ⊂ P (η′K) ⊂ W . Let σK ∈ ΣK be the nearly complete train track carrying λ. By
property (Adjacency), the set N obtained from

V (ηK) ∪ V (η′K) ∪ (∂V (ηK) ∩ ∂V (η′K)),

by removing the 1-skeleta of P (ηK) and P (η′K) is an open neighbourhood of φ−1(λ).
By Theorem 3.10 and property (Full splits), there are some L � 0 and σL ∈ ΣL with

φ−1(λ) ⊂ P (σL) ⊂ N . By Lemma 3.2(i), we have φ−1(λ) ⊂ V (σL). We put V = V (ηK) ∪
V (σL) ∪ V (η′K). Then we have φ−1(λ) ⊂ V ⊂ W .

Since P (σL) is 2-dimensional in ∂V (ηK) and ∂V (η′K), we have that V (σL) is open in
∂V (ηK) ∩ ∂V (η′K). Hence, each point of V (σL) lies in the interior of V , and we conclude
that V is open, as desired.

4. Almost filling paths

In this section, we give some account on Gabai’s method of constructing paths in EL. This
discussion is valid for any surface Sg,p with ξ = 3g − 3 + p � 2. Gabai’s main result is the
following.

Theorem 4.1 [7, Theorem 0.1]. The space EL is connected, path connected and cyclic.

Here we give some details on Gabai’s construction, which we need in the proof of Theorem 1.3.
Recall [7] that a geodesic lamination λ is almost minimal almost filling if it has the form
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λ = λ∗ ∪ γ, where λ∗ has no isolated leaves, the closed (with respect to the path metric)
complement of λ∗ supports at most one simple closed geodesic, and γ is either this geodesic
or is empty. We denote by AML ⊃ EL the set of all almost minimal almost filling geodesic
laminations.

Gabai uses PL almost filling paths h : I = [0, 1] → PML satisfying φ(h(t)) ∈ AML, φ(h(0)),
φ(h(1)) ∈ EL and some additional properties satisfied by generic PL paths. We do not recall
these properties, since we use only the combination of the following results. We assume that
PML is equipped with a fixed metric, and we say that two points in PML are ε-close if they
are at distance at most ε in this metric.

Lemma 4.2 [7, Lemma 2.9]. Let h : I → PML be a path with φ(h(0)), φ(h(1)) ∈ EL. Then,
for any ε > 0, there is a PL almost filling path h′ : I → PML with the same endpoints and
such that h′(t) is ε-close to h(t), for all t ∈ I.

We now fix a hyperbolic metric on Sg,p and consider geodesic laminations as subsets of the
projective tangent bundle of Sg,p. The hyperbolic metric on Sg,p induces a natural (Sasaki)
metric on the projective tangent bundle. For a geodesic lamination λ, we denote by NPT

ε (λ) its
ε-neighbourhood in this metric. The key element of the proof of Theorem 4.1 is the following
crucial result.

Lemma 4.3 [7, Lemma 5.1]. If h : I → PML is a PL almost filling path, ε > 0, δ > 0, then
there exists a path g : I → EL, with g(0) = φ(h(0)) and g(1) = φ(h(1)), such that, for each
t ∈ [0, 1], there exists s ∈ I with |s − t| < δ satisfying

φ(h(s))∗ ⊂ NPT
ε (g̃(t)),

for some diagonal extension g̃(t) of g(t).

We also need the following lemma, which roughly says that, for h and g as in the assertion
of Lemma 4.3, the preimage φ−1(g(I)) is not far away from h(I) in PML. We restrict to the
case of the five-punctured sphere (although a version of this result is true in general). This
way we may choose a good partition sequence S (see Definition 3.7). We denote by V(S) and
U(S) its associated families of open sets in PML and EL, respectively (see Theorem 3.5 and
Corollary 3.9).

