
Appendix C: More on L–equivalence and equality.

Ordinary multisorted first-order logic without equality and without operation symbols (only

relations are allowed) is a special case of FOLDS as follows. Let L be a multisorted, purely

relational vocabulary. We associate a DSV L with L . The kinds of L are the sorts of L ;

the relations of L are the relation symbols of L . For R is sorted " R ⊂ � X " , we haveii<n
Rproper arrows p :R��X (i<n) . This completes the description of L . Clearly, thei i

L-structures are essentially the same as the L-structures.

L just constructed is a very simple DSV; its category of kinds has height 1 .

Now, a natural notion of "isomorphism" for L-structures "without equality" is the ordinary

notion of isomorphism modified by dropping single-valuedness and 1-1-ness. Let M , N be

�L-structures. By definition, h:M���N means a family of relations h :MX�����NXL X
( X∈Sort(L) ) such that dom(h )=MX , range(h )=NX , and for any " R⊂ � X " inX X ii<n

� �L , a= 〈a 〉 ∈ � MX , b= 〈b 〉 ∈ � NX , we have that a h b for all i<ni i<n i i i<n i i X ii<n i<n i
� � � � �(briefly, ahb ) implies that a∈MR ��	 b∈NR . It is pretty clear that h:M���N preservesL

� � � �the meaning of L-formulas without equality: ahb ��	 (M�ϕ[a] ��	 N�ϕ[a]); this would

hold good for infinitary logic, and other extended notions of "formula". It is also clear that if

for each sort X of L , there is a relation " E ⊂X×X " whose interpretation in both M andX
�N is ordinary equality on X , then h:M���N is the same as an ordinary isomorphismL

≅M���N .

The last-mentioned notion of "relational isomorphism" coincides with the relational version of

L-equivalence, for L the DSV constructed for L as above, defined as follows. For a general

DSV L , we call the L-equivalence (W, m, n):M���N relational if m and n are jointlyL
rmonomorphic; we indicate the said quality by the letter r in (W, m, n):M���N . ThisL

means that for every kind K in L , the pair (m , n ) of functions is jointly monomorphic,K K
m nK Kthat is, the span MK
�����WK������NK is a relation.
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For simplicity, we deal with Set-valued structures in what follows. Suppose

r(W, m, n):M���N . For each kind K , define the relation ρ ⊂MK×NK byL K
�aρ b ��� ∃c∈WK.m c=a�n c=b . For � a finite context, a= 〈a 〉 ∈M[�] ,K K K x x∈�

� � � � � � � �b= 〈b 〉 ∈N[�] , we write aρ b ��� ∃c∈W[K].mc=a�nc=b . It turns out howeverx x∈� �
� �that aρ b ��� ∀x∈�.a ρ b . Indeed, the left-to-right direction is obvious. Conversely,� x K xx

�let c ∈WK such that m c =a �n c =b . I claim that c= 〈c 〉 ∈W[K] . Forx x K x x K x x x x∈�x x
this, we need that if y∈� , p∈K �K , theny

c =(Wp)(c ) . (1)x yy, p

But m(Wp)(c )= (Mp)(mc )=(Mp)(a )=a , and similarly n(Wp)(c )=b ;y y y x y xy, p y, p
since c=c ∈WK is uniquely determined by the property m(c)=a &x x xy, p y, p y, p
n(c)=b , (1) follows.xy, p

As a consequence, a relational equivalence can be described in terms of the relations ρ asK
rfollows. A relational equivalence ρ:M���N is a family ρ= 〈 ρ 〉 of relationsL K K∈K

ρ ⊂MK×NK such that, withK

� �aρ b ��� ∀x∈�.a ρ b , (2)� def x K xx

the following hold:

(3) For any p:K��K , a∈MK , b∈NKp
aρ b ��� (Mp)(a)ρ (Np)(b) .K Kp

� �(4) For any K∈K , a∈M[K]=M[� ] , b∈N[K]=N[� ] ,K K
� � � � � �aρ b & a∈MK(a) ��� ∃b∈NK(b). aaρ bb .� *K �K
� � � � � �aρ b & b∈NK(b) ��� ∃a∈MK(a). aaρ bb .� *K �K
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� �(5) For any relation R in L , and a∈M[R]=M[� ] , b∈N[R]=N[� ] ,R R
� � � �aρ b ��� ( a∈MR ��� b∈NR ) .

