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1. Introduction

Let G be a finitely generated group hyperbolic relative to a finite collection P = {Pλ}λ∈3
of its subgroups (for a definition see § 2). Let F be the collection of all the conjugates

of Pλ for λ ∈ 3, all their subgroups, and all finite subgroups of G. A model for EFG
is a G-complex X such that all point stabilisers belong to F , and for every H ∈ F the

fixed-point set X H is a (nonempty) contractible subcomplex of X . A model for EFG is

also called the classifying space for the family F . In this article we describe a particular

classifying space for the family F . It admits the following simple description.

Let S be a finite generating set of G. Let V = G and let W denote the set of cosets

g Pλ for g ∈ G and λ ∈ 3. We consider the elements of W as subsets of the vertex set of

the Cayley graph of G with respect to S. Then |·, ·|S , which denotes the distance in the

Cayley graph, is defined on V ∪W . The n-Rips graph 0n is the graph with vertex set

V ∪W and edges between u, u′ ∈ V ∪W whenever |u, u′|S 6 n. The n-Rips complex 0N
n

is obtained from 0n by spanning simplices on all cliques. It is easy to prove that 0n is a

fine δ-hyperbolic connected graph (see § 2). Our main result is the following.
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2 E. Martínez-Pedroza and P. Przytycki

Theorem 1.1. For n sufficiently large, the n-Rips complex 0N
n is a cocompact model

for EFG.

Theorem 1.1 was known to hold if

• G is a torsion-free hyperbolic group and P = ∅, since in that case the n-Rips complex

0N
n is contractible for n sufficiently large [1, Theorem 4.11].

• G is a hyperbolic group and P = ∅, hence F is the family of all finite subgroups,

since in that case 0N
n is E(G) [21, Theorem 1], see also [13, Theorem 1.5] and

[15, Theorem 1.4].

• G is a torsion-free relatively hyperbolic group, but with different definitions of the

n-Rips complex, see the work of Dahmani [8, Theorem 6.2], or Mineyev and Yaman

[22, Theorem 19].

In the presence of torsion, a new approach was necessary. Our method is to exploit

the notion of dismantlability. Dismantlability, a property of a graph guaranteeing strong

fixed-point properties (see [25]) was brought to geometric group theory by Chepoi and

Osajda [6]. Dismantlability was observed for hyperbolic groups in [13], following the usual

proof of the contractibility of the Rips complex [5, Prop III.0 3.23].

While we discuss the n-Rips complex only for finitely generated relatively hyperbolic

groups, Theorem 1.1 has the following extension.

Corollary 1.2. If G is an infinitely generated group hyperbolic relative to a finite collection

P, then there is a cocompact model for EFG.

Proof. By [23, Theorem 2.44], there is a finitely generated subgroup G ′ 6 G such that

G is isomorphic to G ′ amalgamated with all Pλ along P ′λ = Pλ ∩G ′. Moreover, G ′ is

hyperbolic relative to {P ′λ}λ∈3. Let S be a finite generating set of G ′. While S does not

generate G, we can still use it in the construction of X = 0N
n . More explicitly, if X ′ is

the n-Rips complex for S and G ′, then X is a tree of copies of X ′ amalgamated along

vertices in W . Let F ′ be the collection of all the conjugates of P ′λ, all their subgroups,

and all finite subgroups of G ′. By Theorem 1.1, we have that X ′ is a cocompact model

for EF ′G ′, and it is easy to deduce that X is a cocompact model for EFG.

Applications

On our way towards Theorem 1.1 we establish the following, for the proof see § 2. We

learned from François Dahmani that this corollary can also be obtained from one of

Bowditch’s approaches to relative hyperbolicity.

Corollary 1.3. There is finite collection of finite subgroups {F1, . . . , Fk} such that any

finite subgroup of G is conjugate to a subgroup of some Pλ or some Fi .

Note that by [23, Theorem 2.44], Corollary 1.3 holds also if G is infinitely generated,

which we allow in the remaining part of the introduction.

Our next application regards the cohomological dimension of relatively hyperbolic

groups in the framework of Bredon modules. Given a group G and a nonempty family
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Dismantlable classifying space for a relatively hyperbolic group 3

F of subgroups closed under conjugation and taking subgroups, the theory of (right)

modules over the orbit category OF (G) was established by Bredon [4], Tom Dieck [27] and

Lück [16]. In the case where F is the trivial family, the OF (G)-modules are ZG-modules.

The notions of cohomological dimension cdF (G) and finiteness properties F Pn,F for the

pair (G,F) are defined analogously to their counterparts cd(G) and F Pn . The geometric

dimension gdF (G) is defined as the smallest dimension of a model for EFG. A theorem

of Lück and Meintrup [17, Theorem 0.1] shows that

cdF (G) 6 gdF (G) 6 max{3, cdF (G)}.

Together with Theorem 1.1, this yields the following. Here as before F is the collection

of all the conjugates of {Pλ}, all their subgroups, and all finite subgroups of G.

Corollary 1.4. Let G be relatively hyperbolic. Then cdF (G) is finite.

The homological Dehn function FVX (k) of a simply connected cell complex X measures

the difficulty of filling cellular 1-cycles with 2-chains. For a finitely presented group G and

X a model for EG with G-cocompact 2-skeleton, the growth rate of FVG(k) := FVX (k)
is a group invariant [10, Theorem 2.1]. The function FVG(k) can also be defined from

algebraic considerations under the weaker assumption that G is F P2, see [12, Section

3]. Analogously, for a group G and a family of subgroups F with a cocompact model

for EFG, there is relative homological Dehn function FVG,F (k) whose growth rate is an

invariant of the pair (G,F), see [18, Theorem 4.5].

Gersten proved that a group G is hyperbolic if and only if it is F P2 and the growth

rate of FVG(k) is linear [11, Theorem 5.2]. An analogous characterisation for relatively

hyperbolic groups is proved in [18, Theorem 1.11] relying on the following corollary. We

remark that a converse of Corollary 1.5 requires an additional condition that {Pλ} is an

almost malnormal collection, see [18, Theorem 1.11(1) and Remark 1.13].

