Appendix C: More on L-equivalence and equality.

Ordinary multisorted first-order logic without equality and without operation symbols (only

relations are allowed) is a special case of FOLDS as follows. Let L be a multisorted, purely

relational vocabulary. We associate a DSV L with L. The kinds of L are the sorts of L ;

the relations of L are the relation symbols of L. For R issorted " R C |_| Xi ", we have
i<n

proper arrows pl;’: Ro>X, (i<n) . This completes the description of L . Clearly, the

L-structures are essentially the same as the L-structures.
L just constructed is a very simple DSV its category of kinds has height 1 .

Now, a natural notion of "isomorphism" for L-structures "without equality" is the ordinary

notion of isomorphism modified by dropping single-valuedness and 1-1-ness. Let M, N be

L-structures. By definition, h: M %N means a family of relations h x° MX— \ — NX

( XeSort (L) ) such that dom(hX) =MX , range (h,)=NX, and for any " RC [] Xi " in
i<n

X

N - .
L, a:<ai>i<n€ |_| MX b:(bl.>l.<ne |_| NX, ,we have that a h . b, forall i<n
i<n i<n 1

(briefly, ahb ) implies that a€MR < beNR. It is pretty clear that h:M %N preserves

the meaning of L-formulas without equality: ahb — (MFQ| al NE@I al); this would
hold good for infinitary logic, and other extended notions of "formula". It is also clear that if
for each sort X of L, there is a relation " E XXX " whose interpretation in both M and

N is ordinary equality on X, then h:M %N is the same as an ordinary isomorphism

ME5N.

The last-mentioned notion of "relational isomorphism" coincides with the relational version of
L-equivalence, for L the DSV constructed for L as above, defined as follows. For a general

DSV L, we call the L-equivalence (W, m, n) :M TN relational if m and n are jointly

monomorphic; we indicate the said quality by the letter r in (W, m, n) : M %N . This
means that for every kind K in L, the pair (mK, n K) of functions is jointly monomorphic,

mg ng,
that is, the span MK WK NK is a relation.
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For simplicity, we deal with Set-valued structures in what follows. Suppose

(W, m, n) :M %N . For each kind K, define the relation p KCMKXNK by

appb Jce WK.mgc=anng,c=b . For X a finite context, a:<ax>xe/l£M[I] ,
b:<bx>xe/l£N[I] , We write ap yb &= JdceW[K] .mc=annc=b . It turns out however

that ap {1,13 = Vxed.a Pr Py Indeed, the left-to-right direction is obvious. Conversely,
X

. -
let C EWK_ such that mKXcX= aX/\nKchsz . I claim that c={ CX>XE EWLK] . For

this, we need that if yel , pe Ky| K, then

c =(p) (c_) . (D
*v.p o
But m(wp) (cy) = (Mp) (mcy) = (Mp) (ay) —axy’ 5 , and similarly n (wp) (Cy) —be’ p,
since c= C €WK is uniquely determined by the property m(c) =a,, &
Y’ p Y’ p Y’ p
n(c) :bX , (1) follows.
Y’ p

As a consequence, a relational equivalence can be described in terms of the relations p x as

follows. A relational equivalence p:M %N is a family p=(p K> KR of relations
P R CMEXNK such that, with

gp{l,b Sot Ver.aXpK b_ ., 2)
X
the following hold:

(3) For any p:K%Kp, aeEMK , beNK

appb = (Mp) (a)p, (Np) (b)
b

(4) Forany KEK, acM[K] =M ], PeN[K] =N[X.] ,

apy b & acMK(a) — 3IbENK(b). aap ,bb.
K K
apy b & bENK(D) —> 3JaeMK(a). aap ,bb .
K
K
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(5) For any relation Rin L, and geM[R]:M[IR] , BGN[R]:N[IR] ,

gp{l, b —> ( a€MR «> beNR) .
R

* N * .