Lemma 4.4. Let λ0 ∈ U ∈ U(S). Then there is U ′ ∈ U(S) contained in U , with λ0 ∈ U ′

and ε > 0, satisfying the following.
(i) Let μ ∈ Ψ(U ′) with φ(μ) ∈ AML. If φ(μ)∗ lies in NPT

ε (λ̃) for some diagonal extension
λ̃ of λ ∈ EL, then λ ∈ U .

(ii) Let λ ∈ U ′, and μ ∈ PML with φ(μ) ∈ AML. If φ(μ)∗ lies in NPT
ε (λ̃) for some diagonal

extension λ̃ of λ, then μ ∈ Ψ(U).

Proof. Part (i) is proved in the course of the proof of [7, Theorem 6.1] (local path
connectedness of EL).

For part (ii), let V = Ψ(U). By Theorem 3.5 (Fineness), there are neighbourhoods
V1, V2, V

′ ∈ V(S) of φ−1(λ0) satisfying V1 ⊂ V, V 2 ⊂ V1 and V
′ ⊂ V2 (see Figure 3).

We prove that U ′ = φ(V ′ ∩MPML) satisfies the assertion of the lemma.
First we claim that if we have μ ∈ PML \ V with φ(μ) ∈ AML, then there is a projec-

tive measured lamination ν ∈ PML \ V1 with support φ(μ)∗. Indeed, if φ(μ) is an ending
lamination, then we can take ν = μ. Otherwise, we have φ(μ) = φ(μ)∗ ∪ γ for some simple
closed geodesic γ. Let ν be the projective measured lamination with support φ(μ)∗ obtained
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Figure 3. Nested neighbourhoods with possible position of μ and φ−1(λ).

by restricting the measure μ to φ(μ)∗. By Remark 3.1, the interval of projective measured
laminations determined by ν and γ is contained in PML \ V1. This justifies the claim.

By Remark 3.1, the supports of any pair of projective measured laminations in V
′

and
PML \ V1 intersect transversally. Observe that V

′
and PML \ V1 are compact in PML.

By super convergence of supports (see [7, Proposition 3.2(i)]), there is δ > 0 satisfying the
following. For any λ ∈ φ(V

′ ∩MPML) and ν ∈ PML \ V1, the maximal angle of intersection
between λ and φ(ν) is at least δ. If we pick ε sufficiently small, and we have φ(ν) = φ(μ)∗, this
violates φ(μ)∗ ∈ NPT

ε (λ̃) for any diagonal extension λ̃ of λ.

5. Proof of the main theorem

Our goal is to prove Theorem 1.3, that is, to verify that EL(S0,5) is homeomorphic to the
Nöbeling curve. By Theorem 2.1, in order to do this, we must show that EL is a Polish space
and that it is connected, locally path connected, of dimension 1 and satisfies the locally finite
1-discs property.

To see that EL is separable, note that the orbit of any ending lamination under the action
of the mapping class group is dense in EL (see, for example, [10, Corollary 4.2]). Because the
mapping class group is finitely generated, this orbit is countable. Since EL is homeomorphic
to the Gromov boundary of the curve complex ([13, Theorem 1.3]; compare [9, Section 1]),
it carries a metric defined using the Gromov product (see Bonk–Schramm [1, Section 6] and
Bridson–Haefliger [3, Chapter III.H]). This metric is complete by [1, Proposition 6.2]. Hence,
EL is a Polish space.

By Theorem 4.1, EL is connected and locally path connected.
Now we prove that EL is of dimension 1. Since there are paths in EL (Theorem 4.1), it is not

of dimension 0. In order to prove that EL is of dimension at most 1, we need to check that any
point in EL has a neighbourhood basis with boundaries of dimension 0. Let S = ((Tk,Σk))k

be a good partition sequence, guaranteed by Theorem 3.5. Thus, by Corollary 3.9, it is enough
to prove that the boundary of any U ∈ U(S) is of dimension 0.