Corollary 1.5. Let G be relatively hyperbolic. Then G is F P2,F and FVG,F (k) has linear

growth.

Proof. The existence of a cocompact model X = 0N
n for EF (G) implies that G is F P2,F .

Since X has fine and hyperbolic 1-skeleton and has finite edge G-stabilisers, it follows

that FVG,F (k) := FVX (k) has linear growth by [19, Theorem 1.7].

Organisation. In § 2 we discuss the basic properties of the n-Rips complex 0N
n , and state

our main results on the fixed-point sets, Theorems 2.5 and 2.6. We prove them in § 3

using a graph-theoretic notion called dismantlability. We also rely on a thin triangle

Theorem 3.4 for relatively hyperbolic groups, which we prove in § 4.

2. Rips complex

2.1. Rips graph

We introduce relatively hyperbolic groups following Bowditch’s approach [3]. A circuit

in a graph is an embedded closed edge path. A graph is fine if for every edge e and every

integer n, there are finitely many circuits of length at most n containing e.
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4 E. Martínez-Pedroza and P. Przytycki

Let G be a group, and let P = {Pλ}λ∈3 be a finite collection of subgroups of G. A

(G,P)-graph is a fine δ-hyperbolic connected graph with a G-action with finite edge

stabilisers, finitely many orbits of edges, and such that P is a set of representatives

of distinct conjugacy classes of vertex stabilisers such that each infinite stabiliser is

represented.

Suppose G is finitely generated, and let S be a finite generating set. Let 0 denote the

Cayley graph of G with respect to S. Let V denote the set of vertices of 0, which is in

correspondence with G. A peripheral left coset is a subset of G of the form g Pλ. Let W
denote the set of peripheral left cosets, also called cone vertices. The coned-off Cayley

graph 0̂ is the connected graph obtained from 0 by enlarging the vertex set by W and

the edge set by the pairs (v,w) ∈ V ×W , where the group element v lies in the peripheral

left coset w.

We say that G is hyperbolic relative to P if 0̂ is fine and δ-hyperbolic, which means

that it is a (G,P)-graph. This is equivalent to the existence of a (G,P)-graph. Indeed, if

there is a (G,P)-graph, a construction of Dahmani [7, P. 82, proof of Lemma 4] (relying

on an argument of Bowditch [3, Lemma 4.5]) shows that 0̂ is a G-equivariant subgraph

of a (G,P)-graph 1, and therefore 0̂ is fine and quasi-isometric to 1. In particular, the

definition of relative hyperbolicity is independent of S. From here on, we assume that G
is hyperbolic relative to P.

Extend the word metric (which we also call S-distance) |·, ·|S from V to V ∪W as

follows: the distance between cone vertices is the distance in 0 between the corresponding

peripheral left cosets, and the distance between a cone vertex and an element of G is

the distance between the corresponding peripheral left coset and the element. Note that

|·, ·|S is not a metric on V ∪W . It is only for v ∈ V that we have the triangle inequality

|a, b|S 6 |a, v|S + |v, b|S for any a, b ∈ V ∪W .

Definition 2.1. Let n > 1. The n-Rips graph 0n is the graph with vertex set V ∪W and

edges between u, u′ ∈ V ∪W whenever |u, u′|S 6 n.

Lemma 2.2. The n-Rips graph 0n is a (G,P)-graph.

Proof. Note that the graphs 0̂ and 0n have the same vertex set. In particular, since 0̂ is

connected and contained in 0n , it follows that 0n is connected.

Since 0 is locally finite and there are finitely many G-orbits of edges in 0, it follows

that there are finitely many G-orbits of edge paths of length n in 0. Since P is finite,

there are finitely many G-orbits of edges in 0n .

Since G acts on 0̂ with finite edge stabilisers and 0̂ is fine, it follows that for distinct

vertices in V ∪W , the intersection of their G-stabilisers is finite [20, Lemma 2.2]. Thus

the pointwise G-stabilisers of edges in 0n are finite, and hence the same holds for the

setwise G-stabilisers of edges.

It remains to show that 0n is fine and δ-hyperbolic. Since there are finitely many

G-orbits of edges in 0n , the graph 0n is obtained from 0̂ by attaching a finite number of

G-orbits of edges. This process preserves fineness by a result of Bowditch [3, Lemma 2.3];

see also [20, Lemma 2.9]. This process also preserves the quasi-isometry type

[20, Lemma 2.7], thus 0n is δ-hyperbolic.
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Dismantlable classifying space for a relatively hyperbolic group 5

For a graph Σ , let ΣN be the simplicial complex obtained from Σ by spanning simplices

on all cliques. We call 0N
n the n-Rips complex.

Corollary 2.3. The G-stabiliser of a barycentre of a simplex 1 in 0N
n that is not a vertex

is finite.

Proof. Let F be the stabiliser of the barycentre of 1. Then F contains the pointwise

stabiliser of1 as a finite index subgroup. The latter is contained in the pointwise stabiliser

of an edge of 1, which is finite by Lemma 2.2. Therefore, F is finite.

Corollary 2.4. The G-action on 0N
n is cocompact.

Proof. By Lemma 2.2, the n-Rips graph 0n is fine. Hence every edge e in 0n is contained

in finitely many circuits of length 3. Thus e is contained in finitely many simplices of 0N
n .

By Lemma 2.2, there are finitely many G-orbits of edges in 0n . It follows that there are

finitely many G-orbits of simplices in 0N
n .

2.2. Fixed-point sets

The first step of the proof of Theorem 1.1 is the following fixed-point theorem.

Theorem 2.5. For sufficiently large n, each finite subgroup F 6 G fixes a clique of 0n.

The proof will be given in § 3.2. As a consequence we obtain the following.

