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Introduction. Despite its considerable length, this paper is only an announcement. It gives two

definitions: that of "multitopic ω-category", and that of "the (large) multitopic set of all

(small) multitopic ω-categories". It also announces the theorem that the latter is a multitopic

ω-category.

The work has two direct sources. One is the paper [H/M/P] in which, among others, the

concept of "multitopic set" was introduced. The other is the author's work on FOLDS, first

order logic with dependent sorts. The latter was reported on in [M2]. A detailed account of the

work on FOLDS is in [M3]. For the understanding of the present paper, what is contained in

[M2] suffices. In fact, section 1 of this paper gives the definitions of all that's needed in this

paper; so, probably, there won't be even a need to consult [M2].

The concept of multitopic set, the main contribution of [H/M/P], was, in turn, inspired by the

work of J. Baez and J. Dolan [B/D]. Multitopic sets are a variant of opetopic sets of loc. cit.

The name "multitopic set" refers to multicategories, a concept originally due to J. Lambek [L],

and given an only moderately generalized formulation in [H/M/P]. The earlier "opetopic set" is

based on a concept of operad; see [B/D]. I should say that the exact relationship of the two

concepts ("multitopic set" and "opetopic set") is still not clarified. The main aspect in which

the theory of multitopic sets is in a more advanced state than that of opetopic sets is that, in

[H/M/P], there is an explicitly defined category Mlt of multitopes, with the property that the

category of multitopic sets is equivalent to the category of Set-valued functors on Mlt , a

result given a detailed proof in [H/M/P]. The corresponding statement on opetopic sets and

opetopes is asserted in [B/D], but the category of opetopes is not described. In this paper, the

category of multitopes plays a basic role.

Multitopic sets and multitopes are described in section 2 of this paper; for a complete

treatment, the paper [H/M/P] should be consulted.

The author's research is supported by NSERC Canada and FCAR Quebec
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The indebtedness of the present work to the work of Baez and Dolan goes further than that of

[H/M/P]. The second ingredient of the Baez/Dolan definition, after that of "opetopic set", is the

concept of "universal cell". The Baez/Dolan definition of weak n-category achieves the

remarkable feat of specifying the composition structure by universal properties taking place in

an opetopic set. In particular, a (weak) opetopic (higher dimensional) category is an opetopic

set with additional properties (but with no additional data): the existence of "sufficiently

many" of the various types of universal cells. In [H/M/P], no universal cells were defined,

although it was mentioned that their definition could be supplied without much difficulty by

imitating [B/D]. In this paper, the "universal structure" is supplied, albeit in a somewhat

unexpected manner, by using the concept of FOLDS-equivalence introduced in [M2].

In [M2], the concepts of "(FOLDS-)signature" and "(FOLDS-)equivalence" are introduced. A

signature is a category with certain special properties; for a signature L , an L-structure is a

Set-valued functor on L . To each signature L , a particular relation � , calledL
L-equivalence, between two variable L-structures is defined. The slogan of the work on

FOLDS is that all meaningful properties of L-structures should be invariant under

L-equivalence. The main effort in [M3] goes into specifying a language, First Order Logic

with Dependent Sorts, and showing that the first order properties invariant under

L-equivalence are precisely the ones that can be defined in FOLDS. It is a basic realization of

[M3] that the usual concepts of "equivalence" in category theory, including the higher

dimensional variants such as "biequivalence", are all special cases of L-equivalence, upon

suitable, and natural, choices of the signature L .

In this paper, the language of FOLDS plays no role. The concepts of "signature" and

"equivalence" are fully described in section 1 of this paper.

The definition of multitopic ω-category goes, in outline, as follows. For an arbitrary multitope

σ of dimension ≥2 , for a multitopic set � , for a pasting diagram α in � of shape the

domain of σ and a cell a in � of the shape the codomain of σ such that a and α are

parallel, we define what it means to say that a is a composite of α . First, we define a

FOLDS signature L 〈σ 〉 extending Mlt , the signature of multitopic sets. Next, we define

structures � 〈a 〉 and S 〈α 〉 , both of signature L 〈σ 〉 , the first constructed from the data �

and a , the second from � and α , both structures extending � . a is a composite of α if

there is a FOLDS-equivalence between � 〈a 〉 and S 〈α 〉 that restricts to the identity

equivalence from � to � ; below, I'll refer to this FOLDS equivalence as an equipment for a

being a composite of α .
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. A multitopic set � is a multitopic ω-category if every pasting diagram in it has a

composite.

The analog of the universal arrows in the Baez/Dolan style definition is as follows. A universal

arrow is defined to be an arrow of the form b:α��a where a is a composite of α via an

equipment that relates b with the identity arrow on a ; in turn, the identity arrow on a is a

composite of the empty pasting diagram of dimension dim(a)+1 on a .

A new feature in the present treatment is that what are being defined directly are

ω-dimensional weak categories; the finite dimensional ones are obtained as truncated versions

of the ω-dimensional concept. It is important to emphasize that a multitopic ω-category is

still just a multitopic set with additional properties, with no additional data.

The definition of "multitopic ω-category" is given in section 5. It uses sections 1, 2 and 4, but

not 3.

The second main thing done in the paper is the definition of MltωCat . This is a particular

large multitopic set. Its definition is completed only by the end of the paper. The 0-cells of

MltωCat are the small multitopic ω-categories, defined in section 5. Its 1-cells, which we

call 1-transfors (thereby borrowing, and altering the meaning of, a term used by Sjoerd Crans

[Cr]) are what stand for "morphisms", or "functors", of multitopic ω-categories. There are

n-dimensional transfors for each n∈� . For each multitope (that is, "shape" of a higher

dimensional cell) π , we have the π-transfors, the cells of shape π in MltωCat . For

instance, when π is the 2-dimensional multitope depicted as

⋅� �� �� � �� � �� � �
⋅����������� ⋅ ,

the π-transfors are the "binary" "natural transformations". In the following diagram:

A� �� � GF � � �� �k �� � �
X�����������M ,

H
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representing a π-transfor for the given π , X, A, M denote multitopic ω-categories, F, G, H

are "functors" between them, and k:(F, G)��H is a "bi-" (as in "bilinear") "natural

transformation".

For each fixed multitope π , a π-transfor is what we call a π-colored multitopic set, with

additional properties. There is a particular multitopic set �[π] the cells of which are the

π-colored multitopes. As �[π] is a Set-valued functor on Mlt , we can take El(�[π]) , the

category of elements of �[π] ; this is the (FOLDS-)signature for the π-colored multitopic

sets.

Section 3 describes �[π] , and related "syntactical" concepts.

Section 6 gives the definition of " π-transfor", by supplying the properties a π-colored

multitopic set is to satisfy to qualify being a π-transfor. Just as in the case of "multitopic

ω-category" ( = " 0-transfor"), these properties consist in the existence of items satisfying

certain universal properties with respect to specific data, the universal properties being defined

via FOLDS equivalence. However, there is one new element. For dim(π)≥2 , the concept of

π-transfor involves a universal property which is an "omega-dimensional, FOLDS-style"

generalization of the concept of Kan-extension (right lifting, in the terminology used by Ross

Street). This is a "right-adjoint" type universal property, contrasted with the "left-adjoint" type

involved in the concept of composite.

The main theorem announced, but not proved, in this paper is that the large multitopic set

MltωCat is a multitopic ω-category. The proof of the theorem will be given in a sequel to this

paper.

The material in this paper has been applied to give formulations of ω-dimensional versions of

various concepts of homotopy theory; details will appear elsewhere.

I thank Victor Harnik and Marek Zawadowski for many stimulating conversations and helpful

suggestions. I thank the members of the Montreal Category Seminar for their interest in the

subject of this paper, which made the exposition of the material when it was still in an

unfinished state very enjoyable for me.
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1. FOLDS–signatures and FOLDS–equivalence

FOLDS is an acronym for "first order logic with dependent sorts"; see [M2]. FOLDS has a

syntax and a semantics. Its syntax will not concern us here; but it is in fact quite completely

described by the name. "Dependent sorts" are meant in a sense similar to the dependent types

of [M-L] and [Ca].

FOLDS is based on (FOLDS-)signatures that are categories of a special kind. A signature is a

category that satisfies the following two conditions:

(1) it is reverse well-founded: there are no infinite chains

f f f f f f1 2 3 k-1 k k+1X ������X ������X ������ ... ��������X ������X �������� ...1 2 3 k k+1

of non-identity arrows f ( k∈� );k
(2) it has finite fan-out: for every object X , the set of arrows with domain equal to X

is finite.

Let L be a signature.

L is a skeletal category; also, every endomorphism X��X is the identity. Moreover, Ob(L)

⋅is the disjoint union ���L of levels L , so that for every non-identity arrow X��Y , wen nn∈�
have X∈L , Y∈L with n>m (and if n>0 , and X∈L , then there is at least one arrown m n
X��Y with Y∈L ).n-1

An L-structure M is a functor M:L��Set .

The semantics of FOLDS includes a theory of identity for structures: there is a separate

concept of identity for each signature L , L-equivalence, � , a relation betweenL
L-structures. The main part of the general theory of FOLDS deals with the exact matching of

the syntax of FOLDS with the concept of FOLDS-equivalence. Roughly speaking, for any

given FOLDS-signature L , the properties of L-structures formulated in a first order

language possibly extending L that are invariant under L-equivalence are exactly the ones
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that can be expressed in FOLDS over the given L .

There is a higher-order logic with dependent sorts over L . It involves using signatures

extending L ; properties formulated in it are also invariant under L-equivalence. In fact, our

definition of "multitopic ω-category" is given in terms of an existential second-order property

of multitopic sets, expressible in higher-order logic with dependent sorts over L , and thus

invariant under L-equivalence; here, L is Mlt , the category of multitopes, the signature for

multitopic sets (see below).

In [M3], it is shown (it is also sketched in [M2]) how FOLDS equivalence specializes to the

various notions of "equivalence" used in category theory: equivalence of categories,

biequivalence of bicategories, and so on. The said concepts turn out to be cases of

L-equivalence with suitable choices of the signature L . In this paper, L-equivalence, for

various specially constructed signatures L , is used for the definition of the concepts of

multitopic ω-category, and other related structures.

To define L-equivalence, I introduce some auxiliary concepts. Let K be a kind, that is an

object of L . By �K� , we mean the set of all arrows in L with domain equal to K ; and

we let K�L=�K�-{id } . The set K�L is the arity of K ; when K is used to form aK
dependent sort, one uses one variable x of the appropriate sort for each p∈K�L to fill inp
the "places" of K . We write K for the codomain of the arrow p .p

Consider the elements of K�L to be the objects of a category, also denoted by K�L , in

which an arrow r:p��q is any r:K ��K such that rp=q ; K�L is a full subcategoryp q
of the slice-category K\L . Let ϕ :K�L��L be the forgetful functor. Given anyK
L-structure M , the limit of the composite M�ϕ , a set, is denoted by M[K] , and itsK
elements are called the K-contexts in M . A K-context α is a "compatible" family

α= 〈α(p) 〉 of elements α(p)∈M(K ) indexed by the arity K�L of K .p∈K�L p
"Compatibility" means that if p, q∈K�L and r�p=q , then M(r)(α(p))=α(q) .

M(K) is fibered over M[K] by the canonical mapping λ :M(K)���M[K] ; forK
-1a∈M(K) , λ (a)∈M[K] is the K-context of a . The fiber λ (α) of α∈M[K] isK K

denoted as M(K)(α) .
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When a∈M(K)(α) , we also say is that a is of sort K(α) ; to be sure, the sort K(α) is

an interpreted dependent sort; the places of the kind K heading the sort are not filled by

variables, but by elements α(p) interpreting such variables.

Let μ:P��M be a morphism of L-structures: a natural transformation of functors L��Set .

For any kind K , we have the induced map μ :P[K]���M[K] , and also, for any[K]
ξ∈P[K] and α = μ (ξ)∈M[K] , the induced mapdef [K]
μ :P(K)(ξ)���M(K)(α) , which is a restriction of μ :P(K)���M(K) . We sayK(ξ) K
that μ is fiberwise surjective if μ is a surjective function for all choices of K∈L andK(ξ)
ξ∈P[K] .

In order to formulate a property of fiberwise surjective maps, we introduce some auxiliary

concepts.

Let us define the cardinality #C of a Set-valued functor C:L��Set to be

#C = #( � C(K)) = � #C(K) . A functor C:L��Set is said to be finite if
K∈Ob(L) K∈Ob(L)

#C is finite; this is to say that C(K) is empty for all but finitely many kinds K , and C(K)

is finite for all K . Finite functors L��Set will now be called formal contexts. For a formal

context C , and an L-structure M , a C-context in M is a natural transformation γ:C��M .

We write M(C) or just MC for hom(C, M) , the set of C-contexts in M . Sometimes we

call C-contexts in M collectively for all C concrete contexts in M .

