Appendix B: A fibrational theory of L-equivalence

Consider fibrations $\mathcal{C}^{\boldsymbol{E}^{\boldsymbol{E}}} \boldsymbol{C}{ },{ }^{\boldsymbol{E}} \mathcal{D}$ D , and the category $\operatorname{Fib}[\mathcal{C}, \mathcal{D}]$ of all maps ${ }^{B} \mathcal{C} \quad{ }^{B_{\mathcal{D}}}$
of fibrations; Fib $[\mathcal{C}, \mathcal{D}]$ is a full subcategory of $[\mathcal{C}, \mathcal{D}]$; see $[\mathrm{M} 3]$. Fib $[\mathcal{C}, \mathcal{D}]$ is the total category of a fibration denoted $\mathrm{Fib}\langle\mathcal{C}, \mathcal{D}\rangle$; its base-category is the functor-category ${ }^{\left[\boldsymbol{B}_{\mathcal{C}}\right.}{ }^{\boldsymbol{B}} \mathcal{D}^{]}$, and the fiber over $U: \boldsymbol{B}_{\mathcal{C}} \rightarrow \boldsymbol{B}_{\mathcal{D}}$ has objects all the M as in (1) with the fixed $U=M_{1}$, and arrows as in $\langle\mathcal{C}, \mathcal{D}\rangle$ defined in [M3]; the fiber of $\operatorname{Fib}\langle\mathcal{C}, \mathcal{D}\rangle$ over U is a full subcategory of the fiber of $\langle\mathcal{C}, \mathcal{D}\rangle$ over U. Given $(f: U \rightarrow V) \in\left[\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right]$, and $N: \mathcal{C} \rightarrow \mathcal{D}$ over V, the Cartesian arrow $M=f^{\star}(N) \xrightarrow{h=\theta_{f}} N$ is obtained by the stipulation that for all $A \in \boldsymbol{B}_{\mathcal{C}}, \quad X \in \mathcal{C}^{A}, \quad M(X) \xrightarrow{h_{X}} X$ is a Cartesian arrow over $f_{A}: U(A) \rightarrow V(A)$; the definition of M on arrows is the obvious one; see also below. The fact that M so defined is a map of fibrations is shown by the diagram:

Here, $\theta_{q}: X \rightarrow Y$ is a Cartesian arrow over $q: A \rightarrow B$; the issue is to show that $M \theta_{q}$ is Cartesian (over Uq). The definition of M on arrows makes $M \theta_{q}$ an arrow over $U q$ making the upper quadrangle commute (unique such $M \theta_{q}$ exists by h_{Y} being Cartesian). As a composite of Cartesian arrows, $\left(N \theta_{q}\right) \circ h_{X}$ is Cartesian; as a left factor of the last, $M \theta_{q}$ is Cartesian.

In what follows, the base categories $\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}$ will have finite limits. Fiblex $\langle\mathcal{C}, \mathcal{D}\rangle$ is the
subfibration of $\operatorname{Fib}\langle\mathcal{C}, \mathcal{D}\rangle$ with base-category $\operatorname{Lex}\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$, a full subcategory of ${ }^{\left[\boldsymbol{B}_{\mathcal{C}}\right.}{ }^{\boldsymbol{B}} \mathcal{D}^{]}$, with fibers unchanged from $\mathrm{Fib}\langle\mathcal{C}, \mathcal{D}\rangle$.

Next, assume that \mathcal{C} and \mathcal{D} are $\wedge \exists$-fibrations. We have the prefibration $\wedge \exists-\langle\mathcal{C}$, $\mathcal{D}\rangle$, with base category Lex $\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$, and total category $\wedge \exists(\mathcal{C}, \mathcal{D})$. The fiber over $U \in \operatorname{Lex}\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$ is the full subcategory of the fiber of $\operatorname{Fiblex}\langle\mathcal{C}, \mathcal{D}\rangle$ over U with objects the maps of $\wedge \exists$-fibrations $M: \mathcal{C} \rightarrow \mathcal{D} . \wedge \exists-\langle\mathcal{C}, \mathcal{D}\rangle$ is not a fibration; however, for certain maps $f: U \rightarrow V, f^{*}(N)$ calculated in Fiblex $\langle\mathcal{C}, \mathcal{D}\rangle$ does belong to $\wedge \exists-\langle\mathcal{C}, \mathcal{D}\rangle$, as we proceed to point out (from which it will of course follow that over such f, Cartesian arrows do exist in $\wedge \exists-\langle\mathcal{C}, \mathcal{D}\rangle)$.

