
Let T [I] = (L [I],Σ [I]) be the theory of I-diagrams of categories,diag diag diag
functors, and natural transformations. T [I] is a theory in ordinary multisorted logicdiag
with equality. The models of T [I] are those L [I]-structures that arediag diag
isomorphic to some D:I��Cat as an L [I]-structure (see above). Indeed, we candiag
easily write down a set of axioms Σ [I] over L [I] whose models are, up todiag diag

#isomorphism, precisely the D’s. Now, the construction D��D is related to an interpretation

Φ:L [I]�������[T [I]] (19)anadiag diag

# �of the DSV L [I] in the theory T [I] ; namely, D ≅ D�Φ ; here,anadiag diag
�D:[T [I]]���Set is the coherent functor induced by D:L [I]��Set .diag diag

To describe Φ , I first introduce certain specific formulas over the language L [I] . Wediag
i

���refer to the (arbitrary) objects, arrows and 2-cell I � ιJ in I .
���j

�I (κ) = ∃x∈I .i (x)=κ ( κ:A )I def I I I
� �I (X, κ) = I (κ)�d (κ)=X ( X:O , κ:A )I def I I I I
�T (f, g, h) = ∃x∈T .t (x)=f�t (x)=g�t (x)=h ( f, g, h:A )I def I I0 I1 I0 I
�T (X, Y, Z, f, g, h) =I def

�d (f)=X�c (f)=Y�d (g)=Y�c (g)=Z�d (h)=X�c (h)=Z � T (f, g, h)I I I I I I I
( X, Y, Z:O ; f, g, h:A )I I

� � � �Iso (μ) = ∃ν,κ,λ∈A .I (κ)�I (λ)�T (μ,ν,κ)�T (ν,μ,λ)I def I I I I I
( μ:A )I

�O (X, A, μ) = Iso (μ)�c (x)=A�∃x∈O .o (x)=X�d (μ)=o (x).i def J J i i0 J i1
( X:O , A:O , μ:A )I J J

� �Comm (μ, g, h, ν) = ∃k∈A .T (μ, g, k)�T (h, ν, k)J def J J J
( μ, g, h, ν:A )J

�A (X, Y, A, B, μ, ν, f, g) =i def
� �O (X, A, μ)�O (Y, B, ν)�∃x∈A .a (x)=f�Comm (μ, g, a (x), ν).i i i i0 J i1

( X, Y:O , A, B:O , f:A , μ, ν, g:A )I J I J

98



�O (X, A, B, μ, ν, h) =ι def

� �O (X, A, μ)�O (X, B, ν)�∃x∈O .o o (x)=X�Comm (μ, h, o (x), ν).i j ι i0 ι0 J ι2
( X:O , A, B:O , μ, ν, h:A )I J J

This is the description of the effect of Φ on objects:

Φ(O ) = [X∈O : t]I I
Φ(A ) = [X∈A : t]I I

�Φ(I ) = [X∈O , κ∈A : I (X, κ)]I I I I
�Φ(T ) = [X, Y, Z∈O ;f, g, h∈A : T (X, Y, Z,f, g, h)]I I I I

�Φ(O ) = [X∈O , A∈O , μ∈A : O (X, A, μ)]i I J J i
�Φ(A ) = [X, Y∈O ; A, B∈O ; f∈A ; μ, ν, g∈A : A (X, Y, A, B, μ, ν, f, g)]i I J I J i

�Φ(O ) = [X∈O ; A, B∈O ; μ, ν, h∈A : O (X, A, B, μ, ν, h)]ι I J J ι

To complete the definition of Φ as in (19), we should also specify the effect of Φ on arrows;

this is done in the way straightforwardly suggested by our intentions with Φ .

# � �The fact mentioned above that D ≅ D�Φ holds will be seen directly. In fact, if we define D

in the standard way (among the possibilities that differ by isomorphisms only), we obtain an

# �equality D = D�Φ .

Next, we explain a translation of formulas to formulas induced by Φ . Temporarily, let us call

a FOLDS variable μ special if μ:O (X, A) for (unique) suitable i:I��J∈Arr(I) andi
* *X:O , A:O . Let us fix a 1-1 mapping μ��μ of special variables μ to variables μ inI J

*ordinary multisorted logic over L [I] such that, when μ is as above, μ :A . Thediag J
non-special variables over L [I] are considered variables over L [I] ; ifanadiag diag
x:O , x:O in the sense of multisorted logic, and if x:A (y, z) , then x:A in theI I I I
sense of multisorted logic.

