
Introduction

The papers [H/M/P] and [M8] describe a concept of "weak higher dimensional category", the

multitopic categories and their structural environment (their morphisms, and higher

"transfors".) The concept is based on multitopic sets.

The category of small multitopic sets is denoted by mltSet .

The "multitopic" concepts were inspired, in the first place, by J. Baez's and J. Dolan's

"opetopic" notions [BD1], [BD2]. The multitopic end-product as it appears in the papers cited

above is independent of, and different from, its opetopic counterpart.

The present paper makes a connection between multitopic sets and Ross Street's fundamental

concept of computad; see [S1], [S2], [B2].

The main assertion of the present paper is that "multitopic set" can be given a short and

conceptually simple definition as "many-to-one computad".

A computad is a structure based on a set (call it S ) of symbols, each of which is designated

to be a cell of a definite dimension 0, 1, 2, ... in an ω-category. The structure of the

computad records how the elements of S "fit together". It specifies, for each n>0 and for

each n-cell a∈S what the domain da and the codomain ca of a are; here, da and ca

are elements of the (n-1)-category freely generated by the ≤(n-1)-cells in S .

The precise definition of "computad" is given in section 6 in a way that slightly, and only

inessentially, differs from the cited sources. We define computads as ω-categories with certain

properties; that is, according to our definition, it makes sense to ask, of any given ω-category,

whether or not it is a computad. Moreover, any ω-category isomorphic to a computad is itself

a computad.

A computad is an ω-category freely generated by certain cells called indeterminates. It turns

out the indeterminates can be identified in the computad as an ω-category as the so-called

indecomposable elements; see section 6.

The notions of " ω-category" and " n-category" we use is the ones usually called "strict
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ω-category" and "strict n-category", respectively. We use the formulations given on page 8 of

[Le]. Every ω-category has a n-truncation for all n∈� , and every n-category may be

regarded as an ω-category in which every ≥(n+1)-cell is an identity.

A morphism of ω-categories is one that preserves the ω-category structure strictly ("strict

ω-functor" in loc.cit.).

ωCat denotes the category of all small ω-categories.

A morphism of computads is an ω-category morphism that maps every indeterminate in its

domain into an indeterminate in its codomain.

The category of all small computads is denoted by Comp .

A many-to-one computad is one in which the codomain of every indeterminate of positive

dimension is again an indeterminate. Comp denotes the category of many-to-onem/1
computads, the full subcategory of Comp whose objects are the many-to-one computads.

A(n ordinary) functor F:X��A is said to be full on isomorphisms if for any objects

≅X, Y∈Ob(X) and any isomorphism j:FX���FY in A , there is a morphism (not necessarily

≅an isomorphism) i:X���Y in X such that Fi=j .

Assume that F:X��A is full on isomorphisms.

The following definition gives a category M , in fact a subcategory of A . Ob(M) is a

subclass of Ob(A) ; A∈Ob(A) belongs to Ob(M) iff there is X∈Ob(X) such that

A ≅ FX . For A, B∈Ob(M) , hom (A, B) is a subset of hom (A, B) ; f∈hom (A, B)M A A
ubelongs to hom (A, B) iff there are X���Y∈Arr(X) and a commutative diagramM

iA�������FX≅� �f� � �Fu� �
� �≅B�������FYj

in A . Indeed, as a consequence of F being full on isomorphisms, f∈hom (A, B) andM

4



g∈hom (B, C) imply that gf∈hom (A, C) ; and if A∈Ob(M) , then id ∈hom (A, A) .M M A M

M just described is called the essential image of F , and it is denoted by EssIm(F) . We

have a factorization

FX������������������A
� �
� �
� � �G � � H
� �

EssIm(F)

where G is essentially surjective on objects and full, and H is a not necessarily full, but

replete, inclusion.

If, in addition, F is faithful, then G is an equivalence of categories.

Our main result can be put in this way.