Assume that \mathcal{D} is a $\wedge \exists$-fibration, with $\mathcal{Q}_{\mathcal{D}}=\operatorname{Arr}\left(\boldsymbol{B}_{\mathcal{D}}\right)$. Let us call $\mathrm{q} \in \operatorname{Arr}\left(\boldsymbol{B}_{\mathcal{D}}\right)$ surjective if $\exists_{q} \mathbf{t}_{A}=\mathbf{t}_{B}$. If q is surjective, then for any $Y \in \mathcal{D}^{B}, \exists \exists_{q}{ }^{*} Y=\exists_{q}\left(\mathbf{t}_{A} \wedge q^{*} Y\right)$ $=\exists_{q} t_{A} \wedge Y=Y$ (where the second equality is Frobenius reciprocity). It is clear that a pullback of a surjective arrow is surjective, and the composite of two surjective arrows is surjective. It is also clear that if $q r$ is surjective, then so is q.

Let us call a commutative square in $\boldsymbol{B}_{\mathcal{D}}$

a quasi-pullback if the canonical arrow $p: A^{\prime} \rightarrow A \times B^{B^{\prime}}=P$ is surjective.

Using the stated properties of surjective maps, we easily see that if in the quasi-pullback (1'), g is surjective, then so is g^{\prime}.

Consider two adjoining squares and their composite:

(2) The "composite" of two quasi-pullbacks is again a quasi-pullback: if both 1 and 2 are quasi-pullbacks, then so is 3 .

The verification uses both the pullback and composition properties of surjective arrows noted above.
(3) In (1"), if 3 is a quasi-pullback, 2 is a pullback, and 1 commmutes, then 1 is a quasi-pullback.
(3') If in the commutative diagram

the two quadrangles $A A^{\prime} \bar{A} \overline{A^{\prime}}$ and $B B^{\prime} \bar{B} \bar{B}^{\prime}$ are pullbacks, and the square $A A^{\prime} B B^{\prime}$ is a quasi-pullback, then $\bar{A} \bar{A}, \bar{B} \bar{B}^{\prime}$ is a quasi-pullback too.

This follows from (2) and (3).
(3') If in (1"), 3 is a quasi-pullback, and $A B$ is surjective, then 2 is a quasi-pullback.

To see this, let $P=B \times{ }_{C} C^{\prime}$ for 2 , and $R=A \times{ }_{C} C^{\prime}$ for 3 . We have the commutative diagram

with two pullbacks as indicated. Since $A B$ is surjective, so is $R P$. The assumption gives that $A^{\prime} R$ is surjective. Now, the composite $A^{\prime} P$ is surjective, and so is its left factor $B^{\prime} P$, which is what we want.
(4) The Beck-Chevalley condition for \exists holds (not just with pullback squares, but also) with quasi-pullback squares.

Indeed, consider the diagram

and calculate: $\exists_{g^{\prime}} a^{*} X=\exists_{S} \exists_{p} a^{*} X=\exists_{S} \exists_{p} q^{*} r^{*} X=\exists_{S} r^{*} X=b^{*} \exists_{g} X$; the third equality is the "quasi-pullback" property, the last ordinary B-C .

Let us continue to assume that \mathcal{D} is a "full" $\wedge \exists$-fibration $\left(\mathcal{Q}_{\mathcal{D}}\right.$ contains all arrows), let \mathcal{C} be an arbitrary $\wedge \exists$-fibration, $(q: A \rightarrow B) \in \boldsymbol{B}_{\mathcal{C}}$. We call a map $(f: U \rightarrow V) \in \operatorname{Lex}\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$ very surjective with respect to q if the square

is a quasi-pullback. (The concept of "very surjective" is relative to the fibration \mathcal{D}, although it does not depend on the fibration \mathcal{C} except for its base-category.)
(5) If f is very surjective with respect to an arrow q, then so it is with respect to any pullback of q; if f is very surjective with respect to a pair composable arrows, then so it is with respect to their composite.

This follows by (3) and (2).

We say that f is very surjective if it is very surjective with respect to every $q \in \mathcal{Q}_{\mathcal{C}}$; by (5), it is enough to require the condition for a "generating set" of q's .
(6) The composite of very surjective arrows (in $\operatorname{Lex}\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$) is very surjective; the pullback of a very surjective arrow is very surjective.