�R

* � *(the notations � , � , � are from §4; aa denotes 〈d 〉 ∈M[� ] for whichK K R x * Kx∈�K
d =a when x∈� , and d =a ).x x K xK

r rBy what we said above, every (W, m, n):M���N gives rise to a ρ:M���N ((3) isL L
naturality, (4) is the very surjective condition, (5) is the preservation of relations). Conversely,

rgiven ρ:M���N , putting WK={ 〈K, a, b 〉: aρ b} , m ( 〈K, a, b 〉)=a ,L K K
rn ( 〈K, a, b 〉)=b gives (W, m, n):M���N .K L

We can make some steps towards Infinitary First Order Logic with Dependent Types. (We

refer to [Ba] as a basic reference on infinitary logic and back-and-forth systems.) Let us fix the

DSV L as before. The syntax of the logic L of FOLDS over L with arbitrary (set) size∞, ω
conjunction and disjunction, and finite quantification should be obvious; as usual, we only

allow formulas that have finitely many free variables. To fix ideas, we consider logic without

equality. M ≡ N means that M and N satisfy the same L -sentences withoutL ∞, ω∞, ω
equality. We have the following "back-and-forth" characterization of the relation ≡ . AL∞, ω

rweak relational L-equivalence ρ:M������N is a system ρ= 〈 ρ 〉 of relationsL � �∞, ω
ρ ⊂M[�]×N[�] , indexed by all finite contexts, satisfying the following conditions (6)-(9):
�

� �(6) for any specialization s:����� , a∈M[�] , b∈N[�] ,

� � � �aρ b ��� (a�s)ρ (b�s) ;
� �

� �here, if a= 〈a 〉 , then a�s= 〈a 〉 .y y∈� s(x) x∈�

(7) ∅ρ ∅ holds.∅

⋅ � �(8) For any finite contexts � , �∪{x} , a∈M[�] , b∈N[�] ,
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� � � � � �aρ b & a∈MK(a) ��� ∃b∈NK(b).aaρ ⋅ bb ,
� �∪{x}

� � � � � �aρ b & b∈NK(b) ��� ∃a∈MK(a).aaρ ⋅ bb .
� �∪{x}

(9) = (5)

rWe say that M and N are weakly L-equivalent, M � N , if there is ρ:M������N .L, w L∞, ω

r rGiven ρ:M���N , then, with making the definitions as in (2), we also have ρ:M������N .L L∞, ω
The reader will see that in the case of ordinary multisorted logic, the definition of weak

relational L-equivalence reduces to the well-known concept of "back-and-forth system" that

figures in the characterization of ∞,ω-equivalence. Thus, the following generalizes that

characterization.

(10)(a) For L-structures M and N , M ≡ N iff M � N .L L, w∞, ω
(b) For countable L-structures M and N , M ≡ N iff M � N .L L∞, ω
(c) For any countable L , and countable L-structure M , there is a ("Scott"-)sentence

σ of L such that N ≡ M iff N�σ .M ω , ω L M1 ∞, ω

The proofs are routine variants of those of the classical cases.

There is a simple categorical restatement of the notion of weak L-equivalence. Consider

K opB=(Set ) as before. An L-pseudo-structure P is a functor B��Set , together with afin
subset P(R)⊂P([�]) for each relation R of L . A morphism of L-pseudo-structures is a

natural transformation of functors B��Set preserving each R in the obvious sense. Each

L-structure M can be regarded as a pseudo-structure, since any functor K��Set has a

canonical extension B��Set which is in fact finite-limit preserving. Let PStr(L) be the

Bcategory of pseudo-structures. We have a forgetful functor �’:PStr(L)��Set ; �’ can

be seen to be a fibration. Now, a (not-necessarily-relational) weak L-equivalence

B(W, m, n):M�����N is, by definition, a functor W∈Set , together with arrowsL, w
m:W���’M , n:W���’N such that m , n are very surjective with respect to all

epimorphisms in B (according to the definition before B.(5), with Lex(B ,B ) replaced
� �
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Bby Set ), and there is a pseudo-structure P , with Cartesian arrows θ :P��M , θ :P��Nm n
over m and n , respectively. We write M � N for: there exists (W, m, n):M�����N .L, w L, w

It is not hard to show that M � N iff there is a weak relational L-equivalenceL, w
rρ:M������N ; the proof is similar to the proof below concerning non-weak relationalL∞, ω

equivalences.