, X_ are from §4; aa denotes (dX> *eM[/l’K] for which

(the notations &, 4 R
xed %

K’ 7K

d.=a_ when xel_,and d_ =a).
X X K XK

By what we said above, every (W, m, n) :M%N gives rise to a p:M%N ((3) is

naturality, (4) is the very surjective condition, (5) is the preservation of relations). Conversely,
given p:M%N, putting WK={(K, a, b): ap,b} , my( (K, a, b)) =a,

nK((K, a, b))=b gives (W, m, n) :M%N.

We can make some steps towards Infinitary First Order Logic with Dependent Types. (We
refer to [Ba] as a basic reference on infinitary logic and back-and-forth systems.) Let us fix the
DSV L as before. The syntax of the logic L_ o of FOLDS over L with arbitrary (set) size

conjunction and disjunction, and finite quantification should be obvious; as usual, we only

allow formulas that have finitely many free variables. To fix ideas, we consider logic without

equality. M= 1 N means that M and N satisfy the same L_ o Sentences without
o, () ?
equality. We have the following "back-and-forth" characterization of the relation = I LA
o0, w

weak relational L-equivalence p:M %N is a system p=(p /l’> y of relations
00, w

P 4~M [X1XN[A] , indexed by all finite contexts, satisfying the following conditions (6)-(9):

(6) for any specialization s:4— ), aemM[ )] , BEN[)’] ,
gpygﬁ (gos)PI(BOS) ;
here, if az(ay)yey,then aos=(as

(x) >X€/l"

(7) ®p®® holds.

N

(8) For any finite contexts X, XU{x} , geM[/l’] , beN[X] ,
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%

ap{l,b & aEMK(a) — EIbENK(b) aap{l,u{ } ,

ap{l,b & bENK(b) — JacMK(a) . aap{l,u{ }
9) =)

I, if there is p:M%N.
L, w Loo o

We say that ¥ and N are weakly L-equivalent, M ~

Given p:M %N , then, with making the definitions as in (2), we also have p:M %N .
oo, w

The reader will see that in the case of ordinary multisorted logic, the definition of weak
relational L-equivalence reduces to the well-known concept of "back-and-forth system" that
figures in the characterization of ,w-equivalence. Thus, the following generalizes that

characterization.

(10)(a) For L-structures M and N, M=, N iff M NL, WN .

(b) For countable L-structures M ariil’ ?\T, MEL N iff M~ LN'

(¢) For any countable L, and countable L—struct::;ewM , there is a ("Scott"-)sentence
o, of L such that N=, M iff 1\7|=GM

M (1)1, w w0, )

The proofs are routine variants of those of the classical cases.

There is a simple categorical restatement of the notion of weak IL-equivalence. Consider

B= (SetK) i—)p

subset P(R)CP([X]) for each relation R of L. A morphism of L-pseudo-structures is a

as before. An L-pseudo-structure P is a functor B— Set , together with a

natural transformation of functors B—>Set preserving each R in the obvious sense. Each
L-structure M can be regarded as a pseudo-structure, since any functor K— Set has a

canonical extension B—> Set which is in fact finite-limit preserving. Let PStr (L) be the

category of pseudo-structures. We have a forgetful functor £’ : PStr (L) — setB ; £ can

be seen to be a fibration. Now, a (not-necessarily-relational) weak L-equivalence

(W, m, n) : M WN is, by definition, a functor we SetB , together with arrows
m:wW—&'M, n:W—E'N such that m, n are very surjective with respect to all

epimorphisms in B (according to the definition before B.(5), with Lex (BC" Bjp) replaced
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by set® ), and there is a pseudo-structure P, with Cartesian arrows Gm: P—>M, Gn: P—>N

over m and n, respectively. We write M ~ N for: there exists (W, m, n) : M WN .

L, w L
It is not hard to show that M ~ L w™ iff there is a weak relational L-equivalence
p:M %N ; the proof is similar to the proof below concerning non-weak relational
o0, w
equivalences.

