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This paper studies the asymptotic behavior of solutions for the Benjamin-Bona—
Mahony-Burgers equations u, —u,, — ot + fu,+ufu, =0, xe R, t >0, with the
initial data u|,_o=uy(x) > 0 as x » +oo. Under the restrictions f‘fm ug(x) dx=0
and [* _uo(y)dye W#*11 we obtain more results on the energy decay rates of
the solutions in the forms that if p > 1, then ||0Zu(?)| 2= O(1) t =¥ *+¥4 for j=0,
L.,2p—1, and ||0u(t)| = O(1) t~U+D9=D/2D for 2<g< oo and j=0,1,..,
2p —2; furthermore, if p =2, then [07u(t)|| o= O(1) ¢ ~+D9=D2D for | <g<?2,
j=0, 1,..2p—3, and [dlu1)|=0(1) 1~ U+H1=D/2) for 2<g< o0, j=0,
1, .., 2p — 3, which are optimal. The proof is dependent on the Fourier transform
method, the energy method and the point wise method of the Green function.
© 1999 Academic Press
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1. INTRODUCTION AND MAIN RESULTS

We consider the Cauchy problem of the Benjamin—Bona—Mahony-
Burgers (BBM-B) equations in the form

Uy — Uy — Ol + Pu, + uPu, =0, xeR', =0, (1.1)
with the initial data
ul,_o=up(x)—0 as x— +oo, (1.2)

where >0, fe R' are some given constants, and p > 1 is an integer.
When =0, f=1, p=1, Eq.(l.1) is the alternative regularized long-
wave equation proposed by Peregrine [ 19] and Benjamin et al. [2]. This
equation features a balance between the nonlinear dispersive effect but
takes no account of dissipation. When a >0, Eq. (1.1) is given if the good
predicitive power is desired in the physical sense, such as the phenomenon
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of bore propagation and water waves. Since the dispersive effect of (1.1) is
the same as the Benjamin—-Bona—Mahony equation

Uy — Uy + Uy +ufu, =0,
while the dissipative effect is the same as the Burgers equation
U, — ol + U, +ufu, =0,

we call (1.1) the Benjamin—-Bona—Mahony-Burgers equation (BBM-B), but
it is proposed neither by Benjamin, Bona, and Mahony nor by Burgers. To
analyze the asymptotic behavior of the solution of (1.1) is an interesting
problem both from a mathematical and physical point of view. Such a
problem is widely studied by many mathematicians, cf. [ 1-9, 11-19, 21-241],
and the references therein. Subsquent to our previous work [15], in this
paper we are further going to show more decay results of the solution for
the Cauchy problem (1.1) and (1.2). We are interested in the time-asymptotic
decay of solution in L7 spaces for 1 < g < o0, especially in L! and L* spaces,
and obtain the optimal decay rates of ||07u(¢)|| ;s and [0Zu,(¢)|| 4, Where
j=0,1,..,k, k is a positive integer. We discover that the highest orders k
of derivatives d%u(x, t) and d*u,(x, ) we can have are dependent on the
number p in the nonlinear term u”u, of Eq. (1.1), if we desire the optimal
decay rates in our present method. Precisely saying, we have the following
main results.

THEOREM 1.1.  Suppose that IO_OOO uy(x) dx =0 and vy(x) := f"_oo uy(y) dye
W2+ L1 Then there exists a positive constant &, such that when |vy || 1.1
<0y, then the Cauchy problem (1.1) and (1.2) has a unique global solution
u(x, t) satisfying that:

(1) If p=1, then the following estimates hold,
167 u(t)]| 2= O(1)(1 + 1)~ @+ (1.3)
forj=0,1,..,2p—1, and
101u(1)] 15 = O(1)(1 + 1)~ 214110 (14)

for2<qg< 0, j=0,1,..,2p—2;

(1)  Furthermore, if p =2, then (1.3), (1.4) and the following estimates
hold,

[04u() |20 = O(1) 1~ (9= /20 (15)
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for 1<¢g<2,j=0,1,..,2p—3, and
184u(1)]| o= O(1)(1 + 1) =+ D=0 (1.6)

fOV 2<q<003]=03 laszp_?’

The results represented in Theorem 1.1 are new, especially in the sense
of L'. Herewith, we improve and develop the previous works [1, 3-9, 11,
15-18, 21-23] essentially. For the proof of these decay rates, we divide it
into two steps. First, as in our previous work [15] to consider a strong
form of a zero-mass perturbation, we extend our previous decay results in
[15] to the case of higher derivatives 0¥u in L* and L>-decay by means
of the Fourier transform method together with the energy method. Second,
we further show the L?-decay rates of the solution u(x, ¢) for (1.1) and (1.2)
for 1 < ¢ < oo. In particular, in the sense of L' which is a difficult case, we
will have to make a bit more effort on it by the point wise method of the
Green function. These considerations can be also applied to the generalized
BBM-Burger equations. We will remark on it in the last part of this paper.