The boundary of any U ∈ U(S) is contained in a union of boundaries of up to three U(τ),
where τ ∈ Tk ∪ Σk for some k. For σ ∈ Σk the set U(σ) is closed (Lemma 3.2(iii)), so that
FrU(σ) ⊂ U(σ). For fixed k, all U(η) with η ∈ Tk are open and disjoint. Hence, if we define
Xk =

⋃
σ∈Σk

U(σ), we have FrU(η) ⊂ Xk. By property (Subdivision), for all K � k we have
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XK ⊃ Xk. Hence, the boundary of any U ∈ U(S) is contained in XK for sufficiently large K.
Thus, it is enough to prove that, for each k, the set Xk =

⋃
σ∈Σk

U(σ) ⊂ EL is of dimension 0.
We obtain a neighbourhood basis for each λ ∈ Xk by restricting to Xk the sets U ′ � λ

from the open neighbourhood basis U(S). By Remark 3.8, we may assume that U ′ = U(η) or
U ′ = U(η1) ∪ U(σ) ∪ U(η2) where η or all of η1, σ, η2 lie in various TK and ΣK with all K at
least k. Since, for K � k, we have EL \ XK ⊂ EL \ Xk, we get that all U(η), with η ∈ TK , are
disjoint from Xk. Hence, U ′ is of the form U(η1) ∪ U(σ) ∪ U(η2) and U ′ ∩ Xk ⊂ U(σ) for some
σ ∈ ΣK .

We now prove that actually we have the equality U ′ ∩ Xk = U(σ). By property (Subdivision),
U(σ) is contained in some U(τ), where τ ∈ Tk ∪ Σk. Since λ ∈ U(σ) ⊂ U(τ) and λ ∈ Xk, we
have τ ∈ Σk. Hence, U(σ) ⊂ Xk. Summarizing, the restriction of U ′ to Xk equals U(σ). In
particular, U(σ) is open in Xk. By Lemma 3.2(iii), U(σ) is closed in EL, hence it is also closed
in Xk. Thus, the boundary of U(σ) in Xk is empty, as desired.

In order to finish the proof of Theorem 1.3, it remains to prove the following, which we do
in Section 6.

Proposition 5.1. The space EL(S0,5) satisfies the locally finite 1-discs property.

6. Universality

In this section, we prove Proposition 5.1, which completes the proof of Theorem 1.3.
We have to prove that, for any family of paths {fn : I → EL}n∈N, and any open cover U of

EL, there is a family of paths {gn : I → EL}n∈N such that:
(Local finiteness) for each λ ∈ EL there is a neighbourhood U � λ satisfying gn(I) ∩ U = ∅

for sufficiently large n;
(Approximation) for each t ∈ I, n ∈ N, there is U ∈ U such that both fn(t) and gn(t) lie

in U .
Our proof of Proposition 5.1 is similar to the proof of the following, which we now sketch to

illustrate the main ideas.

Proposition 6.1. The Nöbeling curve N3
1 ⊂ R3 satisfies the locally finite 1-discs property.

Proof. We learned the idea of this proof from Andrzej Nagórko.
We say that a cube I1 × I2 × I3 ⊂ R3 is m-diadic if the lengths of all Ii equal 1/2m and the

endpoints of Ii lie in (1/2m)Z.
Assume first, for simplicity, that we are in the special case where there is m > 0 such that

the open cover U consists of the interiors of unions of pairs of adjacent m-diadic cubes. Let
Γ ⊂ R3 be the closed set which is the union of all lines parallel to coordinate axes with the
fixed coordinate in (1/2m)Z. In other words Γ is the union of 1-skeleta of all m-diadic cubes.
Observe that Γ is disjoint from N3

1 .
Let fn : I → N3

1 be the family of paths which we want to approximate. We describe the
construction of gn for a fixed n ∈ N.