�The representable functor K=hom(K, -) is a formal context, and so is the subfunctor [K]

� �of K , defined by the condition that for every U∈L , the component ι :[K](U)��K(U)U
�of the inclusion ι:[K]��K is an identity function, except for U=K itself, when it is the

inclusion of the empty set into the singleton {id } . These facts are consequences of the LK
being a FOLDS signature. What we called a K-context above is the same as a [K]-context:

M[K]≅hom([K], M) .

op L[K] is a functor of K : [-]:L ��Set , since if p:K ��K , then1 2
� �hom(K, p):K ��K restricts to a map [p]:[K ]��[K ] ; this, again, is something that2 1 2 1

depends on the special nature of the category L .

It is immediate now that M[K] is a functor of K : M[ ]:L��Set .
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Suppose μ:P��M is fiberwise surjective. Let c:C��C’ be a map (natural transformation)

Lof formal contexts which is a monomorphism (in Set ); let γ be a C-context, γ’ a

C’-context in M , γ’ extending γ via c as shown by commutativity �1 in the next

diagram:

C’���� ��� � �� γ’� � ��� � ��� c � ��� � �1 ��� � ��� 	 γξ’� �3 
C��������M� � 
��� � 
�� ξ� �2
�� � 
�� � 
�� � 
� μ� � 
���P

Suppose further that ξ is a C-context in P that lifts γ via μ (commutativity �2 ). Then,

the assertion is, that there exists (at least one) C’-context ξ’ in P lifting ξ (see �3).

This last property of fiberwise surjective maps is a generalization of the definition; the

�defining property is obtained when c:C��C’ is taken to be ι:[K]��K . L being a

FOLDS-signature is needed to have the generalized property follow from the definition.

Given L-structures M and N , an L-equivalence-span E between M and N (in notation:

E:M� N ) is a spanL

μ νE = (P, μ, ν) = ( M������P�����N )

of natural transformations in which μ and ν are fiberwise surjective. We write M� N , andL
say that M and N are L-equivalent if there exists E such that E:M� N .L

We may omit the subscript L , and write E:M�N , and similarly in other similar notations.

Suppose E=(P, μ, ν):M� N . For a formal context C , and C-contexts α , β and ξ inL
M , N and P , respectively, we write
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(E, ξ) : (M, α)� (N, β) (3)L

if ξ is a lifting of α via μ , and also a lifting of β via ν . We may omit ξ , and write

E:(M, α)� (N, β) ; (4)L

this, of course, means that there exists ξ such that (3) holds. When (4) holds, we say that α
and β are related by E .

For K∈L , and elements a∈M(K) , b∈N(K) , x∈P(K) , we write

(E, x):(M, a)� (N, b) to mean that μ (x)=a , ν (x)=b . This last notation is in factL K K
� �a special case of the previous one involving contexts: take C=K , and α:K��M the unique

natural transformation for which α (id ) = a , and similarly for β and ξ ; thenK K
(E, x):(M, a)� (N, b) iff (3).L

A notation of the form

� �E:(M, a)� (N, b)L

� �where a and b are tuples of elements in M and N , respectively, will be used as an

� �abbreviation for a relation (4); a lists the values of a suitable context α , and similarly for b

and β .

The defining property of L-equivalence-span can be expressed, in a slightly incomplete way,

thus. Let K∈L , α∈M[K] , β∈N[K] , and assume that

E:(M, α)� (N, β)L

Then for any a∈M(K)(α) , there is b∈N(K)(β) such that

E:(M, α, a)� (N, β, b) .L

and vice versa.
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We note that the concept of L-equivalence naturally extends to " L-structures" with

value-categories other than the category of sets. The extended concept is important in

formulating when two different notions of higher dimensional category are essentially

equivalent.

We discuss a general construction of new signatures out of an old one.

Suppose L is a signature, M:L��Set an L-structure. Then the category El(M) of

elements is a signature too. El(M) has as objects pairs (K, x) where K∈Ob(L) and

x∈M(K) ; an arrow (K, x)���(H, y) is an arrow f:K��H such that M(f)(x)=y .

There is an obvious forgetful functor Σ:El(M)��L . Verifying that El(M) satisfies the

conditions for "signature" if L does is immediate; in fact, the "fan-out" of the object (K, x)

has the same cardinality as that of K .

Let us remind the reader of a simple general fact. This is the equivalence of categories

�Π : Hom(L,Set)/M ������������ Hom(El(M), Set)

(K, x)����{a∈C(K):γ (a)=x}K
� aC � � ���(L���Set,γ:C��M) ����� [ f� ��������� � � ]� � �

� �
� C(f)(a)

(H, y)����{b∈C(H):γ (b)=y}H

holding for an arbitrary category L and functor M:L���Set . On arrows

ϕ(C, γ)���(D, δ) , Π acts as follows:

Π(ϕ) (a)=ϕ (a) .(K, x) K

-1 -1The quasi-inverse Π of Π has, for Γ:El(M)��Set , Π (Γ)=(C, γ) where, for

f:K��H in L ,
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C(K) = � Γ((K, x)) = {(x, s):x∈M(K), s∈Γ((K, x))
x∈M(K)

(x, s)� � �������� � �C(f)� = � : �� �� � (M(f)(x), Γ(f)(s))

C(H) = � Γ((H, y)) = {(y, t):y∈M(H), t∈Γ((H, y))
y∈M(H)

and

γ ((x, s)) = x .K

It is immediate that if Π((C, γ)) = Γ , then #Γ = #C . We conclude that, in case L is a

signature, and we write L[M] for El(M) , then

the category of formal contexts of L[M] is canonically equivalent to the category of

concrete contexts in M ,

where (of course) we mean by the latter category the corresponding subcategory of

Hom(L,Set)/M .

The same equivalence Π expresses also that

an L[M]-structure is essentially the same thing as an L-structure N together with a

map N��M .
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2. Multitopes and multitopic sets

Here, I will recall the notions in the title; they are dealt with in [H/M/P] in complete detail.

The present outline cannot quite eliminate the need for a detailed reference to the paper

[H/M/P]. However, I hope that for a first orientation, it is of some use. In this section,

references to sections are to [H/M/P].

A multitopic set � consists of cells, each of a definite dimension that can be any non-negative

integer; if the dimension of the cell a is n , a is said to be an n-cell. The set of k-cells is

denoted by C , or, if � needs to be explicitly referred to, by C (�) .k k

For every positive n , each n-cell a has a domain da and a codomain ca ; ca is an

(n-1)-cell; da is a pasting diagram of dimension (n-1) , briefly, an (n-1)-pd. In

general, a k-pd is a "meaningful formal composite" of k-cells, just what you would expect

from the term "pasting diagram". Note that the idea of a pasting diagram (composable system

of higher dimensional cells) involved here is essentially simpler than the general one, because

of the fact that the cells making up the pd are all "many-to-one" (their codomain is a single

cell), in contrast to the general "many-to-many" concept. The set of k-pd's is denoted P (ork
P (�) ).k

For given β∈P , b∈C , a necessary condition for the existence of a:β��b (whichn-1 n-1
abbreviates da=β , ca=b ) is that β and b be parallel, that is, either n-1=0 , or

n-1>0 , and dβ=db , cβ=cb (globularity). Note that we now used the domain dβ and

the codomain cβ of a k-pd β , for positive k∈� ; dβ is a (k-1)-pd, cβ is a

(k-1)-cell.

The items mentioned so far are organized into the following diagram of sets:

d d dP ��������P ��������P ... P ��������P ...0� � 1� � 2 k� � k+1
�d � �d � �d �

	 � � 	 � � 	 	 � � 	� � � � � � � �i� c� � i� c� � i� i� c� � i�� � � � � � � � � � �� 
 � � 
 � � � 
 � �
� � �C ��������C ��������C ... C ��������C ...0 c 1 c 2 k c k+1

Here, we used some abbreviations. Besides omitting subscripts to distinguish the various maps
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denoted by the same symbol (for instance, we have, in more detail, d :P ��P fork+1 k+1 k
the arrow denoted d in the right-most position), we also have the inclusions, denoted i , of

cells in pd's, and written d, c for the composites di , ci , respectively. The globularity

condition is the commutativity of each instance of

d dP ������� P ��������Pk-1� � k � k+1
�d � �
� � �
� �c� � c�

� � �
	 � 	

C ��������Ck-1 c k

Now, the basic fact about the concept of multitopic set is that globularity is the only limiting

condition that regulates the existence of cells. Given any multitopic set � , an (n-1)-pd β
and an (n-1)-cell b in it, one can adjoin an n-cell a:β��b to � provided β and b

are parallel; this adjunction will not effect anything else, that is, the cells in the new multitopic

set will be the old ones plus the single new one a . Similarly, one can, for a fixed n ,

simultaneously adjoin any number of n-cells, each with prescribed domain and codomain,

provided the latter are parallel.

An immediate consequence of this circumstance is the possibility of a recursive construction of

multitopic sets. Assuming that we have all the cells of dimensions less than n , together with

their domains and codomains, we now can introduce the n-cells by the process of simultaneous

adjunction.

(Small) multitopic sets form a category MltSet ; the morphisms are the natural structure

preserving maps.

It turns out (see Section 7) that MltSet is presheaf-category: there is a particular category,

called the category of multitopes, and denoted by Mlt , such that MltSet is equivalent to

the category of Set-valued functors on Mlt :

MltMltSet � Set .

The situation is interesting from a logical point of view: it is not the case that the definition of

"multitopic set" as " Set-valued functor on Mlt " is easier than the original, somewhat

complex, one (see Section 6). The reason is that the definition of the category Mlt is not
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direct. In fact, the objects of Mlt , the multitopes, are defined to be the cells of the terminal

multitopic set (the terminal object of MltSet ); the arrows of Mlt are then defined by an

additional, geometrically straightforward, but algebraically rather tedious, manner (see Section

7). Moreover, the terminal multitopic set � (before we know that the category MltSet is a

presheaf category!) is given by the recursive method mentioned above. The principle is simple:

having introduced all <n-multitopes, that is, <n-cells in � , we adjoin exactly one

n-multitope a for each possible type (β, b) , a parallel pair of an (n-1)-pd and an

(n-1)-cell in � , such that da=β , ca=b . Moreover, one notes the fact that, by the

uniqueness of the cells involved, here the cell b is determined by β by the requirement that

it is to be parallel to β ; thus, in fact, each multitope is uniquely determined by its domain, a

pd of multitopes of one lower dimension.

Multitopes are the shapes of cells in multitopic sets. Indeed, for any multitopic set � , the

unique map ���� in MltSet assigns to each cell in � its shape. For ρ a multitope, and

the multitopic set � construed as a functor �:Mlt��Set , �(ρ) is the set of cells whose

shape is ρ .

To eliminate ambiguity, we adopt the concept of "multitopic set" meaning " Set-valued

functor on Mlt " as the official definition. The total set ��� of the multitopic set � is the

sum

��� = � �(ρ) .

ρ∈Ob(Mlt)

However, often we write a∈� for a∈��� .

Throughout the paper, the Greek letters κ, π, ρ, σ, τ , θ will denote multitopes.

For a multitope ρ , we write �ρ� for the set of all arrows in Mlt whose domain is ρ ; the

elements of �ρ� are called the faces of ρ . For p∈�ρ� , we write K (as in the previousp
section) for the codomain of p .

Let � be a multitopic set, ρ a multitope, a∈�(ρ) . For p∈�ρ� , we have that

a^p = �(p)(a) ∈ �(K ) . The pair (p, a^p) , and sometimes, more sloppily, the celldef p
a^p by itself also, is called the p-face of a . Intuitively speaking, the faces of a are the

same as the occurrences of cells "involved" in a : these include a itself, the

14



one-lower-dimensional cell-occurrence that is the codomain of a , and the ones that are in the

domain of a , and (inductively) all still lower dimensional cells involved in the ones

previously mentioned.

Talking about faces of a multitope and talking about faces of a cell in a multitopic set are

compatible; the former is a special case of the latter, done in the terminal multitopic set � .

The composition structure of Mlt represents the geometry of the cells. For instance, if we

have the commutative diagram

σ�p ��� �� r
�� ��

�� ��
� �ρ� � θ
�� ���

�� ��
�� ��q � � sτ

in Mlt , a cell a in � of shape ρ , and b=a^p , c=a^q , then d=b^r=c^s : the cells

b and c are located in a at the places p and q , respectively, in such a way that they

share an occurrence of d , namely the one at the place rp=sq ; in other words, they overlap

in such a way that d is in the overlap.