Notations. We now make some notations for simplicity. C always denotes
some positive constants without confusion. 9% f:= d*f/ox*. L? presents the
Lebesque integrable space with the norm |- || ,,. Especially, L? is the square
integrable space with the norm |-||,2, and L* is the essential bounded
space with the norm || ;. H* and W* ? denote the usual Sobolev space
with the norms ||z and |-||p+», respectively. Suppose that f(x)e
L'~ L*(R); we define the Fourier transforms of f(x) as

FLINO=7@) =] flx)e™dx

Let T and B be a positive constant and a Banach space, respectively.
Ck0, T; B) (k>0) denotes the space of B-valued k-times continuously
differentiable functions on [0, 7], and L*(0, T} B) denotes the space of
B-valued L*-functions on [0, T']. The corresponding spaces of the B-valued
function on [0, c0) are defined similarly.

2. REFORMULATATION OF THE PROBLEM AND
PROOF OF MAIN RESULTS

Suppose that
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Integrating Eq. (1.1) over (— o0, o0) x [0, ] with respect to x and ¢, respec-
tively, we then have formally

jio u(x, 1) dx = j: o) dx =0.
Thus, let
v =[ w)d o= wrnd.(22)
that is,
va(x, 1) =u(x, 1); (2.3)

we reformulate the initial value problem (1.1) and (1.2) as the “integrated”
equation

Uy — Vsy — W + fv + F(v,) =0, (24)
with the initial data
Ul,—o=1o(X), (2.5)
where
F(v,) = (v )P /(p+1). (2.6)

We now state our main theorems as follows, which imply Theorem 1.1.

THEOREM 2.1.  Suppose that (2.1) and ve(x)e W?T12YR) hold. Then
there exists a positive constant 0, such that when |vy | pw+1,1 <0, then (2.4)
and (2.5) have a unique global solution v(x, t) satisfying

v(x, t)e C(0, oo; H(R) n W~ *(R)),
and the asymptotic decay rates in L(R) and L*(R) as
[070(t)| 2 < C(1L+ )~ FTVA for j=0,1, .., 2p, (2.7)
1070(0)]| pr < C(L41)=U+D2 for j=0,1,.,2p—1. (2.8)

THEOREM 2.2. Under the assumptions in Theorem 2.1, the unique global
solution v(x, t) of (2.4) and (2.5) further satisfies that

1050d D 2 < C(L+0)"F*T2B - for j=0,1,..,2p =2, (29)
1050d0)| o < C(L+0)~VH2 0 for j=0,1,..,2p=2;  (2.10)
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and that, when 2 < g < o0,

|\6§;v(1)\|Lq<C(l+t)_((j+1)q_1)/(2‘1), for j=0,1,.,2p—1, (2.11)
1020,0)| o< C(1+ 1)~ UFDa=DI@ o j=0,1,.,2p—2; (212)

in particular, when 1 < g <2,
1020(2)]| o < Ce=WHDa=DRD - for  j=0,1,..,2p—2. (2.13)

Proof of Theorem 1.1. Once Theorems 2.1 and 2.2 are proved, noting
u(x, t)=v,(x, t), we then prove Theorem 1.1 immediately. ||

Proving Theorems 2.1 and 2.2 is our main purpose in the rest of this
paper. We are first going to prove Theorem 2.1 based on the following
local existence (Proposition 2.3) and the a priori estimates (Proposi-
tion 2.4) by the continuation extension method. The a priori estimates
will be shown in Section 3. For the proof of Theorem 2.2, we leave it to
Section 4. We note also that these considerations can be applied to the
generalized BBM-Burger equation, which will be remarked in Section 5.

For a positive constant 0 < 7'< + oo, we define the solution space as

X(0, T)={ve C(0, T: H*(R) n W»~"*=(R))}

and let

2p
M(T)= sup { S (14+ )@+ 4 [374(1)]| 2

0<:<7T (j—0

2p—1
FT 14097 ol (214)

Jj=0

We are going to prove that there exists a unique solution of Egs. (2.4) and
(2.5) in the space X(0, 4+ c0) for some small initial data.

PropPoOSITION 2.3 (Local Existence). Suppose that vye W**+11 holds.
Then there is a positive constant T such that the Cauchy problem (2.4) and
(2.5) has a unique solution v(x, t) € X(0, T,) satisfying M(T,) <2M(0).

ProprosITION 2.4 (A Priori Estimate). Let T be a positive constant, and
v(x, t) e X(0, T) be a solution of the problem (2.4) and (2.5). Then there exist
positive constants ¢, and C, independent of T such that if M(T)<0J,, then
the estimate
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2p—1
(1+ )+ 07 0(0)]| 2+ Z (1+ )/ 2 (102 0(0)]| o
0

¥

J

< Gy vg | 11 (2.15)

holds for t€[0, T].

Since Proposition 2.3 can be proved in the standard way, we omit its
proof. Once Proposition 2.4 is proved, using the continuation arguments
based on Propositions 2.3 and 2.4, we can show Theorem 2.1 as follows.