There are points 0 = s1 < t1 < . . . < sl < tl = 1 on I satisfying the following. There are
m-diadic open cubes Vk, where 0 � k � l, satisfying fn([tk, sk+1]) ⊂ Vk and fn([sk, tk]) ⊂
int Vk−1 ∪ Vk. We can assume l � 1.

For each pair of adjacent cubes Vk−1, Vk we denote by Γk ⊂ Γ the square loop which is
the intersection of Γ with ∂Vk−1 ∩ ∂Vk. For A ⊂ R3 and δ > 0 we denote by Nδ(A) the open
δ-neighbourhood of A in R3.

For each 1 < k � l we choose some pk ∈ Vk−1 ∩ N1/n(Γk) satisfying pk ∈ N3
1 . We put

gn(sk) = pk. Analogously, for each 1 � k < l we choose some qk ∈ Vk ∩ N1/n(Γk) satisfying
qk ∈ N3

1 . We put gn(tk) = qk. We also put gn(0) = q1 and gn(1) = pl.
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For 0 < k < l we choose paths hk between qk and pk+1 in the open sets Vk ∩ N1/n(Γ). This
is possible, since the latter sets are neighbourhoods of 1-skeleta of Vk, hence they are path
connected. We define the path gn on [tk, sk+1] by slightly perturbing hk relative the endpoints
so that we obtain paths in N3

1 .
Similarly, for 1 � k � l we choose paths �k between pk and qk in the open sets int Vk−1 ∪ Vk ∩

N1/n(Γk). The latter sets are path connected because Γk are 1-spheres. We define the path gn

on [sk, tk] by slightly perturbing �k relative the endpoints so that we obtain paths in N3
1 .

By construction, paths gn are U-close to fn, which means that they satisfy property
(Approximation). Moreover, for each n the image of the path gn is contained in N1/n(Γ),
where Γ is a closed set disjoint from N3

1 . This yields property (Local finiteness). This ends the
proof in the case of special U .

In general, we may only assume that U consists of the interiors of unions of pairs of adjacent
m-diadic cubes without the assumption that m is fixed (this is because such unions form a basis
for topology and any cover admits a refinement consisting of basis elements). In other words,
the cubes might be arbitrarily small. However, we can at least assume that the elements of U
satisfy a maximality condition, namely, that no element of U is properly contained in another
one. We also note the property that if two open diadic cubes intersect, then one of them is
contained in the other. We define (the ‘attracting grid’) Γ as the complement in R3 of the
union of all elements of U .

Claim. (i) For each pair of adjacent cubes V1, V2 with int V1 ∪ V2 ∈ U , the square loop
which is the boundary of the common face of V1 and V2 is contained in Γ.

(ii) Let V be a maximal (open) cube among all cube pairs from U . Then ∂V ∩ Γ is connected
(and non-empty).

Assertion (i) of the claim follows directly from the maximality assumption on the elements
of U . For assertion (ii) observe first that ∂V is a 2-sphere. We obtain ∂V ∩ Γ by removing
from ∂V the intersections with elements of U . By maximality assumption on V , these elements
have the form int V1 ∪ V2, where V1 ⊂ V and V2 ⊂ R3 \ V . Each intersection of such a set with
∂V is an open 2-disc. By the maximality assumption on the elements of U , all those 2-discs
are disjoint. Hence, ∂V ∩ Γ is obtained from a 2-sphere by removing a disjoint union of open
2-discs, which yields assertion (ii).

We leave it to the reader to verify that the claim allows to perform the same argument as
in the special case.

We are now prepared for the following.