We return to ordinary (non-weak) equivalences. When M and N are Set-valued

rL-structures, with any (W, m, n):M���N , there is a relational (W’, m’, n’):M���N ; inL L
fact, W’ can be chosen as a subfunctor of W , with m’ and n’ being restrictions of m and

n , respectively. To define W’K⊂WK , we use recursion on the level of K . Fix K . The

induction hypothesis gives us the inclusion W’[K]���W[K] . Consider the pullback

P=WK× W’[K] as inW[K]

mi KP����������WK���������MK
� � � �� � �� � �� � �

W’[K]�������W[K]�������M[K] ,

with i an inclusion; look at g= 〈m i, n i 〉:P���MK×NK , and, using the Axiom ofK K
Choice, split h:P���Im(g) by an inclusion k:W’K���P as in

P���������������	W’K
� �
� 
� � ��� � ≅g� � Im(g)� �
� ���MK×NK ;

we have defined W’K . Inspection shows that W’ is appropriate.

For not necessarily Set-valued L-structures M , N , let us write M � N for: there existsL, r
r(W, m, n):M���N .L

What we saw says that the concept M� N remains unchanged, at least for Set-valuedL
models, if we ignore all but the relational L-equivalences:

148



M � N ��� M � N . (11)L L, r

� �However, the more general notion (M, a)� (N, b) goes wrong under the same alteration.L
For one thing, the need for not-necessarily-relational L-equivalences is natural if we look at

� �the proof of 5.(4). Given � and the tuples a∈M[�] , b∈N[�] as there, the desired

� �L-equivalence (W, m, n):(M, a)���(N, b) is constructed so as to continue the mappingsL
x��a , x��b ; if the latter two mappings are not jointly monomorphic, the resultingx x
L-equivalence will not be relational. On the other hand, the entry of non-relational

L-equivalences is not just a characteristic of the proof of 5.(4); it is in fact unavoidable.

Consider the following example of a DSV, called L :

e10
�������E K1 ������� 1e11 ��p pe =pe� 10 11e 	00
�������E K0 ������� 0 .e01

A standard structure M for L is one for which, for b , b ∈M[K ] , that is,0 1 1
(Mp)b =(Mp)b , we have b (ME )b ��� b =b , and also, ME is ordinary equality0 1 0 1 1 0 1 0
on MK . Consider the following example for an L-equivalence (W, m, n):M���N , for0 L
certain M and N :

��������� �� z z �� 0 1 �
� y y �0 1� ��������� �������� ��������� � � �

� b b � � d d �0 1 0 1� � �������� � ��������� � � ��������
� x x �0 1� ���������������� �������� � � �a c� � � �������� ������� .

Here, MK ={a} , MK ={b , b } , NK ={c} , MK ={d , d } , WK ={x , x } ,0 1 0 1 0 1 0 1 0 0 1
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Wp WpWK ={y , y , z , z } , y , z ����x , y , z ����x , and1 0 1 0 1 0 0 0 1 1 1

m m m my ���b , y ���b , z ���b , z ���b ,0 0 1 1 0 1 1 0

n n n ny ���d , y ���d , z ���d , z ���d ;0 0 1 0 0 1 1 1

E and E are interpreted in M and N as equality.0 1

This shows that, for the context �={x , x :K ; y :K (x ); y :K (x )} , and for0 1 0 0 1 0 1 1 1
� �a= 〈a/x , a/x , b /y , b /y 〉 , c= 〈c/x , c/x , d /y , d /y 〉 , we have0 1 0 0 1 1 0 1 0 0 0 1

� �(M, a)� (N, c) . On the other hand, there is no relational equivalenceL
� � m’(W’, m’, n’):(M, a)���(N, c) . In any such, W’K is a singleton {x} ; x����a ,L 0

n’ m’ m’x����c ; we have some u , u ∈W’K (x) such that u ����b , u ����b ; and the0 1 1 0 0 1 1
preservation of E implies n’(u )≠n’(u ) , contradiction.1 0 1

This example also dispels the possible belief that an L-equivalence (W, m, n):M���N canL
always be reduced to a relational one by taking the image of (W, m, n) . Let U=M�K ,

V=N�K , and consider

W� �� � �m� �r �n� � �� � �
U	����
Φ������V (12)� ϕ ψ 
� � �� � �π � �i � π’� � �

U×V

where r and i form the surjective/injective factorization of 〈m, n 〉:W��U×V . In other

words, when i:Φ��U×V is an inclusion, for any K∈K , the relation ΦK⊂MK×NK is given by

a(ΦK)b ��� ∃c∈WK.mc=a&nc=b . When applied in our example, (Φ, ϕ, ψ) so defined

does not preserve E .1

I now turn to some remarks on equality.