Proof of Theorem 2.1. We note that
M(0) = llvg || g2 + v | wa—1.0 < Cs v || 1.1

holds for some positive constant C, by Sobolev’s embedding inequality. Let
0= m1n{(52/(2C2 0,/(2Cy)}, and |jvg| pa+1.1<J;. Then Proposition 2.3
ensures a unique solution wv(x, t)e X(0, T,) satisfying M(T,) <2M(0) <
2C, ||lvg |l w2+1,1 < 5. So, Proposition 2.4 with T = T, guarantees M(T,) <
Ci vl ww+1.1<3,/2. Now considering the Cauchy problem (2.4) and (2.5)
with the “initial datum” v(x, T,) at the “initial time” Ty, thanks to Proposi-
tion 2.3 again, we have the unique solution v(x, ¢) on [ Ty, 2T, ], eventually
[0,2T,], and M(2T,) <2M(T,)<J,. Thus, applying Proposition 2.4
again with T=2T,, we obtain M(t)<Cy ||vg| p2w+1.1<3,/2 for all te
[0,2T,]. Therefore, repeating this continuation process, we can obtain a
unique global solution v(x, ¢) € X(0, + oo) satisfying (2.15) forall te [0, + o0).
Thus, we have completed the proof of Theorem 2.1. ||

3. A PRIORI ESTIMATES
As in [15], we take the Fourier transform to (2.4) to yield
— (i6)? 6, — (i) +ifEd + F(v,) =0,
namely,

a2 +ipE  Fluy)

=0 3.1
b+t e a0 (3.1)
which gives us
) o o [ sy FODE )
e —A©) _ A —s) xR 2 g 32
(& ) =e 4 dye)— [ @ Cre s ()
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where
. pe al?
A(¢&)=B B(&)= . 33
O=BO+itrm  BO=-{,a (33)
Then taking the inverse Fourier transform to (3.2) yields
Lo e erin
oo )= | e ADigy(E) de
2 _ o
L p 0™ e aos FOD(E )
_ iExe =A@ —s) _ X022 77 gz e 3.4
3l e g €d G4

By 07 (3.4) for any je N, , N, we denote the set of non-negative integers,
and we have

Do, )= [ (6)) eremAOn5y(&)

2
L' (™ ey eiexe—A@0—s FTIZ)(f,S)
_ZL Lw (i¢) eiéve — AN )Tézdé & (35)

Before starting the proof of the a priori estimates, we first give several
preparation lemmas as follows.

Lemma 3.1. Suppose that a >0 and b >0, and max(a, b) > 1, then
t .
J (14+85)"*(14+1t—s5)"bds<C(1 + 1) min(@d), (3.6)
0

The proof of Lemma 3.1 was given in [20], and several applications can
be found in [ 10, 13-15].

LEMMA 3.2.  For any positive constant ¢, the following

© |gemer :
f,wmd5<c<1+zr“+”ﬂ, JENL  (37)

holds for all t=0.

Proof. Inequallity (3.7) can be similarly proved as in [ 14, 15, 21, 22].
We first note that

| mammare =2t Jmemea s 09
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When ¢e[0,1], it is clear that 1<(1+¢&?)7'<1 and 27UV g
(1+&)7" (1+&) /<1, thus,

—cB(&)t

1 e
L (1+&)(1 +é‘)’

1
<J Flg— (et g
0

1
— o2 J Flg— (a1 +0) g
0

e co/2

(1—|—l) (J+1)/2j [5214'1)](1 1)/267(m/2)§(1+t)d[ ( +l)]

<C(1+1)~U+bz (3.9)
where we used the fact that, letting # = (1 +¢), then

1
|| [0 +010- DR e e g (1 4]
0
1+1
:f yUi=V2e— (2 gy
0

< foo U= D2 =2 gy < C.
0

When ¢e[1, + 0], we have that 1<&?/(1+E%)<1 and &/(1+¢E)/<1,
which imply

é —eB(&)t

foo é<fooe (sz/2)tdé<c _(ca/z)t (3 10)
AT TS Vi © '

142

Thus, applying (3.9) and (3.10) into (3.8), we prove (3.7). |
Lemma 3.3. If v(x,t)e X(0, T), then

sup ((1+1E1) [F(w)(& 0))) < CM(T)? ' (140 =@+ D2 (3.11)

£eR
or j=0,1,..,2p—1.
Jor j P

Proof. Since ve X(0, T'), by the definition of M(t), we first have the
estimates
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o0 o0
[ ert i ol dy<sup o 77 [ ol de= o012 o) 3

—®© xeR —©
SM(T)?* ' (1+0)" @D (1+1)"%
:M( )P+1(1+t) (2p+l)/2, (312)
[7 oz ldy=(p+1) |7 o2 v,ldx

— 00 — 0

(p+ D) o152 0D 22 1o (2) ] 22
(p+1)M(T)?* 1 (1 +1)~—D

X(14+2)734 (1 +¢)—5

=(p+1) M(T)P*! (1 +1)~@+212, (3.13)

<
<

Generally, we can prove the following in the same way

jw 10702+ ) (x, 0)] dx < CM(T)P+1 (1 4+1)=Cr+ 1402 (3.14)