This follows by using (2) and (3).

Let \boldsymbol{K} be a simple category, $\boldsymbol{B}=\operatorname{Con}(\boldsymbol{K})^{\mathrm{op}} ; \operatorname{Lex}\left(\boldsymbol{B}, \boldsymbol{B}_{\mathcal{D}}\right)$ can be identified with Fun $\left(\boldsymbol{K}, \boldsymbol{B}_{\mathcal{D}}\right)$; this is the kind of base-category for the fibrations we are interested in. In $\S 4$, we made two different choices for the class \mathcal{Q} of quantifiable arrows in \boldsymbol{B}. The choice for the purposes of the main body of $\S 5$ is \mathcal{Q}^{\neq}; this, in the version that is closed under composition, is simply the class of epimorphisms of \boldsymbol{B}. When we make the choice of $\mathcal{Q}^{=}$for \mathcal{Q}, we get as the very surjective maps in the sense of this section the ones we called normal ones in $\S 5$; we leave it to the reader to verify this.
(6') Let $(f: U \rightarrow V) \in \operatorname{Fun}\left(\boldsymbol{K}, \boldsymbol{B}_{\mathcal{D}}\right)$ be very surjective (with respect to \mathcal{Q}^{\neq}). For every finite context \mathcal{X} over $\boldsymbol{K}, f_{[\mathcal{X}]}: U[\mathcal{X}] \rightarrow V[\mathcal{X}]$ is surjective. For any $K \in \boldsymbol{K}$, $f_{K}: U(K) \rightarrow V(K)$ is surjective.

The first assertion is shown by induction on the cardinality of \mathcal{X}. If \mathcal{X} is of positive size, we can write \mathcal{X} as $\mathcal{X}\{x\}$ such that \mathcal{Y} is a context too. By the paragraph after (4) in $\S 4$, for $K=\mathrm{K}_{X}$, we have a pushout diagram

in $\operatorname{Con}(\boldsymbol{K})$, which, with $\mathcal{V}=\mathcal{X}_{K}, \mathcal{U}=\mathcal{X}_{K}^{\star}$, gives rise to

to which (3^{\prime}) is applicable. The square 1 is a quasi-pullback (by f being very surjective), hence, so is 2 . Since by the induction hypothesis, $U[\mathcal{Y}] \rightarrow V[\mathcal{Y}]$ is surjective, so is $U[\mathcal{X}] \rightarrow V[\mathcal{X}]$.

The second assertion follows immediately from the first by the quasi-pullback
note that $U[K]=U\left[\mathcal{X}_{K}\right]$, etc.

Assume now that \mathcal{C} and \mathcal{D} are $\wedge \vee \exists$-fibrations, \mathcal{D} a "full" one.
(7) If $\mathrm{f}: U \rightarrow V$ is very surjective, and $N \in \wedge \vee \exists(\mathcal{C}, \mathcal{D})$, the $M=f^{*}(N)$ calculated in $\operatorname{Fib}(\mathcal{C}, \mathcal{D})$ is in fact in $\wedge \vee \exists(\mathcal{C}, \mathcal{D})$.

First of all, using that for each $g \in \operatorname{Arr}\left(\boldsymbol{B}_{\mathcal{D}}\right), g^{*}$ is a morphism of lattices, we immediately see that M preserves the fiberwise operations.

Consider

here, the first equality is the definition of M; the second the quality of N being a morphism of \exists-fibrations; the third f being very surjective; and the last again the definition of M.

Now, assume in addition that both \mathcal{C} and \mathcal{D} are $\wedge \vee \rightarrow \exists \forall$-fibrations, again with $\mathcal{Q}_{\mathcal{D}}=\operatorname{Arr}\left(\boldsymbol{B}_{\mathcal{D}}\right)$. I claim that
(8) If $f: U \rightarrow V$ is very surjective, then $N \in \wedge \vee \rightarrow \exists \forall(\mathcal{C}, \mathcal{D})$ implies that $M=f^{*}(N) \in \wedge \vee \rightarrow \exists \forall(\mathcal{C}, \mathcal{D})$.

