3–Manifolds, problem list 2

Problem 1. Show that for a closed 3-manifold M there is a bound on the size of a system S of disjoint spheres in M such that no component of M - S is B^3 or $S^2 \times I$.

Problem 2. Show that any *I*-bundle *E* with base a closed surface and ∂E a union of spheres is either $I \times S^2$ or its quotient by \mathbb{Z}_2 acting by reflection on *I* and the antipodal map on S^2 (the so called *twisted* bundle over \mathbb{RP}^2).

Problem 3. Let S^1 be a circle embedded in a surface Σ . Prove that if S^1 does not a bound a disc in Σ , then it is not contractible in Σ .

Problem 4. Compute the homology and cohomology groups of \mathbb{RP}^3 with coefficients $R = \mathbb{Z}, \mathbb{Z}_2, \mathbb{Q}$.

Note: if one wanted to compute the simplicial homology this would require choosing a triangulation of \mathbf{RP}^3 , the simplest of which has 2 tetrahedra. But to compute the cellular homology (review the definition!) one is allowed to use any CW decomposition of \mathbf{RP}^3 into cells, and it is best to use the decomposition into one ball, one disc, one edge and one vertex.

Definition. Let M be a triangulated space and $A \subset M$ a subcomplex. Simplicial relative homology $H_*(M, A; R)$ is the homology obtained from the chain complex $C_*(M, A; R)$ with $C_i(M, A; R) = C_i(M; R)/C_i(A; R)$.

It turns out that $H_*(M, A; R) = H_*(M/A; R)$, the (cellular) homology of the quotient space. Moreover, there is a *long exact sequence* (meaning the image of each map is the kernel of the next map)

 $\dots \to H_i(A; R) \to H_i(M; R) \to H_i(M, A; R) \to H_{i-1}(A; R) \to \dots$

Furthemore, *Poincaré duality* states that, if M is a compact oriented n-manifold, then $H_i(M, \partial M; R) \simeq H^{n-i}(M; R)$.

Problem 5. Let M be a compact oriented 3-manifold. Prove that

- (i) if $H_1(M, \mathbf{Z})$ is finite, then all components of ∂M are spheres;
- (ii) if $H_1(M, \mathbf{Z}) = \mathbf{Z}$, then one component of ∂M might be a torus and the remaining ones are spheres.

Hint: you can use the fact that $H^1(X; R) = \text{Hom}(H_1(X; \mathbf{Z}), R)$.

Problem 6. Prove that a closed simply-connected 3-manifold M is homotopy equivalent to S^3 . Hints:

- (i) Prove that M is oriented.
- (ii) Using Poincaré duality, compute $H_k(M; \mathbf{Z})$ (and $H_k(S^3; \mathbf{Z})$).
- (iii) By Poincaré duality, $H_3(M; \mathbf{Z})$ equals \mathbf{Z} . If \mathcal{T} is a triangulation of M, then show this using simplicial homology and characterise the generator of $H_3(M; \mathbf{Z})$ as the union of the tetrahedra of \mathcal{T} (appropriately oriented).
- (iv) By Whitehead and Hurewicz theorems, a sufficient condition for a map between manifolds (or CW complexes) to be a homotopy equivalence is to induce isomorphisms on π_1 and all H_k . Find such a map $M \to S^3$.