— 00

for j=0,1,..,2p—1.
Thus, making use of (3.14), (2.6), and the property of the Fourier
transform

(& fI=12i71<| 10111 dx,
we prove (3.11) as

sup ((1+[£)7 [F(v)(E 0)])

£eR

sup (1 + &) [02 (&, 1))

<

lrfeR

C = C > A
<— P x 1) dx + —— oL (vt Y(x, 1)| d
Sl e nld S [l o] dx
<LM(T)P+1(1—}—1)_(21’“)/2—{—LM( )1’+1(1+t) 2p+1+))/2
p+1 p+1
<27CM(T)P+1( +t)_(21’+1)/2,

p+1

for j=0, 1, .., 2p — 1. The proof of this lemma is complete. |
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LemMMmA 34. If vy(x)e W#+LY(R), then

1 > o .
2 f (i) ee ~4@P(&) dE | < Cllvg |t (1+1)~F DA (3.15)
o

12

for j=0,1, .., 2p, and

forj=0,1,..,2p—1.

L7 (i) e ergy(&) de

< Cvg |l wisa 1 (1 +1)~U+D2 0 (316)
2n ) _

L®

Proof. For the proof of (3.15), noting the fact

sup ((1+1€))7*" [o]) < Csup ((1+[E]71) 6, 1)

EeR £eR

<C[ (ool +107*  vg(x)]) dx < C oo v
- (3.17)

for j=0, 1, .., 2p, and by Parseval’s equality and Lemma 3.2, we have

{7 ey e 0nsy(&) de

2nd o

12

[c'e] 1/2
117 =250 |gy(&)? dé)

= (i) e 1O 54(&) | 2= ( |

0 |f|2je—2B(é)t ] 1/2
=<f (1+52)(1+|é|)2j(1+52)(1+|‘f|)2’|ﬁo(f)|2d5>

|é|2je_28(é)t 1/2
7

<sup((1+|f|)j+l|50(£)|)<Jio (1+&)(1+¢|

£eR

< C g llwisrt (L+1) =@+ DA

for j=0,1, .., 2p.
For the proof of (3.16), using (3.17) and Lemma 3.2, we show

I -
| e e amne) de

L®

1 - J ~a—B(&E)t .
J_ : <]7e (1+E)(1+ &) 166(E)] dé

T 1+ E)(1+[¢])
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|f|j efB(é)t

1 . o0
5 sup (14 1€ 16]) | A+ + ey ®

2 £eR
< Cvg | sz (1 4+1)=U+D2
forj=0,1,...2p—1. 1

LemmA 3.5. Suppose that v(x, t)e X(0, T). Then

1 e~ A=)

2] 6 e ()

2nJ_
SCM(T)p+1(1+I_S)—(2j+l)/4(1+S)—(2p+l)/2

for j=0,1, .., 2p, and

—A(—s) _—_

F(v)(<, s)

1 .. €
_ S AVAIN <
I v

SCM(T)?PH! (141 —s)"VUFD2 (1 45) "2

for j=0,1,..,2p—1.

(3.18)

(3.19)

Proof. When j=0, we can prove (3.18) by Parseval’s equality and

Lemmas 3.2 and 3.3 as

—A) (1 —s) _—_

1 peo iex ©
o I s IR GO
e—A@—s)
= WF(Ux)(éas) L

—2B(O)(t—s)  _~_

© e 1/2
B <J_ ey FeE S)Izdé>

. o o 2O  \I2
<sup [F0,)(& 9) <fw (1+éz)2d5>

o g —2B()(t—s) 12
<swp el (|7 e

£eR — 0

SCM(T)PH (1 45) 7@+ D2 (1 41 —5) 714

(3.20)
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When 1<;<2p, noting (1+|&))*/(1+E*)<2 for all ¢eR, we have
similarly

—A(—s5)

TizF(Ux)(*f, s)

e~ A=)

o
_ SAVIN /<3
- j_w (i&) e

= (if)jTézF(Ux)(f,S) ,
o 2j @ —2B(&)(t—s) 1/2
([ e e s e )

—<f°° |E|¥ e 72BOE= (] 4 |¢])?
e (+&)+EyY 1+&

1/2
X (14172 |Fo)(& 52 dé>

Joo |E|% & —2BE—9) é>1/2

<V2sup (1 + e ERIE N (| S

£eR

SCM(T)P+ 1 (1 +5)~@+DR2 (] 4 ¢ —g)~@+D/A (3.21)

Thus, (3.20) and (3.21) give us (3.18).
To prove (3.19), by means of Lemmas 3.2 and 3.3, we obtain that for
j=0,1,..,2p—1

—A(1—5) _—_

1 Floo(& s) de

I “ SAVIN +4
2nf_w(‘5) Tre

L®

1joo |§|je—B(é)(t—s) —

) . 1+ |F(v)(E, )| dE

|f|j e~ BOE—s9)

