3–Manifolds, problem list 5

Problem 1. Let M be one of the closed Seifert manifolds constructed in class. Prove that there exists a surface in M transverse to all the fibers if and only if e = 0.

Hint: for the "if" direction, let Q be the least common multiple of all q(x). Start with Q parallel copies of Σ' in M'. Cut them and reglue along arcs joining different boundary components to be able to cap them off using $\frac{Q}{q(x)}$ discs transverse to singular fibers over x.

Problem 2. Let M be a manifold that is a quotient G/G_p of a Lie group G by its compact subgroup. Let Γ be a discrete subgroup of G such that its natural action on M is free. Prove that $M \to M/\Gamma$ is a covering map.

Hint: prove that the action of Γ on M is *proper*, that is for each ball $B \subset M$ the set of $\gamma \in \Gamma$ with $B \cap \gamma B \neq \emptyset$ is finite.

Problem 3. Prove that SO(3) is homeomorphic with \mathbb{RP}^3 . Hints:

- (i) View \mathbf{R}^4 as quaternions: name orthonormal basis vectors by 1, i, j, kand define multiplication by $i^2 = j^2 = k^2 = -1$ and ij = k = -ji, jk = i = -kj, ki = j = -ik (extend linearly and check associativity). Show that |pq| = |p||q| and consequently multiplication by a unit quaternion from left (or right) is an isometry of \mathbf{R}^4 . In particular $S^3 \subset \mathbf{R}^4$ is a group.
- (ii) Let $S^2 \subset S^3$ be the intersection of S^3 with the subspace spanned by i, j, k. Prove that the action of S^3 on itself by conjugation preserves S^2 , and in fact is onto SO(3) with kernel $\{1, -1\}$.

Problem 4. Prove that the Poincaré sphere M has the same homology groups as S^3 .

Hint: to exclude $H_1(M, \mathbb{Z}) = \mathbb{Z}_2$, inscribe an icosahedron into S^2 above so that *i* and *j* act as its orientation-preserving isometries. Compute the commutator [i, j] = -1.

Problem 5. Let *P* be the regular dodecahedron. Let *M* be the space obtained from gluing opposite faces of *P* via an angle $\frac{\pi}{5}$ rotation. Prove that *M* is spherical. Hint: embed *P* in S^3 as a regular dodecahedron with dihedral angle $\frac{2\pi}{3}$.

Note: In fact M is the Poincaré sphere, but this is not easy to prove.