� *For a special variable μ as above, we have the formula ϕ = O (X, A, μ ) , with the[μ] def i
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*latter formula introduced above. For a finite context � , we let � =�-{μ∈�: μ
* *special}∪{μ ∈�: μ special} (exchange every special variable μ for μ ), and consider the

*formula ϕ = ���{ϕ :μ∈� special} ; Var(ϕ )=� . For a finite set � of[�] def [μ] [�]
variables over L [I] , we write {�} for the product-object [�:t]= � [y∈K : t] indiag yy∈�
[T [I]] , where y:K .diag ��� y

Recall that, with Φ as in (19), for any finite context � , we have the object Φ[�] defined as

*a certain pullback. Inspection shows that Φ[�] can be taken to be �[� :ϕ ]� , the[�]
* *domain of the subobject [� :ϕ ] of {� } ; we have a canonical monomorphism[�]

*m:Φ[�]��	{� } . Thus, for any θ in FOLDS with restricted equality, with Var(θ)⊂� ,

m * *Φ[�:θ]��	Φ[�] may be regarded a subobject Φ[�:θ]��	Φ[�]��	{� } of {� } .

* * *We can produce a formula θ such that Var(θ )=Var(θ) and

* *Φ[�:θ] = [� :θ ]*{� }

*(equality of subobjects of {� } ) as follows. We have, for atomic formulas

* �(I (X, κ)) ≡ I (X, κ)I I
( X:O , κ:A )I I

* �(T (X, Y, Z, f, g, h)) ≡ T (X, Y, Z, f, g, h)I I
( X, Y, Z:O ; f:A (X, Y); g:A (Y, Z); h:A (X, Z) )I I I I

* � * *(A (X, Y, A, B, μ, ν, f, g)) ≡ A (X, Y, A, B, μ , ν , f, g)i i
( X, Y:O ; A, B:O ; μ:O (X, A), ν:O (Y, B), f:A (X, Y), g:A (A, B) )I J i i I J

* � * *(O (X, A, B, μ, ν, h)) ≡ O (X, A, B, μ , ν , h)ι ι
( X:O , A, B:O ; μ:O (X, A), ν:O (Y, B), h:A (A, B) )I J i i J

*(f= g) ≡ d (f)=d (g)=X
c (f)=c (g)=Y
f= gA (X, Y) I I I I AI I
( X, Y:O ; f:A (X, Y), g:A (X, Y) )I I I

* � � * *(μ= ν) ≡ O (X, A, μ)
O (X, A, ν)
μ = νO (X, A) i i Ai J
( X:O ; A:O ; μ, ν:O (X, A) ) ;I J i
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for connectives

*t ≡ t

*f ≡ f

* * *(θ�ρ) ≡ θ �ρ
* * *(θ�ρ) ≡ θ �ρ
* * *(θ��ρ) ≡ ϕ �(θ ��ρ ) ( � = Var(θ��ρ) )[�]

and for quantifiers

* *(∀xθ) ≡ ∀x∈O .θ ( x:O )I I
* *(∀xθ) ≡ ∀x∈A .((d (x)=y�c (x)=z)���θ ) ( x:A (y, z) )I I I I
* * � * *(∀xθ) ≡ ∀x ∈A .(O (y, z, x )���θ ) ( i:I��J , x:O (y, z) ) ;J i i

the existential quantifier is dealt with correspondingly.

*Notice that if Var(θ) is a restricted context, then Var(θ )=Var(θ) .

#The upshot of all this as follows. For an I-diagram D:I��Cat , and its saturation D , if �

is a finite restricted context over L [I] , θ is a FOLDS formula withanadiag
�Var(θ)⊂� , and a∈D[�] , then

# � * �D � θ[a] ���� D � θ [a] .

For a structure M over a language extending L [I] , �M	 denotes its reduct todiag
L [I] ; �M	 is the underlying I-diagram of M .diag

(20)(a) Let T be a theory extending T [I] . Let � be a finite restricted context overdiag
L [I] , σ an L -formula such that Var(σ)⊂� . The following two conditions (i),anadiag T
(ii) are equivalent.

101



� � �(i) For any M, N �T and tuples a∈�M�[�] , b∈�N�[�] , M�σ[a] and

� � � �(�M�, a)���(�N�, b) imply N�σ[b] .

