3-Manifolds, problem list 9

Problem 1. Let γ be a Möbius transformation of the unit ball B^3 in \mathbb{R}^3 that does not fix 0. Let

$$K(\gamma) = \{x \in B^3 : |\gamma'(x)| = 1\}$$

$$I(\gamma) = \{x \in B^3 : |\gamma'(x)| < 1\}$$

$$E(\gamma) = \{x \in B^3 : |\gamma'(x)| > 1\}$$

Prove that

- (i) $K(\gamma)$ is the intersection with B^3 of a sphere orthogonal to ∂B^3 , and
- (ii) for any sequence of distinct elements γ_n of a Kleinian group, we have $\operatorname{diam}(I(\gamma_n)) \to 0$.

Here $|\gamma'(x)|$ denotes the constant λ such that $\gamma'(x)/\lambda \in O(3)$. Hint: in (i) consider first the case where γ is an inversion.

Problem 2. Prove that for any complete hyperbolic surface of finite area, its deck transformation group acts on \mathbf{H}^2 with limit set the entire S^1 .

Problem 3. Let Γ be a non-elementary Kleinian group. Prove that $\Lambda(\Gamma)$ does not have isolated points.