1 e
<7§22((1+If|) F(0)(E, s )I)f_wmdf
SCM(T)P*1 (1 45)~@+V2 (] 44— g5)=U+D2 (3.22)

This completes the proof of Lemma 3.5. ||

Proof of Proposition 24 (A Priori Estimates). Let v(x,t)e X(0, T).
From (3.5), thanks to Lemmas 3.1, 3.4, and 3.5, and the fact (2p+1)/2>1
duetop=>=1, (2p+1)2>(2j+1)/4 for j=0,1, .., 2p, we obtain
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. 1 o
Haiv(l‘)“l] < H B J (16)] elfxe_A(f)tﬁO(é) dé
T

t
+)
0

< C oo |l pi+r1 (1 +Z)_(2j'"1)/4

12

1 —A@)—5)

Zﬁ) (if)l'eiéxWF(vx)(é,s)df ds

12

t
+CM(0)? [ (11 —35) "G DA (1 4 5) =@ D2 g
0

< Ci(|vo | paosr 1+ M(£)P 1) (1 + 1)~ 14 (3.23)

for j=0, 1, .., 2p. Here C, is some positive constant independent of 7.

Similarly, noting (2p+1)/2>(j+1)/2 for j=0,1,..,2p—1, by using
Lemmas 3.1, 3.4, and 3.5, we have also

[020(t)] 1 < Hl jw (i&)7 eXe =4O p (&) dE
27 ) _

LOO
I L e A=)
e AV N <
+L o f_w(lf) e e F(v,)(&, s)dé . ds

< Clogllmear (L+1) VD2

t
+ M+ [ (11— 5) "0 DR (14 5) =G D2 g
0

< Co vl warsr+ M()?+1)(1+ 1) =0+ D2 (3.24)

for j=0, 1, .., 2p. Here C, denotes also some positive constant independent
of T.

Adding (3.23) x (1 +1)#*+ D4 and (3.24) x (1 + 1)U+ D72 gives us

2p 2p—1
M(T)= sup Y (1+0)F*V40u(n)| 2+ 3 (L+0)YHD2070(0)] 1
0<!<T j=0 j=0

< Cylllvg | o114+ M(T)P*1),
where C,=2pC, +(2p—1) C,. Namely,

M(T){1—C,M(T)?} <C, ||vg|| grs1.1.
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Now we choose our positive constant J, in Proposition 2.4 as
9, =1/(2C,)"7,
when M(T)<J,, and we obtain

Cp HUO H ww+1,1

M) <3 2

\QCI, HUO H w»r+11.

That is,

2p—1
(L+ )&V 0L u(t)] 2+ Z L+ )Y D20 0()]|
0

¥

J

< ZCP ol ar+11

for M(T)<5,=1/(2C,)""? and te[0, T]. Thus, the proof of Proposi-
tion 2.4 is complete. ||

4. PROOF OF THEOREM 2.2

We are going to prove Theorem 2.2 based on Theorem 2.1. In the same
way as mentioned above, we can prove (2.9) and (2.10). For the L4-decay
rates (2.11) and (2.12) with 2 < g < oo, it can be easily proved by means of
the Sobolev inequalty and Theorem 2.1. When 1 < ¢ <2, the proof of the
L7 decay estimate (2.13) is not easy, and we must make a bit of effort on
it, in particular, for the case ¢ = 1. The approach we will adopt is the point
wise method of the Green function.

Proof of (29) and (2.10). Taking 979, to (3.4) yields

oo |7 e @ ey o) de

F)(&,9)
14 &2

1 t poO . .
_ 12T ilx, —A(E)(t—s)
+27J0 J_w(lc) A(&) e~ve

| o
o 12V J ailx
- j_wué) e

dé ds

Fo)(E 1)

Tl (4.1)

for j=0,1, .., 2p—2.
We first prove (2.9) in the same way as (3.23). From (4.1) and using
Parseval’s equality, we have
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lo%od2)]l 2

(00 A(Q) e g ¢)

L e ey FUD(E )
_|_.[0 ﬂj_w(lé) A(E) eive A=) iy dé des
1 e Flo(E 1)
#5n] e MG lay
= (i)’ A(&) e=4@54(&)]| 2
L e FUDE )
+f0 Ej_woé) A e 1D ZRIEE ] s
+ | (i&)7 %52[) (4.2)
LZ
for j=0,1, .., 2p—2.
For j=0, we have proved in [15]
lod)]l 2 < C(1+ 1)~ (4.3)

Now we consider the cases j=1, ..., 2p — 2. Making use of Lemma 3.2 and
(3.17), we have

I(i6)7 A(E) e =@ 6(&) | 12

0 |é|2j+4 e —2B(O)1 . 1/2
(7 ey e

_gw €[4 e 2O (14 1¢)?
UL araavar e

12
(14 1E)7+? |ﬁo|2d5>

|é|2]+4e_23(é)t >1/2

2 1 J+1 |4 “
sup ((1+ 16 1) ([ o e

< C gl gisnt (14 1)~ @I+ (4.4)

forj=1,..,2p—2.
Thanks to Lemma 3.2 and Lemma 3.3, that is,

sup (14117~ F(0)(E D)< C llog 550 (141)Cr+ D2

£eR
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for j=1,..,2p—2, where we used M(t) < C |lvg | pw+11 for all te[0, +o0)
due to Theorem 2.1, then we have