The additional fiber-wise operation, Heyting implication, is dealt with as before. Let $(q: A \rightarrow B) \in \mathcal{Q}_{\mathcal{C}}, \quad X \in \mathcal{C}^{A}$; we want to show that $M \forall{ }_{q} X=\forall_{M q} M X$; that is, for any $\Phi \in \mathcal{D}^{U B}$, $\Phi \leq_{U B} M \forall{ }_{q} X \Longleftrightarrow(U q)^{*} \Phi \leq_{U A} M X$. The left-to-right implication is automatic. Assume

$$
\begin{equation*}
(U q)^{*} \Phi \leq_{U A} M X \tag{9}
\end{equation*}
$$

and consider

$$
\begin{aligned}
& \text { (Uq) }{ }^{*} \Phi \leq M X=f_{A}^{*} U X \\
& \Phi \\
& (V q){ }^{*}\left(\exists_{f_{B}} \Phi\right) \stackrel{?}{\leq} N X \quad \exists_{f_{B}} \Phi
\end{aligned}
$$

As indicated, we consider the object $\exists_{f_{B}} \Phi$ over $V B$, and claim that the inequality marked ? is true.

$$
\begin{equation*}
(V q){ }^{*}\left(\exists_{f_{B}} \Phi\right)=\exists_{f_{A}}(U q){ }^{*} \Phi \tag{10}
\end{equation*}
$$

by the (generalized) B-C property for \exists with quasi-pullbacks. (9) implies that

$$
\begin{equation*}
\exists_{f_{A}}(U q){ }^{*} \Phi \leq_{U A} \exists_{f_{A}} M X=\exists_{f_{A}} f_{A}^{*} N X \leq N X . \tag{11}
\end{equation*}
$$

(10) and (11) imply what we wanted. Now, from this, $\exists_{f_{B}} \Phi \leq \forall_{V q} N X=N\left(\forall_{q} X\right)$, and $\Phi \leq f_{B}^{*} \exists f_{B} \Phi \leq f_{B}^{*} N\left(\forall_{q} X\right)=M\left(\forall_{q} X\right)$ as desired.
$M, N \in \wedge \vee \rightarrow \exists \forall(\mathcal{C}, \mathcal{D})$ are said to be equivalent, $M^{\sim} N$, if there is a diagram

such that m, n are Cartesian in $\operatorname{Fiblex}(\mathcal{C}, \mathcal{D})$, and $m_{1}: P_{1} \rightarrow M_{1}, n_{1}: P_{1} \rightarrow N_{1}$ are very surjective. Equivalence is clearly reflexive and symmetric; it is transitive too; given

with the relevant properties, one forms the pullback

in $\operatorname{Lex}\left(\boldsymbol{B}_{\mathcal{C}}, \boldsymbol{B}_{\mathcal{D}}\right)$, and defines S as $\left(n_{1}^{\prime \prime}\right)^{*}\left(N_{1}\right)$, for $n_{1}^{\prime \prime}=n_{1} q_{1}=n_{1}^{\prime} r_{1}$; let $n ": S \rightarrow N$ be the Cartesian arrow over n_{1}^{\prime}. Then n being Cartesian implies that there is a (unique) q over q_{1} such that $n q=n^{\prime \prime}$; similarly for r over r_{1}. Since $n^{\prime \prime}$ is Cartesian, so are q and r. Since q_{1}, r_{1} are pullbacks of very surjective arrows, they are very surjective. We conclude that $m q$ and pr are Cartesian arrows over very surjective ones, which proves what we want.

Let us take $T=(\boldsymbol{L}, \varnothing)$, the "empty theory" over the DSV \boldsymbol{L}, and let $\mathcal{C}=[T]$, a $\wedge \vee \rightarrow \exists \forall$-fibration with base-category $\boldsymbol{B}=(\operatorname{Con}[\boldsymbol{K}])^{\circ P}$ and class of quantifiable arrows $\mathcal{Q}=\mathcal{Q}^{\neq}$. Recall the canonical $i: \boldsymbol{K} \rightarrow \boldsymbol{B}$ induced by Yoneda. $\operatorname{Mod}_{\boldsymbol{C}}(T)=\operatorname{Str} \boldsymbol{C}(\boldsymbol{L})$, and we have the fibration $\mathcal{E}: \operatorname{Mod}_{\boldsymbol{C}}(T) \rightarrow \boldsymbol{C}^{\boldsymbol{K}}$ as explained in $\S 5$. We also have the fibration

$$
\mathcal{D}=\text { Fiblex }\langle\mathcal{C}, \mathcal{P}(\boldsymbol{C})\rangle: \text { Fiblex }[\mathcal{C}, \mathcal{P}(\boldsymbol{C})] \longrightarrow \operatorname{Lex}(\boldsymbol{B}, \boldsymbol{C}) .
$$