We return to ordinary (non-weak) equivalences. When M and N are Set-valued

L-structures, with any (W, m, n) :M?N , there is a relational (W', m’, n’) :M%N; in
fact, W’ can be chosen as a subfunctor of I, with m’ and n’ being restrictions of m and
n , respectively. To define W’ KCWK , we use recursion on the level of K. Fix K. The

induction hypothesis gives us the inclusion W’ [K] »~—>W[K] . Consider the pullback

P:WKXW[K] W’ [K] asin
. m
P = WK K MK
| ° |
W' [K] —>W[K] — > M[K] ,

with 1 an inclusion; look at g= (mKi, n Ki) : P——> MKXNK , and, using the Axiom of
Choice, split h: P—»Im(g) by an inclusion k:W’'K — P asin
P W' K
O =
g o Im(g) B

MKXNK/ ;

we have defined W’ K . Inspection shows that W’ 1is appropriate.

For not necessarily Set-valued L-structures M, N, let us write M ~ - N for: there exists

L,
(W, m, n) :M%N.

What we saw says that the concept M~ N remains unchanged, at least for Set-valued

models, if we ignore all but the relational L-equivalences:
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M~ N &> M-, N (11)

N
However, the more general notion (1, 5) 1, (N, b) goes wrong under the same alteration.

For one thing, the need for not-necessarily-relational L-equivalences is natural if we look at
the proof of 5.(4). Given 4 and the tuples acM[X] , BEN [X] as there, the desired

N
L-equivalence (W, m, n) : (I a) > (N, b) is constructed so as to continue the mappings
xt>a, , x>b_; if the latter two mappings are not jointly monomorphic, the resulting
L-equivalence will not be relational. On the other hand, the entry of non-relational

L-equivalences is not just a characteristic of the proof of 5.(4); it is in fact unavoidable.

Consider the following example of a DSV, called L:

11 _
o p Peqp=Pe11

A standard structure M for L is one for which, for bO’ bleM [Kl] , that is,
(Mp)bO: (Mp)bl , we have bO (MEl)bl = bozbl , and also, MEO
on MK 0" Consider the following example for an L-equivalence (W, m, n) : M ?N , for
certain M and N:

is ordinary equality

Z0 %1

Yo Y1
b, by dy 4,
a c

Here, MKOZ{a} , MKlz{bO, bl} , NKOZ{C} , MKlz{dO, dl} , WKOZ{XO, Xl} ,
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_ Wp Wp
WKl—{YO, Yl, ZO, Zl} ’ YO, ZOHXO ’ Yl, Zlel ’ and

m m m m
YOHbO’ Ylel, ZOHbl, ZleO H

n n n n .
E, and E, are interpreted in M and N as equality.

This shows that, for the context /l’:{xo, X :KO; Yy :K1 (XO) ¥y :Kl (Xl) } , and for
az(a/xo, a/x1, by/ vy, bl/y1> , c=(c/x0, c/x, dy/ vy, do/y1> , we have
(M, 5) 1, (N, 8) . On the other hand, there is no relational equivalence

(W', m’,n"): (M a) <> (N, ¢) .In any such, WK, is a singleton {x} ;me,a,

X}Lc;wehave some ug, ug emw’ Kl( x) such that uOmH’bO, ulmH’bl;andthe

07
preservation of E. implies n’ ( ) #n’ , contradiction.

1 uj (ul)

This example also dispels the possible belief that an L-equivalence (W, m, n) : M <> N can
always be reduced to a relational one by taking the image of (W, m, n) . Let U=MIK,
V=NIK, and consider

e
YAz

where r and 1 form the surjective/injective factorization of (m, n) : W-—>UXV . In other

(12)

words, when 1:® > UXV is an inclusion, for any Ke K, the relation ®KCMKXNK is given by
a(®K) b & dceWK.mc=a&nc=>b . When applied in our example, (D, ¢, ) so defined

does not preserve El .