4 e FEES)
(e Agye o TAED
o 2j+4 o —2B(O(t—s) 1/2
(7 e e e e

_Uw £+ e 2BOU=) (] 4 |¢])6
T\ (1) +[E)¥H (1+E2)°

_ o 12
< (14 1€ |FoD)(& s>|2dé>

<2/2sup ((1+[E)7 " [F(0,)(E 5)])

£eR
[oe) |é|2]+4 672B(§)t 1/2
XU_@( T+ )1+ 27 5)

< C ool B4 1 (1 +8) @ +FD2 (1 ¢ —g5) -+ (4.5)

forj=1,..2p—2.
Similarly, we prove

o (1 e
. ] 12
<sup (e 100 ([ e )
< C g5 (140~
< Cvgll 55k (14 1) =&+ (4.6)

for j=1,..,2p—2. Here we used p>1, ie, 2p+1+4/)/2>(2j+5)/4.
Thus, applying (4.4)—(4.6) into (4.2) and using Lemma 3.1, and noting
2p+1)2>1, 2p+1)2>(2j+5)/4 for j=1, .., 2p — 2, we obtain

162 0,0) | 12 < C llvg |l isrr (1 4-2) =@+
t .
+C v Wz,,mf (145) =@+ D2 (] 4 f— 5) =@+ g

+C llvg |5t (1 + 1)=&+
< Clllvg [l 1+ [[vg | 5t (1 + 1) ~ @430 (4.7)

for j=0, 1, .., 2p — 2. Therefore, (4.3) and (4.7) imply (2.9).
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For the proof of (2.10), without any difficulty, we can similarly prove
that, for j=0, .., 2p — 2,

o |E|it2e—BO
[ L GIEG
| J 0 |E|/+2 e B!
<sup (141D 21600 | gy
< C ool ivar (1 +1) "+ (4.8)
and
o |E[JF2eBOI—
[ T o= TN GRII:
S w |E]It2 e BOE—s)
<sup (141D 1)@ | o e @
< C o5 (14+8) @ F DR (141 —5) "0+ 22, (49)
and
& 1 )& )]
jind«Zggua e on |

< C ol 551 (1 +¢) =@ +i+2

< C ool Bk (14 1)~U+32, (4.10)

These estimates imply (2.10) as

|f|j+2 e—B(é)t

. 1
I0%00)] <5 | 60(E)] d

_ 142

L[ e DR 3)

TN (1+22)2 1 +¢&2

dé ds

1 7| F(o)(E 1)
2n ‘f—oo 1+¢&2 de
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C )
<= vl ez (141) "V 72
2n

C t _
+— HUOHI;VEIHJJ (145)~@+D2 (] 44 5)=U+32 gy
2n 0
¢ + 1 —(j+3)2
+£HUOH€VZP+1,1(1+Z‘) J

C .
S% ([lvg | w11+ [[vg || B 1) (1 + £) ~U 372

forj=0,1,..,2p—2. |

Proof of (2.11) and (2.12). It can be easily proved that, for j=0,
I,.,2p—1and 2<g< o0,

10 0(0) | 2o < 0% u(2) |12 @7 u(2) 174
< C(l + l)f(j+1>(q72)/2q (1 + 1)7(2j+1)/2q
=C(1+ t)—((j+1)q—1)/2q’

and, for j=0,1,..,2p—2 and 2<g < o0,

10 0d0)] La < 0% v D) 2/ [0Lv (1)) 7F
S C(141)"U+I@=22q (] 4 £)—(2i+5)/2
=C(1+ t)—((j+3)q—1)/2q.

Thus, we have proved (2.11) and (2.12). |

Proof of (2.13). Finally, we are going to prove (2.13). When 1 <¢g <2,
we note that the above method is unavailable for this case, since we have
only the following inequality

. A 1
A e <N f W gy for 5+*=1, I<m<2,

and

Iflz= 7l onlyfor g=m=2.

Namely, we only obtain our desired estimates for the case ge[2, oo ]. So,
in the case 1 <¢ <2, we must find another recipe. To end it, the key step
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is to estimate [|0Zv(7)| 1, j=0, ..., 2p —2. We are going to show it by the
so-called pointwise method of the Green function.