We have a "forgetful" morphism ($)^{-}: \mathcal{D} \rightarrow \mathcal{E} ;()_{1}^{-}$is the equivalence

$$
U \mapsto U \circ i: \operatorname{Lex}(\boldsymbol{B}, \boldsymbol{C}) \xrightarrow{\simeq} \boldsymbol{C}^{\boldsymbol{K}}
$$

and ()$_{2}^{-}$is defined as $P \mapsto P^{-}$was defined in $\S 4$ (see (5)) for the special case when $P \in \operatorname{Mod}_{\mathcal{P}(\boldsymbol{C})}(\mathcal{C}) \subset \operatorname{Fiblex}[\mathcal{C}, \mathcal{P}(\boldsymbol{C})]$. It is easy to verify that ()$^{-}$is a morphism of fibrations.

We have the quasi-inverse

$$
\begin{equation*}
U \mapsto[U]: \boldsymbol{C}^{\boldsymbol{K}} \xrightarrow{\simeq} \operatorname{Lex}(\boldsymbol{B}, \boldsymbol{C}) \tag{12}
\end{equation*}
$$

specified so that $[U]([\mathcal{X}])=U[\mathcal{X}]$; we have the canonical isomorphism $j_{U}:[U]^{-} \cong U$ natural in $U .()^{-}: \mathcal{D} \rightarrow \mathcal{E}$ restricts to an equivalence

$$
\begin{equation*}
()^{-}: \operatorname{Mod}_{\mathcal{P}(\boldsymbol{C})}^{\text {iso }}(\mathcal{C}) \longrightarrow \operatorname{Mod}_{\boldsymbol{C}}^{\text {iso }}(T) \tag{13}
\end{equation*}
$$

whose quasi-inverse is

$$
M \mapsto[M]: \operatorname{Mod}_{\boldsymbol{C}}^{\text {iso }}(T) \longrightarrow \operatorname{Mod}_{\mathcal{P}(\boldsymbol{C})}^{\text {iso }}(\mathcal{C}) \subset \operatorname{Fiblex}[\mathcal{C}, \mathcal{P}(\boldsymbol{C})]
$$

constructed in $\S 4$, with the canonical isomorphism $j_{M}:[M]{ }^{-} \cong M$ natural in M. These are connected to (12) by $\left[{ }^{[M]}\right]_{1}=[M \upharpoonright K], \quad\left(j_{M}\right)_{1}=j_{M \uparrow K}$.

Let us deduce (1)(b) of $\S 5$ from (8); let's use the notation and hypotheses of $5 .(1)(\mathrm{b})$. Consider the following diagram in the fibration \mathcal{E} :

The two quadrangles commute, by the naturality of j. It follows that $\left[\theta_{f}\right]^{-}:[M]^{-} \longrightarrow[N]^{-}$is Cartesian over $[f]^{-}:[U]^{-} \longrightarrow[V]^{-}$. Consider the Cartesian arrow $\theta_{[f]}:[f]^{*}[N] \longrightarrow[N]$ over $[f]:[U] \longrightarrow[V]$ in \mathcal{D}. Since ()$^{-}$is a morphism of fibrations,

$$
\left(\theta_{[f]}\right)^{-}:\left([f]^{*}[N]\right)^{-} \longrightarrow[N]^{-}
$$

is Cartesian over the same $[f]^{-}:[U]^{-} \longrightarrow[V]^{-}$. It follows that there is an isomorphism
$\left([f]^{*}[N]\right)^{-} \xrightarrow{\cong} M$ over $1_{[U]}-$. But then, since (13) is full and faithful, it follows that $[f]{ }^{*}[N]=M$. Hence,

$$
M[\mathcal{X}: \varphi]=\left([f]^{*}[N]\right)[\mathcal{X}: \varphi]=f_{\mathcal{X}}^{\star}([N][\mathcal{X}: \varphi])=f_{\mathcal{X}}^{*}(N[\mathcal{X}: \varphi]),
$$

where the second equality is the description of Cartesian arrows in \mathcal{D}, the last is the definition of $[N]$; and this is what was to be proved.

Continuing in this manner, we see that, for $M, N \in \operatorname{Mod} \boldsymbol{C}^{(T)}{ }^{(T)}{ }^{M \sim}{ }^{N}$ in the sense of $\S 4$ iff $[M] \sim[N]$ in the sense of this Appendix.