Proof of Proposition 5.1. By Theorem 3.5, we may assume that U ⊂ U(S), where U(S) is
the open neighbourhood basis coming from some fixed good partition sequence S = ((Tk,Σk))k

(see Definition 3.7 and Corollary 3.9). Let U ′ ⊂ U(S) be an open cover which is a refinement of U
satisfying the assertion of Lemma 4.4(i). In other words, we require that, for any U ′ ∈ U ′, there
is U = U(U ′) ∈ U containing U ′ and ε = ε(U ′) > 0, so that we have the following. For any μ ∈
V ′ = Ψ(U ′) with φ(μ) ∈ AML, if λ ∈ EL and φ(μ)∗ ∈ NPT

ε (λ̃) for some diagonal extension λ̃ of
λ, then λ ∈ U . Without loss of generality, we may assume that whenever U(η1) ∪ U(σ) ∪ U(η2)
belongs to U ′, then also U(η1) and U(η2) belong to U ′.

We say that a train track τ ∈ Tk ∪ Σk participates in U ′ if U(τ) ∈ U ′ or τ equals σ for U(η1) ∪
U(σ) ∪ U(η2) ∈ U ′. Let T′ ⊂ ⋃

k Tk be the family of all complete train tracks η participating
in U ′ with maximal V (η) with respect to inclusion. In other words, we take all complete train
tracks participating in U ′ and remove those η for which V (η) is properly contained in some
V (η′), where η′ is also participating in U ′. Note that, by property (Subdivision), V (η) and V (η′)
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can only intersect if one is contained in the other. We denote the family of U(η) over η ∈ T′

by U(T′). Define V(T′) = Ψ(U(T′)). Since V (η) were required to be maximal, the elements of
V(T′) are pairwise disjoint. Hence, the elements of U(T′) are also pairwise disjoint.

Let Σ′ ⊂ ⋃
k Σk be the family of all nearly complete train tracks σ participating in U ′ with

maximal V (σ) with respect to inclusion, among all V (τ) with τ participating in U ′ (we allow τ
to be a complete train track). We denote the family of U(σ) over σ ∈ Σ′ by U(Σ′) and we put
V(Σ′) = Ψ(U(Σ′)). The elements of V(Σ′) are pairwise disjoint and disjoint from the elements
of V(T′). Hence, the elements of U(Σ′) are also pairwise disjoint and disjoint from the elements
of U(T′).

Let Γ ⊂ PML be the closed set which is the complement of the union of all sets in V ′ =
Ψ(U ′). We have Γ ∩MPML = ∅.

Claim 1. (i) For any σ ∈ Σ′, we have ∂V (σ) ⊂ Γ.
(ii) For any η ∈ T′ the set ∂V (η) ∩ Γ is connected and non-empty.

Proof of Claim 1. (i) Let μ ∈ ∂V (σ). If μ /∈ Γ, then there is V ′ ∈ V ′ with μ ∈ V ′. Since V ′ is
open in PML, it intersects V (σ). The set V ′ is of the form V ′ = V (η) or V ′ = V (η1) ∪ V (σ′) ∪
V (η2). Thus, V (σ) intersects V (τ) for τ equal to one of η, ηi, σ

′. Since σ ∈ Σ′, we have V (τ) ⊂
V (σ). Hence, τ is a nearly complete train track, and therefore V ′ = V (η1) ∪ V (σ′) ∪ V (η2),
where σ′ is equal to τ . Since σ ∈ Σ′, we have V (σ) ⊃ V (σ′). By hypothesis μ is outside V (σ),
hence it lies in V (ηi) for some i. But then V (ηi) intersects V (σ) and as before we get V (ηi) ⊂
V (σ), which is a contradiction.