The category Mlt is generated by arrows each of which is of the form ρ	
τ where

dim(ρ)=dim(τ)+1 . Understanding by the length of an arrow ρ	
τ the difference

dim(ρ)-dim(τ) , we have that, for any given multitope ρ of positive dimension, the

length-1 elements of �ρ� are in two disjoint classes

�ρ� and �ρ� . One of these is a singleton, �ρ� ={c :ρ	
cρ} ; the other isc d c ρ
�ρ� ={d :p∈� 〈 ρ 〉�} , where we used the notation of Section 7, items Mlt[2] andd ρ, p
Mlt[1] [in that order; here we use a different notation for the codomain of c . Here, I amρ
not going to explain the notation p∈� 〈 ρ 〉� . Also, I use the letter p for denoting an

element of �ρ� , and not for what it is used in [H/M/P] .) Elements of �ρ� are calledc
c-arrows, those of �ρ� d-arrows. The cardinality of �ρ� can be any natural number,d d
including zero. Let a be a cell of shape ρ , dim(ρ)=n≥1 . For p∈�ρ� , the p-face ofc
a is ca , the codomain of a ; and for p∈�ρ� , the p-face of a is an (n-1)-cell ind
the domain da of a .

The geometry of a single multitope ρ is encapsulated in the structure which is the

slice-category Mlt/ρ (with objects the elements of �ρ� ), endowed with a sign-structure
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which is the label "c" or "d" on each of the length-1 arrows of Mlt/ρ (which are also

arrows of Mlt ). The fact that a multitope is "no more than its geometric representation" is

expressed precisely in the statement that if Mlt/ρ and Mlt/τ are isomorphic by an

isomorphism (of categories) respecting the sign-structure, then ρ=τ . We also have that the

only sign-respecting automorphism of Mlt/ρ is the identity.

Mlt is a FOLDS signature; the multitopic sets are the Mlt-structures. Multitopic

ω-categories (to be defined below) are multitopic sets with additional properties invariant

under Mlt-equivalence. For a finite n , the concept of multitopic n-category (see below) is a

first-order concept, which can be formulated in the language of FOLDS over a truncation of

Mlt .

In what follows, we reformulate the ingredients of multitopic sets we started with in this

section in terms of the definition of "multitopic set" as " Set-valued functor on Mlt ". The

results of this exercise will help us to define, in section 6, the generalizations of the relevant

concepts to "colored multitopic sets".

Let us write ρ� for the set of all arrows p with domain equal to ρ such that p≠id andρ
p≠c .ρ

Let k≥1 . A (k-1)-pd β in � is given by a k-dimensional multitope ρ , and a

function β such that dom(β)=ρ� ; β(p)∈�(K ) whenever p∈ρ�Mlt ; and ifp

Kpp ����� ��� �� �ρ � �q� ��� ��� ��� 	p’ 
 Kp'

then �(q)(β(p))=β(p’) . The pd β is then of shape ρ , or, β is a ρ-pd.

In particular, it is clear that for any a∈�(τ) , the family 〈b 〉 , wherep p∈ρ�
b =�(p)(a) , defines a pd in the sense just described; this pd is what we denoted by da .p

-We write �[ρ ] for the set of pd's of shape ρ .
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- -A useful way of looking at ρ-pd's is that they are [ρ ]-contexts in � , where [ρ ] is the

� - -subfunctor of ρ=hom(ρ,-) in which [ρ ](ρ)=∅ , [ρ ](cρ)=[ρ](cρ)-{c } , andρ
-[ρ ](κ)=[ρ](κ) for all κ∈Ob(Mlt)-{ρ,cρ} . The domain da of a cell a∈�(ρ) is

�- incl � a �the composite [ρ ]������ρ���� , where a is the arrow corresponding to a by

�Yoneda: a (id )=a .ρ ρ

- -Note that the formal context [ρ ] , and hence the set �[ρ ] too, are (contravariant)

functors of ρ∈Mlt .

-For a ρ-pd β:[ρ ]��� , dβ , a pd of dimension one less than that of β , is obtained as

the composite

- ι - βdβ : [(cρ) ]�����[ρ ]���� ,

where ι is an arrow determined by the commutative diagram

- incl �[ρ ]������ ρ
� � *ι� � �(c )� � ρ

- �[(cρ) ]����(cρ)
incl

*Let θ be an arbitrary multitope; dim(θ)=k-1 . There is a particular multitope θ of

*dimension k , uniquely determined by θ by the facts that θ=cθ , there are exactly two

*distinct non-identity arrows with domain θ and codomain of dimension k-1 , and both of

*them are of the form θ ��θ ; one of them, of course, is c ; we denote the other arrow*θ
* * *θ ��θ by d :θ ��θ . θ is the shape of a k-cell both of whose domain and codomain*θ

are of shape θ . A special feature of the pair
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d *θ
��������*θ θ
��������c *θ

of arrows is that they are equalized by any non-identity arrow out of their codomain.

* *Given any cell a∈�(ρ) , with dim(ρ)=k , we have the ρ -pd 〈a 〉∈�[ρ ] for which

〈a 〉 (c )=a . 〈a 〉 is the same as i(a) for the "inclusion" i:C (�)��P (�) atρ * k kρ
the beginning of this section.

*The codomain cβ of a ρ-pd β is β (c �c ) . When ρ is replaced with ρ , andccρ cρ ρ
* -β∈�[(ρ ) ] is taken to be β= 〈a 〉 for a∈�(ρ) , the formula for cβ reduces to a^cρ

as it should.

I will now discuss a particular class of multitopes, the shapes of the "empty" pd's.

+ + *There is a multitope θ of dimension k+1 for which cθ =θ , and the only non-identity

+ + + * +arrow out of θ is c :θ ���cθ =θ ; again, θ is uniquely determined by said+θ
+properties from θ . In any multitopic set, θ is the shape of an empty pd of dimension k ,

one which is an identity arrow in the multicategory C on an object, a (k-1)-cell, of shapek
+ +θ (see [H/M/P] . θ is the shape of a (k+1)-cell whose domain is a pd of shape θ , and

* +whose codomain is of shape θ . Writing ε for θ , we have that

dc cεε �������ε������cε ccε (1)
�������ccε

is the same as
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d *c θ+ ��������+ θ *θ �������θ θ (2)
��������c *θ

+Multitopes ε of the form θ are called empty-domain multitopes.

+Given any cell a∈�(θ) in a multitopic set � , there is a unique θ -shaped pd α for which

ccα=a . α is the empty k-pd on the (k-1)-cell a . It is called "empty" since there is no

+k-cell in it: θ � has no element p with dim(K )=k .p

Among diagrams of the form

gf �����ρ�����τ κ , (3)
�����h

the ones of the type (2) are anomalous because d �c = c �c , but d ≠ c . Incε ε cε ε cε cε
fact, we have that if (3) is such that gf=hf and g≠h , then there is an empty-domain

emultitope ε and ρ���ε such that (3) is obtained from (1) by precomposing with e :

f=c �e , {g, h}={d ,c } . In particular, arrows in Mlt are "usually" epimorphisms;ε cε cε
in fact, an arrow is an epimorphism if and only if there is no empty-domain face in its

codomain.

Multitopes that have no faces with empty-domain shapes are called positive. The codomain of

an arrow out of a positive multitope is also positive. Several things in this paper allow

simplified formulations when one restricts oneself to positive multitopes (that is, when one

replaces Mlt be its full subcategory on the positive multitopes); unfortunately, this cannot be

done without harm to the concepts we are aiming at.
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3. Colored multitopes.

The question how to define the concept of weak n-category, for finite n , and in the second

place, also, for n=ω , has been around for a while; and several answers have already been

proposed (see [B]. [B/D],...). However, one clearly wants more than that concept: one wants

the definition of the total structure weak higher dimensional categories are elements of. For

instance, one wants morphisms, or functors (some may want to say: "homomorphisms", since

for the case of n=2 and n=3 , the existing notions that we want to emulate and generalize

are called "homomorphism" and "trihomomorphism", respectively), of n-categories ; for

n>0 , one wants an (appropriately higher dimensional) notion of (pseudo-)natural

transformation of functors of weak n-categories; for still greater n , modifications of the

latter, and so on.

This structure will be provided here in a uniform manner.

In the first place, the concept of multitopic ω-category will be defined and proposed as a

concept of weak ω-category. Multitopic n-categories, for each finite n , will be the natural

("truncated") special cases of the ω-concept.

Secondly, we will define a (large) multitopic set MltωCat whose 0-cells will be the (small)

multitopic ω-categories. The 1-cells of MltωCat will be our construal of the functors

(morphisms) of multitopic ω-categories. The 2-cells will be the "natural transformations"; but

note that now we will have, as separate kinds of entities, binary, ternary, and, in general,

k-ary (for all k∈� , even for k=0 !) "natural transformations". The 3-cells in MltωCat

will stand for modifications; now, they come with somewhat complicated arities, which are

exactly the 2-multitopes, shapes of "many-to-one" pasting diagrams of dimension 2. And so

on, for all finite n . Borrowing a term from Sjoerd Crans, I will call an n-cell in MltωCat

an n-transfor. (Crans uses this term in the context of teisi, "semi-strict" weak higher

dimensional categories. Unfortunately however, there is mismatch in the assignment of the

"order" n ; what I call n-transfor corresponds to Crans's (n-1)-transfor.) Thus, the, usually

multiary, n-cells in the multitopic set MltωCat will be the n-transfors; the 0-transfors are

the same as the (multitopic) ω-categories.

The main theorem announced in this paper is that MltωCat is a multitopic ω-category.
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The uniformity of the theory lies in the fact that each n-transfor will itself be a multitopic set,

endowed, however, with certain additional structure that we call coloring. Given a multitope

π , we will define a particular category Mlt[π] of π-colored multitopes. The category

MltSet[π] of π-colored multitopic sets will then be defined as the functor category

Mlt[π] (0)Set . When π=ρ , the unique zero-dimensional multitope, then Mlt[π] and

MltSet[π] are, essentially, the same as Mlt and MltSet , respectively. An n-transfor

of shape π , that is, an element of MltωCat(π) , will be a π-colored multitopic set with

certain properties (but with no additional data).

Recall that the objects of Mlt were the cells of � , the terminal multitopic set. Generalizing,

for each multitope π , we will define a particular multitopic set �[π] ; the objects of

Mlt[π] will then be the cells of �[π] .

Together with the multitopic sets �[π] , we will also define, for each arrow π��κ in

Mlt , morphisms �[p]:�[κ]�����[π] ; in fact, we will define a functor

op
�[-] : Mlt ����MltSet .

(As we will see, �[p] "recolors" every κ-colored multitope as a π-colored one, by

replacing the color r∈�κ� by r�p∈�π� .)

In addition, for each π∈Mlt , we will define a mapping

γ :��[π]�����π� ,π

on the total set

��[π]� = � �[π](τ)def τ∈Mlt

of the multitopic set �[π] to the set of arrows out of π , called coloring. The coloring will

be compatible with the functor �[-] in the natural sense that, for each p:π��κ , the

following diagram commutes:
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��[p]�
��[κ]�������������[π]�

� �� �� �γ � �γ :κ� � π� �� �
� �

�κ� ����������� �π�*p

*here, the notation ��[p]� is self-explanatory; p is the mapping r��r�p .

The definition is by recursion. Fix n∈� . Assume that the functor �[-] has been defined

on arguments that are objects of dimensions less than n , and arrows between such objects;

moreover, assume that said restriction of �[-] is a functor. Assume that the coloring γκ
has been defined for all κ∈Mlt of dimension <n , with the relevant instances of the

compatibility condition satisfied. Fix π∈Mlt such that dim(π)=n ; we will define

�[π] , γ , and �[p] for p∈π� , where π� is the set of non-identity arrows in Mltπ
out of π .

Let π�Mlt denote the full subcategory of the comma-category π\Mlt on objects the

elements of π� = �π�-{id } . Let Mlt�<π denote the full subcategory of Mlt on theπ
objects K (=cod(p) ) for p∈π� . We have the forgetful functorp
ϕ:π�Mlt���Mlt�<π . Consider the composite functor

ϕ �[-]�<ππ�Mlt�����Mlt�<π������������MltSet ,

and call it Φ ; note that by the recursion hypothesis, �[-]�<π is well-defined. Let � be

the colimit colim(Φ) in MltSet (when, later on, we want to refer � for various

Mltinstances of π , we may write �[π] for � ). Since MltSet is (equivalent to) Set ,

colim(Φ) exists, and is computed "pointwise" as in Set . In particular, for each multitope

τ ,

�(τ) = colim �[K ](τ) .p(p:π��K )∈π�Mltp

We will define �[π] as a certain extension of the multitopic set � ; we will adjoin certain

specific cells to � , to obtain �[π] . Recall that we also have to define the coloring γ (a)π
for cells a in �[π] . The coloring γ (a) of cells a in � (a part of �[π] ) is given asπ
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follows. For any p, q∈π� , and (r:p��q)∈Arr(π�Mlt) , the commutativity of the

diagram

��[r]���[K ]�������������[K ]�q p� �� �� ��γ �� ��γ �K � � � Kq � � q� �� �
�K � ����������� �K �q * p� r 	� 	* � � 	 *q 
 � p

�π�

ensures that we have a well-defined map γ from the colimit ���=colim(�Φ�) to �π�
*such that, for each colimit coprojection ι :�[K ]��� , we have γ�� ι �=p �γ . Thep p p Kp

coloring γ restricted to � is defined to be this γ .π

All newly adjoined cells in �[π] are to have the γ -color id . Thus, the part � isπ π
distinguished inside �[π] as those cells whose color is different from id .π

The extension of � to �[π] is done as follows.

