Appendix D: Calculations for §7.

D1. Define the generalized DS vocabulary L,_ as the full subcategory of L

cat anabicat

on the objects of L2—cat , with relations Il , 12 , T1 , H, T2 ; it is generalized since a
non-maximal object, T

is also made into a relation. Accordingly, an L -structure is a

1 2-cat

functor from Ly _cat in which the listed relations (including T, ) are interpreted

relationally. This is the picture for Ly cat
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A 2-category-sketch (2-cat-sketch) is, by definition, a structure of type Ly gt > Maps of
2-cat-sketches are natural transformations of functors. For a 2-cat-sketch S, |S| isits

underlying 2-graph, its reduct to
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Any bicategory has an underlying 2-cat-sketch. We will look at maps S——>A, Se2-catSk
, A a bicategory.

M
—

Let S A . A transformation T:M— N is given by
>
N

@1) TX:MX%NX for each XGS(CO) ;

:NfoT —Eér oMf as in

(i1) for each (f:X%Y)eS(Cl) Te x v
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MX—— NX
Mfl Tr le
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such that

B

(a) for any X (pg Y in S,
Tr
Nfo Ty - ’L'YOMf
NqooTXl o eroMqo;
Ngo Ty T,oMg
g
(b) (f:X%Y)ES(Il) — Tf:lTX ; and
£ B\g
() for every A — > C¢ S(Tl) (note that MgMf=Mh , NgNf=Nh ),
va M yp MI e MA Mh Mc
T T _
T R
Nf Ng
NA NB NC NA NA NC
that is,
’L'ng o
(’L'CMg) Mf——— (NgTB)Mf%Ng(TBMf)
o ) lrng

M MO
Given S II‘L‘N A and ®:T— S, wehave T IIT?\)@ A for which (‘L'CD)fZ‘L'ch

for feT(Cl) .
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D2. Going back to the definition of 7ZT1 in part (B) of the proof of 7.5,
and using the notation there, that definition can be put as follows. Consider the 2-cat-sketch

SO:

B9 5 ¢
T ~ -1
a: gf—1i

and the two diagrams S A defined as

0 v

Frv—t9 . rgz B—9 > ¢
_ FgFf _ 7] 9f ~

FX : A

ba=FaF g:FgFfiFi Ya=a:gf —>1

Then 7ZT1 (g, v,m) [a, al iff x, y, z, @, y, 1 are the components of a map ¢ —>V .

D3. In what follows, we will consider the following 2-cat-sketch S and various of its parts
(subsketches):
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S(Tl) has six elements, (f, g, gf) , (gf, h, h(gf)), (i, h, hi), (g, h, hg) ,

(£, hg, h(gf)), (f, k, kf) ; the notations showing composition are purely symbolic. The
f" and " 1h "of
S(I,) and two corresponding elements of S(H) . S( I,) = . There are further 2-cells and

elements of S(Iz) and S(T

horizontal compositions cf and ha signify the presence of elements " 1

to the effect that a, b, ¢, d, @ and P are isomorphisms,

5)
and o is the composite d(cf)f (ha) 1yt

In case of a general 2-cat-sketch S, for a sketch-map M:S-—>2 and a functor F: >4 of
bicategories, the composite FM cannot be defined (think of a sketch in which a 1-cell is a
composite in two different ways); in the case of our S however, since S is sufficiently
from D2, for M: S

"free", a useful sense can be ascribed to FM . First of all, for S —4X,

F:¥Y—>A, FM is defined as ® was above: for

0 0

as M, we put FM to be

ry— 9 @z

FM = FfT/i%?é;jjifh
Fi1

FX

Fa=FaF, _:FgFf —>Fi

f,g

Now, there are four mappings of the form S, —> S, corresponding to the four items

0
a:gfii, b:hiij , c:hgik, d:kf =51 .We define, for any M:S-—>4 and
F:X—>A, FM:S—A as follows. First, we make sure that for any of the four maps
0:S,—S, (FM)o = F(Mo) . This requirement determines FM as far as its restriction to

0
the subsketch
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is concerned. But then the effect of FIM is uniquely determined on the items h (gf),
(hg) £, cf, ha . Next, we define (FM) (f) so that the following diagram commutes; we
wrote f, g, h for Mf, Mg, Mh:

Fh Ff Ff h
(FhFg)Ff— 29  sp(hg)Ff— 229 S F((hg) f)
(FM) (ﬁ)T o TF(Mﬁ)
Fh(FgFf) —= >FhF(gf) ————>F(h(gf))
f,g gf, h

Finally, the effect of FM on o in S is now uniquely determined. It is worth noting that if
MB = ar 9. b’ then (FM) (B) = Fh ( f=Mf , etc.); the reason is that F

"preserves" o (see above).