Proof of Corollary 1.3. By Corollary 2.4, there are finitely many G-orbits of simplices

in 0N
n . From each orbit of simplices that are not vertices pick a simplex 1i , and let Fi

be the stabiliser of its barycentre. By Corollary 2.3, the group Fi is finite.

Choose n satisfying Theorem 2.5. Then any finite subgroup F of G fixes the barycentre

of a simplex 1 in 0N
n . If 1 is a vertex, then F is contained in a conjugate of some Pλ.

Otherwise, F is contained in a conjugate of some Fi .

It was observed by the referee that if one proved in advance Corollary 1.3, one could

deduce from it Theorem 2.5 (without control on n).

The second step of the proof of Theorem 1.1 is the following, whose proof we also

postpone, to § 3.4.

Theorem 2.6. For sufficiently large n, for any subgroup H 6 G, its fixed-point set in 0N
n

is either empty or contractible.

We conclude with the following.

Proof of Theorem 1.1. The point stabilisers of 0N
n belong to F by Corollary 2.3. For every

H ∈ F its fixed-point set (0N
n )

H is nonempty by Theorem 2.5. Consequently, (0N
n )

H is

contractible by Theorem 2.6.

3. Dismantlability

The goal of this section is to prove Theorems 2.5 and 2.6, relying on the following.
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3.1. Thin triangle theorem

We state an essential technical result of the article, a thin triangles result for relatively

hyperbolic groups. We keep the notation from the Introduction, where 0 is the Cayley

graph of G with respect to S, etc. By geodesics we mean geodesic edge paths.

Definition 3.1. [14, Definition 8.9] Let p = (p j )
`
j=0 be a geodesic in 0, and let ε, R be

positive integers. A vertex pi of p is (ε, R)-deep in the peripheral left coset w ∈ W if

R 6 i 6 `− R and |p j , w|S 6 ε for all | j − i | 6 R. If there is no such w ∈ W , then pi is

an (ε, R)-transition vertex of p.

Lemma 3.2. [14, Lemma 8.10] For each ε there is a constant R such that for any geodesic

p in 0, a vertex of p cannot be (ε, R)-deep in two distinct peripheral left cosets.

Definition 3.3. For a, b ∈ V ∪W , a geodesic from a to b in 0 is a geodesic in 0 of length

|a, b|S such that its initial vertex equals a if a ∈ V , or is an element of a if a ∈ W , and

its terminal vertex equals b if b ∈ V , or is an element of b if b ∈ W .

Throughout the article we adopt the following convention. For an edge path (p j )
`
j=0,

if i > `, then pi denotes p`.

Theorem 3.4 (Thin triangle theorem). There are positive integers ε, R and D, satisfying

Lemma 3.2, such that the following holds. Let a, b, c ∈ V ∪W with a 6= b, and let

pab, pbc, pac be geodesics in 0 from a to b, from b to c, and from a to c, respectively. Let

` = |a, b|S and let 0 6 i 6 `.

If pab
i is an (ε, R)-deep vertex of pab in the peripheral left coset w, then let z = w,

otherwise let z = pab
i .

Then |z, pac
i |S 6 D or |z, pbc

`−i |S 6 D.

Note that the condition a 6= b is necessary, since for a = b ∈ W we could take for pab

any element of a, leading to counterexamples.

While Theorem 3.4 seems similar to various other triangle theorems in relatively

hyperbolic groups, its proof is surprisingly involved, given that we rely on these

previous results. We postpone the proof till § 4. In the remaining part of the section,

ε, R, D are the integers guaranteed by Theorem 3.4. We can and will assume that

D > ε.

3.2. Quasi-centres

In this subsection we show how to deduce Theorem 2.5 from thin triangle Theorem 3.4.

This is done analogously as for hyperbolic groups, using quasi-centres (see [5,

Lemma III.0.3.3]).

Definition 3.5. Let U be a finite subset of V ∪W . The radius ρ(U ) of U is the smallest

ρ such that there exists z ∈ V ∪W with |z, u|S 6 ρ for all u ∈ U . The quasi-centre of U
consists of z ∈ V ∪W satisfying |z, u|S 6 ρ(U ) for all u ∈ U .
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Dismantlable classifying space for a relatively hyperbolic group 7

Lemma 3.6. Let U be a finite subset of V ∪W that is not a single vertex of W . Then for

any two elements a, b of the quasi-centre of U , we have |a, b|S 6 4D.

Proof. Assume first ρ(U ) 6 D. If U is a single vertex v ∈ V , then |a, b|S 6 |a, v|S +
|v, b|S 6 2D and we are done. If there are u 6= u′ ∈ U , then let v be the first vertex on a

geodesic from u to u′ in 0. Since the vertex v is not (ε, R)-deep, by Theorem 3.4 applied

to u, u′, a (respectively u, u′, b), we obtain a vertex va (respectively vb) on a geodesic

in 0 from a (respectively b) to u or u′ satisfying |va, v|S 6 D (respectively |vb, v|S 6
D). Consequently |a, b|S 6 |a, va |S + |va, v|S + |v, vb|S + |vb, b|S 6 2ρ(U )+ 2D 6 4D, as

desired.

Henceforth, we assume ρ(U ) > D+ 1. Let ` = |a, b|S . If ` > 4D, then choose any 2D 6
i 6 `− 2D, and any geodesic pab from a to b in 0. If pab

i is an (ε, R)-deep vertex of pab

in the peripheral left coset w, then let z = w, otherwise let z = pab
i . We claim that for

any c ∈ U we have |z, c|S 6 ρ(U )− 1, contradicting the definition of ρ(U ), and implying

` 6 4D.

Indeed, we apply Theorem 3.4 to a, b, c, and any geodesics pbc, pac. Without loss

of generality assume that we have |z, pac
i |S 6 D. Note that if i > |a, c|S , then pac

i lies

in (or is equal to) c, and consequently |z, c|S 6 |z, pac
i |S 6 D 6 ρ(U )− 1, as desired. If

i 6 |a, c|S , then |pac
i , a|S = i > 2D, and hence

|z, c|S 6 |z, pac
i |S + |p

ac
i , c|S 6 D+ (|c, a|S − |pac

i , a|S) 6 D+ (ρ(U )− 2D),

as desired.