Theorem There is a pair of adjoint functors

〈- 〉
���������mltSet ωCat 〈- 〉 � [-]
��������	

[-]

such that 〈- 〉 is faithful and full on isomorphisms, and the essential image of 〈- 〉 is

identical to the Comp .m/1

As a consequence,

Corollary 1 mltSet � Comp .m/1

For an ω-category X∈ωCat , [X] , the result of the functor [-] applied to X , is called

the multitopic nerve of X . For R∈mltSet , 〈R 〉 is the free ω-category generated by the

multitopic set R .
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Let us note that Corollary 1 contains the essence of the Theorem. This is because it is fairly

immediate that the inclusion

〈- 〉:Comp �������ωCatm/1

(which would be called the "free functor" by R. Street) has a right adjoint

[-]:ωCat�������Comp .m/1

Thus, by Corollary 1 identifying Comp with mltSet , we recapture them/1
"free-ω-category versus multitopic-nerve" adjunction of the theorem.

On the other hand, the proof of Corollary 1 given in this paper is completely tied up with the

details of the adjunction of the theorem. It remains to be seen if a proof of Corollary 1 can be

given without going through the setting up of an explicit adjunction as in the theorem.

In [H/M/P3], it is proved that mltSet is a presheaf category. In fact, it is proved that there

is a category Mlt , the category of multitopes, for which

opMltmltSet � Set (1)

[we write here Mlt for the opposite of the category we called Mlt in [H/M/P3]], and

which, in addition, has the following properties: each hom-set hom (A, A) is a singletonMlt
(there are no nontrivial endomorphisms), and, assuming (as we of course may) that Mlt is

skeletal, each slice-category Mlt/A is finite. Such categories are called FOLDS-signatures in

[M8], [M7] (FOLDS is an abbreviation for "First Order Logic with Dependent Sorts").

As a consequence, each object A of Mlt has a finite dimension: dim(A) is the least n∈�
such that for all B��A with B≠A , dim(B)<n .

opA presheaf X:C ��Set over a FOLDS-signature C may be regarded as an (abstract)

geometrical object given by a face-structure, without any degeneracies. The faces of a "cell"

a∈X(A) with A∈Ob(C) , dim(A)=n are in a one-to-one correspondence with, and

therefore identified with, the arrows p:B��A into the given object A . The shape of the face

p of a∈X(A) is the cell X(p)(a) ∈ X(B) . The faces, with one exception, are all of
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dimensions less than n . The face structure of a given cell a∈X(A) is entirely encapsulated

by the (finite) slice-category C/A .

We have, by Corollary 1 and (1):

Corollary 2 Comp is a presheaf category. In fact, Comp is equivalent to them/1 m/1
category of presheaves over a FOLDS-signature.

In contrast, Comp is not a presheaf-category. In fact, already the category of 3-computads is

not a presheaf category. (In [C/J], Example 3.6, S. H. Schanuel's result to the effect that

2-computads (the "computads" of [S1]) form a presheaf category is explained.)

The concept of multitopic set in [H/M/P] is based on the notion of multicategory.

Multicategories were first introduced by J. Lambek [La]. The multicategories [H/M/P]

introduce an essential modification of Lambek's concept. The modified notion of multicategory

is a multicategory with abstract places, in contrast to the Lambek multicategories in which the

places are "concrete". One sign of the fact that the places are abstract is that we need

coherence commutativities for the handling of places.

Lambek style multicategories are closely related to operads, the main tool in [B/D1] and

[B/D2]. However, the connection of operads and the abstract-place multicategories is less clear

to us.

The multicategories with abstract places are an essential generalization of those with concrete

places: "essential" because the basic construction of "multicategories of function replacement"

used in [H/M/P] yields, in general, one of the generalized kind, not isomorphic to one of the

special kind.