(ii) First note that ∂V (η) is a 2-sphere. The 2-sphere ∂V (η) is disjoint from any V (η′), for η′

participating in U ′: otherwise V (η′) intersects V (η) and, by maximality of V (η) (since η ∈ T′),
we have V (η′) ⊂ V (η), which is a contradiction. Hence, if, for some V ′ ∈ V ′, the intersection
∂V (η) ∩ V ′ is non-empty, then V ′ = V (η1) ∪ V (σ) ∪ V (η2) and ∂V (η) ∩ V ′ ⊂ V (σ). By passing
to larger V (σ), we can assume σ ∈ Σ′. Moreover, since V ′ is open, we have that V (σ) or
one of V (ηi) intersects V (η). Since σ ∈ Σ′, this must be one of V (ηi). Because η ∈ T′, we
then have V (ηi) ⊂ V (η). In particular, P (σ) ⊂ ∂V (ηi) ⊂ P (η). Again, since σ ∈ Σ′, we have
P (σ) ⊂ ∂V (η). This yields ∂V (η) ∩ V ′ = V (σ). Summarizing, each point of the complement
of ∂V (η) ∩ Γ in ∂V (η) is contained in V (σ) ⊂ ∂V (η) for some σ ∈ Σ′. Hence, ∂V (η) ∩ Γ is
obtained from the 2-sphere ∂V (η) by removing a (possibly infinite) union of disjoint open
2-discs.

Let fn : I → EL, where n ∈ N, be the family of paths that we want to approximate. We now
independently construct the paths gn. To this end, we fix n ∈ N and note the following.

Claim 2. There are points 0 = t0 � s1 < t1 < . . . < sl < tl � sl+1 = 1 on I satisfying the
following (see Figure 4) :

(i) fn([tk, sk+1]) ⊂ U ′
k for some U ′

k ∈ U(T′) ⊂ U ′, if tk 	= sk+1, where 0 � k � l.
(ii) fn([sk, tk]) ⊂ Ûk, where Ûk = U(η1

k) ∪ U(σk) ∪ U(η2
k) ∈ U ′ with σk ∈ Σ′. Moreover, for

j = k − 1, k there is i such that U(ηi
k) ⊂ U ′

j , if tj 	= sj+1, where 1 � k � l.

Proof of Claim 2. For the proof it is convenient to introduce the following terminology. We
call an element U of U(S) a vertex block if it is of the form U(η) for some complete train
track η. We call the other elements of U(S) edge blocks.

Consider now the family Y, which is the union of all vertex blocks in U(T′) ⊂ U ′ and edge
blocks U(η1) ∪ U(σ) ∪ U(η2) ∈ U ′ with σ ∈ Σ′, where we pick only one such set for each σ.
Observe that Y forms an open cover of EL. By compactness of I, a finite subset of Y covers
fn(I). In particular, there is a partition I of I into finitely many non-trivial closed intervals
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Figure 4. Combinatorics of vertex blocks and edge blocks.

with disjoint interiors so that each interval is mapped into a set of Y. Observe that two
consecutive intervals in I cannot be mapped into different vertex blocks, since the latter are
disjoint. Moreover, if two consecutive intervals I−, I+ ∈ I are mapped into edge blocks U(η1

−) ∪
U(σ−) ∪ U(η2

−), U(η1
+) ∪ U(σ+) ∪ U(η2

+) ∈ U ′, then we have the following. Since σ− 	= σ+, we
have that fn(I− ∩ I+) lies in, say, U(η1

−) ∩ U(η1
+), hence U(η1

−) and U(η1
+) are contained in

the same vertex block U ′ ∈ U(T′). We can then represent I− ∪ I+ = I ′− ∪ J ∪ I ′+ with I ′− ⊂
I−, I ′+ ⊂ I+ and fn(J) ⊂ U ′, where J is non-trivial. To conclude this discussion, we can assume
that the intervals in I are mapped alternatively into vertex blocks and edge blocks of Y.
Furthermore, observe that, for each pair of consecutive intervals in I mapped by fn to U(η) ∈ Y
and U(η1) ∪ U(σ) ∪ U(η2) ∈ Y, there is some i with U(ηi) ⊂ U(η). This gives rise to sk, tk as
required.

From now on we fix the objects and the notation as in Claim 2. Before we describe the
construction of the path gn, note that to guarantee property (Approximation), it suffices that
gn satisfies the following two properties.