I now turn to some remarks on equality.

Let L be an arbitrary DSV. Let us augment L to I , another DSV, by adding a relation
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GK to L for every KeKind (L) , with proper arrows Iro* GK%K, I GK%K,
together with all composites Pgp . GK% Kp , PEK|L (1=0, 1). We do not identify P90

with Py - For an LG—structure M,

M[GK] = {(a, a b, b): a beM[K], acMK(a), beMK(b) } .

The letter G is used because we are dealing with global equality as opposed to fiberwise
equality (see below). A standard LG—structure M 1is one in which, for 5, BEM [K],

aeMK(g), bEMK(B) , (5, a, B, b)EM(GK) iff a=b ; more briefly, M(G ) as a subset

K
of MKXMK is { (&, a) :M(K)} . Any L-structure can be made into a standard LC structure

in exactly one way. When an L-structure is used as an LG—structure, we mean the

corresponding standard L structure.

The effect of adding global equalities is that all L-equivalences can be canonically replaced

by relational ones, by taking the image of the given one. If (W, m, n) : M N, then for
L

(®, @, ¥) defined above, we have (@ 00 ¥ %9:;] 3 -

To see this, first we show that the arrow r in (12) is very surjective; that is, for any KeK,

the diagram

Tk
W(K) —————>® (K)

]

W[K] ——® (K)
T K]
is a quasi-pullback. Assume QEM[K] , BEN[K] , aeMK(g) , bENK(B) such that
(a, b)ed[K] , (a, b)e®K(a, b) ,and ceW[K] with mé=a, né=b (that is,
(C)=(a, b) ); we want c€ WK (c) such that mc=a and nc=b . By the definition of

FIK]
® , there is dewK with md=a, nd=b. By the very surjectivity of n, there is ce WK ( c)
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such that nc=b . But by the presence of the relation G md (MGK) mc iff nd (NG K) nc;

K‘ b
that is, md=mc iff nd=nc ; which says that mc=a as desired.

By B.(6"), the induced map iy wid] — o [L] is surjective.
Now, looking at

r

®
wig] — KL oy LKL Sk WIK] (K] . wix)
W(K) ——>®(K) ———>M(K) W(K) M(K)

we see that B.(3") is applicable to yield that ¢ is very surjective.

Given a relation ReRel(LG) , 1f (5, B)E(D[R] ,then by r :W[R] —®[R] being

[R]

. . . - . - - . - = -
surjective, there is ce W[R] with r (c)=1(a, b) , thatis, mc=a, nc=b, and thus

[R]

acMR iff BENR . This completes showing that (®, ¢, y) :M%N .
L

We have shown something more general (and more technical), which is independent of

equality. This is that

(14) If (w, m, n) :M> N and we have

w
2% e
U ® 1%
¢ v

such that r is very surjective, then (O, @, v) : M eLeN ;

the relational quality of (¢, y) is not relevant to this.

Clearly, a relational equivalence preserving global equalities on all kinds is nothing but an
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isomorphism. We have shown that M~ GN implies that M=N, and (1 §)~ G (N, 13)

L L
implies (1 a)= (N, B) . But, all formulas in multisorted logic over |L| are preserved by

isomorphism. By the invariance theorem 5.(12), we conclude the following.

(15) For any context 4 over L, and any formula ¢ of multisorted logic over |L|

with Var (o) ct [remember, a variable x:X of FOLDS counts as a variable of sort KX in
multisorted logic], there is a FOLDS formula 6 over LG with var (0)cd such that o

and 0 are logically equivalent (over 1 ):

EVA(o— 9*) ; or in other words, M[A:0]=M[X: 9*] for any L-structure M. (We
apply 5.(12) to 1:2° > [( Ll ,Z[L])] ;for 2[L] ,see §1. T is essentially the identity
except that all the G K's are interpreted as equality. In M[1: 9*] , M is understood as a

standard LG—structure.)

