
§§§6. Equivalence of categories, and of diagrams of categories

The simplest application of the results of the last section is to invariance under equivalence of

categories of first order properties of diagrams of objects and arrows in a category. In what

follows, until further notice, L stands for L , the DSV for categories introduced in §1; acat
category A may be regarded an L-structure. A context of variables for L is essentially a

functor K=L ��Set , that is, a graph; we are mainly interested in finite contexts,graph
although for the notions to be introduced next, there is no need to confine attention to finite

contexts.

�For a context � , an augmented category of type � is a pair (A, a) , with A a category,

� �and a∈A[�] (that is, a a diagram of type the graph � ). Until further notice, notations

� �such as (A, a) , (B, b) denote augmented categories. Mere categories are considered

special cases of augmented categories of type ∅ ; A , B etc. denote categories.

� �For augmented categories (A, a) , (B, b) of the same type, we write

� � �(A, a)���(B, b)

�if there is an equivalence functor F:A���B ( F is full and faithful, and essentially

� � � � �surjective on objects) that maps a to b ; we may also write (B, b)���(A, a) for the

�same. Note that the relation ��� is reflexive and transitive but not symmetric (an

�equivalence functor A���B may take two different objects A≠A’ in A to the same B in

�B ; then (A, 〈A, A’ 〉)���(B, 〈B, B 〉) but not vice versa). The special case when the type

� �
� is ∅ , is, however, symmetric; A���B implies A���B since every equivalence functor

�has a quasi-inverse (by the Axiom of Choice); A���B is the same as equivalence of

categories, A � B .

� �The equivalence relation generated by the relation ��� is only "one step away" from ��� ;

�it is ��� defined as
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� � � � � � � � � -(A, a)���(B, b) ��� there is (C, c) such that (A, a)���(C, c)���(B, b) .(1 )def

� � � � � �To see the transitivity of the relation ��� , assume (A, a)���(D, d)���(B, b) and

� � � � �(B, b)���(E, e)���(C, c) , and consider the diagram

F
� �σ � � τ

� �
� 	

D E

 � � �
� �ϕ ψ� �
� � � �
� 	 � 	

A B C

where the quadrangle has F the "isomorphism-comma" category, with objects

≅(D, E, ϕD��ψE) , and arrows the usual commutative squares, with σ:F�D , τ:F�E

the forgetful functors. Since ϕ , ψ are equivalence functors, so are σ , τ . Let

�f= 〈f 〉 ∈F[�] be defined as follows. For x∈� , x:O , letx x∈�
≅f =(d , e ,id:ϕd ��ψe ) ; note that ϕd =ψe by assumption. For x∈� ,x x x x x x x

x:A(y, z) , let f =(d :d �d , e :e �e ):f �f ; note that ϕd =ψe byx x y z x y z y z x x
� � � � � �assumption. We have that (F, f)���(D, d) , (F, f)���(E, e) . Using the composites

� � �F�A , F�C , we obtain (A, a)���(B, b) as desired.

Recall the relation ≈ of the last section; ≈ is, in particular, a relation between augmentedL L
�categories. We have that ≈ is the same as ��� .L

� � � � �(1) (a) (A, a)���(B, b) ���� (A, a)≈ (B, b) ;L
(b) A � B ���� A ≈ B .L

� �Proof. Assume (A, a)≈ (B, b) . By §5, there is a normal L,≈-equivalenceL
� ≈ � * *(W, u, v):(A, a)���(B, b) . Then, C = u (A) = v (B) is a category, since, by 5.(1), asL

a standard L-structure, C satisfies all the axioms of category which are formulated in FOLDS
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(see 5.(2)(a)). Furthermore, clearly, θ :C���A , θ :C���B are surjective equivalenceu v
functors. This shows the right-to-left direction in (a). For the proof of the other direction, we

prove the implication

� � � � �(A, a)���(B, b) ��� (A, a)� (B, b) ;L

to this end, we "saturate" the given equivalence appropriately; we will do this proof in a more

general situation below.

�Knowing the transitivity of the relation � , the transitivity of ��� also follows from (1)(a).L

(b) is a special case of (a).

*Recall the translation ϕ��ϕ in §1; this is just to say that any formula ϕ of FOLDS over L

*may be regarded a formula ( ϕ ) over �L	 in ordinary multisorted logic.

