
Appendix A: An alternative introduction of logic with dependent sorts.

The way we defined the basic concepts of FOLDS in §1 may look somewhat ad hoc because

of the a priori role of the one-way (simple) categories as vocabularies. There is a more direct

definition of FOLDS which does not start with assuming simple categories as vocabularies.

The notion of "vocabulary" that arises naturally in the direct approach does, nevertheless, turn

out to be equivalent to the one we started with in §1. More fully, the direct approach and the

original approach turn out to be equivalent in all essential respects. This Appendix describes

this state of affairs.

We first define the classes of entities called kinds, sorts, variables, contexts and

specializations, and certain relation between these entities. Each kind, sort, variable, context

and specialization has a certain level, which is a natural number; the definition of the said

entities is by a simultaneous induction, proceeding by the level.

For the present purpose, we use the set-theoretic notion of function as a set of ordered pairs

with the usual condition; the point is that we do not make the "categorical" specification of the

codomain as part of the data for a function. Given functions s and t , t�s is always

defined and is a function; dom(t�s) = {x∈dom(s): s(x)∈dom(t)} , and for

x∈dom(t�s) , (t�s)(x)=t(s(x)) .

The kinds of level 0 are the entities of the form 〈0, ∅, a 〉 , with a any set. We say that

�the kind K = 〈0, ∅, a 〉 is of arity ∅ , and we write K ∅ . The sorts of level 0 are the
�

entities 〈1, K, ∅〉 , with K a kind of level 0 ; we put Var(K) = ∅ . A variable of level 0

is any entity of the form 〈2, X, a 〉 with X a sort of level 0 , a any set; we say that the

variable x = 〈2, X, a 〉 is of sort X , and we write x:X . (The definition ensures that every

variable of level 0 has a unique sort of level 0 .) A context of level 0 is a finite set of

variables of level 0 . A specialization of level 0 is a function s whose domain is a context

of level 0 , and for each x∈dom(s) , s(x) is a variable of the same sort as x .

Suppose n is a natural number, n>0 , and we have defined what the kinds, sorts, variables,

contexts and specializations of level k are, for each k < n , such that each context of level

< n is a finite set of variables of level < n , and each specialization of level < n is a

function whose domain and range are sets of variables of level < n . Suppose moreover that

127

we have defined the concept of a variable x being of sort X , for variables x and sorts X

of level <n .

A kind of level n is an entity 〈0, �, a 〉 , where � is a context of level n-1 , and a is an

�arbitrary set; we say that � is the arity of K= 〈0, �, a 〉 , and we write K � .
�

[Kinds are to form sorts (see below); kinds are incomplete sorts, with places for variables to

fill; when these places are filled in a correct manner, then we have a sort. In our formulation,

we did not introduce "places" as distinct from variables, although we could have done so; we

used variables to denote "places"; this is the same as the "nameforms" in [K]. Our procedure

may be compared to the one when, in ordinary first-order logic with several sorts, a relation

symbol R is introduced in the form R(x , x , ...x) , with distinct specific variables0 1 n-1
x of definite sorts; the arity of R then may be identified with the seti
�={x , x , ...x } ; the atomic formula R(y , y , ...y) (y of the same sort0 1 n-1 0 1 n-1 i
as x) using R can then be identified with the pair (R, s) (= " R(s) ") where s is thei
function with domain � for which s(x)=y .]i i

A sort of level n is any X= 〈1, K, s 〉 , written more simply as K(s) , where K is a kind

�of level n , s is a specialization of level n-1 , and K dom(s) ;
�

Var(X) = range(s) .def

For a sort X , a variable of sort X is any x = 〈2, X, a 〉 ; we write x:X .

A context of level n is any set of the form �∪� where � is a context of level n-1 , � is

a (non-empty, for having level exactly =n) finite set, and each x∈� is a variable of level n

such that if x:X , then Var(X) ⊂ � .

If X=K(s)(= 〈1, K, s 〉) , then X�t denotes K(t�s)(= 〈1, K, t�s 〉) . [X�t is the sort

obtained "by substituting t(x) simultaneously for each x∈Var(X) in X ".] t is a

specialization (of level n) if t is a function whose domain is a context, and for every

x∈dom(t) , if x:X , then X�t is a sort (of level ≤n), and t(x) is a variable (of level

≤n) of sort X�t (and there is at least one x∈dom(t) of level n).