GLet L be an arbitrary DSV. Let us augment L to L , another DSV, by adding a relation

150



� � �G to L for every K∈Kind(L) , with proper arrows g :G ��K , g :G ��K ,K K0 K K1 K
�together with all composites pg :G ��K , p∈K�L (i=0, 1). We do not identify pgKi K p K0

Gwith pg . For an L -structure M ,K1

� � � � � � �M[G ] = {(a, a, b, b): a, b∈M[K], a∈MK(a), b∈MK(b)} .K

The letter G is used because we are dealing with global equality as opposed to fiberwise

G � �equality (see below). A standard L -structure M is one in which, for a, b∈M[K],

� � � � � �a∈MK(a), b∈MK(b) , (a, a, b, b)∈M(G ) iff a=b ; more briefly, M(G ) as a subsetK K
Gof MK×MK is {(a, a):M(K)} . Any L-structure can be made into a standard L -structure

Gin exactly one way. When an L-structure is used as an L -structure, we mean the

Gcorresponding standard L -structure.

The effect of adding global equalities is that all L-equivalences can be canonically replaced

by relational ones, by taking the image of the given one. If (W, m, n):M����N , then forGL
r(Φ, ϕ, ψ) defined above, we have (Φ, ϕ, ψ):M����N .� � � � � � � � � � � G� � �L

To see this, first we show that the arrow r in (12) is very surjective; that is, for any K∈K ,

the diagram

rKW(K)����������Φ(K)

� �� �� � (13)� �
� �

W[K]����������Φ(K)r[K]

� � � �is a quasi-pullback. Assume a∈M[K] , b∈N[K] , a∈MK(a) , b∈NK(b) such that

� � � � � � � � �(a, b)∈Φ[K] , (a, b)∈ΦK(a, b) , and c∈W[K] with mc=a , nc=b (that is,

� � � �r (c)=(a, b) ); we want c∈WK(c) such that mc=a and nc=b . By the definition of[K]
�Φ , there is d∈WK with md=a , nd=b . By the very surjectivity of n , there is c∈WK(c)
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such that nc=b . But by the presence of the relation G , md(MG )mc iff nd(NG )nc ;K K K
that is, md=mc iff nd=nc ; which says that mc=a as desired.

By B.(6'), the induced map r :W[�]���Φ[�] is surjective.[�]

Now, looking at

r ϕ m[K] [K] [K]W[K]��������Φ[K]��������M[K] W[K]�����������M[K]
� � � � �� � � � �� � � � �

W(K)��������Φ(K)��������M(K) W(K)�����������M(K)r ϕ mK K K

we see that B.(3") is applicable to yield that ϕ is very surjective.

G � �Given a relation R∈Rel(L ) , if (a, b)∈Φ[R] , then by r :W[R]���Φ[R] being[R]
� � � � � � � �surjective, there is c∈W[R] with r (c)=(a, b) , that is, mc=a , nc=b , and thus[R]

� � ra∈MR iff b∈NR . This completes showing that (Φ, ϕ, ψ):M����N .GL

We have shown something more general (and more technical), which is independent of

equality. This is that

(14) If (W, m, n):M���N and we haveL

W� �� � �m� �r �n� � � � �� 	 

U������Φ������Vϕ ψ

such that r is very surjective, then (Φ, ϕ, ψ):M���N ;L

the relational quality of (ϕ, ψ) is not relevant to this.

Clearly, a relational equivalence preserving global equalities on all kinds is nothing but an
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� �isomorphism. We have shown that M� N implies that M≅N , and (M, a)� (N, b)G GL L
� �implies (M, a)≅(N, b) . But, all formulas in multisorted logic over �L� are preserved by

isomorphism. By the invariance theorem 5.(12), we conclude the following.