Let T =(�L	,Σ ) the theory of categories in ordinary multisorted logic ( Σ cancat cat cat
*be taken to be Σ[L ]∪{θ :θ∈Θ} ; Σ[L] for any DSV L was defined in §1 ; Θ iscat

the set of axioms in FOLDS for categories as given in §1.). When T is a theory extending

T ( �L	⊂L , Σ ⊂Σ ), and M�T , we write �M	 for M�L , the underlyingcat T cat T
category of M .

(2)(a) Let T be a theory extending T . Let � be a finite context over L , σ ancat cat
L -formula such that Var(σ)⊂� . IfT

� � �for any M, N �T and diagrams a∈�M	[�] , b∈�N	[�] , M�σ[a] and

� � � �(�M	, a)���(�N	, b) imply N�σ[b] ,

then

there is θ in FOLDS with restricted equality over L with Var(θ)⊂� such thatcat
� � * �for all M�T and diagrams a∈�M	[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M	 � �N	 imply N�σ , then there is a sentence θ of FOLDS over L such that forcat
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*any M�T , M�σ iff M�θ .

Proof. We apply 5.(15) to C=[T] , with I:L��C the composite of I:L��[T ]cat
defined in §5 before (7)(a) and the inclusion [T ]��[T] ; moreover, we take σ incat

*5.(15) to be m ([�:σ])���I[�] ( m:I[�]���{�} ; see §5 before (7)(a)). By (1)(a),

the assumption implies that

� � � �M�σ[a] & (�M�, a)≈ (�N�, b) ��	 N�σ[b] .L

The conclusion of 5.(15) is what we want. (b) is a special case of (a).

We say that a theory T extending T is normal if for any M�T and any category A , ifcat
A � �M� , then there is a model N�T such that A=�N� . In other words, normality of T

says that the property of being the L -reduct of a model of T is invariant undercat
equivalence of categories. Most theories of categories (possibly) with additional structure are

normal. E.g., so is the theory of monoidal categories, or the theory of categories with specified

finite limits. Of course, T itself is normal.cat

Let � be a finite context, and σ be a formula over L with Var(σ)⊂� . Let us say thatT
σ is preserved along equivalence functors between models of T if the following holds:

� � � � 
 �whenever M, N�T , a∈M[�] , b∈N[�] , then M�σ[a] and (�M�, a)���(�N�, b)

� � 
 �imply N�σ[b] . When in this definition, (�M�, a)���(�N�, b) is replaced by

� 
 �(�M�, a)���(�N�, b) , we obtain the notion of being reflected along equivalence functors.

Now, notice that for T a normal theory, the hypothesis of (2)(a) holds iff σ is preserved and

reflected along equivalence functors of models of T (the point is that, in case T is normal,

-in (1 ), when A (and B ) are reducts of models of T , C can also be expanded to a model of

T ). Thus, we obtain the following variant of (2)(a):

(3) Let T be a normal theory of categories (possibly) with additional structure. Let � be a

finite context over L . Suppose that the first-order formula σ over L with freecat T
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variables all in � is preserved and reflected along equivalence functors of models of T .

Then there is a formula ϕ in FOLDS with restricted equality over L with Var(ϕ)⊂�cat
*such that σ is equivalent to ϕ in models of T .

Freyd's and Blanc's characterization (see [F], [FS], [B]) of first order properties of finite

diagrams invariant under equivalence is (3) for T=T . In fact, the general result (3) cancat
also be obtained by their methods, which is very different from the methods of this paper (we

will comment on this in Appendix C). It seems however that the more general result (2), in

particular, (2)(b), cannot be obtained by the Freyd's and Blanc's methods (although I should

concede that the added generality in (2)(b) consisting in a reference to not-necessarily normal

theories does not seem very important).

The results of §5 that are more general than 5.(15) (e.g., the "interpolation-style" result (7)(b))

will also have consequences for equivalences of categories; we leave their formulation to the

reader.

Extending the Freyd-Blanc result to more complex categorical structures will involve a new

element. For instance, in the case of structures consisting of two categories and a functor

between them (an example of which is a fibration), the first-order properties invariant under

equivalence (in the appropriate standard sense; see also below) are not those expressible in

FOLDS directly, but rather, those that are expressible in FOLDS in the language of the

so-called saturated anafunctor associated with the given functor. Anafunctors are treated in

[M2]; explanations will be given presently.