(ii) There is θ in FOLDS over L [I] with Var(θ)⊂� such that for allanadiag
� � * �M�T and tuples a∈�M�[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M� � �N� imply N�σ , then there is a sentence θ of FOLDS over L [I] suchanadiag

*that for any M�T , M�σ iff M�θ .

Proof. ((ii)���(i)) Given θ as (ii), we have

� * � * � # �M�σ[a] ��� M�θ [a] ��� �M��θ [a] ��� �M� �θ[a]

and similarly,

� # �N�σ[b] ��� �N� �θ[b] .

� � �Assume the hypotheses of (i), in particular, (�M�, a)���(�N�, b) . By (8), for

# � # �L=L [I] , (�M� , a)≈ (�N� , b) , hence, by 5.(2)(b),anadiag L
# � # � � �

�M� �θ[a]����N� �θ[b] . By what we saw above, this means M�σ[a] ��� N�σ[b]

as desired.

� *((i)���(ii)) Assume (i). We apply 5.(15) with σ=m ([�:σ] ∈ S(Φ[�]) in place of σ ;

� � � �m:Φ[�]�	
{�} as above. The condition M�σ[a] translates into 〈a 〉∈M[σ] ; now,

� � � � #〈a 〉=a . Recall that M�L=M�Φ = �M� . Thus, also using (8), we have

� � � �for all M, N�T , a∈(M�L)[�] , b∈(N�L)[�] ,

� � � � � � � � � �〈a 〉∈M[σ] , (M�L, a) ≈ (N�L, b) ��� 〈b 〉∈N[σ] .
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�Since every P�C is isomorphic to one of the form M , with M�T , we have the hypothesis of

�5.(12). The conclusion gives θ in FOLDS over L such that σ= Φ[�:θ] , whichΦ[�]
suffices.

The result of (20) can be paraphrased by saying that a first-order property of a diagram of

categories, functors and natural transformations is invariant under equivalence iff the property

is expressible in FOLDS with restricted equality as a property of the saturated anadiagram

canonically associated with the diagram.

It is left to the reader to formulate stronger versions of (20), based on results of §5.

A normal theory for I-diagrams is a theory T extending T [I] such that if M�T anddiag
D��M� , then there is N�T such that �N�=D . For a restricted context � , and formula σ
of L [I] with Var(σ)⊂� , we define the concepts " σ is preserved/reflected alongdiag
equivalences of models of T " in the obvious way, in analogy to the case of a single category

(see above). We have the following analog of (3).

(20') Let T be a normal theory of I-diagrams of categories, functors and natural

transformations. Let � be a finite restricted context over L [I] . Suppose that theanadiag
first-order formula σ over L [I] with free variables all in � is preserved anddiag
reflected along equivalences of models of T . Then there is a formula ϕ in FOLDS over

*L [I] such that σ is equivalent to ϕ (defined above) in models of T .anadiag

〈0,1 〉Let us discuss the special case of I = ( 0�������1 ) consisting of two objects and an

arrow between them; there are no 2-cells. The intended structures for

〈0,1 〉L =L [(0�������1)] are functors; more precisely, structures consisting of twofun diag
categories connected by a functor. Fibrations are such structures. There are many first-order

conditions on fibrations and on objects and morphisms in fibrations that are of interest. On the

other hand, in [MR2], several elementary (first-order definable) classes of L -structuresfun
were introduced as categorical formulations of modal logic; these "modal categories" are not in

general fibrations.
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Let me restate the basic concepts for L . L is the following graph:fun fun

T I T I0 0 1 1
t � �t �t �i t � �t �t �i00 01 02 0 10 11 12 1� � � � � � � �

a a0 1A ����������� A ����������	 A0 1
� � � � � �d � �c d� �c d � �c0� � 0 � � 1� � 1
 
 
 
 
 

O ����������� O ����������	 O .0 o o 10 1

〈0,1 〉L = L [(0������	1)] is generated by L , subject to appropriateanafun anadiag fun
equalities of composite arrows. A functor F:X��	A is regarded an L -structure in such afun
way that the interpretation of the relations O and A are the graphs of the object-function and

of the arrow-function of F , respectively.