No cells of dimension less than n are adjoined to � .

Next, we describe the n-cells added to � .

An (n-1)-pd β= 〈 β(r) 〉 in � is called c -free if for all r∈τ� , we haver∈τ� π
γ (β(r))≠c . The new n-cells adjoined to � are in a bijective correspondence with theπ π
pairs (β, b) where β is a c -free (n-1)-pd in � , b is an (n-1)-cell in � such thatπ
γ (b)=c , and β and b are parallel: dβ=db , cβ=cb ; for each such pair (β, b) ,π π
we adjoin to � exactly one new cell a with da=β , ca=b ; we declare that

γ (a)=id .π π

For dimensions m>n , we proceed recursively. For any parallel pair (β, b) of an

(m-1)-pd β and an (m-1)-cell b such that γ (b)=id , we adjoin a single newπ π
m-cell a for which da=β , ca=b , and make γ (a) equal to id .π π
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This completes the definition of the multitopic set �[π] . We have the inclusion

ι:����[π] . For (p:π��κ)∈π� , we define �[p]:�[κ]���[π] as the composite

�[p]= ι� ι . The functorial nature of �[-] on arrows between objects in the setp
{K : p∈�π�} , and the compatibility of the various colorings indexed by elements of �π�p
are assured by the definition.

For the fixed n , performing the above construction simultaneously for all multitopes π of

dimension n , gives the definition of all necessary items involving indices ≤n , since all

non-identity arrows out of a multitope are to multitopes of lower dimensions. The functor

op Mlt�:Mlt ��Set has been defined.

Let π,τ∈Mlt , a∈�[π](τ) . The total π-coloring of a includes the colors of all the

faces of a ; it is defined to be

� �τ�γ (a) = 〈 γ (�[π](s)(a)) 〉 ∈ �π� .π def π s∈�τ�

In other words, for s∈�τ� , and for the s-face b = �[π](s)(a) of a , the value of the

�function γ (a) at s equals the π-color of b :π

�γ (a)(s) = γ (b) .π π

Using, for any p:π��κ , the naturality of �[p]:�[κ]����[π] , we find that we have

the commutativity

�[p]τ�[κ](τ) ���������� �[π](τ)
� �� �� � ��γ � �γ .κ� � � π� �� �
� �

�τ� �τ�
�κ� ������������� �π�*p

Next, we list some facts about colored multitopes.
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� �τ�(1) Each map γ :�[π](τ)����π� is 1-to-1 .π

This fact says that a colored multitope is determined by its underlying (ordinary) multitope,

that is, its shape, and its (total) coloring. Therefore, a π-colored multitope is given by an

(ordinary) multitope and a correct coloring of its faces by the faces of �π� . What constitutes

a correct coloring is, of course, defined unambiguously by the above-given definition of

Mlt[-] ; however, this definition is not very direct (it uses a recursion).

Let us note here that for each π∈Mlt , we have the canonical π-colored multitope P=P[π]

�for which P∈Mlt[π](π) , and for which γ (π)=id .π �π�

(2) For all p:π��κ in Mlt , the induced map �[p]:�[κ]���[π] is a

monomorphism. Moreover, if π,ρ∈Mlt , R∈�[π](ρ) , then for κ the codomain of the

�arrow p=γ (R):π��κ , there is a (unique) cell R∈�[κ](ρ) , called the root of R , forπ
� �[p]which R������R . Furthermore, if q:π��τ , and S∈�[τ](ρ) is such that

�[p]S������R , then, necessarily, the root of S is the same as that of R ; in other words, there

is a commmutative diagram

πq � � p
� �
� 	 

τ ����� κr

� �[r]such that R������S . Let us call a cell T in �[θ] primitive if γ (T)=id . The rootsθ θ
of cells are always primitive; the primitive cells are the same as the ones that are their own

roots. Note that if T∈�[θ] is primitive, then dim(T)≥dim(θ) .

(3) With reference to the multitopic set � in the above definition of �[π] , for each

m≥n , the canonical morphism
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colim P (�[K ])�����P (�)m p m(p:π��K )∈π�Mltp

is an isomorphism.

This says that, for m≥n , every m-pd in � is already a pd in a single component �[K ] forp
a proper (non-top) color p∈π�Mlt .

Essentially as a consequence of (3), we have (4) and (5):

(4) With n=dim(π) , for any pd α and any cell a in the multitopic set �[π] such

that α and a are parallel, and dim(α)=dim(a)≥n , we have exactly one cell b in

�[π] such that db=α , cb=a .

(5) With n=dim(π) , for any pd α in the multitopic set �[π] such that

dim(α)≥n , we have exactly one cell b in �[π] such that db=α , and in particular,

exactly one cell parallel to α .

Let us give some examples.

(0)It is clear that when π=ρ , �[π] is just � : there is just one color.

(1)The next example is when π=ρ , the unique 1-dimensional multitope. We have that

(0)π� = {d,c} , both with codomain ρ . The multitopic set � = �[π] is the disjoint

union of two copies of � , one colored d , the other colored c . In �[π] , there are exactly

two 0-cells and three 1-cells; changing the notation somewhat, and representing π as

21�������3
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(1)(which, of course, means that 1=d , 3=c and 2=id ), the 1-cells in �[ρ ] areπ

(1)(1)���������(1) ,

(3)(3)���������(3) ,

(2)(1)���������(3) ;

the parenthetical numbers are the colors of the cells in question. The first two come from � ,

(1)the last as the n-cell ( n=1 ) adjoined to � . Some examples of 2-cells in �[ρ ] :

(1)� (3)�(1) ��� �	 (1) (2) ��� �	 (3)�� � �	 �� � �	�� �(1) �	 �� �(2) �	
 � � 
 � �(1)������������������ (1) (1)������������������ (3)(1) (2)

(2)(1)���������(3)
(1)� 
 �(1) ��� �	 (2) (1)� � �(3)�� � �	 � �(2) ��� �(2) �	 � � �
 � �(1)������������������ (3) (1)���������(3)(2) (2)

��(3)�
(3)���������(3)

The last 2-cell has domain the empty 1-pd on the 0-cell (3) . Note that the 1-cell

(2)(1)������(3) cannot be the target of an empty-domain 2-cell, since (1)≠(3) . The

(1)first and the last of these 2-cells are "from" �[ρ ] ; the others are introduced by the third

(1)stage of the definition of �[ρ ] .

Next, consider the example of the following 2-cell for π :

3� �2 � � 4� � �� �6 �� � �
1�����������57

In �[π] , we have three 0-cells: (1) , (3) , (5) ; six 1-cells:
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(1) (2)(1)���������(1) , (1)���������(3) ,

(3) (4)(3)���������(3) , (3)���������(5) ,

(5) (7)(5)���������(5) , (1)���������(5) .

As for 2-cells, they come in seven different colors. The ones of color (6) have as domain a

1-pd that is a sequence of 1-cells, starting in a succession (possibly of zero length) of (1)'s,

(2)followed by a single instance of (1)�������(3) , followed by a succession of (3)'s,

(4)followed by a single (3)�������(5) , ending in a succession of (5)'s. The 2-cells of

(7)color (6) all have as codomain the 1-cell (1)�������(5) .

For π the 3-dimensional multitope

4 4�3���������5 �3���������5� �8 � � � �2 � � �	
� � � 6 2 � � � 6� �	
� 9 � � � ��
	
� �10 � � � ��131��������������������7 1� � 7�� 12 �� ��� 11 �� ���������� �� � ��� 17� � �� � ��� � � �� ��� � �16 15 �� �1615 �� � �� ��� � �� ��� � �� ��� ��14 14

in Mlt[π] , the parallel pair (α, a) of the 1-pd α and 1-cell a shown in

(4)�(3)���������(5)� �(2)� �(6 )� �� �
(1) �����������������������(7)(11)

does not have a "filling" b:α��a .

��2��Let π be 0�����0 , the simplest empty-domain multitope, and let κ be 0�����0’ ,1 1
(1)the unique 1-dimensional multitope ρ (considered already above, with the notation

2 *1�����3 ). We have the map p=c :π��κ (unique of the form π��κ ) for which pπ
maps 0 and 0’ to 0 , 1 to 1 . We have the κ-colored multitopes
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(0) (0’)� � � �� � � �(0) � � � (1) (1) � � � (0’)� �(1) � � �(1) �� � � � � �
(0)�������������(0’) (0)��������������(0’) .

(1) (1)

Their images under �[p] in �[π] are

(0) (0)� � � �� � � �(0) � � � (1) (1) � � � (0)� �(1) � � �(1) �� � � � � �
(0)�������������(0) (0)��������������(0) .

(1) (1)

In �[π] , we have the further cell

(0)� �� �(0) � � � (0)� �(2) �� � �
(0)�������������(0) ,

(1)

which is not obtained from �[π] under the canonical map into �[π] .

Finally, let us take an example where the recursive character of the definition shows itself to

be more essential than in the "positive" (empty-domain-free) examples considered so far.

Let π be the 3-dimensional multitope

� ��4 �6� �3�����3�����3 3� 5 7 � � �� � � �2 � � � 8 2 � � � 8� � � 12 � � �� �10 � ���������� � �13 �� � � � � �� � � � � �
1�������������������������� 9 1�������������� 9

11 11

In Mlt[π] , we have the 2-cell R :
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(5) (7)(3)�����(3)�����(3)� �� �(2)� � �(8)� � �� �(10) �� � �� � �
(1)�������������������������������� (9)

(11)

The one in which (5) and (7) are interchanged, call it S , is not a correct coloring; it is

not a cell in Mlt[π] , despite the fact that locally it looks all right. The point is that R is

the image of the cell

(5) (7)(3 )�����(3 )�����(3 )� 1 2 3 �� �(2)� � �(8)� � �� �(10) �� � �� � �
(1)����������������������������������� (9)

(11)

in Mlt[τ] for τ the 2-cell

5 73 �����3 �����3� 1 2 3�� �2 � � � 8� � �� � 10 �� � �� � �
1����������������������������� 9 .

11

However, S cannot be represented as such an image.

Let π∈Mlt . We put Mlt[π] , the category of π-colored multitopes, to be

El(�[π]) , the category of elements of �[π]:Mlt��Set . That is, the objects of

Mlt[π] are pairs (τ , a) where a∈�[π](τ) ; and a morphism f:(τ , a)���(θ, b) is

an arrow f:τ��θ in Mlt such that (�[π](f))(a) = b . In particular, we have the

faithful forgetful functor � �:Mlt[π]��Mlt . � � is a discrete cofibration: the arrows out

of any R∈Mlt[π] in Mlt[π] are in a bijective correspondence with the arrows out of

�R� in Mlt .

For every p:π��κ in Mlt , we have an induced functor

30



Mlt[p]=El(�[p]):Mlt[κ]����Mlt[π]

("recoloring along p "). In fact, we have the functor

opMlt[-] : Mlt �����Cat .

In other words, we have a strict fibration

Mlt[Mlt]

��Π���
�

Mlt

whose fiber at each π∈Mlt is Mlt[π] . The total category Mlt[Mlt] is a suitable

category that has as objects all colored multitopes, colored by any (simple) multitope.

The category Mlt[π]Set of π-colored multitopic sets is

Mlt[π]Mlt[π]Set = Set .
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4. Substitution

This section gives a treatment of the syntactic operation of substitution for multitopes and

colored multitopes.

We are going to describe two types of substitution, the d-type substitution, and the c-type

substitution. Whereas the two types of substitution are similar to each other, and also, they are

"dual" to each other, in the sense of the "duality" of domain versus codomain, their symmetry

is not perfect; d-type substitution is somewhat simpler, and also, more "basic". First, we

describe d-type substitution.

4.1. d–Type substitution

We fix a multitopic set set � . We place ourselves in the category El(�) of elements of �
( � being a functor �:Mlt���Set ). For simplicity in notation and terminology, we assume

that for different objects ρ and σ of Mlt , the sets �(ρ) and �(σ) are disjoint; this

allows us to identify the objects of El(�) with the cells of � , that is, with the elements

R∈�(ρ) for varying ρ∈Mlt .