We now proceed to giving the framework for dealing with structures consisting of several

(possibly infinitely many) categories, functors between them, and natural transformations

between the latter. We will return to the simplest special case of two categories and a functor

between them afterwards.

Let I be a small 2-graph; I:L ��Set . We associate the graph L [I] with2-graph diag
I ; L [I] serves as a similarity type for diagrams I��Cat of (small) categories,diag
functors and natural transformations. The objects of L [I] are as follows:diag
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O , A , I , T ( I∈Ob(I) )I I I I
O , A ( i∈Arr(I) )i i
O ( α∈2-Cell(I) )α

The arrows of L [I] are shown in the following three diagrams:diag

T II I
t � �t �t �iI0 I1 I2 I� � � �

(3)
AI
� �d � �cI� � I� �
OI

displaying the arrows associated with an object I ;

a ai0 i1A ������� A 	������
 AI i J
� � � � � �d � �c d � �c d � �cI� � I i� � i J� � J� � � � � �
O ������� O 	������
 OI o i o Ji0 i1

which displays the arrows associated with an arrow i:I	
J in I ; and

o ι2O 	������������
Aι Jo � � oι0 � ι1 � d ��� � J��cO � O Ji �� ��� j ��� ����o �� � o � ��i0� �� �� j1�� o �� � ��� �� j0 o ��� i1 �O OI J

i	���
which displays the ones associated with the 2-cell ι:i	
j ( I � ι J ).	���
j

Given a I-diagram
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D:I��Cat : ( 〈C 〉 , 〈F :C ��C 〉 , 〈h :F ��F 〉 i ) (4)I I∈I i I J i:I��J ι i j �����I � ι J�����j

of categories, functors and natural transformations, we construe D as an

L [I]-structure as follows. (3) is interpreted as the category C . When i:I��J ,diag I
oi0O is the set of pairs (X, F X) with X∈Ob(C ) , with (X, F X)�����X ,i i I i

o F fi1 f i(X, F X)�����F X . A is the set of pairs (f, F f)=(X���Y, F X�����F Y) , withi i i i i i
d c ai i i0(f, F f)����(X, F X) , (f, F f)����(Y, F Y) , (f, F f)�����f ,i i i i i
a i hi1 ����� ιX(f, F f)�����F f . For I � ι J , O is the set of pairs (X, F X�����F X) . Thei i ����� ι i jj

effect of the remaining arrows, as well as the corresponding commutativities, are shown by the

following picture:

h hιX ιX(X, F X�����F X) ������������� F X�����F Xi j o i j� ι2o oι0� ι1� � �� �� 	 d � �J� �c� � J(X, F X)
 �� (X, F X)
 � �i � �� j � � �� �� � �o �� � � � o �i0� �� � � �j1 ��� o � � �� �� j0 o �� i1 �X F X F Xi j

Let L [I] be the DSV defined as follows. The underlying simple category ofanadiag
L [I] is generated by the graph L [I] , subject to the following equalitiesanadiag diag
between arrows:

the ones ensuring that (3) generates a copy of L (see §1);cat
o d = d a , o d = d a , o c = c a , o c = c a ,i0 i I i0 i1 i J i1 i0 i I i0 i1 i J i1

o o = o o , d o = o 0 , c o = o 0 . (5)i0 ι0 j0 ι1 J ι2 i1 ι0 J ι2 j1 ι1

The relations of L are exactly its top-level objects; that is, T , I , A , O , for I, iI I i ι
and ι ranging over the 0-cells, 1-cells and 2-cells of I , respectively.
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The equalities on arrows are suggested by what is true for I-diagrams as structures. In fact,

every I-diagram is a functor D:L [I]���Set , that is, the equalities listed areanadiag
true in it (as identities). Also, the relations of L [I] are interpreted in Danadiag
relationally (the corresponding family of functions is monomorphic). In summary, every

I-diagram is an L [I]-structure.anadiag

L [I] is the similarity type of what we call the "anadiagrams" of type I . Ananadiag
aanadiagram M:I���Cat is an L [I]-structure satisfying the following axiomsanadiag

i
���(A0) to (A6) in FOLDS with equality ( I � ιJ range over objects, arrows and 2-cells in I
���j

as shown; the unique existential quantifiers in (A2) and (A5) are abbreviations in the usual

way, and they refer to equality on the sorts A ( ⋅ , ⋅) ).J

(A0): axioms expressing that for each I∈Ob(I) , the part of M referring to I is a

category .