(15) For any context � over L , and any formula σ of multisorted logic over �L�

with Var(σ)⊂� [remember, a variable x:X of FOLDS counts as a variable of sort K inx
Gmultisorted logic], there is a FOLDS formula θ over L with Var(θ)⊂� such that σ

*and θ are logically equivalent (over � ):

* *
� ∀�(σ���θ ) ; or in other words, M[�:σ]=M[�:θ ] for any L-structure M . (We

Gapply 5.(12) to I:L ��[(�L�,Σ[L])] ; for Σ[L] , see §1. I is essentially the identity

*except that all the G 's are interpreted as equality. In M[�:θ ] , M is understood as aK
Gstandard L -structure.)

Notice the small point that in the statement of (15), we are not allowed to start with a

�L�-formula σ with arbitrary free variables; the free variables have to form a context. E.g.,

in the case of the language of categories, a formula with a single arrow-variable cannot (of

course) have an equivalent in FOLDS with the same free variables; we have to add the

"domain and the codomain of the arrow-variable" as free variables.

Let us hasten to add that it is possible to show (15) directly, by a rather simple structural

induction on the formula σ .

We have an instance of what we may call expressive completeness of FOLDS: full first-order

Glogic over �L� can be expressed in L . This is accompanied by a mode of deductive

Gcompleteness. We will give a deductive system for entailments over L , extending the

Gstandard system for L for logic without equality by specific rules related to the

GG-predicates, which is complete for semantics restricted to standard L -structures, that is,

semantics of true equality.
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The set G �L , the arity of the relation G , is the setK K

{pg : p∈K�L}∪{g }∪{pg : p∈K�L}∪{g }K0 K0 K1 K1

� �Accordingly, we will write atomic formulas G (z) , z indexed by G �L , in the formK K
� � � � � �G (x, x, y, y) ; here, x= 〈x 〉 , x:K(x) , y= 〈y 〉 , y:K(y) .K pg p∈K�L pg p∈K�LK0 K0

Here are some other pieces of notation. For any object A of L (kind or relation), and tuples

� � � �x= 〈x 〉 , y= 〈y 〉 for which A(x) , A(y) (types or atomic formulas) arep p∈A�L p p∈A�L
� �well-formed, xG y denotes the formula[A]

��� G ( 〈x 〉 , x , 〈y 〉 , y ) .K qp q∈K �L p qp q∈K �L pp∈A�L p p p

� �pWhen x= 〈x 〉 , x = 〈x 〉 .p p∈K�L def qp q∈K �Lp

V. Global-equality axioms.

(G ) ����������������������1 � �t ����� G (x, x, x, x)K�

(G ) �������������������������������2 � � � �G (x, x, y, y) ����� G (y, y, x, x)K K�

(G ) ���������������������������������������������3 � � � � � �G (x, x, y, y) � G (y, y, z, z) ����� G (x, x, z, z)K K K�

(G ) ����������������������������������� ( p∈K�L )4 � � �p �pG (x, x, y, y) ����� G (y , y , x , x )K K p p�

�(G ) ������������������������������������ ( x:K(x) )5 � � � � �xG y ����� ∃y:K(y).G (x, x, y, y)[K] K�
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(G ) ����������������������������6 � � � �xG y ����� R(x)���R(y)[R]
�

The proof of the said completeness is done in the traditional manner; we use completeness for

Glogic without equality over L for the theory whose axioms are the (conclusion-)entailments

Gin the equality rules. Given any structure M for L satisfying the equality axioms, we

G Gconstruct a standard L -structure M/� which is L -elementary equivalent to M . For a kind

K , let � be the relation on the set MK defined by a� b ��� MG ([a], a, [b], b)K K K
holds; here [a]= 〈(Mp)(a) 〉 , and similarly for [b] . By (G ), (G ) and (G ),p∈K�L 1 2 3
each � is an equivalence relation; let us write a/� for the equivalence class containingK
a . (G ) implies that if f:K��K’ , a ∈MK , a’=(Mf)(a )∈MK’ , then a � a ��4 i i i 1 K 2
a’� a’ . Let U=M�K . We define U/�:K��Set by (U/�)(K)=(UK)/�1 K’ 2
( = {a/�: a∈UK}) , and ((U/�)(f))(a/�)=((Uf)(a))/� , which is well-defined.def

� �For a= 〈a 〉 ∈M[R] , we put a/� = 〈a /� 〉 ∈ (M/�)R .p p∈R�K p p∈R�K

We define M/� by (M/�)�K=U/� , and

� �(M/�)R(a/�) ����� MR(a) ;def

by (G ), this is well-defined; we have completed the definition of M/� .6

� �For any finite context � , we have (M/�)[�] = (M[�])/� ( = {a/�: a∈M[�] ).def
� � � �Moreover, when a∈M[K] , then (M/�)K(a/�) = MK(a)/� ( = {a/�: a∈MK(a)} .def

This is not automatic; it requires (G ). Finally, we show, by structural induction, that for any5
G �θ over L with Var(θ)⊂� , and a∈M[�] ,

� �M/� � θ[a/�] ���� M � θ[a] .