The letters K , R , S , T , U are used for cells of � ; with the forgetful functor

� �:El(�)��Mlt , the values �K� , �R� , �S� , �T� , �U� will be denoted by κ ,

ρ , σ , θ and τ , respectively. We write just f for �f� for any f:R��T . Of course, for a

fixed cell R , the arrows f:R��T are in a bijective correspondence with the faces of R .

An arrow f:R��T is a c-arrow (d-arrow) iff f:ρ��θ is one (see section 2).

xAn arrow R���T in El(�) is said to be (of) d-type (respectively, c-type) if x≠id , andθ
there is no factorization of x of the form
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R���� ��� ��� �x� � U� �� ��� ��� �� f	T

where f is a c-arrow (respectively, a d-arrow). In other words, x is d-type if x is not the

top face of ρ , and there is no face in ρ that would have the x-occurrence of θ as its

codomain. "Dually", x is c-type if it is not the top face, and it is not in the domain of any

face of one higher dimension. Note that any c-arrow is c-type, and any d-arrow is d-type.

We take a cell S∈� of dimension equal to n ≥ 1 , and keep it constant for most of what

follows. Let us write T = cS .def

Let El(�)//T denote the full subcategory of the slice-category El(�)/T with objects the

R
pairs (R, x) in which x� is d-type T-shape face of R .

T

For the given �-cell S , T = cS , n=dim(S) , assumed fixed, and for a variable pairdef
R

(R, x) , with R∈� and x� of d-type, we wish to define an �-cell R[S/x] , the "result
T

of substituting the domain of S for the codomain T of S at the occurrence x in R ."

[since not the whole of S , but rather its "domain", is the one which is being substituted, I

-would like write R[S /x] ; but I will stay with the simpler symbol].

We proceed by describing requirements for the d-type substitution operation

R
(R, x) ( x� of d-type) �

� R[S/x] . (1)

T

in the signature category El(�) . In the case �=� , the terminal multitopic set, these

requirements uniquely define said operation; d-type substitution in � = � is what we use in

section 5 for the definition of "multitopic category". In the general case of the basic multitopic

set � , the requirements amount to a definition of a possible "d-type substitution operation".

For the definition of transfors of positive dimensions, we will need particular d-type
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substitution operations in cases
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when � is the multitopic set �[π] , for various examples of the multitope π . We will state

additional data which determine these substitution operations.

First, some examples for the case �=� . R , S , T are now multitopes, and we write the

corresponding Greek letters for them ( � �:���� is the identity).

⋅���� ���� � ��We let n=2 . Let σ be the 2-dimensional multitope �� � �� .	 
 �⋅ ��������������� ⋅

Then θ is ⋅ ������������ ⋅

x⋅��������� ⋅
 �� �If ρ is � � � , with the face x as indicated, then ρ[σ/x] is� 
 �� �
⋅��������������������� ⋅

.��� ���� ���� ��	 �⋅ ⋅
 �� � �� 
 �� �� �
⋅����������������������������� ⋅

If ρ is

x⋅��������� ⋅ x⋅��������� ⋅
 � ��� � 
 �� ��� � � �� �� � � � �� �� � � ������ � 
 �� �� 
 � � ��� ⋅ ������������������� ⋅⋅ �������������������� ⋅

then ρ[σ/x] is
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⋅���� ���� ���� ��� �⋅ 	 
 ⋅� 
�
� � �� 
�
� �� 
�
� �� 
�
� � ����
� � � ⋅�⋅����������������������������� ⋅ ��� ���� ���� ��� � ��� ⋅ ⋅�� � ��� � � �� � � �� �� �
⋅����������������������������� ⋅

(in the last two diagrams, we gave two-dimensional renderings of three-dimensional objects;

there are inevitable repetitions; all zero-dimensional faces, and all but one one-dimensional

face, are drawn twice.)

Let now σ be the empty-domain 2-multitope

��a�
X�����Xx

xNow, θ is X�����X’ (whereas the two X's in σ denote the same face, in θ , X and X’

denote different faces). For ρ being

xX���������X’ xX���������X’� � ��� � � �� ��� � � �� �� � � � �� �� � � ������ � � �� �� � � � ��� U ������������������� ⋅U �������������������� ⋅

ρ[σ/x] is

X� X� � � � �� � � � ����� � � � � �� � � � ������ � � �� � � �
U �������������� ⋅ U ����������� ⋅

We return to the general case of � and S as given above, and proceed to give the

35



requirements on d-type substitution (1).

Let �S� denote the set of all arrows in El(�) whose domain is S . We write S� for the

set �S�-{id } , and S� for �S�-{id ,c } .S S S

R
Let R be a cell of � , x� a d-type T-shaped face of R .

T

The faces of R[S/x] are in three classes F , F and F given below; F and F are1 2 3 1 2
not disjoint, but their overlap will also be clarified; F is disjoint from F and F . We3 1 2
have

�F = {p:R[S/x]��K : p∈S�} ;1 p

�the correspondence p��p is a bijection between the p's as described and the elements of

F .1

R��	q� �
Let R� denote the set of all arrows q:R��K such that there is no y with x� � K ;x � ��� �
� yT
that is, q∈R� iff (intuitively speaking) the q-face of ρ does not contain x ; the elementsx
of R� are called x-free faces. For the second class F , we have thatx 2

�F = {q:R[S/x]��K : q∈R� } ;2 q x

�however, the correspondence q��q is not always a bijection. Finally,

F = {f[S]:R[S/x]���U[S/y] : f:(R, x)��(U, y) } .3

In other words, we have a mapping f��f[S] of arrows in El(�)//T with domain

(R, x) to certain faces of R[S/x] ; when the codomain of f is (U, y) , the shape of the

face is U[S/y] . Note that an arrow f:(R, x)��(U, y) is the same thing as a face

f:R��U of R which "contains" the face x .
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The identification of elements in F and F is described as follows. We have the diagram1 2
of sets

* S�� �c ��� �� ( )S�� ���� ��� 	T�� � �
�R[S/x]��� ���� �� 
* �� � (-)x 	R�x

and in fact, when we take the pushout Q shown in the next diagram, the resulting canonical

function Q����R[S/x]� in the diagram

* S�� ���� �c ��� �� ���� ( )S�� �� ������ �� � ��� 	T�� � �
 Q���������R[S/x]��� �� ��� �� � ���� �* �� � ���� 
x 	R� ���� ( )x

is 1-1 . In particular, if

R S� c �� S��x �� � �  ! "�  � T ��  q �r p� �  ,#$ %
K

& � � � & 
then q = p . We should add that r�p=(r�p) , and r�q=(r�q) , every time

p∈S� , q∈R� and the composites r�p , r�q make sense. Finally, we have that, for allx
relevant parameters,
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�K �� p �� � � �p � � p� � �� �� �f[S] �R[S/x] �������������	 U[S/x]� 
� �� �� � �� � � �r � � q� 

Kq

provided q�f=r .

Let us summarize substitution in a more functorial manner. For the present purpose, it is good

to use formal contexts; see section 1.

We fix S and T=cS as before. In the first place, substitution is a functor

Σ : El(�)//T������	El(�)S
(R, x) R[S/x]
� ��f ������	 �f[S]� �

(U, y) U[S/y]

Next, recall from section 1 the functor Π , associating to a concrete context in �:Mlt�	Set

� �an abstract context of El(�) . The cell S∈�(σ) gives rise (by Yoneda) to S:σ�	� ,

- ι � -and, with [σ ]����	σ the inclusion of the formal context [σ ] for Mlt , we have the

composite

�� - ι � SS� ι : [σ ]����	σ����	� .

- �Π applied to the [σ ]-context S� ι in � gives what we now denote by

-[S ] : El[�]���	Set ,

an abstract context for El(�) .
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Let (R, x)∈El(�)//T . We define the formal context [R� ] for El(�) as follows. Itx
� �is a subfunctor of R , and for any K∈Ob(El(�)) , (q:R��K)∈R(K) , we have

�q∈[R� ](K) iff q∈R� . The fact that this definition indeed gives a subfunctor R isx x
expressed by the obvious circumstance that if q∈R� , then r�q∈R� . Moreover, [R� ]x x x
is a functor of (R, x)∈El(�)//T :

op El(�)[-� ]:(El(�)//T) ��Set , (2)-

Let us take a quick look at why the last assertion is true. Because of the map � �:���� , it

suffices to show the assertion for the case �=� . We want that if

(f:(ρ, x)���(τ , y))∈Mlt//θ , and (q:τ��κ)∈τ� , then (qf:ρ��κ)∈ρ� .y x
Suppose not; then we have z:κ��θ such that the outside large triangle in

f qρ ���������τ ���������κ
� �� �1 � � �2 	� � � 	� y� �y’ 	x � � � 	 z� � � 	� 
 
 	� �

θ

commutes. Define y’ by the commutativity �2 . We conclude that yf=y’f . y’=y

contradicts (q:τ��κ)∈τ� ; we have y’≠y . As we said in the last section, this cany
happen only if there is an arrow e:ρ��ε to an empty-domain multitope ε such that, in

cc cεe ε �������ρ�����ε������cε ccε ,�������dcε

we have f=c �e , and either y=d and y’=c , or y’=d and y=c . Inε cε cε cε cε
either case, since y�f=y’�f=x , we get a contradiction to x being d-type. This completes

the proof.

In the next section, we will make good use of the two-variable functor

opΛ : (El(�)//T) ×El(�)��������� Set (3)

((R, x),U) ���������[R� ](U)x
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the exponential adjunct of (2).

For each (R, x)∈El(�)//T , the operations

� �( ) =( ) : S�������R[S/x]�(R, x)

� �( ) =( ) : R� ������R[S/x]�(R, x) x

are in fact maps of abstract contexts:

� - �( ) : [S ]�����(R[S/x]) ,(R, x)

� �( ) : [R� ]�����(R[S/x]) ;(R, x) x

and both of them are natural in (R, x)∈El(�)//T :

-[_ ]�	S

�������������������op � � El(�)//T(El(�)//T) �( ) Set ,
�������������������

�( ) �ΣS

[-� ]-
�������������������op � � El(�)//T(El(�)//T) �( ) Set ,
�������������������

�( ) �ΣS

� �We write the same symbol ( ) for the exponential adjunct of ( ) :

Λ
����������������op �(El(�)//T) × El(R) � � Set .�( )

�
����������������
hom (Σ -,-)El(�) S
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This completes the general description of d-type substitution. Let's emphasize again that the

above constitutes a definition of what a d-type substitution operation (1) is, for given � and

S in � , rather than defining one specific substitution operation.

Proposition

(i) When �=� , the terminal multitopic set, for any S∈� , there is a uniquely

determined d-type substitution operation (1) in El(�) � Mlt .

(ii) Let π be a multitope, �=T[π] . Let S be any primitive π-colored

multitope: γ (S)=id . There is a uniquely determined d-type substitution operation (1) inπ π
El(�) = Mlt[π] .

(iii) Let π be a multitope, �=T[π] . Let S∈� . Let k be the dimension of the

π-color of S : for p=γ (S) , p:π��κ , k = dim(κ) . Assume that dim(S) > k .π def
There is a uniquely determined d-type substitution operation (1) in Mlt[π] with the

additional property that γ (R[S/x]) = γ (R) for all relevant pairs (R, x) .π π

Note that (iii) specializes to (i) when π is the 0-dimensional multitope.

4.2. c–Type substitution

We next turn to c-type substitution.

In contrast to d-type substitution, the c-type substitution will be used (in this paper) only in

very special circumstances. These are described as follows.

We fix π∈Mlt of dimension n≥2 . In the applications, n will always be even; however,

for the constructions we perform now, this will not be of importance. We put � = Mlt[π] .

We let P = P[π] ∈ Mlt[π] , the particular colored multitope whose underlying multitope

��P� is π , and for which the total coloring γ :�π����π� is the identity.
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We will consider the example when π is the multitope

3�2 ��� �� 4�� �6 ���� � ��� 	1 
�������������� 5 (4)7

P is then depicted by the picture

(3) �(2) ��� ��(4)�� � ���� �(6) ��� 	(1) 
������������������ (5)(7)

Here, and elsewhere, we employ the device of indicating the color of a face by putting the

name of the color (in our case, one of the numbers 1,...,7 ) in parentheses onto the cell.

Returning to the general case, it is easy to see that for any U∈� , there is a unique

* * *π-colored multitope U ∈� such that d(U )= 〈U 〉 and c(U )=U , and whose color is the

*same as that of U . (Recall, from section 2, the construction of the multitope θ out of any

*multitope θ .) We let T = (ccP) . Here, 〈ccP 〉 denotes the (n-2)-pd consisting ofdef
the single (n-2)-cell ccP . This is the same as i (ccP) for the inclusionn-2
i :C (�)
�P (�) mentioned at the beginning of section 2.n-2 n-2 n-2

In our example started above, ccP is the zero-dimensional multitope colored 5 ; and T is

(5)(5)
������(5) .