Observing Eq. (2.4), since we expect that, in general, v,,, decays time-
asymptotically faster than v,, v,, and v, behave, we rewrite Eq. (2.4) as

Ut_avxx+ﬂvxzvxxt_F(Ux)' (411)

Formally, the expression of solution of Eq. (4.11) is

o =" Glx—y—pt 0 vgly) dy

— o0

+Jtro Gx—y—pt—s),t—s5)v,,(p,5)dyds
0 Yy

— 00

fjtjw Glx—y—Pli—s), 1—s) F(o,)(n,s)dyds,  (412)

0Y—o
where

G(x — Bt, t) = (4ant) ~? exp <—(x;oft)2>

is the Green function of the following parabolic equation in the whole
space x € R!

v, — W, + fv,=0.
Differentiating (4.12) j-times with respect to x, we have

o0

olotx, )= 81G(x—y—pr, 1) vgly) dy

+j0 f_oo 05G(x —y— Pt —s5), t —5) v,,(y, 5) dy ds

—jtfoo 01G(x—y—P(t—s). t—3) F(v,)(y,s) dy ds. (413)

Since

0LG(x—y—pt, 1) =(—=1) 9]G(x — y— pt, 1),



BBM-BURGERS EQUATIONS 333

and applying the integration by parts, (4.13) is reduced to

2o, )= (=1 8JG(x—y— Bt 1) vo(y) dy

— 0O

ORAINEY

x@{;G(x—y—ﬁ(t—s), t—s)v,(y,s)dyds

U]

X01G(x—y—P(t—s), t—s) F(v,)(p, s) dy ds

Y

=7 (~1)/24Gx— y—pr. 1) vl ) dy

t/2 rc0
+ _1 Jj+2
jo j_oo< )
X 0] G(x — y—flt—s), 1—3) v,(y, s) dy ds

t oo )
+J j G (x—y—p(t—s),t—s) aj,vs(y, s) dy ds
t/2 Y — o0

_Lﬂ foo (=17 05 G(x—y—B(t—s), t—3) F(v,)(y, 5) dy ds

— 0

_Lt/zf G(x—y—B(t—s),t—s) 0LF(v,)(y, s) dy ds
_. ]jl(x’ ) +Ijz(x’ ) _|_]j3(x, t) +Ij4(x, t) +1j5(X, t). (4.14)

LemMA 4.1.  The following

|7 i nlax< e, (4.15)
f [Lo(x, 1)] dx < Ct=U+D2, (4.16)
jw L(x, )] dx < CLmU+22, (4.17)

— 0
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foo L(x, 1)) dx < Ct 7P, (4.18)

— 00

fo Ls(x, 1)) dx < Cr=Cr =142, (4.19)

hold for j=0, ..., 2p —2.

Proof. We denote z=(x— y— fit)//4at here and after here. Before
starting the proofs of (4.15)—(4.19), we first show the estimates

[ 16, 00— y—pr.0) dx

— o0

(e (x—y—pt)*\ [2(x—y—pt)
_Joo«/4noctexp<_ 4ot >‘ 4ot =
=0(1)r—1/2j°o e~ |zl dz=0(1) 172, (4.20)

— o0

and

[7 16—y —pro ax

e 1 (x=y=B0%\ |[[20x—y—B\* 2
_J_w /Aot eXp<_ 4ot >‘< 4ot > " |
:0(1):*]00 e~ 422 —2| d== O(1) 1. (421)

— o0

In general, without any difficulty, the same calculation gives

| 0iGe—y—prolax<ci? for jeN,.  (422)

— 00

Moreover, we have also

fw foo |G (x—y—pt, 1)| dy dx

— 00 — 0

(o (x—y—p1)*\ |2(x—y—pr)
_J_wj_oo /4nalexp<— 4ot >‘ doct dy dx
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_J‘” 1 <_(x—y—ﬁt)2>dx
B —w /47at P Baut

<(X y— ﬁO)‘(X y— ﬁt)’y

X J exp

Bat doct

e~ dz jw e=72 2| dz= O(1), (4.23)

— 00

=0(1)j°o

— 00

and

[ [ 16, x—y—pr. o)l dy ax

— 0 — 0

_Joo JOO 1 ox <_(x—y—[)’z)2>.‘<Z(x—y—ﬁl)> —d dx
) Jam T dat dat dat|
_(e (x—y—po?

‘J_wme"p<_ )

o eXp((x—y—ﬁt)2>'<2(x—y—ﬁt)>22

C o 8at Aot dot
=0(1)j e—zzdzj (e~ 422 =2 dz= O(1) 1~ 2. (4.24)

Similarly, a straightforward computation yields

RN RTY x—y—ptt x < Ct=VU=172 or j=1,2, ...
107G(x—y ) dy dx < Ct=V=D72 for j=1,2
e (4.25)

Now we are going to prove (4.15)—(4.19). By the definition of I;(x, ¢)
and (4.22), we have

| |1<xz|dx<f f 101G (x— y— B, 1)] - [vg( )] dy dx

_J 102 G(x — y—pt, t)|dxf [vo(¥)| dy

— o0

< Cllvg| gt = (4.26)

for j=0, ..., 2p — 2. This proves (4.15).
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Thanks to (2.10) and (4.25), one can have, for j=0, .., 2p —2,

[ 10 1)l ax

— o0

e} t/2 e’} .
< x| ds] 10l Gy Blu— s =)l oy 0] dy

— 00

t/2
<[ 0o [ [T 102Gy g1 =) dy e | s

— O — 00

/2 )
<cj (145)~32 (1—s)~U+DP2 g
0
/2
l/2) /+1)/2j (1 +S)_3/2 ds
0

Cl1/2) =0+ 2 [ (1 45) 72 ds

0

< Ct—U+he, (4.27)