Having the construction M �� M/� with the properties shown, the proof of the standard

Gcompleteness for L can be completed in the expected manner.
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In place of global equality, it seems natural to consider fiberwise equality for FOLDS. Let, for

Eany DSV L , L denote the DSV obtained by adding to L a new relation E for everyK
eK0

����� eqkind K , with E K and pe =pe (p∈K�K) as for maximal kinds in L . AK����� K0 K1eK1
Estandard L -structure is one in which each E is interpreted as equality; to give a standardK

EL -structure is the same as to give an L-structure. In what follows, M and N are

EL-structures; when they figure as L -structures, they mean the corresponding standard ones.

rSuppose ρ:M����N . I claim that each ρ ⊂MK×NK is the graph of a bijection MK��NK .E KL
By (6'), dom(ρ )=MK , codom(ρ )=NK . Thus, it remains to show thatK K

a ∈MK , b ∈NK , a ρ b (i=1, 2) ��� a =a ��� b =b (16)i i i K i 1 2 1 2

We show this by induction on the level of K . Assume the hypotheses of (16). Let

�i �i �i i �i ia ∈MK(a ) , b ∈NK(b ) . Then, if a = 〈a 〉 , b = 〈b 〉 , theni i p p∈K�K p p∈K�K
i ia ρ b (by (3)).p K pp

�1 �2 � 1 2Assume (e.g.) a =a . Then a =a =a , that is, a =a for all p∈K�K . By the1 2 def p p
1 2 �1 �2 �induction hypothesis, (16) applied to K , we have b =b , that is, b =b =b . Wep p p def

� � � �have a , a ∈MK(a) , b , b ∈NK(b) , and aa ρ bb . Therefore, by (6),1 2 1 2 i * i�K
� �ME (a, a , a ) ��� NE (b, b , b ) ; that is, a =a ��� b =b as desired.K 1 2 K 1 2 1 2 1 2

≅Given that each ρ is a bijection, clearly, ρ is an isomorphism ρ:M���N (ofK
L-structures). We conclude

M � N ��� M ≅ N (17)EL ,r

(the above argument did not depend essentially on the fact that we dealt with Set-valued

structures)
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Applying 5.(12), we obtain

(18) For every sentence σ in multisorted logic (with equality) over �L� there is a sentence

� E �σ of FOLDS over L such that for every L-structure M , M�σ ��� M�σ (here, in the first

Einstance, M figures as an �L�-structure; in the second instance as a standard L -structure).

EProof. Consider the interpretation I:L ��[T] , where T=(�L�, Σ ) , extending theL
"identity" interpretation L��[T] , and interpreting each E as equality. We apply 5.(12) toK
I , �=∅ and σ . Suppose M, N�T are Set-valued models (!),

E EM�L � N�L (19)EL

E Eand M�σ . M and N are L-structures, and M�L , N�L are the corresponding standard

EL -structures. By (19) and (11), it follows that M≅N . Since "everything" is invariant under

isomorphism, N�σ . Thus, the hypothesis of 5.(12) holds. The conclusion is exactly what we

want.

Note that the result of (18) cannot be generalized to formulas with free variables in place of

E Gsentences. That is, the statement of (15), with L replacing L is not true. This is shown by

Ethe example that we gave above; in that example, L=L for L consisting of K , K and0 0 0 1
p (and no relations). With �={x , x , y , y } as in the example, if for the formula0 1 0 1
σ≡y =y (whose free variables are in � ) there were θ in FOLDS over L with0 1
Var(θ)⊂� such that, for every L -structure M (also counted as a standard L-structure) and0

�a= 〈a , a ∈MK ; b ∈MK (a ); b ∈MK (a ) 〉 ,0 1 0 0 1 0 1 1 1

� ? �M�σ(a) ��� b =b ��� M�θ(a)0 1

� �then for every equivalence (W, m, n):(M, a)���(N, c) , whereL
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�c= 〈c , c ∈NK ; d ∈NK (c ); d ∈NK (c ) 〉 ,0 1 0 0 1 0 1 1 1

since it would preserve θ , we would have

b =b ��� d =d ;0 1 0 1

but the example shows that this conclusion is false.

