3–Manifolds

Midterm 2 preparation problems

Problem 1. What is the Euler number e of S^3 with the Hopf fibration? Hint: introduce an artificial singular point x on the base S^2 with q(x) = 1. Then e = p(x).

Problem 2. Let M be the Poincaré sphere. Prove that M has Seifert fibering with base orbifold (S^2, X) , where X consists of three points with multiplicities 2, 3, 5. Hint: SO(3) has a natural S^1 -bundle structure coming from the identification with the unit tangent bundle of S^2 .

Problem 3. Construct a spherical manifold with Seifert fibering whose base orbifold is (S^2, X) , where X consists of three points with multiplicities 2, 3, 4.

Problem 4. Let M be the space obtained by gluing the opposite sides of a cube via angle $\frac{\pi}{2}$ rotations. Prove that M is a manifold and find a model geometry carried by M.

Problem 5. Let *M* be the space obtained by gluing the opposite sides of a regular icosahedron via angle $\frac{\pi}{3}$ rotations. Is *M* a manifold?

Problem 6. Let *P* be a regular dodecahedron in \mathbf{H}^3 with dihedral angle $\frac{\pi}{2}$ (justify that *P* exists). Construct a closed hyperbolic manifold by gluing several copies of *P*.

Problem 7. Let M be a manifold obtained from gluing $T^2 \times [0, 1]$ by a map $(x, 0) \sim (Ax, 1)$, where $x \in T^2 = \mathbf{R}^2 / \mathbf{Z}^2$ and

(i)	$A = \left(\begin{array}{cc} 1 & 1\\ -1 & 0 \end{array}\right)$
(ii)	$A = \left(\begin{array}{cc} 2 & 1\\ -1 & 0 \end{array}\right)$
(iii)	$A = \left(\begin{array}{cc} 3 & 1\\ -1 & 0 \end{array}\right)$

Find a model geometry carried by M.

Problem 8. Consider the unit sphere S^3 with the group structure coming from quaternions. Prove that the homomorphism $S^3 \times S^3 \to SO(4)$ assigning to a pair $g, h \in S^3$ the isometry $x \to g^{-1}xh$ is onto and 2 to 1.

Problem 9. Let (G, \mathbf{H}^n) be the hyperbolic geometry. Suppose that $\Gamma \subset G$ acts properly and cocompactly on \mathbf{H}^n . Prove that Γ does not contain a nontrivial abelian normal subgroup. You are allowed to use

- the theorem that a finite subgroup of G fixes a point of \mathbf{H}^n ,
- Selberg Lemma to claim that Γ has a torsion-free finite index subgroup.

Problem 10. Let (G, \mathbf{H}^n) be the hyperbolic geometry. Suppose that $\Gamma \subset G$ acts properly on \mathbf{H}^n . Prove that Γ does not contain two loxodromic elements with exactly one common fixed point in $\partial \mathbf{H}^n$.