Appendix B: A fibrational theory of L-equivalence

Ec Bp
Consider fibrations C| ,D| , and the category Fib[C, D] of all maps
B B
C D
My
EC%ED
M= (M, M,) :C—>D :: C| o D (1)
BC'iMl *Bp

of fibrations; Fib[C, D] is a full subcategory of [C, D] ;see [M3]. Fib[C, D] is the
total category of a fibration denoted Fib(C, D) ; its base-category is the functor-category
[BC" BD] , and the fiber over U: BC%BD has objects all the M as in (1) with the fixed
U=M, , and arrows as in {C,D) defined in [M3]; the fiber of Fib{(C,D) over U is a full
subcategory of the fiber of (C, D) over U.Given (f:U—>V)E€ [Bp Bpl . and N: C—>D

h=0
*
over V, the Cartesian arrow M=f (N) 41\7 is obtained by the stipulation that for all

h
AEBC , XEC‘A , M(X) HXX is a Cartesian arrow over fA: U(A) > V(A) ; the definition

of M on arrows is the obvious one; see also below. The fact that M so defined is a map of

fibrations is shown by the diagram:

MO
q

Here, Gq: X—Y is a Cartesian arrow over g:A— B ; the issue is to show that Meq is
Cartesian (over Uqg ). The definition of M on arrows makes MGq an arrow over Ug making
the upper quadrangle commute (unique such MOq exists by h,, being Cartesian). As a
composite of Cartesian arrows, (NGq) th is Cartesian; as a left factor of the last, MQq is

Cartesian.
In what follows, the base categories By . By will have finite limits. Fiblex(C,D) is the

133



subfibration of Fib(C, D) with base-category Lex (B, Bp) »a full subcategory of
[Bp Byl . with fibers unchanged from Fib{C,D) .

Next, assume that C and D are A3-fibrations. We have the prefibration A3-(C, D) , with
base category Lex (BC" Bp) . and total category A3(C,D) . The fiber over UeLex (BC" Bj)
is the full subcategory of the fiber of Fiblex(C, D) over U with objects the maps of

A3-fibrations M:C—D. A3-(C, D) is not a fibration; however, for certain maps

f:U->V, £ (N) calculated in Fiblex(C,D) does belong to A3-(C,D) , as we proceed
to point out (from which it will of course follow that over such £, Cartesian arrows do exist
in A3-(C,D)).

Assume that D is a aA3-fibration, with QD = Arr (BD) .Letus call geArr (BD)

. . . . * *
surjective if EIth =ty If g is surjective, then for any veDP , Equ Y = EIq(tA/\q Y)
= Elqt ANY =Y (where the second equality is Frobenius reciprocity). It is clear that a pullback
of a surjective arrow is surjective, and the composite of two surjective arrows is surjective. It

is also clear that if gr is surjective, then sois g.

Let us call a commutative square in B;

{_F
A

a quasi-pullback if the canonical arrow p:A’ —AX_B’=P is surjective.

B

Using the stated properties of surjective maps, we easily see that if in the quasi-pullback (1'),

g is surjective, then sois g’ .

Consider two adjoining squares and their composite:

|

)

D>
W—— W
[\
D>
(O8]
Q—0
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(2) The "composite" of two quasi-pullbacks is again a quasi-pullback: if both 1 and
2 are quasi-pullbacks, then sois 3.

The verification uses both the pullback and composition properties of surjective arrows noted
above.

) In (1"),if 3 is a quasi-pullback, 2 is a pullback, and 1 commmutes, then 1 is
a quasi-pullback.

(3") If in the commutative diagram

.
) — T

the two quadrangles AA’AA’ and BB’ BB’ are pullbacks, and the square AA’BB’ isa

quasi-pullback, then AA’ BB’ is a quasi-pullback too.
This follows from (2) and (3).

3'") Ifin (1"), 3 is a quasi-pullback, and AB is surjective, then 2 is a
quasi-pullback.

To see this, let P=Bx _C’ for 2, and R=AX

c o’ for 3 . We have the commutative diagram
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R
17

with two pullbacks as indicated. Since AB is surjective, so is RP . The assumption gives that
A'R is surjective. Now, the composite A’ P is surjective, and so is its left factor B’ P,
which is what we want.