(Approximation i) For each 0 � k � l satisfying tk 	= sk+1, we have gn([tk, sk+1]) ⊂ U(U ′
k).

(Approximation ii) For each 1 � k � l we have gn([sk, tk]) ⊂ U(Ûk).
At this point we can finally define the path gn. Define V ′

k = Ψ(U ′
k) and V̂k = Ψ(Ûk). If

l = 0, then we choose any point p ∈ V ′
0 ∩ N1/n(Γ) satisfying φ(p) ∈ EL (recall that a metric

on PML has been fixed). This is possible since the open set V ′
0 ∩ N1/n(Γ) is non-empty

by Claim 1(ii) and MPML is dense in PML. We put gn(I) ≡ p, which obviously satisfies
properties (Approximation i) and (Approximation ii).

From now on we assume l � 1. First we claim that, for any 1 � k � l with sk 	= 0, the open set
V ′

k−1 ∩ V̂k ∩ N1/n(∂V (σk)) is non-empty. Indeed, there is an i satisfying V (ηi
k) ⊂ V ′

k−1. Then
we have ∂V (σk) ⊂ ∂V (ηi

k) ⊂ V
′
k−1. Hence, ∂V (σk) is contained in the closure of V ′

k−1 ∩ V̂k =
V (ηi

k) and the claim follows.
Thus, for each 1 � k � l, with sk 	= 0 we can choose some pk ∈ V ′

k−1 ∩ V̂k ∩ N1/n(∂V (σk))
satisfying φ(pk) ∈ EL. We put gn(sk) = φ(pk). Analogously, for each 1 � k � l with tk 	= 1,
we choose some qk ∈ V ′

k ∩ V̂k ∩ N1/n(∂V (σk)) satisfying φ(qk) ∈ EL. We put gn(tk) = φ(qk).
By Claim 1(i) all pk, qk lie in N1/n(Γ).
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Figure 5. Construction of approximating paths attracted by Γ.

If s1 = 0, then we put gn(0) = q1, otherwise we put gn([0, s1]) ≡ p1. Analogously, if tl = 1,
then we put gn(1) = pl, otherwise we put gn([tl, 1]) ≡ ql.

For 0 < k < l, we choose some PL almost filling paths hk between qk and pk+1 in the sets
V ′

k ∩ N1/n(Γ) (see Figure 5). This is possible, since the latter sets are open and path connected
by Claim 1(ii). To each hk we apply Lemma 4.3 with ε = ε′n = min{ε(U ′

k), 1/n} (and any δ).
We obtain paths gn : [tk, sk+1] → EL with endpoints φ(qk), φ(pk+1) with images in U(U ′

k). This
gives property (Approximation i).

Similarly, for 1 � k � l we choose some PL almost filling paths �k between pk and qk in
the sets V̂k ∩ N1/n(∂V (σk)) (also see Figure 5). This is possible since the latter sets are open
and path connected (because ∂V (σk) are 1-spheres). To each �k we apply Lemma 4.3 with
ε = ε̂n = min{ε(Ûk), 1/n}. We obtain paths gn : [sk, tk] → EL with endpoints φ(pk), φ(qk) with
images in U(Ûk). This gives property (Approximation ii).

This concludes the construction of the paths gn : I → EL. By the discussion above they
satisfy property (Approximation).

It remains to verify property (Local finiteness). Let λ0 ∈ EL. Let V ∈ V(S) be a neighbour-
hood of φ−1(λ0) such that its closure is disjoint from Γ (guaranteed by Theorem 3.5 (Fineness)).
Put U = φ(V ∩MPML) ∈ U(S). Let U ′ ⊂ U and ε > 0 be as in the assertion of Lemma 4.4(ii)
applied to U and λ0. For sufficiently large n we have that V is outside N1/n(Γ) and 1/n � ε.
Then both ε̂n and ε′n are smaller than ε, and therefore the image of gn is outside U ′.
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