Yrf, Fg,

I claim that, for FM: S— A so defined, (FM) (a) = F(M(«) ) . This is demonstrated by the

following commutative diagram:

(FM) (o)
4
Fex
FKFf ’ F(kf)——ﬁa——éFf
(FM) (c)
2 FcFf 6 F(cf)T
Fy FE
(Fth)Ff;———LQ———>F(hg)Ff;—ﬁ—————>F((hg)f)
£, hg
(FM)(ﬁ)T 1 TF(Mﬁ) 8 F(M(x))
Fh(FgFf) —gp=—>FhF(gf) —% > F(h(gf))
f,g gf, h
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3 thFa 7 F(ha)l
(FM) (a)
] F(hi) — Fy

RN
i, h Fb

(FM) (b) 2 T

Here, the cell 1 commutes by the definition of (FM) () ; 2, 3, 4, 5 commute by the
definition of FM on the 2-cells a, b, ¢, d; 6 and 7 by the naturality of F  ;and 8
by the fact that Mo is the appropriate composite. The assertion is the commutativity of the

outside perimeter of the diagram.

D4. Let S, be the following subsketch of S:

B 9 ¢
fT gf hglh
A hg £ P

h(gf)

( S1 (t)=0 for all te L2—cat , except for t=CO , C1 , T1 ), and let 5'2 be the sketch
(subsketch of S) obtained by adding the 2-cell o:h(gf) — (hg) £ to S - Suppose we

have M, N:S,-—>A such that Mo = o and No = o Ng., Nh (associativity

2 Mf, Mg, Mh NE,
isomorphisms), and, also writing M for M I‘S1 , we have

M
s, it A (1)

Then 7 is a map with respect to 5'2 , that is,

M
S, lt A .

S
N
This fact expresses the naturality of the associativity isomorphism in a sense that is

considerably stronger than the one required in the definition of bicategory. The proof of the

assertion is contained in the diagram
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—— (h(gf)) 1 ((hg) £) T,

TR 1 ¥ (hg) £
h((gf) T,) —>h(g(£T,)) — (hg) (£T,) IV
h(gt,) ] [ (hg) 7, -
; B(g(1gf)) > (hg) (15£) > ((hg)Ty) £e 19
T
h((gty) £) (h(gTy)) £
h 1 T nt )z
h(rgf) B g
h((1.9) f) (h(7o9)) £
1 1 Ir
- h(T(gf)) — (hT.) (gf) —>h(T,(gf))
h(T .) C C C
of 7, (gf) | [ o f
(T,h) (gf) —> ((Th) @) Fe—— (T (hg)) £
T IIT
h(gf) 1 1
7, (h(gf)) 7, ((hg) f) —

in which t is written for Mt , t for Nt , for all relevant values of ¢, and all unmarked
arrows are instances of associativity isomorphisms, possibly horizontally composed with a
I-cell. The issue is the commutativity of the outside quadrangle. The four cells marked T,
IT, IIT and IV commute by the definition of 7 being a map as in (1). The
commutativity of the pentagons are the associativity coherence axioms for bicategory; the
commutativity of the small quadrangles are instances of the (ordinary) naturality of the
associativity isomorphism. Since all cells commute, the outside commutes as a consequence,

and this is what we want.

DS. Now, start with the part (subsketch) 5‘3

of S ( 5‘3 (t) =97 for all tELZ—cat , except for tzco,Cl ), and a map
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M
SéTA . 2)

—
N

p
It is clear that if we have any T 10 A,and T’ is the sketch obtained by adding a

Q

new element " gf=h "to T(T,) ,where £ and g are already in T, but h is new, then

1)
p
P, O and O uniquely extend to T’ L0 A. Now,let s 4 be the part of S which

Q

is S without the 2—cells(S4(t)=S(t) for t:CO,Cl,Tl

Applying the above remark four times, we have, a unique extension

and S 4(1:):@ otherwise).

M
S, lo A

—
N

of (2).

D6. Suppose T is asketch, T’ 1is a subsketch of T missing only some 2-cells and
Tz—elements of T, and that T is generated by T’ in the sense that T is the least subsketch
T" of T suchthat T" contains T’ and every time when (p, G.Q)ET(TZ) ,

p, oET" (CZ) , then OeT" (C2) , and every time when (p, 0.0)eT(H) ,

M
p, oeT" (CZ) , then OeT™" (C2) . Then every transformation T’ 1 1{7 A is also one

M
asin T T A . This is immediate.
%
N

D7. Let us turn to the proof that 7 preserves A . What we need to show is this. Assume that

we have
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the items listed under (*) in §7, the further items

(W:FW!5>D)e%cO[W;D],

(b:hi =) ed" T (i, b 7). (b:hi S f)ed'T (4. b 7).
(c:hg4§>k)EI#Tl(g,h,k), (E:E§4§>E)EI#T1(§,E,£),
(d:kf = 0 e’ (£ k £) . (&:kf S Oed'T (£ k ),
ne®C, (z, w) [h hl, YeRC, (x, w) [, 51, keBC (v, w) [k, K],

AeqC, (% w) 14, €] ;

and assume that

%Tl(¢,y,t)[a,é], %Tl(l,n,w)[b,B],
%Tl(y,n,K)[c,E], %Tl(m,w,l)[d,&]

hold. Under these conditions, we want that if 7ZC2 (x, w; W, A) [o, a] , then

I#A(a,b,c,d;a) = A#A(é,B,E,&;&).