Notice the small point that in the statement of (15), we are not allowed to start with a

\L| -formula o with arbitrary free variables; the free variables have to form a context. E.g.,
in the case of the language of categories, a formula with a single arrow-variable cannot (of
course) have an equivalent in FOLDS with the same free variables; we have to add the

"domain and the codomain of the arrow-variable" as free variables.

Let us hasten to add that it is possible to show (15) directly, by a rather simple structural
induction on the formula o .

We have an instance of what we may call expressive completeness of FOLDS: full first-order
logic over |L| can be expressed in £® . This is accompanied by a mode of deductive
completeness. We will give a deductive system for entailments over 8 , extending the
standard system for L for logic without equality by specific rules related to the

G-predicates, which is complete for semantics restricted to standard LG—structures, that is,
semantics of true equality.
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The set G K| L, the arity of the relation G x is the set

{pg g PER|LYU{g Lo} U{Dg ¢ PEK|LIU{g ]

Accordingly, we will write atomic formulas G K(E) , z indexed by G K| L, in the form

G (X, X v, v) ;here, x=( ) K(x), y=( ) K(y)
X, X, Y, ; , x=(x , x:K(x), y= , vV .
K ¥ ¥ P9y PEK|L Y= ypgKO PEK|L y=aly

Here are some other pieces of notation. For any object A of L (kind or relation), and tuples

;cz(xp)peA X ;:<yp>peA| I for which A(x) , A(y) (types or atomic formulas) are

well-formed, pre f/ denotes the formula

[A]

A e

PEA|L "p

When X:<Xp>pEK|L, Xpdéf<xqp>qEKp|L.

V. Global-equality axioms.

(Gl) = =

t — G (X X, X, X)

K
e

(Gz) - - - -

GK(X, X, YY) — GK(y, VY, X, X)

e

(G3) - - - - - -

GK(X, X V,yY) A GK(y, Y, Z, Z) T GK(X, X, Z, Z)
(G,) (pPEK|L)

4 - - - -

GK(X, XV, Y) T GK(yp, yp, Xp, Xp)

(G) - (x:K(x))

XG[K]y :/l’> dy:K(y) Gp(x X v, ¥)
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(G

) - - - -
6 XG, .y —— R(X¥) <>R(Y)
[R] P

The proof of the said completeness is done in the traditional manner; we use completeness for
logic without equality over L for the theory whose axioms are the (conclusion-)entailments
in the equality rules. Given any structure M for L satisfying the equality axioms, we

construct a standard L -structure M/~ which is LG—elementary equivalent to . For a kind
K, let Vg be the relation on the set MK defined by aNKb = MGK( [al, a, [b], b)
holds; here [al=( (Mp) (a) >p€K|L’ and similarly for [b] . By (Gy). (Gy) and (G5),
each ~_, 1s an equivalence relation; let us write a/~ for the equivalence class containing

K
a. (G4) implies that if f:K—>K' , aieMK, aiz(Mf) (ai)eMK’ , then aq~ gy =

aj” g, as . Let U=MIK. We define U/~:K->Set by (U/~) (K)=(UK) /~
(déf {a/~: aeUK}),and ((U/~) (f)) (a/~)=((Uf) (a))/~ , which is well-defined.
For a=(ap>p€R|K€M[R] ,weput a/~ = (ap/~>p€R|Ke (M/~)R.

We define M/~ by (M/~) R=U/~,and

(M/~)R(a/~) = MR(A) ;

by (G6) , this is well-defined; we have completed the definition of M/~ .

For any finite context 4, we have (M/~) [4] = (M[X]) /~ (déf{g/w: geM[/l’] ).

Moreover, when geM[K] , then (M/w)K(g/w) :MK(Q)/~ (déf{a/w: aeMK(Q)} .