Continuing the example, let R be

x2(5)x (5)
������(5)� x1��� � �� 3�� (5) �(5) (5) ��� � 	(5) 
���������������������� (5) . (5)x4 (5)
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Then x is c-type, but x , x and x are not. When R is the shape of a 3-cell with4 1 2 3
an empty 2-pd as domain, all colored (5) , the one 1-dimensional face of R is c-type. .

Let us return to the general context. For later use, let me note the following map of abstract

contexts:

- η -[T ]���������[P ]

T P
c � �c �cT � � cP P

ccP ���������ccP
p� �p
� �
S S

El(�)#T denotes the full subcategory of El(�)/T on the objects the c-type arrows. We

have the functor

opΛ : (El(�)#T]) × El(�) ��������� Set

R (6)
(x� , U ) ������������[R� ](U)

� x
T

Here, R� is the set of all " x-free arrows" out of R ; [R� ] is the corresponding abstractx x
context; these are defined as before. The action on arrows defined in the obvious way; the

proof that this works is as in the analogous situation before.

We have a (c-type) substitution functor

#Σ : El(�)#T ������� El(�)P
(R, x) ��������� R[P#x] .
� �f� �f[P]
� �

(S, y) ��������� S[P#y]

As an illustration: when, for instance, R is as in (5), and x=x , then (given that π is (4) ,4
and �=Mlt[π] ) R[P#x] is
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(5)(5)�����(5)�(5)��� �� (5)�� ��	 
(5) � (5)�(6) ���� � ��(4)� � ��� 
 ����(3) ���� (7)� ��(2)� ��� ��	(1)

Intuitively speaking, the c-type substitution R[P#x] involves "splitting" P at the codomain

of its codomain, causing the removal of cP , and the doubling of ccP , and then putting the

resulting shape in place of the face x in R .

To explain the rest of the structure connected with c-type substitution, let us introduce a new

formal context denoted [P#] (" P-split"). [P#] , a modified ("split") version of [P] , is

described by saying the following:

-there is a monomorphism ι:[P ]���[P#] such that each component

-ι :[P ](S)���[P#](S) is a bijection except for S=cP and S=ccP ; for simplicity,S
we take ι to be the inclusion;

++ ++ -[P#](cP) = {# } for a certain element # (note that [P ](cP) = ∅ );

- + +[P#](ccP) = [P ](ccP) � {# } for another element # ;

++ +[P#](c )(# ) = # ;cP
++for any r∈(cP)� , we have [P#](r)(# )=r�c ;P

+for any s∈(ccP)� , [P#](s)(# ) = s�c �c .cP P

-For the sake of symmetry, we write # for the element c �c incP P
-[P ](ccP) ⊂ [P#](ccP) .

These facts determine [P#] up to isomorphism.

In the example, the formal context [P#] is depicted by the picture:
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(5) (5)

- +# #
� ���(4)� ��� ����(3) ���� ++ (7)� �� #(2)� ��� ���(1)

� �For each (R, x)∈El(�)#P , we have a map ( ) :[P#]�		
(R[P#x]) ,(R, x)
which, as a function of (R, x) , is natural:

�[P#]��										
op � �(El(�)#P) �( ) Set
�										
� #(-) �ΣP

On the other hand, we have

Λ�																		
op � �(El(�)#P) × El(�) �( ) Set
�																		
#hom (Σ -,-)El(�) P

� �The identification of the images of ( ) and ( ) is explained by the diagram

����� ( )[P#]� ����ι�η ��� �� ������ �� ����� �� � �� � 1-1 �[T]� � Ξ�							
(R[P#x])�� ���� �� � ������ �� ����ψ � � ����[R� ] ���� �x ( )

where ψ is (p:T�
S)�	
p�x , ι�η was introduced above in (4).
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5. Omega–dimensional universal properties

The fundamental idea of multitopic categories, borrowed from the Baez/Dolan "opetopic"

concept [B/D], is that the composite of each composable system of cells is to be defined by a

universal property. Unlike in loc.cit. however, in this paper, the universal properties in

question will be specified by uses of the concept of FOLDS equivalence (see Section 1 above).

Another difference to loc.cit. is that we work in an untruncated multitopic set, aiming at weak

ω-categories, and not just weak n-categories for finite n as in loc.cit. The finite-dimensional

notion appears as a simple truncation of the ω-dimensional notion.

Let R be a commutative ring. Classically, the tensor product A⊗B of two R-modules A , B

is defined by using a universal property: A⊗B is such that there exists a universal R-bilinear

map (A, B)���A⊗B . A⊗B is defined by making a specific choice of the particular module

A⊗B . (For the sake of the rest of the structure, a choice of a particular universal R-bilinear

map (A, B)���A⊗B is also made.) The resulting monoidal category R-Mod is, in fact, a

bicategory with a single 0-cell in which the modules are the 1-cells, and the tensor product is

the composition of 1-cells.

The fundamental difference of the present approach (already present in [B/D], and in special

cases, even in the earlier [M1]), to the classical one is that we will have composition as a

virtual (an adjective taken from [B/D]) operation. In the special case we chose for illustration,

this means that we will be content to "define" A⊗B by the described universal property,

without making specific choices of each and every A⊗B . In particular, in the bicategory

R-Mod , the result of the composition of 1-cells will be given only up to isomorphism only,

in contrast to the classical concept of "bicategory" in which all compositions (of 1-cells and

of 2-cells) are ordinary algebraic operations. It is important to realize that this procedure

makes sense only if we adopt the structure of R-bilinear maps (and preferably, even that of

k-ary R-linear maps of R-modules) as part of the structure of R-Mod .

The universal property of A⊗B is that there exists a system of bijections

≅hom(A⊗B,?)�����hom ((A, B),?) (1)bilin

for variable 1-cells ? (we continue talking about R-Mod as a bicategory). When the
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dimension is raised, and we want to define the composite A⊗B of 1-cells in a tricategory,

say, then the isomorphisms in (1) will, presumably, be replaced by equivalences of

hom-categories. And similarly for even higher dimensions, when the concept of "equivalence"

will be taken to be the corresponding higher dimensional one.

More generally than the composition of two 1-cells discussed above, we will introduce a

concept of composition of an arbitrary pasting diagram in a multitopic set. Let � be a

multitopic set, let α be a k-dimensional pasting diagram in � . We will define what it

means for a k-cell a in � to be a composite of α . The first requirement is that a be

parallel to α : da=dα , ca=cα . The main part of the definition says, at present only

allusively, that

the structure of arrows out of a (2)

is equivalent to (3)

the structure of arrows out of α . (4) .

This phrasing is intended to convey a general idea behind the special case (1) of the tensor

product above: the "structure of arrows out of a ", when a is A⊗B , is hom(A⊗B, ?) , the

totality of the hom-sets, or hom-categories, or hom-bi-categories, etc, of arrows out of A⊗B ;

the "structure of the arrows out of α ", now when α=(A, B) , is hom ((A, B), ?) .bilin
We will do two things: we will make precise the sense of the "structures" (2) and (4); and then

we will deploy the general concept of FOLDS-equivalence to make sense of "equivalent" in

(3).

We will denote structure (2) by � 〈a 〉 , structure (4) by � 〈α 〉 .

Before turning to the general definitions, we consider some examples.

In some, fixed, multitopic set � , let a be the 1-cell

aX�������Z

and α the 1-pd
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Y�f ��� �� gα : �� ���� ��� �X Z

a and α have been taken to be parallel. Until further notice, let us fix the items listed so far.

We will now explain parts of structures (2) and (4), specified by the items given so far, as well

as what an equivalence (3) would be like.

Consider, for instance, the 2-cell u in � :

aX	






�Z� 
h � 
 i� �u 
� � 
� �
U	


















�Vj

This is part of the "structure of arrows out of a ", structure (2), also denoted � 〈a 〉 . But

also, for instance, the 3-cell A :

aX	






�Z aX	






�Z� 
v ��� 
 � 
h � ��� 
 i h � 
 i� �� 
 A � �u 
� �� k �w 
 ������ � � 
� �� � � � ��� U	


















�VU 	

















�V jj

figures in structure (2).

In structure (4), there will be corresponding cells, r and B as follows:

Y�f ��� �� g�� ���� ��� �X Z� 
h � �r 
 i� � 
� 
� �
U	


























�Vj

and
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Y�f ��� �� g�� ���� ��� s �X 	 
 Z� 
�
� � �h � 
�
� � i� 
�
� �� 
�
� k w� ����
� � � Y�U�����������������������������V f ��� �� gj �� ���� ��� � ��� X Z�� � ��� h � �r � iB � � � �� �� �
U�����������������������������Vj

The kind that the element u belongs to in � 〈a 〉 will be the same as the kind element r

belongs to in � 〈α 〉 ; let us call this kind K . The same goes for A versus B ; let us call1
the common kind of A and B : K . Here we use the word "kind" in the sense used in the2
context of FOLDS: an object of the signature category, the common signature of � 〈a 〉 and

� 〈α 〉 .

But more is true. In fact, the sorts u in � 〈a 〉 and r in � 〈a 〉 belong to are also the

same. Remember that sorts are dependent sorts; a sort headed by a kind depends on an array

of variables that is indexed by the arity of the kind, the non-identity arrows out of the kind.

We note, first of all, that the new signature will extend Mlt , the signature consisting of

multitopes; the elements U, X, Z, V, h, i, j , the common faces of u and r , will appear

in both � 〈a 〉 and � 〈α 〉 sorted as in � . Now, the elements u and r both will be of the

sort

K (U, X, Z, V, h, i, j) ,1

albeit in different structures. In other words, the contexts for both u and r in the new

structures will consist of the elements U, X, Z, V, h, i, j .

We see that the main act of making the element u of � an element of the � 〈a 〉 is to

remove the dependence on the item a ; for r , we remove f, Y, g ; by these removals, the

points of references of u and r became the same, and so, u and r will relatable in a

(FOLDS-)equivalence. Of course, the removed items: a, f, Y, g are constant for � 〈a 〉 and

� 〈α 〉 , so there is no logical need for referring to them as values of variables.

Let us turn to the sortings of A and B . In � 〈a 〉 , A will belong to the sort
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K (U, X, Z, V; h, i, j, k; u, v, w) ,2

while in � 〈α 〉 , B belongs to

K (U, X, Z, V; h, i, j, k; r, s, w) .2

These are not the "same" sorts; they differ in two places: at u vs r and v vs s . Note that

p qthere will be two particular arrows K �����K and K �����K’ ( K was mentioned2 1 2 1 1
above; K’ is another new kind, corresponding to the shape of v and s ) in the new1
signature; p "picks out" u ( (� 〈a 〉)(p)(A)=u ) , respectively r ; and q picks out v ,

respectively s .

A and B may be related by the equivalence (3) that we will have between � 〈a 〉 and

� 〈α 〉 . In the first place, the equivalence will simply be the identity on the old part Mlt of

the new signature; thus, denoting equivalence (3) by E ,

E : (� 〈a 〉 ; U, X, Z, V; h, i, j, k) � (� 〈α 〉 ; U, X, Z, V; h, i, j, k) .

� �Let us abbreviate the tuple (U, X, Z, V; h, i, j) by j , and (U, X, Z; h, k) by k . Since

� �E : (� 〈a 〉 , j) � (� 〈α 〉 , j) ,

if

�u∈� 〈a 〉(K )(j) , (5)1

then there is at least one

�r∈� 〈α 〉(K )(j) (6)1

such that

� �E : (� 〈a 〉 ; j, u) � (� 〈α 〉 ; j, r) , (7)
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and vice versa. Moreover, if

�v∈� 〈a 〉(K )(k) , (8)1

then there is at least one

�s∈� 〈α 〉(K )(k) (9)1

such that

� �E : (� 〈a 〉 ; k, v) � (� 〈α 〉 ; k, s) . (10)

Assume (5) to (10). Abbreviate (U, X, Z, V; h, i, j, k; u, v, w) , the context for A , by

� �v , and (U, X, Z, V; h, i, j, k; r, s, w) , the context for B , by s . What we have

assumed amounts to

� �E : (� 〈a 〉 , v) � (� 〈α 〉 , s) .

Therefore, if A is as we had it above, then there is B as above such that

� �E : (� 〈a 〉 ; v, A) � (� 〈α 〉 ; s, B) ,

and vice versa. This is what we meant by saying that A may be related to B in the

equivalence (3).

The above examples were intended to give an idea of the workings of the items (2), (3) and

(4) in a special case. Now we turn to the general case.

The first step is to specify the common (FOLDS-)signature of the structures (2) and (4). The

said signature will be defined on the basis of the shape θ of the cell a .

Let θ be a multitope. Fix θ . Let us write k for dim(θ)+1 ; thus, k≥1 . The first
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interesting example to bear in mind is when k=2 , and θ is the shape ⋅�� ⋅ , the unique

1-dimensional multitope). We will define the new (FOLDS-)signature Mlt 〈 θ 〉 .