The above may be put in a more compact manner, without talking about levels, as follows. We

128

define classes

KIND , CONTEXT , SORT , SPEC , VARIABLE

such that

�∈CONTEXT ��� � is a finite subset of VARIABLE ,

s∈SPEC ��� s is a function, dom(s) and range(s) ⊂ CONTEXT ;

predicates

� �⊂ KIND × CONTEXT (read K � as " K is a kind of arity � ")
� �

: ⊂ VARIABLE × SORT (read x:X as " x is a variable of sort X ")

and the function

Var : SORT���� (VARIABLE) ,fin

by the closure conditions:

�1 �∈CONTEXT ��� 〈0,�,a 〉 ∈ KIND and 〈0, �, a 〉 � ;
�

2 ∅ ∈ CONTEXT ;

3 �∈CONTEXT , X∈SORT , x:X , Var(X) ⊂ � ��� �∪{x} ∈ CONTEXT ;

�4 s∈SPEC , K∈KIND , K dom(s) ���
�

〈1, K, s 〉 ∈ SORT and Var(〈1, K, s 〉) = range(s) ;

5 ∅ ∈ SPEC ;

6 �∈CONTEXT , s∈SPEC , X∈SORT , X�s∈SORT ,

x:X , x∉dom(s) , Var(X)⊂� , y:X�s ��� s∪{(x,y)} ∈ SPEC ;

(〈1, K, s 〉�t = 〈1, K, t�s 〉)def
7 X∈SORT ��� 〈2, X, a 〉 ∈ VARIABLE and 〈2, X, a 〉:X .

By definition, the intended system (KIND,...) is the minimal one satisfying the given

closure conditions.

129

Let us give some examples. Let O , A , A , U , V , u , v be arbitrary entities, U≠V ,
� � �1 � � � � � �

u≠v . Here are specific kinds, variables, sorts and contexts, introduced by the above rules; at
� �

the start of the line, the number of the clause used is shown:

2 ∅∈CONTEXT ,

� ��1 O = 〈∅,∅,O 〉 ∈ KIND , O ∅ .def � �

5 s = (∅:∅��∅) ∈ SPEC0 def
�4 O = 〈1,O,s 〉 ∈ SORT , Var(O) = ∅def 0

7 U = 〈2,O, U 〉 ∈ VARIABLE , U:Odef �

V = 〈2,O,V 〉 ∈ VARIABLE , V:Odef �

3 twice {U, V} ∈ CONTEXT

�1 A = 〈0,{U, V},A 〉 ∈ KIND , A {U, V}def � �

6 twice s = id :{U, V}��{U, V} ∈ SPEC1 def {U, V}
4 A(U, V) = 〈1,A,s 〉 ∈ SORTdef 1
7 u = 〈2,A(U, V), u 〉 ∈ VARIABLE , u:A(U, V)def �

v = 〈2,A(U, V), v 〉 ∈ VARIABLE , v:A(U, V)def �

3... {U, V, u, v} ∈ CONTEXT

1 A = 〈0,{U, V, u, v}, A 〉 ∈ KIND1 def �1

For a variable x , we have a unique sort X for which x:X ; X =K (s) for a uniquelyx x x x x
determined kind K and specialization s . For a kind K , � is the context for whichx x K
�K � .
� K

A pre-vocabulary is a set K of kinds such that K∈K , x∈� imply that K ∈K . (I amK x
talking about pre-vocabularies because relations are not yet contemplated.)

We compare the present approach to the one in §1. Let K be a pre-vocabulary. We make K

into a category with objects the elements of K . Arrows of K are the identity arrows, and the

Kp :K��K , one for each pair K∈K , x∈� . Composition is defined thus. Givenx x K

KK xp px yK���������K ���������K (x∈� , y∈�) ,x y K Kx

130

X = K (s) , with s :� ����Var(X) . z = s (y)∈Var(X)⊂� ; also,x x x x K x def x x Kx
Kp Kz x K KK =K ; therefore, K���������K . We define p �p = p .z y y y x z

This composition is associative as is seen by using the equality s(s (u))=s (u) ,y s(y)
which in turn is part of the definition of s being a specialization.

The category K so defined is clearly a simple category; the levels of kinds as given in the

definition above are the same as their levels in K .

Let us use K as a category of kinds in the way done in §1. I claim that the resulting notions

of variable , sort , and context are essentially the same as those of variable , sort and1 1 1 K K
context in the sense of the present Appendix, with the only kinds allowed the ones in K .K
More precisely, we define, by a simultaneous recursion, functions

�X���X : Sort ����Sort (1)K 1

�x���x : Variable ����Variable ; (2)K 1

������� � �������by putting 〈2, X, a 〉 = 〈2, X, a 〉 , and 〈1, K, s 〉 = 〈1, K, 〈x 〉 〉 , wherep p∈K�K
���� Kx =s(y) for the unique y for which p=p . I leave it to the reader to check that (1) andp y

� �(2) are bijections, and x:X ��� x:X . Moreover, we have that the bijection (2) induces a

bijection between Context and Context .1 K

Let us return to the development started in this Appendix. A relation-symbol is an entity of the

form 〈3, �, a 〉 where � is a context; � is the arity of the relation-symbol R= 〈3, �, a 〉 ;

�R � . A vocabulary is a set L of kinds and relation-symbols such that the set K of kinds in
�

�L is a pre-vocabulary, and if R is a relation-symbol in L , R � , x∈� , then K ∈K .
� x

Our comparison above of pre-vocabularies and simple categories of §1 clearly extends to an

essential bijection between vocabularies as defined here, and DSV's of §1.

An atomic formula (in logic without equality) is any 〈4, R, s 〉 where R is a

131

�relation-symbol, s is a specialization, and R dom(s) .
�

I leave the rest of the development of FOLDS in the style of this Appendix, and its comparison

to the main body of the paper, to the reader.

132