This is not automatic; it requires (G5) . Finally, we show, by structural induction, that for any

0 over LG with vVar (0)cd , and geM[I] ,

M/~ E Ola/~] e ME 0[a]

Having the construction M > M/~ with the properties shown, the proof of the standard

completeness for £® can be completed in the expected manner.
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In place of global equality, it seems natural to consider fiberwise equality for FOLDS. Let, for

any DSV L, L® denote the DSV obtained by adding to L a new relation E x for every

e
KO
. . — _ . . . eq
kind K, with E K K and pe ®0=Pex1 (pEK|K) as for maximal kinds in L™= . A
e
K1
standard LE-structure is one in which each E., is interpreted as equality; to give a standard

K

LE—structure is the same as to give an L-structure. In what follows, M and N are

L-structures; when they figure as LE—structures, they mean the corresponding standard ones.

Suppose p:M %N . I claim that each p KCMEXNK is the graph of a bijection MK > NK .
L

By (6'), dom (pK) =MK , codom (pK) =NK . Thus, it remains to show that
aieMK, bieNK, aipri (1=1,2) = a;=a, = blzb2 (16)

We show this by induction on the level of K. Assume the hypotheses of (16). Let
aieMK(gl) , bieNK(bl) . Then, if glz(a;>p€K| K’ blz(b;> then

i i
ap Kpbp (by 3)).

PEK| K’

Assume (e.g.) a,=a, . Then 51:52 =a , that is, azlj:a; for all peK|K. By the

def

. : : : 1 .2 I
induction hypothesis, (16) applied to Kp , we have bp—bp , thatis, b =b de f—b . We
have a aZEMK(a) , bl’ bZENK(b) , and aaip{l’*bbl. . Therefore, by (6),

K
MEK(a, a az) = NEK(b, bl’ b2) ; that is, a,=a, = blzb2 as desired.

Given that each P is a bijection, clearly, p is an isomorphism p:M—N (of

L-structures). We conclude

M~ N =— M=N (17)
L ,r

(the above argument did not depend essentially on the fact that we dealt with Set-valued

structures)
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Applying 5.(12), we obtain

(18) For every sentence o in multisorted logic (with equality) over |L| there is a sentence
o of FOLDS over L™ such that for every L-structure M, MFo < MFo (here, in the first

instance, M figures as an |L| -structure; in the second instance as a standard LE—structure).

Proof. Consider the interpretation I: LE% [T] , where T=( |Ll, 2_) , extending the

L
"identity" interpretation L—> [T] , and interpreting each E x as equality. We apply 5.(12) to

I, A=0 and o . Suppose M, NET are Set-valued models (!),

mr® - ENPLE (19)
L

and Mo . M and N are L-structures, and M I‘LE, NILE are the corresponding standard

LE—structures. By (19) and (11), it follows that M=N. Since "everything" is invariant under
isomorphism, NFo . Thus, the hypothesis of 5.(12) holds. The conclusion is exactly what we

want.

Note that the result of (18) cannot be generalized to formulas with free variables in place of
sentences. That is, the statement of (15), with " replacing L is not true. This is shown by
the example that we gave above; in that example, L:Lg for L, consisting of K., K, and

0’ "1

p (and no relations). With A={x » Yo yl} as in the example, if for the formula

0 %1
0=y,=¥q (whose free variables are in 4 ) there were 0 in FOLDS over L with

Var (0) cd such that, for every LO—structure M (also counted as a standard L-structure) and

az(ao, a,€MKy; bOEMK1 (aO); bleMK1 (al) Y,

MFo(a) <= by=b, 2 M=0(a)

0

then for every equivalence (W, m, n) : (14, 5) N (N, Z') , where
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c=<c0, C,ENK,; dy€NK, (c); dj€NK, (cq) ),

since it would preserve 0 , we would have

b :bl(éé)d

0 =dy ;

0

but the example shows that this conclusion is false.