Proof of Theorem 2.5. Let n > 4D. Consider a finite orbit U ⊂ V ∪W of F . If U is a

single vertex, then there is nothing to prove. Otherwise, by Lemma 3.6 the quasi-centre

of U forms a fixed clique in 0n .

3.3. Convexity

Definition 3.7. Let µ be a positive integer. A subset U ⊂ V ∪W is µ-convex with

respect to u ∈ U if for any geodesic (p j )
`
j=0 in 0 from u to u′ ∈ U , for any j 6 `−µ,

we have

(i) p j ∈ U ; and

(ii) for each w ∈ W with |w, p j |S 6 ε we have w ∈ U .

Definition 3.8. Let r be a positive integer and let U ⊂ V ∪W be a finite subset. The

r-hull Ur of U is the union of

(i) all the vertices v ∈ V with |v, u|S 6 r for each u ∈ U ; and

(ii) all the cone vertices w ∈ W with |w, u|S 6 r + ε for each u ∈ U .

Lemma 3.9. If |U | > 2, then each Ur is finite.

Proof. Choose u 6= u′ ∈ U . Assume without loss of generality r > |u, u′|S . Each vertex of

Ur distinct from u and u′ forms with u and u′ a circuit in 0r+ε of length 3. There are

only finitely many such circuits, since 0r+ε is fine by Lemma 2.2.
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8 E. Martínez-Pedroza and P. Przytycki

Lemma 3.10. Let U ⊂ V ∪W be a finite subset with |u, u′|S 6 µ for all u, u′ ∈ U . Then

each Ur , with r > µ, is (µ+ 2D)-convex with respect to all b ∈ U .

Proof. Let b ∈ U , and a ∈ Ur . Let (pab
j )

`
j=0 be a geodesic from a to b in 0, and let

µ+ 2D 6 j 6 `. By Definition 3.8, we have ` 6 r + ε. To prove the lemma, it suffices to

show that pab
j ∈ Ur .

Consider any c ∈ U and apply Theorem 3.4 with i = `. In that case pab
i is not

(ε, R)-deep and thus z = pab
i . Consequently, we have |pab

` , pac
` |S 6 D or |pab

` , pbc
0 |S 6 D.

In the second case, using ε 6 D, we have

|pab
j , c|S 6 |pab

j , pab
` |S + |p

ab
` , pbc

0 |S + |p
bc
0 , c|S 6

(
(r + ε)− (µ+ 2D)

)
+ D+µ 6 r,

as desired.

In the first case, if ` > |a, c|S , then pac
` lies in (or is equal to) c and hence

|pab
j , c|S 6 |pab

j , pab
` |S + |p

ab
` , pac

` |S 6
(
(r + ε)− (µ+ 2D)

)
+ D 6 r.

If in the first case ` 6 |a, c|S , then

|pab
j , c|S 6 |pab

j , pab
` |S + |p

ab
` , pac

` |S + |p
ac
` , c|S 6

(
`− (µ+ 2D)

)
+ D+ (r + ε− `) 6 r.

3.4. Contractibility

In this subsection we prove Theorem 2.6. To do that, we use dismantlability.

Definition 3.11. We say that a vertex a of a graph is dominated by an adjacent vertex

z 6= a, if all the vertices adjacent to a are also adjacent to z.

A finite graph is dismantlable if its vertices can be ordered into a sequence a1, . . . , ak
so that for each i < k the vertex ai is dominated in the subgraph induced on {ai , . . . , ak}.

Polat proved that the automorphism group of a dismantlable graph fixes a clique

[25, Theorem A] (for the proof see also [13, Theorem 2.4]). We use the following

strengthening of that result.

Theorem 3.12 ([2, Theorem 6.5], [13, Theorem 1.2]). Let 0 be a finite dismantlable graph.

Then for any subgroup H 6 Aut(0), the fixed-point set (0N)H is contractible.

Our key result is the dismantlability in the n-Rips graph.

Lemma 3.13. Let U ⊂ V ∪W be a finite subset that is 6D-convex with respect to some

b ∈ U . Then for n > 7D, the subgraph of 0n induced on U is dismantlable.

Proof. We order the vertices of U according to |·, b|S , starting from a ∈ U with maximal

|a, b|S , and ending with b.

We first claim that unless U = {b}, the set U −{a} is still 6D-convex with respect

to b. Indeed, let u ∈ U −{a} and let (p j )
`
j=0 be a geodesic from b to u in 0. Let j 6

`− 6D. Then |p j , b|S 6 `− 6D < |a, b|S , so p j 6= a and hence p j ∈ U −{a} since U was
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Dismantlable classifying space for a relatively hyperbolic group 9

6D-convex. Similarly, if w ∈ W and |w, p j |S 6 ε, then |w, b| 6 ε+ (`− 6D) < |a, b|S , so

w 6= a and hence w ∈ U −{a}. This justifies the claim.

It remains to prove that a is dominated in the subgraph of 0n induced on U by some

vertex z. Let (pab
j )

`
j=0 be a geodesic from a to b in 0. If ` 6 7D, then we can take z = b

and the proof is finished. We henceforth suppose ` > 7D. If pab
6D is an (ε, R)-deep vertex

of pab in the peripheral left coset w, then let z = w, otherwise let z = pab
6D. Note that by

definition of convexity, we have z ∈ U . We show that z dominates a.

Let c ∈ U be adjacent to a in 0n , which means |a, c|S 6 n. We apply Theorem 3.4 to

a, b, c, i = 6D and any geodesics (pbc
j ), (p

ac
j ). Consider first the case where |z, pac

6D|S 6 D.