(4) The Beck-Chevalley condition for 3 holds (not just with pullback squares, but
also) with quasi-pullback squares.

Indeed, consider the diagram

and calculate: 3 ,a x=3 3 a x=33 qr x=3 r x=b 3 _X ; the third equality
_ g s™p s™p s g
is the "quasi-pullback” property, the last ordinary B-C .

Let us continue to assume that 2 is a "full" A3-fibration ( QD contains all arrows), let C be

an arbitrary A3-fibration, (g:A— B) €B . We callamap (£:U—V)eLex (BC" BD) very
surjective with respect to g if the square

UA UB

Ug
\ &
fA
VA VB

is a quasi-pullback. (The concept of "very surjective" is relative to the fibration 7, although it
does not depend on the fibration C except for its base-category.)
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(5) If £ 1is very surjective with respect to an arrow g, then so it is with respect to
any pullback of g;if £ is very surjective with respect to a pair composable arrows, then so

it is with respect to their composite.

This follows by (3) and (2).

We say that £ is very surjective if it is very surjective with respect to every quC, ; by (5), it

is enough to require the condition for a "generating set" of g's .

(6) The composite of very surjective arrows (in Lex (BC" Bj) ) 1s very surjective; the

pullback of a very surjective arrow is very surjective.

This follows by using (2) and (3).

Let K be a simple category, B = Con (K) °P . Lex(B, Bj) can be identified with
Fun (K, Bp) ; this is the kind of base-category for the fibrations we are interested in. In §4,

we made two different choices for the class @ of quantifiable arrows in B . The choice for
the purposes of the main body of §5 is Q¢ ; this, in the version that is closed under

composition, is simply the class of epimorphisms of B. When we make the choice of g~ for
g, we get as the very surjective maps in the sense of this section the ones we called normal

ones in §5; we leave it to the reader to verify this.

(6') Let (f:U—>V)eFun(K, BD) be very surjective (with respect to Q¢ ). For

every finite context 4 over K, £ Fol Uld] > VI[A] is surjective. For any KeK,

[
fK: U(K) — V(K) is surjective.

The first assertion is shown by induction on the cardinality of 4 .If 1 is of positive size, we

can write X as JU{x} such that ) is a context too. By the paragraph after (4) in §4, for

RK=K_ , we have a pushout diagram
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in Con (K) , which, with V:IK, ZI:II*{, gives rise to

Uly]— vyl

T

Ut > VIU] vl vl

T

U] ——— > VI[L]

to which (3') is applicable. The square 1 is a quasi-pullback (by £ being very surjective),
hence, so is 2 . Since by the induction hypothesis, U[ Y] — V[J)] is surjective, so is
U] > vid] .

The second assertion follows immediately from the first by the quasi-pullback

U
Ty
U(K) — & U]
le lf[K]
V(K) VK]
U
Ty

note that U[K] = U[zl’K] , etc.

Assume now that C and P are av3-fibrations, 7 a "full" one.

*

(7) If £:U-—>V is very surjective, and Ne av3a (C, D) ,the M=f (N) calculated in
Fib(C,D) isinfactin Ava(C, D) .
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First of all, using that for each geArr (BD) , g* is a morphism of lattices, we immediately

see that M preserves the fiberwise operations.

Consider

\ \
\\

MEIX fBNEIX fEI NXEIfNX EIqMX;

here, the first equality is the definition of 1/ ; the second the quality of N being a morphism

of J-fibrations; the third f being very surjective; and the last again the definition of .

Now, assume in addition that both C and D are Av— 3V-fibrations, again with

QD = Arr (BD) . I claim that

8) If £:U-—>V isvery surjective, then Ne Av— 3V (C, D) implies that

ﬁ:f*(z\r) e av=3IV(C, D) .

The additional fiber-wise operation, Heyting implication, is dealt with as before. Let

(g:A—>B) EQC , XEC'A ; we want to show that MVqX = VMqMX; that is, for any e VB ,

o< MY qX ~— (Uqg) "< mMx.The left-to-right implication is automatic. Assume

~UB ~Ua
(Uq) o< MX, )

“UA

and consider
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(Uq)  d<MX= f:;UX ®

2

(Vq)*(af ®) <NX 3.0
B B

e \VB

As indicated, we consider the object 3 £ ® over VB, and claim that the inequality marked ?
B
is true.