We will apply a general construction that may be called the "bipartite graph" construction, to

the two-variable functor

opΛ : (Mlt//θ) × Mlt�������Set (10')

we introduced in the last section.

Here is the general, and well-known, construction. Let

opΛ : A × B ��������� Set

be an arbitrary two-variable, Set-valued functor. We define the category 〈Λ 〉 by the

clauses that follow; A , A’ denote objects of A ; B , B’ those of B .

Ob( 〈Λ 〉) = Ob(A) � Ob(B) ;def
hom (A, A’) = hom (A, A’) ;〈Λ 〉 def A
hom (B, B’) = hom (B, B’) ;〈Λ 〉 def B
hom (A, B) = Λ(A, B) ;〈Λ 〉 def
hom (B, A) = ∅ ;〈Λ 〉 def
the inclusions A�� 〈Λ 〉 , B�� 〈Λ 〉 are (full and faithful) functors;

a ffor A’���A���B [ f∈Λ(A, B) ], f�a = Λ(a, B)(f) : A’���B ;def
f bfor A���B���B’ , b�f = Λ(A, b)(f) : A���B’ .def

This defines a category. The main case of the associative law is when

a f bA’���A���B���B’ ; b(fa) = (bf)a ; it follows from Λ being a functor.

We have the cospan of full-and-faithful inclusions

a bA������� 〈Λ 〉�������B . (11)

Every time we have a cospan
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d eA�������C�������B (12)

of functors, we have the induced functor

opΦ[d,e] = hom (d(-),e(-)):A × B ������� Set .C

In the case of the cospan (11), Φ[a,b] is isomorphic to the original Λ ; we have

≅λ : Λ �������Φ[a, b] . (13)

Λ(A, B)
�(A, B)������ �id��

hom(aA, bB)

〈Λ 〉 has a useful universal property, as follows. Suppose c: 〈Λ 〉��C is a functor. Then, by

composition, from (11), we get (12):

d = ca , e =cb . (14)

Note that we have the induced natural transformation "apply-c ":

�c : hom (a-, b-)�����hom (d-, e-)〈Λ 〉 C fhom(aA, bB) aA������bB�(A, B) ��������� � �� �� �
hom(dA, eB) dA������eBc(f)

�From λ in (13), we get, by composition with c , the natural transformation

δ:Λ�����Φ[d,e] :

δΛ��������������������������������� hom (d-,e-)�	 
�� C�	 
��	 � 
� (15)λ �	 
� ⋅�
 � chom (a-,b-)〈Λ 〉
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opNow, for the given Λ:A ×B���Set , the universal property of the data

a b(A����� 〈Λ 〉�����B , λ:Λ��Φ[a,b])

is as follows. For any

d e(A�����C�����B , δ:Λ��Φ[d,e]) ,

we have that, conversely to the above, there is a unique c: 〈Λ 〉���C such that (14) and (15)

hold. In fact, there is a (straightforward) additional two-dimensional aspect of the full universal

property; but we will not need it.

As we promised, we define Mlt 〈 θ 〉 to be 〈Λ 〉 , for the particular functor (10').

Next, let σ be a multitope, dim(σ)=k ≥ 1 , and let θ=cσ , the shape of the

codomain-face of σ . Let � be a multitopic set, let α be a (k-1)-pd of the shape σ in

� , a a (k-1)-cell of shape θ in � , and assume that α and a are parallel. We will

define "structure (4)" and "structure (2)", both Mlt 〈 θ 〉-structures. The first of these

structures we denote by � 〈a 〉 , the second by � 〈α 〉 . We will use the universal property of

〈Λ 〉 given above. To connect to the notation above, we let (11) abbreviate

incl inclMlt//θ������� 〈Λ 〉�������Mlt ;

and set C = Set .

The definition of � 〈a 〉 is the simpler one of the two. Letting Ψ:A=Mlt//θ��Mlt be the

forgetful functor, we have the functors in

��Ψ
��������������� �A ϕ ��a� Set

	 	
��������������

��(θ)�
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the lower one being the constant functor with value the set �(θ) . The natural

transformation ϕ is defined thus. At (ρ, x)∈A , its component ϕ : �(ρ)����(θ)(ρ, x)
is ϕ = �(x):�(ρ)���(θ) ; ϕ is clearly natural. �a� is the constant natural(ρ, x)
transformation, with value the element a∈�(θ) . In the category Hom(A,Set) , we take

the equalizer of the arrows

ϕε ���������d���������Ψ ��(θ)�
���������

�a�

On the other hand, for e:B���C we take e=�:Mlt��Set . Finally, for

δ:Λ��Φ[d, e] , we define the component

δ :[ρ� ](τ)���hom(d((ρ, x)), �(τ))((ρ, x); τ) x

to be the function q����(q)�ε .(ρ, x)

The functor c=� 〈a 〉:Mlt 〈 θ 〉���Set is defined by the relations (14) and (15).

Perhaps it is not superfluous to describe � 〈a 〉 directly. On the full subcategory Mlt of

Mlt 〈 θ 〉 , � 〈a 〉 is the same as � . For (ρ, x)∈Mlt//θ ,

� 〈a 〉((ρ, x)) = {u∈�(ρ) : �(x)(u) = a } ;

in other words, the elements of kind (ρ, x) in � 〈a 〉 are those cells of shape ρ in �

qwhose x-face is equal to a . For (ρ, x)∈Mlt//θ , τ∈Mlt , and (ρ, x)���τ , an arrow

in Mlt 〈 θ 〉 ,

� 〈a 〉(q)(u) = �(q)(u) ;

and for f:(ρ, x)���(τ , y) ∈ Arr(Mlt//θ) ,

� 〈a 〉(f)(u) = �(f)(u) .
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We make another application of the universal property of 〈Λ 〉 to define c = � 〈α 〉 . We

define e , as before, to be e=� . For d , we invoke substitution. Let (ρ, x)∈A . We have

the maps of formal contexts

�( )- (ρ, x) �[σ ]�������������(ρ[σ/x]) .

Taking hom (-,�) on this, we get a mapFun

-ψ : �(ρ[σ/x])�������[σ ] .(ρ, x)

This is the component at (ρ, x) of a natural transformation ψ in

��Σσ
��������������� �A ψ ��α� Set .

� �
��������������-

��[σ ]�

d:A��C is defined as the equalizer

ψε ��������� -d���������Σ ��[σ ]� .σ���������
�α�

Finally, we define δ:Λ��Φ[d, e] to be the composite

	 �( ) � (-)�εΛ������hom (Σ -,-)�����hom (��Σ -,�-)�������hom(d-,e-) .Mlt σ Set σ

In concrete terms, we have this. � 〈α 〉:Mlt 〈 θ 〉��Set agrees with � on Mlt . For

(ρ, x)∈Mlt//θ ,

�
� 〈α 〉((ρ, x)) = {t∈�(ρ[σ�x]) : t^p=α(p) for all p∈σ�} .

For f:(ρ, x)���(τ , y) , and t∈� 〈α 〉((ρ, x)) ,

� 〈α 〉(f)(t) = �(f[σ])(t) .
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For q:(ρ, x)���τ ∈ Arr(Mlt 〈 θ 〉) , and t as before,

�
� 〈α 〉(q)(t) = �(q)(t) .

Note that the restrictions of M=� 〈a 〉 and N=� 〈α 〉 to the subcategory Mlt of Mlt 〈 θ 〉
are both equal to � . An equivalence (P, μ.ν) : M � N is said to extend the identity on

Mlt if its restriction to Mlt is equal to (�,id ,id ) : � � � .
� �

We are ready for the first main definition.

Definition. A multitopic ω-category is a multitopic set � satisfying the following condition.

For every multitope σ , and every σ-shaped pasting diagram α in � , there is at

least one cell a parallel to α such that, for θ=cσ , the Mlt 〈 θ 〉 -structures � 〈a 〉 and

� 〈α 〉 are Mlt 〈 θ 〉 -equivalent by an equivalence span that extends the identity on Mlt .

The cell a as in the condition in the definition is said to be a composite of α ; composites

are not uniquely determined. An equivalence span E:� 〈a 〉�� 〈α 〉 extending the identity on

Mlt is said to be an equipment for a as a composite of α .

Assume that � is a multitopic ω-category. Let a be any cell in � of shape θ ;

dim(a)=k . A particular application of the definition of "multitopic ω-category" is that the

empty k-pd β on a (see section 2) has at least one composite. Such a composite, a k-cell,

is what we call an identity arrow on a . We denote it by id :a��a . However, we have toa
remember that, due to the virtual character of all operations in multitopic categories, id isa
not uniquely determined. The best way of looking at the idea of "identity arrow" is the same as

we look at any concept determined by a universal property. Consider, for instance, "the"

product X×Y of two objects X , Y in a category. The "full determination" of the product

includes the projections. In our case, the full determination of "the" identity arrow

57



id :a��a is an arrow as shown plus the equipment making the arrow an identity arrow: thea
equivalence-span E:� 〈id 〉 � � 〈 β 〉 extending the identity on Mlt .a

Let us return to the case of a general pd α as in the definition, and let a be a composite of

α ; α is a pd of shape σ , a is a cell of shape θ=cσ . Suppose E:� 〈a 〉 � � 〈α 〉 is an

equipment for a being a composite of α . Now, consider (any instance of) the identity arrow

id :a��a on a . We may, and do, regard id to be an element in � 〈a 〉 of the kinda a

*K = (θ , d ) ∈Mlt//θ ⊂ Mlt 〈 θ 〉 .def *θ

�The K-context a for id in � 〈a 〉 consists of ( a and) the faces of a , all cells of kindsa
in the "old" part Mlt in the signature Mlt 〈 θ 〉 . By definition, we have some

�u∈� 〈α 〉(K)(a) for which

� �E : (� 〈a 〉 , a, id ) � (� 〈α 〉 , a, u) (11)a

Note that, as an element of � , u is a (k+1)-cell u:α��a of shape equal to σ .

We define an arrow u:α��a to be universal if it is obtained in the way described: that is, if

there exists an equipment E for (11).

A concept of "universal cell" is the basis for the definition of the opetopic weak n-category,

for a finite n , in [B/D]. To establish the connection, I make some further definitions.

Let me say that a multitopic set � is n-truncated if for every k≥n+1 , every time we have

in � a parallel pair (α, a) of a k-pd α and a k-cell a , there is at least one (k+1)-cell

b such that db=α , cb=a . In brief, all ≥n+2-cells that may exist do exist. It is immediate

to see that an n-truncated multitopic set � is determined, up to Mlt-equivalence, by its

restriction to Mlt�(n+1) , the full subcategory of Mlt consisting of the multitopes of

dimensions ≤(n+1) . I define a multitopic n-category to be a multitopic ω-category which

is, at the same time, an n-truncated multitopic set, and, moreover, all (n+1)-cells are

universal.
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It is possible to "normalize" multitopic n-categories, that is, to find, for each multitopic

!n-category � , another one, � , which is Mlt-equivalent to � (and hence, shares all the

"essential" properties with � ), and which has some additional desirable properties; namely,

!
� satisfies the following:

(i) k-hom-sets, for k≥n+1 , are 0-1 valued: for any (k-1)-pd α and n-cell a ,

there is at most one k-cell b:α��a ;

(ii) the composition of n-pd's is single valued: for every n-pd α , the composite of

α is uniquely determined (and in fact, the equipment for the composition of α is also

uniquely determined).

It is possible to define "multitopic n-category", equivalently to the definition given above, in a

way that closely parallels the definition of "opetopic n-category" in [B/D]. One defines a

concept of "universal cell", by "backward" recursion, declaring all (n+2)-cells to be

universal, and by proceeding recursively to determine when lower dimensional cells are

recursive. Finally, one postulates the axiom that for k≤n , and every k-pd α , there are (at

least one) k-cell and a universal (k+1)-cell u:α��a . (With the appropriate definition of

"universal", the property, postulated as an axiom [B/D], that the composite of universal cells is

universal, becomes provable.)

The concept of "multitopic n-category" is first order definable; in fact, it is naturally

formulated in FOLDS over Mlt�(n+1) ; in particular, it is invariant under

Mlt�(n+1)-equivalence. However, the concept of multitopic ω-category does not seem to be

first order definable, although it is invariant under Mlt-equivalence.
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6. The transfors

Having defined what the 0-cells of the (large) multitopic set MltωCat are, we now

complete the definition of MltωCat , by describing what its cells, the transfors, in general

are.

For any given multitope π , the cells of MltωCat of shape π , the elements of

MltωCat(π) , are called the π-transfors.

A π-transfor is, by definition, a π-colored multitopic set, required to satisfy certain

conditions.