If 6D 6 |a, c|S , then

|c, z|S 6 |c, pac
6D|S + |p

ac
6D, z|S 6 (n− 6D)+ D < n,

so c is adjacent to z in 0n , as desired. If |a, c|S < 6D, then pac
6D lies in (or is equal to) c

and hence |c, z|S 6 D < n as well.

Now consider the case where |z, pbc
`−6D|S 6 D. Since a was chosen to have maximal

|a, b|S , we have |a, b|S > |c, b|S , and hence |c, pbc
`−6D|S 6 6D. Consequently,

|c, z|S 6 |c, pbc
`−6D| + |p

bc
`−6D, z|S+ 6 6D+ D 6 n.

We are now ready to prove the contractibility of the fixed-point sets.

Proof of Theorem 2.6. Let n > 7D. Suppose that the fixed-point set Fix = (0N
n )

H is

nonempty.

Step 1. The fixed-point set Fix′ = (0N
4D)

H is nonempty.

Let U be the vertex set of a simplex in 0N
n containing a point of Fix in its interior.

Note that U is H -invariant. If U is a single vertex u, then u ∈ Fix′ and we are done.

Otherwise, by Lemma 3.6, the quasi-centre of U spans a simplex in 0N
4D. Consequently,

its barycentre lies in Fix′.

Step 2. If Fix′ contains at least 2 points, then it contains a point outside W .

Otherwise, choose w 6= w′ ∈ Fix′ with minimal |w,w′|S . If |w,w′|S 6 4D, then the

barycentre of the edge ww′ lies in Fix′, which is a contradiction. If |w,w′|S > 4D, then

ρ({w,w′}) 6
⌈
|w,w′|S

2

⌉
< |w,w′|S . Let U ′ be the quasi-centre of {w,w′}. By Lemma 3.6,

we have that U ′ spans a simplex in 0N
4D, with barycentre in Fix′. If U ′ is not a

single vertex, this is a contradiction. Otherwise, if U ′ is a single vertex w′′ ∈ W , then

|w,w′′|S 6 ρ({w,w′}) < |w,w′|S , which contradicts our choice of w,w′.

Step 3. Fix is contractible.

By Step 1, the set Fix′ is nonempty. If Fix′ consists of only one point, then so does

Fix, and there is nothing to prove. Otherwise, let 1 be the simplex in 0N
4D containing in

its interior the point of Fix′ guaranteed by Step 2. Note that 1 is also a simplex in 0N
n

with barycentre in Fix. Since 1 is not a vertex of W , by Lemma 3.9 all its r -hulls 1r are

finite. By Lemma 3.10, each 1r with r > 4D is 6D-convex. Thus by Lemma 3.13, the
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10 E. Martínez-Pedroza and P. Przytycki

1-skeleton of the span 1N
r of 1r in 0N

n is dismantlable. Hence by Theorem 3.12, the set

Fix∩1N
r is contractible. Note that 1r exhaust entire V ∪W . Consequently, entire Fix is

contractible, as desired.

3.5. Edge dismantlability

Mineyev and Yaman introduced for a relatively hyperbolic group a complex X (G, µ),
which they proved to be contractible [22, Theorem 19]. However, analysing their proof,

they exhaust the 1-skeleton of X (G, µ) by finite graphs that are not dismantlable but

satisfy a slightly weaker relation, which we can call edge-dismantlability.

An edge (a, b) of a graph is dominated by a vertex z adjacent to both a and b, if

all the other vertices adjacent to both a and b are also adjacent to z. A finite graph 0

is edge-dismantlable if there is a sequence of subgraphs 0 = 01 ⊃ 02 ⊃ · · · ⊃ 0k , where

for each i < k the graph 0i+1 is obtained from 0i by removing a dominated edge or a

dominated vertex with all its adjacent edges, and where 0k is a single vertex.

In dimension 2 the notion of edge dismantlability coincides with collapsibility, so

by [26] the automorphism group of 0 fixes a clique, similarly as for dismantlable

graphs.

Question 3.14. Does the automorphism group of an arbitrary edge-dismantlable graph 0

fix a clique? For arbitrary H 6 Aut(0), is the fixed-point set (0N)H contractible?

4. Proof of the thin triangle theorem

4.1. Preliminaries

Given an edge path p = (pi )
`
i=0, we use the following notation. The length ` of p is

denoted by l(p), the initial vertex p0 of p is denoted by p−, and its terminal vertex p` is

denoted by p+. For integers 0 6 j 6 k 6 l(p), we denote by p[ j, k] the subpath (pi )
k
i= j ,

and by p[k, j] we denote the inverse path.

The group G is hyperbolic relative to P in the sense of Osin [23, Definition 1.6,

Theorem 1.5]. We first recall two results from [23, 24]. Consider the alphabet P =
S t

⊔
λ Pλ. Every word in this alphabet represents an element of G, and note that distinct

letters might represent the same element. Let 0̄ denote the Cayley graph of G with respect

to P.

Theorem 4.1 [23, Theorem 3.26]. There is a constant K > 0 with the following property.

Consider a triangle whose sides p, q, r are geodesics in 0̄. For any vertex v of p, there

exists a vertex u of q ∪ r such that |u, v|S 6 K .

Definition 4.2 [23, p. 17]. Let q be an edge path in 0̄. Subpaths of q with at least one

edge are called nontrivial. A g Pλ-component of q is a maximal nontrivial subpath r such

that the label of r is a word in Pλ−{1} and a vertex of r (and hence all its vertices)

belong to g Pλ. We refer to g Pλ-components as P-components if there is no need to

specify g Pλ. A g Pλ-component of q is isolated if q has no other g Pλ-components. Note

that g Pλ-components of geodesics in 0̄ are single edges and we call them g Pλ-edges.
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Dismantlable classifying space for a relatively hyperbolic group 11

Theorem 4.3 [24, Proposition 3.2]. There is a constant K > 0 satisfying the following

condition. Let 1 be an n-gon in 0̄, which means that 1 is a closed path that is a

concatenation of n edge paths 1 = q1q2 . . . qn. Suppose that I ⊂ {1, . . . , n} is such that

(1) for i ∈ I the side q i is an isolated P-component of 1; and

(2) for i 6∈ I the side q i is a geodesic in 0̄.