It should be pointed out that there is no available simple "constructive" definition of the

category Mlt itself that would be independent of the development of the theory of multitopic

sets through multicategories. In fact, [H/M/P] first defines multitopic sets before defining

Mlt ; Mlt is obtained from the terminal multitopic set.
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(There is a "simple", but decidedly non-constructive, definition of Mlt based on fact (1),

obtained by the general method of characterizing, up to Cauchy completion, the image of the

op opC CYoneda functor Y:C���Set inside the category Set ; in fact, because of the

special nature of FOLDS signatures, this will be a characterization up to isomorphism.)

Multicategories are the essential tool in this paper as well, in ways that go beyond their uses in

[H/M/P]. In the construction of the multitopic nerve [X] of an ω-category X , we need a

series of new multicategories E , n∈�-{0} , attached to X . These are "new" in the sensen
that they appear over and above the multicategories that come with the various auxiliary

multitopic sets we need in the construction.

Revising the concept of multicategory

We change, in fact, generalize, the concept of "multicategory" given in [H/M/P]. However, the

change will be small: in fact, all new multicategories will be isomorphic to old ones. In fact,

the generalization is a matter of style only.

Having said that, we must say that the new, generalized, concept brings out a feature that

seems "philosophically" important, and which is not shown explicitly enough in the original

formulation. This is the fact that the concept of "place" is, in essence, something purely

abstract. For instance, places do not have to be integers (natural numbers) as they are

stipulated to be in [H/M/P]. In particular,

the (natural) order on the integers plays no role whatsoever in the concept.

In fact, upon reflection, one sees that this is the main conceptual point in the generalization

from the original Lambek notion of multicategory to the one given in [H/M/P]. In particular,

although there is some talk of "standard amalgamation" in [H/M/P], that is, Lambek

multicategory, no essential use is made of it.

[Notation 1/2 refer to section 1 in Part 2 of [H/M/P]; similarly for other such references.]
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To obtain the present version, to begin with, in 1/2, forget the initial talk about "tuples"; or

rather, to minimize changes, let "tuple of elements of O " mean a function s:�s����O

where �s� is an arbitrary finite set. Of course, the original "tuples" are still available; just

* #that there are more. Let O denote the "set" (class) of all tuples of elements in O ; and O

*the category of tuples, with object-class O , defined just as in [H/M/P] but with the new

tuples in mind.

Now, read the definition of "multicategory" (clauses (i) to (xi)) with the (slightly) changed

meanings of the terms and symbols just mentioned. Since each place in a multicategory was

originally meant to be an integer, variables such as p and q in that definition were

originally denoting integers. Fortunately, this fact is not stated in the text; therefore the

wording does not need any change! In fact, no change is needed in the first three sections,

beyond those mentioned above.

Let us note that the place-sets �s� can be changed at will to others that are in a bijective

correspondence with the original sets; when doing so the result will be another multicategory

which is isomorphic to the original one. In detail: suppose C is a multicategory, and we are

≅given, for each f∈A(C) , a set D and a bijection θ :�s(f)����D . We define thef f f
multicategory C’ as follows. We put O(C’)=O(C) , A(C’)=A(C) , t (f)=t (f)C’ C
for f∈A . Next, as the point of the thing, we define s (f) = D . We do not have to giveC’ f
any more detail, since it suffices to say that the structure of C’ is uniquely determined by the

≅stipulation that we have an isomorphism of multicategories F:C�����C’ which is the

identity on O and A , and whose transition bijections are the given

≅θ :�s (f)����D =�s (f)� . In brief, we can uniquely transport the structure of Cf C f C’
along the θ to form another multicategory structure.f

The last-stated fact contains the assertion that every multicategory in the present sense, with

arbitrary places, is isomorphic to one in the exact sense given in [H/M/P]. For this, with a

≅given "new" C one only needs to specify a bijection θ :�s(f)����D where D is off f f
the form [1, n] = {i∈�:1≤i≤n} ; since each �s(f)� was stipulated to be a finite set,

this is possible.

A notational point: henceforth, when we have a morphism F:C�����C’ of

9



F ≅ Fmulticategories, and θ :�s(f)�����s(Ff)� , we write simply F(p) for θ (p) .f f
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