(18) can be used to give another proof of 6.(3), the Freyd-Blanc characterization result, at least

for �=∅ ; this proof is a variant of what is contained in [FS].

Let T be a normal theory of categories with additional structure. Assume σ is an

L -sentence such that for M, N�T , �M���N� implies that M�σ iff N�σ . In particular,T

for M, N�T , �M�≅�N� implies that M�σ iff N�σ .

By ordinary model theory (a version of Beth definability), it follows that there is a sentence τ
in multisorted logic over �L � such that for models of T , σ and τ are equivalent. Bycat

E(18), there is a sentence ψ in FOLDS over L which is equivalent to σ in allcat
EL -structures (also counted as standard L -structures). There are two E-predicates incat cat

ψ , E and E . Replace each occurrence E (X, Y) of E by the formulaO A O O

"X≅Y" ≡ ∃f∈A(X, Y).∃g∈A(Y, X).∃h∈A(X, X).∃i∈A(Y, Y)

(I(h)�I(i)�T(f, g, h)�T(g, f, i)) ;

eqcall the result θ . Notice that θ is a FOLDS formula of L (it has only the allowablecat
eqequality predicates in L ). I claim that for all M�T ,cat

M�σ ��� M�θ .

Let M�T . �M� is a category; let �M� be its skeleton. Since �M���M� , by thes s
normality of T , there is N�T such that �N�=�M� . Nows
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M�σ ��� N�σ since �M���N� , and M, N�T

��� N�τ since N�T

��� �N��τ
��� �N��ψ
��� �N��θ since �N� is skeletal (that is, for objects X, Y, X=Y

iff X≅Y )

��� �M��θ since �M���N� , and θ is a FOLDS formula with

equality over Lcat
��� M�θ .

This method of proof is also applicable to the "higher" cases. Let us consider the case of

bicategories; let us show that if a sentence σ in multisorted logic over

L =�L � is invariant under equivalence of bicategories, then σ is equivalentbicat anabicat
* *in bicategories to θ for a FOLDS sentence θ over L ; θ is the translate ofanabicat

* #θ such that ��θ ���� �θ .

A bicategory � is skeletal if any two equivalent objects are equal, and any two isomorphic

parallel 1-cells are equal. For any bicategory � , there is a skeletal one, � , which iss
(bi)equivalent to � .

The first step is to use Beth definability to the interpretation Φ:L ��[T ] .anabicat bicat
# #Since � ≅� implies that ��� , it follows that there is a sentence τ in multisorted logic

#over �L � such that for every bicategory � , ��σ ��� � �τ . By (18), we cananabicat
E # #find a sentence ψ in FOLDS over L such that, in particular, � �τ ��� � �ψ .anabicat

Now, transform ψ in the following way. Each occurrence E (X, Y) of E is replacedC C0 0
by the formula

" X�Y " ≡ ...

f
���and each occurrence E (X Y) of E is replaced by the formulaC ��� C1 g 1

" f≅g " ≡ ...
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eqThe resulting sentence θ is in L . I claim that for any bicategory � ,anabicat
*

��σ ��� ��θ . Indeed,

# # # # *
��σ ��� � �σ ��� (� ) �τ ��� (� ) �ψ ��� (� ) �θ ��� � �θ ��� ��θ ;s s s s

# #the next-to-last last biconditional holds because � �� , of which (� ) � �s s eqL
eq( L = L ) is a consequence, and because θ is a FOLDS sentence over L .anabicat

This proof replaces the general invariance theorem 5.(12) by Beth definability, and a special

case of that invariance theorem, (18). It falls somewhat short of the results of §7, partly

because we have confined the situation to an empty context � . Also, this approach is not

available in constructive category theory; the existence of the skeleton (already in the classical

case of mere categories) depends on the Axiom of Choice. As we will see in Appendix E, the

main theory of equivalence of §5 has a constructive version involving intuitionistic logic.

Modifying the notions of equivalence to notions of "anaequivalence" (using, and building on,

[M2]), we obtain versions of the results of sections 6 and 7 for constructive category theory.
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