Then
∑

i∈I |q
i
−, q i
+|S 6 K n.

We now recall a result of Hruska [14] and another of Druţu–Sapir [9] on the relation

between the geometry of 0̄ and the Cayley graph 0 of G with respect to S.

Definition 4.4. Let p be a geodesic in 0, and let ε, R be positive integers. Let w ∈ W be

a peripheral left coset. An (ε, R)-segment in w of p is a maximal subpath such that all

its vertices are (ε, R)-deep in w. Note that an (ε, R)-segment could consist of a single

vertex.

Definition 4.5. Edge paths p and q in 0̄ are K -similar if |p−, q−|S 6 K and

|p+, q+|S 6 K .

Proposition 4.6 (see [14, Proposition 8.13]). There are constants ε, R satisfying

Lemma 3.2, and a constant K such that the following holds. Let p be a geodesic in

0 and let p̄ be a geodesic in 0̄ with the same endpoints as p.

(i) The set of vertices of p̄ is at Hausdorff distance at most K from the set of

(ε, R)-transition vertices of p, in the metric |·, ·|S.

(ii) If p[ j, k] is an (ε, R)-segment in w of p, then there are vertices p̄m and p̄n of p̄
such that |p j , p̄m |S 6 K and |pk, p̄n|S 6 K .

(iii) For any subpath p̄[m, n] of p̄ with m 6 n there is a K -similar subpath p[ j, k] of p
with j 6 k.

Proof. The existence of ε, R, and K satisfying Lemma 3.2 and (i) is [14, Proposition 8.13],

except that Hruska considers the set of transition points instead of vertices. However,

after increasing his R by 1, we obtain the current statement, and moreover each pair of

distinct (ε, R)-segments is separated by a transition vertex. Consequently, by increasing

K by 1, we obtain (ii).

For the proof of (iii), increase K so that it satisfies Theorem 4.1. We show that 3K
satisfies statement (iii). By (i), there is a vertex pk such that | p̄n, pk |S 6 K . Let q, q̄ be

geodesics in 0, 0̄ from p̄n to pk . Let r̄ be a geodesic in 0̄ from p0 to pk . Consider the

geodesic triangle in 0̄ with sides p̄[0, n], q̄, and r̄ . By Theorem 4.1, there is a vertex v of

q̄ ∪ r̄ such that | p̄m, v|S 6 K .

Suppose first that v lies in r̄ . By (i) there is a vertex p j of p[0, k] such that |p j , v|S 6 K .

It follows that |p j , p̄m |S 6 2K . Now suppose that v lies in q̄. By (i) the vertex v is at

S-distance 6 K from a vertex of q. Since l(q) 6 K , it follows that |pk, p̄m |S 6 3K , and

we can assign j = k.

Lemma 4.7 (Quasiconvexity, [9, Lemma 4.15]). There is K > 0 such that the following

holds. Let w ∈ W be a peripheral left coset, let A be a positive integer, and let p be a
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12 E. Martínez-Pedroza and P. Przytycki

geodesic in 0 with |p−, w|S 6 A and |p+, w|S 6 A. Then any vertex pi of p satisfies

|pi , w|S 6 K A.

Assumption 4.8. From here on, the constants (ε, R, K ) are assumed to satisfy the

statement of Proposition 4.6. By increasing K , we also assume that K satisfies the

conclusions of Theorems 4.1 and 4.3, the quasiconvexity Lemma 4.7, and K > max{ε, R}.

We conclude with the following application of Theorem 4.3.

Lemma 4.9. Let p be a geodesic in 0, and let p̄ be a geodesic in 0̄ with the same endpoints

as p. Let p[ j, k] be an (ε, R)-segment of a peripheral left coset w ∈ W . If k− j > 8K 2,

then p̄ contains a w-edge which is 5K 2-similar to p[ j, k].
Proof. There are vertices r− and r+ of w such that |p j , r−|S 6 ε 6 K and |pk, r+|S 6
ε 6 K . Let r be a w-edge from r− to r+. By Proposition 4.6(ii), there are vertices p̄m, p̄n
at S-distance at most K from p j , pk , respectively. Let [r−, p̄m] and [ p̄n, r−] be geodesics

in 0 between the corresponding vertices; note that the labels of these paths are words in

the alphabet S, and they both have length at most 2K .

Suppose for contradiction that p̄ does not contain a w-edge. Consider the closed path

[r−, p̄m] p̄[m, n][ p̄n, r+]r , viewed as a polygon 1 obtained by subdividing [r−, p̄m] and

[ p̄n, r+] into edges. Since p̄[m, n] is a geodesic in 0̄, the number of sides of 1 is at

most 2+ |r−, p̄m |S + |r+, p̄n|S 6 6K . We have that r is an isolated w-component of 1.

Then Theorem 4.3 implies that |r−, r+|S 6 6K 2. It follows that |p j , pk |S 6 8K 2. This is

a contradiction, hence p̄[m, n] contains a w-edge t .
Now we prove that |t−, p j |S 6 5K 2. Let [ p̄m, t−] be the subpath of p̄[m, n] from p̄m to

t−, and note that this is a geodesic in 0̄ without w-components. Let [t−, r−] be a w-edge

from t− to r−. Consider the polygon [ p̄m, t−][t−, r−][r−, p̄m], where the path [r−, p̄m] is

subdivided into at most 2K edges. Observe that [t−, r−] is an isolated w-component.

Theorem 4.3 implies that |t−, p j |S 6 |t−, r−|S + |r−, p j |S 6 K (2K + 2)+ K 6 5K 2.

Analogously one proves that |t+, pk |S 6 5K 2.

4.2. Proof

We are now ready to start the proof of Theorem 3.4. Let D = 53K 2.