I claim that it suffices to show that
P'a(a b e, & a) and A'a(a, b, ¢, & @) imply RC, (x, w; ¥, A) Lo, @]

We use that for the given a, b, ¢, d, there is a unique o such that A’#A(a, b, ¢, d;, o)
(see (4) in §7), and similarly for a, b, c, d; and we use that for the given x, w; W, A, the
relation 7ZC2 (x, w; ¥, A) [o, o] of the variables o,0¢ establishes a bijection

aF> o : ICZ (7, 4) i/(cz (7, £) . The claim now is easily seen.
Thus, we assume I#A(a, b, ¢, d; o) and A#A(é, b, c, d a) .
Recall the sketch S . The data give us diagrams M.:S——>4X, N:S—— A ; the effect of

0

169



My, N are given by the notation, except that M, B=c £ g

NB = oz g i (associativity iso in 4 ). Composing M, with F, we get M:FMO:SHA

3 —>A, N: S5 —A . The data
x, vV, Z, w, 0,7, 1,N,W,K,A supply the components of a map

J (associativity iso in 4 ) and
(see D3). Consider the restrictions M: S
M
S l7 A .
—
3 N

By D5, we have a unique extension of 7, also denoted by 7, as in

M
S, K A .

e
N

Let 5'5 be the subsketch of S that consists of S 4 and the 2-cells a, b, ¢, d. The

assumptions and D2 (applied to the four maps S, — S ) tell us that we have

0

M
Sg K A .

N
Now, add also 8 back to S, getting Se - Since by D3,
MB = (FMy) (B) =

%rf Fg, Fh - *Mf, Mg, Mh

D4 says that we have

M
Se It A,

N
and finally D6 says that

M

S K A .

e
N

The fact that 7 is natural with respect to o is the desired fact 2C,, (x, w; Y, A)la, al ,
since, by D3, Mo = F(Mooc) .
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D8. The proof that (2, r
this. We have

0’ r,) preserves H is similar, and simpler. Now, the situation is

Y\

f / — h
B
///// 0 X : \\$\§
X ‘ 1€ z
J

in 4, and

in A; we have

(x;pxiA)e%cO[x, Al , (yzpyéB)e%cO[y, Bl , (Z;Fz%C)eﬂcO[z, cl,
ge@C, (x, v) [£, £1, neRCy (v, 2) [h hl , yelC, (x 2) [J, 5],
ve®C (x, ¥) [g, g1, 1€RC (v, 2) [4, 1], keRCy (x, z) [k kI,

st (£.h 7)., ted'T (g 1K), sed'T (£ B 7). ted'T (g 1K)

such that
R, (% v: 0, 1) (B, B), R, (vs z M, 1) [, 8], 3)
%Tl(qo, n, v) [s, s] and %Tl(y, 1, K)[t, €] . 4)

Under these conditions, we want that
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RC, (%, 23 ¥, K) [€, €] — (X' (s, £ B. 5. &) <= A'H(s, £:B. 5. 8)) .
Again, it suffices to show that

(s, B, 6, &) and A'H(s, & B, 8, &) (5)

imply 7ZC2 (x, z; ¥, K) [€, €] . (6)

Assume (5). Consider the 2-cat-sketch

f h
_— ﬁ { %ﬁ
- / / ) \
X 1€ ) Z
Ts t hE
|oP ig
hf-5s 5
We have (f, h, hf), (g, 1, ig)eT(Tl) , (B,06,0B)eT(H) ,and 88 | o |e& (the

latter by an (unmarked) 2-cell o, and (s, €, 0), (0B, t, 0) ET(TZ) ).

The conditions in (5) ensure that the data we have give rise to morphisms My : T4,

N:T— A . As in the case of the sketch S, we can form the composite M=FM_:T—>A; we

0
have M(s)=Fso Fge 4, M(t)=Fto Fg I the commutativity of the diagram

b

Fth———E§E§——>FiFg
Ff, hl e} ng, 1

Fhf) —EOB) | piig

o

F(7) TF(]{)
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ensures that M is indeed M:T->.4. Consider the following subsketches of T':

Y
f h
& e
///7 : \\ e
T, = k 3
X Z
Y
f h
// \%T
7 S
T, = - k \
X 7 Z
Ts t hf
ig

The data x, y, z, ¢, v, 1, L, ¥, K give, via the relation (3), a map

M
T, lt A,

which, by (4) and D2, uniquely extends to

M
T, lt A

—
N

By D6, this extends to

M
T lt A

—
N

The naturality of 7 with respect to € is the desired relation (6).
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