(Vg) (3. @) =3, (Ug) ® (10)
fB fA

by the (generalized) B-C property for 3 with quasi-pullbacks. (9) implies that

* *
3, (Ug) &<, 3, Mx=3, f NX<NX . (11)
fA UA fA fA A

(10) and (11) imply what we wanted. Now, from this, 3 . ® <V _  NX = N(V _X) , and
fB \%ej q

D < f;EIqu) < f;N(VqX) = M(VqX) as desired.

M, Ne Anv— 3V (C, D) are said to be equivalent, M~N , if there is a diagram

W om

such that m, n are Cartesian in Fiblex(C, D) , and m, Pl%M1 g Pl%N1

very surjective. Equivalence is clearly reflexive and symmetric; it is transitive too; given

MM/Q\nNyR\pP

are
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with the relevant properties, one forms the pullback

ql/Sl&
« R
\nl ni/ 1
3

&
Ny

Q)

in Lex(BC,BD) , and defines S as (ni)*(Nl) ,for n'=n ;let n":S—>N

17719 =015
be the Cartesian arrow over nj . Then n being Cartesian implies that there is a (unique) g

over q; such that ng=n" ; similarly for r over r, . Since n" is Cartesian, so are g

1

and r . Since q, ., rq are pullbacks of very surjective arrows, they are very surjective. We

1
conclude that mg and pr are Cartesian arrows over very surjective ones, which proves what

we want.

Let us take T=(L, @) , the "empty theory" over the DSV L,andlet C=[T] ,a
nv— 3V-fibration with base-category B = (Con[K]) °P and class of quantifiable arrows

Q:Q¢ . Recall the canonical i:K— B induced by Yoneda. Mod c,(T) = Str (L) , and we

c
have the fibration £:Mod el — X as explained in §5. We also have the fibration

D=Fiblex{(C,P(C)) : Fiblex[C,P(C)] ——Lex (B, C)

We have a "forgetful" morphism () :D—>&; (),

1 is the equivalence

Ubs Uoi : Lex (B, C) —>cX:

and () 5 is defined as P +> P was defined in §4 (see (5)) for the special case when
PEMod?(c) (C) c Fiblex[C,P(C) 1 .Itis easy to verify that () is a morphism of
fibrations.

We have the quasi-inverse

Ui [U] : ¢ Frex (B, C) (12)
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specified so that [U] ([4]) = U[4] ; we have the canonical isomorphism jU: (Ul =U
natural in U. () :D—>& restricts to an equivalence
- iso iso

()7 : Modp &) (C) — >Mod "o (T) (13)
whose quasi-inverse is

M [M] ModiC,SO(T) %Mod%s(g) (C) c Fiblex[C,P(C) ]
constructed in §4 , with the canonical isomorphism j Ve [M] = M natural in M. These are
connected to (12) by [M] ;= [MIK] Gy 17Tk

Let us deduce (1)(b) of §5 from (8); let's use the notation and hypotheses of 5.(1)(b). Consider
the following diagram in the fibration & :

[M] [N]

[(u] — [V]
[£]

The two quadrangles commute, by the naturality of 7 . It follows that

£ " :[M] —> [N] is Cartesian over [f] :[U] ——> [V] . Consider the Cartesian

arrow 0O

[0

*

[f]:[f] [N] —> [N] over [f]:[U] —>[V] in D.Since () is a morphism

of fibrations,
(G[f]) :([£f] [N]) —> [N]

is Cartesian over the same [f] :[U] —> [V] . It follows that there is an isomorphism
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([£f] * [N]) =M over 1 - . But then, since (13) is full and faithful, it follows that

[U]
[f] [N] = M. Hence,

ML) = ([£] [N]) [X:0] = £p([N][X:0]) = Fp(N[X:0]) ,
¥ ¥

where the second equality is the description of Cartesian arrows in 7, the last is the definition

of [N] ; and this is what was to be proved.

Continuing in this manner, we see that, for M, N eMod C,( T) , M~ LN in the sense of §4 iff
[M]~[N] in the sense of this Appendix.
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