Given functors F:X��	A and G:Y��	B , an equivalence between them is a triple

(E , E , e) as in0 1

FX������	A
� � ≅E � �E : e:E F����	GE0
 e��
 1 1 0Y������	BG

in which E and E are equivalence functors. This notion of equivalence of functors can be0 1
motivated by saying that it is the combination of two simpler notions: one is the isomorphism

of two parallel functors

F������	X ≅
e A ,������	G

EF 0 Fand the other is the relation between X��	A and the composites Y���	X��	A ,

EF 1X��	A���	B where E , E are equivalence functors. Since the second notion only0 1
involves changing a category to an equivalent one, the change affected on the functor should

be an "inessential" one; the resulting composites should be "equivalent" to F ; they are,
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according to our definition. It is clear that the equivalence relation generated by the two

special cases of "equivalence" is the full notion of "equivalence".

#For F:X��A as an L -structure, F , the saturation of F , an L -structure, has,fun anafun
among others,

# ≅F O = {(X, A, μ): X∈X, A∈A, μ:FX���A} ,

and

#F A = {(X, A, μ, Y, B, ν, f, g) :

μFX�����Af g ≅ ≅(X���Y)∈X, (A���B)∈A, μ:FX���A, ν:FY���B such that Ff� � �g } .
FY�����Bν

# #In the spirit of [M2] , within the notation for F A , the object A is also written as F (X) ,μ
#and g = F (f) .μ, ν

The various kinds of modal categories of [MR2] are each defined by a finite set of first-order

axioms, and each kind of modal category is invariant under equivalence: if F:X��A belongs

to the given kind, and G:Y��B is equivalent to F:X��A , then so does G:Y��B . It

follows by our invariance theorem (15) that the axioms can be formulated in FOLDS, although

not as statements about the functor itself, but as statements about its saturation. However, it is

not necessary to use the invariance theorem (which is anyway proved in a non-constructive

way) to obtain the individual FOLDS-statements; in each case, one can find them directly,

rather easily. I will give an example of an axiom thus reformulated in FOLDS.

Suppose the functor F:X��A preserves monomorphisms, and consider the following

condition on F :

(21) For any X∈X , the induced map F :S (X)����S (FX) of posets has a rightX X A
adjoint (denoted Y���Y , the necessity operator).

#I want to show that the (21) can be equivalently written as a statement about F . The simple
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≅observation is that if (21) holds, and μ:FX���A , then the map

r μ�Frϕ=ϕ[μ]:S (X)����S (A) defined by ϕ([Z���X]) = [FZ������A] also has a rightX A
radjoint ( [Z���X] is the subobject of X given by r ); it is this latter, more general,

#statement that we can (almost) directly formulate in FOLDS about F .

For variables U, V:O , u:A (U, V) , let M (U, V, u) , abbreviated as M (u) , and0 0 0 0
intended to say that u is a monomorphism, be the L -formulaanafun

∀W:O .∀v, w:A (W, U)(∃z∈A (W, V).T (v, u, z)�T (w, u, z).���v= w) .0 0 0 0 0 A (W, U)0

Changing all subscripts 0 to 1 , we get the formula M (u) . Here is the sentence θ for1
#which F �θ is equivalent to (21):

∀X:O ∀A:O ∀μ:O(X, A)∀B:O ∀m:A (B, A){M (m) ���0 1 1 1 1
∃Y:O ∃n:A (Y, X)[M (n)�∀Z:O ∀C:O ∀ν:O(Z, C)∀r:A (Z, X)∀s:A (C, A)0 0 0 0 1 0 1
(M (r)�M (s)�A(ν, μ, r, s ) ���0 0 d c a a0 1
∃t:A (Z, Y).T (Z, Y, X, t, n, r) ��� ∃u:A (C, B).T (C, B, A, u, m, s))]} .0 0 1 1

#To help reading the sentence interpreted in F , here is a display of the data involved:

X A

n m μY���������X B���������A=F X FX�����A
� � � � μ ≅
	 � 
 	 � 
 � �t 	 
 r u 	 
 s=F (r) Fr� � �s

	 
 	 
 νμ � �≅Z C=F Z FZ�����Cν ν
≅FX���Aμ μ�Fr s[FZ������A] = [C���A] .≅ AFZ���Cν

Let us discuss fibrations. The first thing to say is that the concept of fibration is not invariant

under equivalence of functors. An equivalence functor is, clearly, not necessarily a fibration;

an identity functor is one, however; it follows that the concept of fibration is not invariant
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under equivalences of the form (E , Id, id) .0