This proves (4.16).
By (2.10) and (4.25), we can also prove (4.17) as

[ Mt o)1 ax

— 00

<[] as| G rm = fle s =) 2t o) dy
SJ {Iav S)HLOOJ f G, (x—y—p(t—s), t—s)| dydx|ds
t/2

<C[ (145) 02 (1—5) 12 ds
t/2

C+(2) =2 [ (1) ds

t/2
=2C(1 +(2/2))"V*72 (4/2)"?
< CrUrd2 (4.28)

for j=0,..,2p —2.
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Making use of (2.11) and (4.25), we obtain

[ a0l ax

— 00

[oe]

t/2 ['S) .
<[ ax[ds[ 190G —y—Blr—s),1=5)] - [F(v,),5)] dy
['e) 0 — o0

:L:/ZU“’ |5§.G(x—y*ﬁ(t—s),I*S)|dxfO [F(v,)(y, )] dy | ds

— 0

/2 .
<C| (=972 ()| it ds
0
/2 )
SC[ T (1=8) 772 (145)Cr 02 g
0
t
< C(r/z)—fﬂ[ (1+5)~@+12 g
t/2

<CUR) 7P 7 (145) 7+ gs
0

<Ct—in (4.29)

for j=0, .., 2p — 2. Thus, we proved (4.18).
Finally, by (3.14), i.e.,

j 109 F(0,)(», 5)| dy < C(1 45) =@ +1+02,

and noting

o0 1 o0
J G(x—y—pt,t)dx = e dz=1,

. iw

where z = (x — y — ft)//4at, we prove (4.19) as

[ st o) ax

— 00

<" x| ds[" Gl y—Plu—s).1—5) [04F(0,)(r.5)] dy
— t/2 —

:ft/z “w Glx—y—Plt—s),t=s)dx [~ |0JF(0,)(3,5) dy] ds

— oo
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<c| (Ls)=erereangg
t/2

S C(1+(1/2))~Cr+1+D2 | g
/2

< Ct—Cr—1+))2 (4.30)

for j=0, .., 2p — 2. Therefore, the proof of Lemma 4.1 is complete. ||

LemMa 4.2.  The following
[070v(2)|| 2 < Ct—72 (4.31)

holds for j=0, ..., 2p —2.

Proof. From (4.14), thanks to Lemma 4.1 and noting 2p — 1 + j > j due
to p>1, we obtain

5 oo
0ol < Y [ Iulx 0l dx
k

—1"—
< C([—f/z + t_(j+ 1)/2 + [—(j+2)/2 + t—j/2 + t—(2p— 1 +j)/2)
< Cl —Jj/2

for j=0, ..,2p — 2. Thus, the proof of Lemma 4.2 is complete. ||

Under the above analysis, now we are going to show (2.13). When
1<¢g<?2, Lemma4.2 and (2.8) implies (2.13) as

. =4} . 1/q
otuol=([" 1ot nieax)
<sup [020(x, 0] @~V 2Lo(1)| 1
xeR

< C(l + [)—(j+1)(q—1)/(2q) t /D)

< Cr—(U+Da—1/29)

for j=0,..,2p—2. |

5. REMARK

Consider the generalized BBM-Burgers equations

ut_uxxt_auxx+ﬂux+¢(u)x:09 XERla l>09 (51)



BBM-BURGERS EQUATIONS 339

with the initial data (1.2), where ¢(u) is the nonlinear flux function. If
d(u) e CP+1 and satisfies

$(0)=¢'(0)=--- =¢®(0)=0 and  ¢P*D(0)£0  (52)
for some positive integer p > 1, by Taylor’s formula, we have
[p(0)] < O(1) |ul?+. (5.3)

Without any difficulty, we can prove the following asymptotic behavior of
the solution for (5.1) and (1.2). We state it as follows but without proof,
since it can be similarly proved as Theorem 1.1.

THEOREM 5.1.  Suppose that ¢(u) Satisﬁes (5 2) and the initial data uy(x)
satisfies [*  uo(x) dx =0 and vo(x):= | uo(y) dye W>* 1. Then there
exists a positive constant 0, such that when ool war+1,1< 53, then the
Cauchy problem (5.1) and (1.2) has a unique global solution u(x, t) satisfying
the asymptotic behaviors as follows:

(1) Ifp=1, then
[07u(t)| o= O )(1+1) =@+ for j=0,1,..,2p—1, (54)
and
J02u(1)] 14 = O(1)(1 + 1)~ 201120 (55)

for2<g< o andj=0,1, .., 2p—2;
(1)  Furthermore, if p =2, then

|04u(t)] o= O(1) ¢~ +21a-1/C0 (56)
for 1<q<2,j=0,1,..,2p—3, and
[0Lu1)]| o= O(1)(1 4 1) =W+ a=D/CD (5.7)

for2<q< o and j=0,1, .., 2p—3.
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