Fall 2004, CONCORDIA UNIVERSITY

MATH 208: Fundamental Mathematics (I)
Solutions to 1st Midterm Test

Instructor: Dr. Ming Mei

Notice: Calculators are allowed.

1. [10pts] A company manufacturing surfboards has fixed costs of $\$ 500$ per day and a total cost $\$ 6,000$ per day at a daily output of 50 boards. Assuming the total cost $C(x)$ per day is linearly related to the total output x per day, write an equation for the cost function $C(x)$.

Solution. Let $C(x)=m x+b$, where m and b are unknown constants. According to the question, we have $b=500$ and $6,000=m \cdot 50+500$, which leads $m=110$. So the equation is $\mathbf{C}(\mathbf{x})=\mathbf{1 1 0 x}+\mathbf{5 0 0}$.
2. [40pts] Solve for x in the following equations:
(A) $5+6 x+x^{2}=0$,
(B) $2^{4 x+14}=4^{5 x-11}$,
(C) $\log (12 x-4)-\log (x-7)=1$,
(D) $e^{16 x^{2}-1}=e^{17-2 x^{2}}$.

Solution. (A). Factorizing the equation to $(x+5)(x+1)=0$, we get $\mathbf{x}_{\mathbf{1}}=\mathbf{- 5}$ and $\mathbf{x}_{\mathbf{2}}=\mathbf{- 1}$.
(B). The equation is equivalent to $2^{4 x+14}=\left(2^{2}\right)^{5 x-11}=2^{2(5 x-11)}$. By the exponential laws, we have $4 x+14=2(5 x-11)$, which gives $\mathbf{x}=\mathbf{6}$.
(C). First of all, in order to have the equation making sense, we need

$$
\left\{\begin{array}{l}
12 x-4>0 \\
x-7>0
\end{array}\right.
$$

which implies $x>7$, namely, the domain for the equation is $x \in(7, \infty)$.
Now, by using the logarithmic laws, we reduce the equation to

$$
\log \frac{12 x-4}{x-7}=\log 10
$$

Thus, we have

$$
\frac{12 x-4}{x-7}=10, \quad \text { i.e., } x=-33
$$

This is a contradiction to the domain $x>7$. Therefore, there is no solution.
(D). By the exponential laws, the equation is equivalent to $16 x^{2}-1=17-2 x^{2}$, i.e., $x^{2}=1$, which gives $\mathbf{x}_{\mathbf{1}}=\mathbf{1}$ and $\mathbf{x}_{\mathbf{2}}=\mathbf{- 1}$.
3. [20pts] Given $f(x)=1-12 x$ and $g(x)=0.5^{x}$, find:
(A) $\sum_{i=0}^{6} f(i)=f(0)+f(1)+f(2)+\cdots+f(6)$,
(B) $\sum_{i=0}^{6} g(i)=g(0)+g(1)+g(2)+\cdots+g(6)$.

Solution. (A). Since $a_{1}:=f(0)=1, a_{2}:=f(1)=-11, a_{3}:=f(2)=-23, \cdots, a_{7}:=f(6)=-71$ have common difference $d=-12$, they form an arithmetic sequence. So their sum is

$$
\begin{aligned}
S=\sum_{i=0}^{6} f(i) & =f(0)+f(1)+f(2)+\cdots+f(6) \\
& =a_{1}+a_{2}+a_{3}+\cdots+a_{7} \\
& =\frac{a_{1}+a_{n}}{2} n=\frac{a_{1}+a_{7}}{2} \times 7 \\
& =\frac{1-71}{2} \times 7=-\mathbf{2 5 4}
\end{aligned}
$$

(B). Since $b_{1}:=g(0)=1, b_{2}:=g(1)=\frac{1}{2}, b_{3}:=g(2)=\frac{1}{2^{2}}, \cdots, b_{7}:=g(6)=\frac{1}{2^{6}}$ have common ratio $r=\frac{1}{2}$, they form a geometric sequence. So their sum is

$$
\begin{aligned}
S=\sum_{i=0}^{6} g(i) & =g(0)+g(1)+g(2)+\cdots+g(6) \\
& =b_{1}+b_{2}+b_{3}+\cdots+b_{7} \\
& =\frac{b_{1}\left(1-r^{n}\right)}{1-r}=\frac{1 \cdot\left(1-0.5^{7}\right)}{1-0.5}=\mathbf{1 . 9 8 4 3 7 5}
\end{aligned}
$$

4. [30pts] A newborn child receives $\$ 5,000$ gift toward its education from the grandparents.
(A) How much will $\$ 5,000$ be worth in 17 years, if the interest at 10% is not compounded?
(B) How much will $\$ 5,000$ be worth in 17 years, if the interest at 10% is compounded monthly?
(C) How much will $\$ 5,000$ be worth in 17 years, if the interest at 10% is compounded continuously?

Solution. (A). This is a simple interest question, and the total amount after 17 years is

$$
A=P(1+t r)=\$ 5,000(1+17 \cdot 10 \%)=\$ \mathbf{1 3}, \mathbf{5 0 0}
$$

(B). This is a monthly-compounded interest question. The interest rate for each period (one month) is $i=\frac{10 \%}{12}=0.008333$, and the number of total periods is $n=12 \times 17=204$. So the total amount after 17 years is

$$
A=P(1+i)^{n}=\$ 5,000(1+0.008333)^{204}=\$ \mathbf{2 7}, \mathbf{1 7 5 . 7 8}
$$

(C). This is a continuously-compounded interest question. The total amount after 17 years is

$$
A=P e^{r t}=\$ 5,000 e^{10 \% \cdot 17}=\$ \mathbf{2 7}, \mathbf{3 6 9 . 7 4}
$$