On the other hand, once we know that F:X��A and G:Y��B are fibrations, then the

usually considered additional properties of F , and of diagrams in the fibration F , are

� �inherited along arbitrary equivalences F���G . The reason is that any equivalence F���G

gives rise to a "strong" equivalence from F to G ; and the usually considered properties are

invariant under the strong equivalences. In fact, the notion of strong equivalence is related to

looking at a fibration as a structure for a new DS vocabulary L . Let me explain.fib

Consider the following DSV L :fib

� �T I0 0
t � �t �t �i00 01 02 0 � �� � � � T I1 1

t � �t �t �iA � 10 11 12 10 	 
��� � � � �
���� � a A����d � �c 0 
���0� � 0 a � A� � 1 1
O ���� � �0 
��� d � �c
��� 1� � 1o 
��� � �
�� ;� O1

here, besides the two obvious copies of L , we have the equalitiescat

od a = d a , oc a = c a .0 0 1 1 0 0 1 1

(The simpler version that has an arrow A ��A in place of A ���A���A is not suitable;0 1 0 1
we need equality on A to express fully the properties of the arrows of the base category;1
with the version indicated, A would not be a top kind, therefore would not be eligible for1
carrying an equality predicate in the language.)

Among the L -structures, we find the functors; given F:X��A , it is understood as anfib
L -structure in the natural way in which the 0-copy of L is X , the 1-copy A , ofib cat
is the object-function of F , and the relation A is the graph of the arrow-function of F . Note

that whereas L is a simplification of L , its height is 4 , and that of L is 3 .fib fun fun
Here is an axiom in FOLDS over L that formulates the existence of (strongly) Cartesianfib
arrows:
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�∀A:O ∀B:O ∀f:A (A, B)∀Y:O (B)∃u:A (A, B, X, Y){A(u, f)�1 1 1 0 0
� �∀C:O ∀g:A (C, A)∃h:A (C, B)[T (g, f, h)�∀Z:O ∀v:A (C, A, Z, Y)(A(v, h)��1 1 1 1 0 0

� �∃!w:A (C, A, Z, X)(A(w, g)�T (w, u, v)))]} .0 0

Here is a diagram to accompany the sentence:

Z��������� ���� v� ����w � ����� ���u 	X
���������������� Y

fA
���������������� B���� ���g� ���� ���� ��� h����C

We have employed the usual abbreviations in writing the atomic formulas; the unique

existential quantifier ∃! may be expanded in the expected way. Adding further axioms that

are easily obtained, we get a sentence in FOLDS over L that axiomatizes the notion offib
fibration. This would not be possible to do over L .anafun

Let us call functors F:X
�A and G:Y
�B strongly equivalent, F� G , if there is ans
equivalence (E , E , id):F�G (in the previous sense), with an identity in the third0 1
component;

FX
������A
� �E � � �E (22)0� � 1
Y
������BG

(23) For functors F and G , F� G iff F ≈ G . As a consequence, a first orders Lfib
property of objects and arrows in a prefibration (functor), in particular, in a fibration, is

invariant under strong equivalence iff the property is expressible in FOLDS over L .fib

I only outline the proof. Of course, the second statement is obtained
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as a consequence of the first by §5. Given (�, r, s):F������G , for anyLfib
� �A∈FO =Ob(A) , let us pick A∈�O by the Axiom of Choice such that r(A)=A , and put1 1

�E (A)=s(A) . For X∈Ob(X) , let A=F(X) ; thus, X∈FO (A) . By the very surjectivity of1 0
� � � �r , there is X∈�O (A) such that r(X)=X ; we let E (X)=s(X) . We have defined the0 0

object-functions of equivalence functors E :A��B , E :X��Y , and note (the main point)1 0
that, at least as far as the effect on objects is concerned, the diagram (22) commutes (and not

just up to an isomorphism). The rest of the verification is left to the reader.

Note that the treatment of fibrations did not require a passage to an "anafunctor". The usually

considered properties of fibrations are invariant under strong equivalence. On the other hand,

there is a simple, and well-known, "transfer property" for morphisms of fibrations which

ensures that for fibrations F and G , F � G iff F � G ; in fact if (E , E , e):F � G ,s 0 1
there is E’:X��Y such that E’ ≅ E and (E’, E , id):F � G .0 0 0 0 1
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