Recall that for any p:π��κ in Mlt , we have the induced map

�p=Mlt[p]:Mlt[κ]��Mlt[π] . Thus, if � is a π-colored multitopic set,

��:Mlt[π]��Set , we can look at its p-restriction ��p = ��p , a κ-colored multitopicdef
set. The definition of " � is a π-transfor" will be recursive in the sense that part of the

condition will be that for each p∈π� (thus, K is of lower dimension than π ), ��p be ap
K -transfor.p

The conditions on a π-colored multitopic set to be a π-transfor will, again, all be of the form

that certain entities, satisfying certain universal properties, should exist in � . The conditions

fall into two classes. One involves π-colored multitopes of dimensions k greater than n ;

the conditions in this class are straightforward generalizations of the ones we saw before. The

other class pertains to dimensions k at most n . The conditions for k<n are simply

inherited by the recursion. For k=n , the new condition is of an interesting alternating

character: it has two distinct forms depending on whether n is odd or even.

We now give some technical definitions, to be assembled later in the final definition.

A π-colored multitopic set is, as we know, a Set-valued functor on Mlt[π] . We now

generalize concepts we had for multitopic sets to colored multitopic sets.

Let � be a π-colored multitopic set, R∈�[π](ρ) . We call an element a∈�(R) an
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R-cell in � . For p:R��U , the p-face of a∈�(R) is a^p = �(p)(a) .def

-Recall the formal context [R ] for the signature Mlt[π]=El(�[π]) from section 4

- - -(now, �=�[π] ). We write �[R ] for hom([R ], �) . An element β∈�[R ] is what

we may regard a π-colored pasting diagram of type R (an R-pd, for short). The domain da

�- incl � a �of a cell a∈�(R} is defined to be the composite [R ]������R���� , where a is

defined as in the analogous case in section 2; da is an R-pd.

- -Analogously to the uncolored case, we have the arrow ι:[(cR) ]���[R ] determined by

the commutativity of the diagram

- incl �[R ]����� R

� � *ι� � �(c )� � R
- �[(cR) ]����(cR) .

incl

-Generalizing the uncolored case, we define, for an R-pd β∈�[R ] , the domain dβ of β
as the composite

- ι - βdβ : [(cR) ]�����[R ]���� .

Thus, the domain of an R-pd is defined to be a (cR)-pd.

*It was mentioned in section 4 that for any R in �[π] , we have a specific R ∈�[π] such

* * *that d(R )= 〈R 〉 , c(R )=R and γ (R )=γ (R) . Any colored cell a∈�(R) givesπ π
*rise to an R -pd 〈a 〉 for which 〈a 〉 (c )=a . It is then the case that d 〈a 〉=da .R *R

-We define the codomain cβ of β∈�[R ] as cβ=β (c �c ) . When β= 〈a 〉 withccR cR R
a∈�(R) , we obtain that cβ=a^c = ca .R def

Let us write C , P for the setsk k
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C = � �(R) ,k R∈C (Mlt[π])k

-P = � �[R ] .k R∈P (Mlt[π])k

With these definitions, we have, analogously to the uncolored case, the items in the following

diagram of sets and functions:

d d dP ��������P ��������P ... P ��������P ...0� � 1� � 2 k� � k+1�d � �d � �d �� � � � � � � � � � �� � � � � � � �i� c� � i� c� � i� i� c� � i�� � � � � � � � � � �� 	 � � 	 � � � 	 � �
 
 
C ��������C ��������C ... C ��������C ...;0 c 1 c 2 k c k+1

and, as before, we have that the diagram

d dP ������� P ��������Pk-1� � k � k+1�d � �� � �� �c� � c�� � �	 � 	
C ��������Ck-1 c k

commutes for each k≥1 ; that is, dd=dc , cd=cc .

We generalize the concepts of "composite", "identity arrow", and "universal arrow" seen in

section 5 for the uncolored context.

Let us fix a multitope π , write n=dim(π) , and consider � = �[π] ; then

Mlt[π] = El(�) is the signature for π-colored multitopic sets. Assume we have a cell S

in � and a d-type substitution operation (R, x)���R[S/x] as in defined in section 4.

(Examples are provided by the Proposition in 4.1.). As before, T = cS . We have the functordef
Λ given at (3) in section 4. We construct the category 〈Λ 〉 according to the general
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prescription given in section 5 before (11); the signature Mlt[π] 〈T 〉 is defined to be 〈Λ 〉 .

Let S be a π-colored multitopic set. Fix the cell a∈�(T) and the pd

- -α∈�[S ] ( = hom([S ], �) ) such that a and α are parallel: da=dα , ca=cα .def
We define the Mlt[π] 〈T 〉 -structures � 〈a 〉 and � 〈α 〉 exactly as in the uncolored context

in section 5. We say that a is an S-composite of α if there is an equivalence-span

E:� 〈a 〉�� 〈α 〉 extending the identity on � (that is, the restriction to � of E is

(�,id ,id ) ).� �

Next, we define identity arrows on arbitrary colored cells.

Let U∈�[π] . Put θ=�U� , the underlying multitope of U . Let k=dim(U)=dim(θ) . In

* *section 2, we constructed the (k+1)-dimensional multitope θ such that dθ = 〈 θ 〉 and

* + + * +cθ =θ , and the (k+2)-dimensional multitope θ such that cθ =θ and dθ is

"empty" (has no (k+1)-dimensional cell in it). Returning to U , we have a unique

+ + + + + *U ∈�[π] such that �U �=θ and γ (U )=γ (U) ; we have c(U )=U ,π π
+dim(U )=k+2 .

+ +d-type U -substitution: (R, x)��R[U /x] is well-defined in Mlt[π] , according to 4.1

Proposition, part (iii), since

+ +dim(U ) = k+2 > k= dim(U) ≥ dim(cod(γ (U)) = dim(cod(γ (U )) .π π

For a π-colored multitopic set � and a cell a∈�(R) , we have the particular π-colored pd

+ -β=β[a]∈�[(R ) ] ("with empty domain") determined by the condition that

+β (c �c )=a . An identity arrow on a is any R -composite of β[a] . If i is anR * +R R
identity arrow on a , then i is of the form i: 〈a 〉��a .

By the notation id , we refer, ambiguously, to any identity arrow on a ; of course, it maya
not exist.
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We define when a cell in a colored multitopic set is d-universal.

Let S∈�[π] , �∈Mlt[π]Set , u∈�(S) . Let us write α = du and a = cu .def def

First, assume that S is primitive. By 4.1 Proposition, part (ii) , S-substitution

(R, x)��R[S/x] is now well-defined in Mlt[π] .

u is d-universal if id exists, a is an S-composite of α , and in fact there exists ana
equivalence-span E witnessing the last fact in which u is related to id :a

E : (� 〈a 〉,id ) � (� 〈α 〉 , u) .a

Next, consider a general S .

Let γ (S)=(p:π��κ) . We have the functor Mlt[p]:Mlt[κ]���Mlt[π] . We writeπ
�

��p = ��Mlt[p] . ��p is a κ-colored multitopic set. S , the root of S , is a primitivedef
� Mlt[p] �cell in �[κ] such that S����������S ; see section 3. We have that u∈(��p)(S) ; u

� �lives as a type-S-cell in � ; moreover, S is primitive. We say that u is d-universal in � if

it is d-universal in ��p .

Along with the "left-adjoint type" universal construction of the composite of a pd, we also

need a "right-adjoint type" universal construction, a form of right lifting, or right Kan

extension. We use the items of the c-type substitution introduced in section 4. As in section 4,

*we put P=P[π] and T=(ccP) . We have the functor

opΛ : (Mlt[π]#T) ×Mlt[π]���������Set

R
�(x� , U) ���������[R� ](U)
� x
T

as constructed in section 4.2 at (6). We define the category 〈Λ 〉 by the general

"bipartite-graph" construction explained in section 5. 〈Λ 〉 is denoted as Mlt[π]{P} ; this

is the signature needed to introduce the new ω-dimensional universal property.
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Let � be a π-colored multitopic set. In the c-type substitution, the abstract context [P#]

for Mlt[π] plays the main role. Before proceeding, we pause to explain what an element

α∈�[P#] = hom([P#], �) amounts to.def

+ ++For any α∈�[P#] , if we let α = α (# ) ∈ �(cP) , anddef cP
- - - + - +α = α�[P ] ∈ �[P ] , then d(α )=d(α ) . Conversely, given any α ∈�(cP) anddef
- - + -α ∈�[P ] , then, first of all, d(α ) and d(α ) are both arrows of the form

-[(cP) ]���� . The assertion, easily seen to be true, is that there is α∈�[P#] such that

+ ++ - - + -α =α (# ) and α =α�[P ] iff d(α )=d(α ) . Therefore, talking about ancP
+ -element α∈�[P#] is the same thing as talking about a pair (α , α ) such that

+ - - + - + -α ∈�(cP) , α ∈�[P ] and d(α )=d(α ) . In what follows, we use α , α for any

α∈�[P#] in the sense just fixed.

Now, let � be π-colored multitopic set. Let a∈�(T) and α∈�[P#] = hom([P#], �)def
be such that

- -(*) (1) α (# ) = a^dccP T
and

+(2) α ^c = a^ccP T

(both these elements belong to the set �(ccP) ).

aIn the example of π being (2) in section 4, a is a 1-cell of the form A�����B , where

each of the cells A, a, B is colored (5). α is

(5) (5)
A B
� ���(4)�g ��� ��h ��M (3) �� ;

�� (7)
� ��(2)�f ��� ��

�X(1)
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(5) (5)
A B
� ���(4)�g ��� ��- + h ��α is M (3) , and α is �� .

�� (7)
� ��(2)�f ��� ��

�X X(1) (1)

Note that a and α fit together into the diagram

(5) (5) (5)
A ������������������� Ba
� ���(4)�g ��� ��h ��M (3) ��

�� (7)
� ��(2)�f ��� ��

�X(1)

Returning to the general case, we define the Mlt[π]{P}-structures �{a} , �{α} by the

universal property of Mlt[π]{P}= 〈Λ 〉 , through some other data specified first, similarly

to what we did before. Instead of going through the full definition, we confine ourselves to

giving the clauses of the final elementary descriptions of these items (although in this way we

are not giving the reasons why these items are well-defined). As a matter of fact, these

elementary descriptions are exactly like the ones we had before for d-type substitution.

On the full subcategory Mlt[π] of Mlt{P} , �{a} and �{α} both agree with � . For

q(R, x) , (S, y) in Mlt[π]#T , U∈Mlt[π] , and for (R, x)���U ,

f(R, x)���(S, x) , arrows in Mlt[π]{P} ,

�{a}((R, x)) = {u∈�(R) : �(x)(u)=a} ,

�{a}(q)(u) = �(q)(u) ,

�{a}(f)(u) = �(f)(u) ( u∈�{a}((R, x)) )

	
�{α}((R, x)) = {t∈�(R[P#x]) : t^s=α (s) for all S∈Mlt[π] andS

s∈[P#](S) }



�{α}(q)(t) = �(p)(t) ,

�{α}(f)(t) = �(f[P])(t) ( t∈�{α}((R, x)) )
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+For a∈�(T) and α∈�[P#] satisfying (*), we say that a is a right lifting of α along

-α if there is an equivalence-span E : �{a} � �{α} extending the identity on Mlt[π] .

- - -One more piece of terminology. For α ∈�[P ] , we that α is d-universal if all

- -codimension-1 faces of α (all cells of the form α (p)∈�(K) , withK
-(p:P��K)∈[P ](κ) , and dim(K)=n-1 ) are d-universal, in the sense specified above.

We are ready to give the definition of the (large) multitopic set MltωCat .

We define the (large) set MltωCat(π) by recursion on π∈Mlt . Fix π ; let

n=dim(π) . MltωCat(π) is the class of all (small) π-colored multitopic sets �

satisfying the following conditions (i) to (iii).

(i) For all p:π��κ ≠ id , ��p = ��Mlt[p] belongs toπ def
MltωCat(κ) ;

(ii) For all S∈Mlt[π] such that, for p=γ (S) , p:π��κ ,π
-k=dim(κ) , we have dim(S)>k , every pd α∈�[S ] has at least one S-composite in �

[the notion of composite refers to the substitution operation in 4.1 Proposition (iii)];

- -(iii) (a) if n is odd, then for P=P[π] , every α ∈�[P ] has at least

one P-composite in � ;

(b) if n is even and positive, then for P=P[π] , and

* - +T=(ccP) , for every α∈�(P#) such that α is d-universal, α has a right lifting along

-α .

Having defined the action of

MltωCat : Mlt������SET
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on objects, for an arrow p:π��κ in Mlt , we define

MltωCat(p)(π) = 〈�∈MltωCat[π] �����p∈MltωCat[κ] 〉

Theorem MltωCat is a (large) multitopic ω-category.
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