(18) can be used to give another proof of 6.(3), the Freyd-Blanc characterization result, at least

for =0 ; this proof is a variant of what is contained in [FS].

Let T be a normal theory of categories with additional structure. Assume © is an
L T—sentence such that for M, NET, |Ml ~ |N| implies that MFo iff NEo . In particular,

for M, NET, |M| =[Nl impliesthat Mo iff Nko .

By ordinary model theory (a version of Beth definability), it follows that there is a sentence 7

in multisorted logic over ‘Lca t‘ such that for models of 7', o and 7 are equivalent. By

(18), there is a sentence v in FOLDS over Lga which is equivalent to o in all

t

L -structures (also counted as standard F
cat ca

v, Ey and E

t—structures). There are two E-predicates in

. Replace each occurrence E . (X, Y) of EO by the formula

A @)

"nX=y" = 3feA (X, Y) .IgeA (Y, X) .TheA (X, X) .TieA (Y, Y)
(I(h)AI(i)AT(f, g, h) AT (g, £, 1)) ;

call the result O . Notice that 6 is a FOLDS formula of Lig c (it has only the allowable

equality predicates in Lig c ). I claim that for all M=T,
MFOo &~ MFO

Let M=T . |M| is a category; let |M| S be its skeleton. Since M| ~ |M| S , by the
normality of T, there is NET such that |N| = [M]| S Now
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MEo &= NFO since |M|~ |N| ,and M, NET

& NF7T since NET

&~ [N kT

&~ Nl ky

& |N| K6 since |N| is skeletal (that is, for objects X, Y, X=Y
iff x=v)

& |M|EO since |[M| ~ |N| ,and 6 is a FOLDS formula with
equality over L.t

& MFO .

This method of proof is also applicable to the "higher" cases. Let us consider the case of
bicategories; let us show that if a sentence ¢ in multisorted logic over

L | is invariant under equivalence of bicategories, then o is equivalent

Lbicat: anabicat

* *
in bicategories to 6 for a FOLDS sentence 0 over L 0 1is the translate of

anabicat ’
0 such that AFQ*@A#FQ.

A bicategory A is skeletal if any two equivalent objects are equal, and any two isomorphic
parallel 1-cells are equal. For any bicategory A, there is a skeletal one, AS , which is

(bi)equivalent to A .

The first step is to use Beth definability to the interpretation ¢: L [ 1.

anabicat - Tbicat

Since A*=B" implies that 4~B , it follows that there is a sentence 7 in multisorted logic

over |L | such that for every bicategory A, AF0 & Afer By (18), we can

anabicat

find a sentence y in FOLDS over LE such that, in particular, A#I=‘L' = A#I=l// .

anabicat
Now, transform y in the following way. Each occurrence E c (X 7) of E c is replaced
0 0

by the formula

"Xyt o= o

and each occurrence EC (X

Y) of E c is replaced by the formula
1

N
7 1

"f=g" = ..
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The resulting sentence 0 isin L .
anabicat

. I claim that for any bicategory A,

AFo = AI=9* . Indeed,
AFo = ASI=G = (AS) e s (AS) #I=u/ = (AS) o —s A#I=9 — A0 ;

the next-to-last last biconditional holds because Asz/(, of which (AS) . qu#
L

(L=L ) 1is a consequence, and because 0 is a FOLDS sentence over 9.

anabicat
This proof replaces the general invariance theorem 5.(12) by Beth definability, and a special
case of that invariance theorem, (18). It falls somewhat short of the results of §7, partly
because we have confined the situation to an empty context 4 . Also, this approach is not
available in constructive category theory; the existence of the skeleton (already in the classical
case of mere categories) depends on the Axiom of Choice. As we will see in Appendix E, the
main theory of equivalence of §5 has a constructive version involving intuitionistic logic.
Modifying the notions of equivalence to notions of "anaequivalence" (using, and building on,

[M2]), we obtain versions of the results of sections 6 and 7 for constructive category theory.
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