Let a, b, c ∈ V ∪W with a 6= b, and let pab, pbc, pac be geodesics in 0 from a to b,

from b to c, and from a to c, respectively. Let ` = |a, b|S and let 0 6 i 6 `. If pab
i is

an (ε, R)-deep vertex of pab in the peripheral left coset w then let z = w, otherwise let

z = pab
i .

We define the following paths illustrated in Figure 1. Let p̄ab, p̄bc, p̄ac be geodesics in

0̄ with the same endpoints as pab, pbc, pac, respectively. If a ∈ W and p̄ab starts with

an a-edge, then we call this edge sa ; otherwise let sa be the trivial path. We define sb

analogously. Then p̄ab is a concatenation

p̄ab
= saqabsb.

Similarly, the paths p̄ac, p̄bc can be expressed as concatenations

p̄ac
= uaqacuc, p̄bc

= tbqbctc.
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Dismantlable classifying space for a relatively hyperbolic group 13

Figure 1. Paths in the proof of the thin triangle theorem.

Let ra be a path in 0̄ from ua
+ to sa

+ that is a single a-edge if ua
+ 6= sa

+, or the trivial path

otherwise. We define rb, rc analogously. Let 5 be the geodesic hexagon in 0̄ given by

5 = raqabrbqbcrcqca .

Step 1. Paths pab and qab are 2K -similar. The same is true for the pair pac and qac,

and the pair pbc and qbc.

Proof. By Proposition 4.6(i), there is a vertex pab
j such that |sa

+, pab
j |S 6 K . Since pab is

a geodesic from a to b in 0, it follows that j 6 K , and consequently |sa
−, sa
+|S 6 2K . The

remaining assertions are proved analogously.

In view of Proposition 4.6(i), there is a vertex of p̄ab at S-distance 6 K from pab
i . While

this vertex might be sa
− or sb

−, Step 1 guarantees that there is a vertex qab
h at S-distance

6 3K from pab
i .

The following step should be considered as the bigon case of Theorem 3.4.

Step 2. If qac contains a vertex in b, in the case where b ∈ W , or equal to b, in the case

where b ∈ V , then |z, pac
i |S < D.

Similarly, if qbc contains a vertex in a, in the case where a ∈ W , or equal to a, in the

case where a ∈ V , then |z, pbc
`−i |S < D.

Note that here we keep the convention that for i > l(pac) the vertex pac
i denotes pac

+ ,

and similarly if `− i > l(pbc), then the vertex pbc
`−i denotes pbc

+ .

Proof. By symmetry, it suffices to prove the first assertion. We focus on the case b ∈ W ,

the case b ∈ V follows by considering x below as the trivial path.

Let qac
n be the first vertex of qac in b. Let x be a b-edge joining qab

+ to qac
n . The edges

ra and x are isolated P-components of the 4-gon raqabxqac
[n, 0]. By Theorem 4.3, we

have |ra
−, r

a
+|S, |x−, x+|S 6 4K . Consequently by Step 1 we have |pab

− , pac
− |S 6 8K .
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14 E. Martínez-Pedroza and P. Przytycki

First consider the case, where pab
i is an (ε, R)-transition vertex of pab. Let qab

h be

the vertex defined after Step 1. Subdividing the 4-gon raqabxqac
[n, 0] into two geodesic

triangles in 0̄, and applying twice Theorem 4.1, gives h∗ such that |qab
h , qac

h∗ |S 6 6K . By

Proposition 4.6(i), there is i∗ such that |qac
h∗ , pac

i∗ |S 6 K . It follows that |pab
i , pac

i∗ |S 6
3K + 6K + K = 10K and hence |i − i∗| 6 8K + 10K = 18K . Therefore, |pab

i , pac
i |S 6

10K + 18K .

Now consider the case, where pab
i is an (ε, R)-deep vertex of pab in the peripheral

left coset w. Then pab
i lies in an (ε, R)-segment pab

[ j, k] of pab in w. Thus

max{|pab
j , w|S, |p

ab
k , w|S} 6 ε 6 K . By Proposition 4.6(ii) and Step 1, there is a vertex

qab
m such that |pab

j , qab
m |S 6 3K . As in the previous case, we obtain j∗ such that

|pab
j , pac

j∗ |S 6 10K . Analogously, there is k∗ such that |pab
k , pac

k∗ |S 6 10K . In particular, we

have max{|pac
j∗ , w|S, |p

ac
k∗ , w|S} 6 11K . By quasiconvexity of w, Lemma 4.7, every vertex

of pac
[ j∗, k∗] is at S-distance 6 11K 2 from w. Moreover, we have | j − j∗| 6 8K + 10K ,

and analogously, |k− k∗| 6 18K . Hence i is at distance 6 18K from the interval [ j∗, k∗].
(Note that we might have j∗ > k∗, but that does not change the reasoning.) It follows

that |w, pac
i |S 6 11K 2

+ 18K .

By Step 2, we can assume that a 6= c and b 6= c. Moreover, we can assume that there

is no b-component in qac, nor an a-component in qbc. Consequently, we can apply

Theorem 4.3 to 5, viewing ra and rb as isolated components and the remaining four

sides as geodesic sides. It follows that

max{|ra
−, r

a
+|S, |r

b
−, r

b
+|S} 6 6K . (1)

Together with Step 1, this implies

max{|pab
− , pac

− |S, |p
ab
+ , pbc

− |S} 6 10K . (2)

Step 3. If pab
i is an (ε, R)-transition vertex of pab or an endpoint of an (ε, R)-segment

of pab, then |pab
i , pac

i |S 6 34K or |pab
i , pbc

`−i |S 6 34K .

Proof. By Step 1, the vertex pab
i is at S-distance 6 3K from some qab

h . We split the

hexagon 5 into four geodesic triangles in 0̄ using diagonals. Repeated application of

Theorem 4.1 and inequality (1) yields a vertex of qac
∪ qbc at S-distance 6 8K from

qab
h . Without loss of generality, suppose that this vertex is qac

h∗ . By Proposition 4.6(i),

the vertex qac
h∗ is at S-distance 6 K from some pac

i∗ . Consequently, |pab
i , pac

i∗ |S 6 12K . By

inequality (2), it follows that |i − i∗| 6 22K . Therefore, |pab
i , pac

i |S 6 34K .

To prove Theorem 3.4, it remains to consider the case where pab
i is an (ε, R)-deep

vertex of p in a peripheral left coset w. Let pab
[ j, k] be the (ε, R)-segment of pab in w

containing pab
i .

Note that if w = c, then |a, c|S 6 j + ε. Consequently pac
i is at S-distance 6 ε from

pac
+ ∈ w, and the theorem follows. Henceforth, we assume w 6= c.

Also note that if k− j 6 18K 2, then assuming without loss of generality that Step 3

yields |pab
j , pac

j |S 6 34K , we have:

|w, pac
i |S 6 |w, pab

j |S + |p
ab
j , pac

j |S + |p
ac
j , pac

i |S 6 ε+ 34K + 18K 2 6 D,

and the theorem is proved. Henceforth, we assume k− j > 18K 2.
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Dismantlable classifying space for a relatively hyperbolic group 15

Step 4. The path qab has a w-component qab
[m,m+ 1] which is 5K 2-similar to pab

[ j, k].
Moreover, qbc or qac has a w-component.

Proof. The first assertion follows from Lemma 4.9. In particular, w is distinct from

a and b. For the second assertion, suppose for contradiction that qbc and qac have

no w-components. Consequently, since w 6= c, the w-edge qab
[m,m+ 1] is an isolated

w-component of 5. We apply Theorem 4.3 with 5 interpreted as an 8-gon with

a side qab
[m,m+ 1] as the only isolated component. This contradicts |qab

m , qab
m+1|S >

18K 2
− 2 · 5K 2 > 8K .

Step 5. Suppose that qac has a w-component qac
[n, n+ 1] and qbc does not have a

w-component. Then |w, pac
i |S < D. Similarly, if qbc has a w-component and qac does

not have a w-component, then |w, pbc
`−i |S < D.

Proof. By symmetry, it suffices to prove the first assertion. Let x be a w-edge in 0̄ from

qab
m to qac

n . Consider the geodesic 4-gon raqab
[0,m]xqac

[n, 0] in 0̄. Observe that x is an

isolated w-component and hence Theorem 4.3 implies that |qab
m , qac

n |S 6 4K . Analogously,

by considering a geodesic 6-gon, we obtain |qab
m+1, qac

n+1|S 6 6K .

Proposition 4.6(iii) implies that qac
[n, n+ 1] is K -similar to a subpath pac

[ j∗, k∗]
of pac. By Step 4, the paths pab

[ j, k] and pac
[ j∗, k∗] are (5K 2

+ 6K + K )-similar,

hence 12K 2-similar. By inequality (2), it follows that | j − j∗| 6 10K + 12K 2 6 22K 2

and similarly |k− k∗| 6 22K 2. Hence i ∈ [ j∗− 22K 2, k∗+ 22K 2
]. By Lemma 4.7, we have

|pac
i , w|S 6 K · K + 22K 2.

It remains to consider the case where both qac and qbc have w-components, which we

denote by qac
[n, n+ 1] and qbc

[ñ, ñ+ 1].
The argument in the proof of Step 5 shows that

max{|qab
m , qac

n |S, |q
ac
n+1, qbc

ñ+1|S, |q
ab
m+1, qbc

ñ |S} 6 4K . (3)

By Proposition 4.6(iii) there are integers 0 6 α 6 β 6 l(pac) and 0 6 γ 6 δ 6 l(pbc)

such that qac
[n, n+ 1] and pac

[α, β] are K -similar, and qbc
[ñ, ñ+ 1] and pbc

[γ, δ] are

K -similar.

Step 6. We have

α− 20K 2 6 i 6 β + 33K 2 or γ − 20K 2 6 `− i 6 δ+ 33K 2.

Proof. By inequality (3) and Step 4, we have the following estimates:

|pac
β , pbc

δ |S 6 |pac
β , qac

n+1|S + |q
ac
n+1, qbc

ñ+1|S + |q
bc
ñ+1, pbc

δ |S 6 6K ,

|pab
j , pac

α |S 6 |pab
j , qab

m |S + |q
ab
m , qac

n |S + |q
ac
n , pac

α |S 6 5K 2
+ 4K + K 6 10K 2,

|pab
k , pbc

γ |S 6 |pab
k , qab

m+1|S + |q
ab
m+1, qbc

ñ |S + |q
bc
ñ , pbc

γ |S 6 10K 2.

These estimates and the triangle inequality imply

k− j 6 (β −α)+ (δ− γ )+ 26K 2. (4)
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From inequality (2) it follows that | j −α| 6 10K + 10K 2 6 20K 2, and analogously,

|(`− k)− γ | 6 20K 2. In particular, α− 20K 2 6 j 6 i and γ − 20K 2 6 `− k 6 `− i, as

desired. To conclude the proof we argue by contradiction. Suppose that i > β + 33K 2

and `− i > δ+ 33K 2. It follows that

i − j > i −α− 20K 2 > β −α+ 13K 2

and

k− i = (`− i)− (`− k) > (`− i)− γ − 20K 2 > δ− γ + 13K 2.

Adding these two inequalities yields k− j > (β −α)+ (δ− γ )+ 26K 2, which contradicts

inequality (4).

We now conclude the proof of Theorem 3.4. Since the endpoints of qac
[n, n+ 1] are in w,

it follows that the endpoints of pac
[α, β] are at S-distance 6 K from w. By quasiconvexity

of w, Lemma 4.7, all the vertices of pac
[α, β] are at S-distance 6 K 2 from w. Analogously,

all the vertices of pbc
[γ, δ] are at S-distance 6 K 2 from w. Then Step 6 yields |w, pac

i |S 6
K 2
+ 33K 2 < D or |w, pbc

`−i |S 6 34K 2 < D.
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