(A1) ∀X:O .∃A:O .∃s:O (X, A). t .I J i

(A2) ∀X, Y:O .∀A, B:O ∀s:O (X, A).∀t:O (Y, B).∀f:A (X, Y).I J i i I
∃!g:A (A, B).A (s ,t , f , g ) .J i d c a ai i i0 i1

�(A3) ∀X:O .∀A:O .∀s:O (X, A).∀α:A (X, X).∀α:A (A, A)I J i I J
� �[A (s, s, α, α)���(I ( X , α )���I (A, α))] .i I Jd i iI I I

(A4) ∀X, Y, Z:O .∀A, B, C:O .∀s:O (X, A).∀t:O (Y, B).∀u:O (Z, C)I J i i i
∀f:A (X, Y).∀g:A (Y, Z).∀h:A (X, Z)I I I
� � �∀f:A (A, B).∀g:A (B, C).∀h:A (A, C)I I I

� � �[((A (s, t, f, f)�A (t, u, g, g)�A (s, u, h, h))���i i i
� � �(T (f, g, h)���T (f, g, h))] .I J

(A5) ∀X:O .∀A:O .∀B:O .∀s:O (X, A).∀t:O (X, B)I J J i j
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∃!f:A (A, B).O ( s , t , f ) .J ι o o oι0 ι1 ι2

(A6) ∀X, Y:O .∀A, B, C, G:OI J
∀s:O (X, A)∀t:O (Y, B).∀u:O (X, C).∀v:O (Y, G)i i j j
∀f:A (X, Y).∀g:A (A, B).∀k:A (C.G)I J J
∀ �:A (A, C).∀m:A (B, G)J J
[(O (s, t, f, g)�O (u, v, f, k)�O (s, u, �)�O (t, v, m))���i j ι ι

∃n:A (B, C).(T (g, m, n)�T ( � , k, n))] .J J J

For a less formal explanation of the notion of anadiagram, I refer to [M2]. In that paper, I

introduce the notion of anafunctor between categories, a generalization of the notion of

functor. An anafunctor defines its values on objects only up to isomorphism. Formally, the

definition of anafunctor is obtained by specializing the definition of "anadiagram" to the case

〈0, 1 〉when I is the (2-)graph 0�������1 (without 2-cells). Anadiagrams have anafunctors

instead of functors as 1-cells, and natural transformations of anafunctors as 2-cells.

Note that any I-diagram D:I��Cat is an anadiagram; all the axioms for "anadiagram" are

satisfied in D (as an L [I]-structure). In fact, the diagrams are essentially the sameanadiag
as those anadiagrams M in which the sorts O ( i∈Arr(I) ) are interpreted relationally,i
that is, the family 〈Mp 〉 is jointly monomorphic.p:O ��Ki p

On the other hand, any anadiagram gives rise to a diagram, obtained by making some

anon-canonical choices. Let M be an anadiagram M:I���Cat ; we construct D:I���Cat ;

we use the notation (4) for the ingredients of D . For I∈Ob(I) , the category C is givenI
directly by the data in M corresponding to I (see (A0)). By (A1), for any i:I��J in I

i iand X∈Ob(C )=MO , we make a choice of A =A ∈MO and s =s ∈MO (X, A) ; weI I X X J x X i
put F X=A . Starting with f:X��Y , and using (A2) with A=A , B=A , s=s ,i X X Y X
t=s , we let F f=g whose unique existence (A2) states. (A3) and (A4) assure that F soY i i

i j i jdefined is a functor F :C ��C . Using (A5) with A=A , B=A , s=s , t=s , we puti I J X X X X
h =f for the f whose existence (5) asserts. (A6) ensures that h is a naturalιX ι
transformation h :F ��F . Let us refer D as the diagram obtained from M by cleavageι i j
(in analogy to the terminology used with fibration); of course, it is not uniquely determined.
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#Next, we describe the saturation D of a diagram D:I��Cat , an anadiagram canonically

associated with D . (As a matter of fact, the components corresponding to the 1-cells

#i:I��J will be the "saturated anafunctors" F associated with the given functors F , ini i
the sense of [M2].)

#In D , the interpretation of each part of L [I] as in (3) is the same as in D .anadiag

# ≅For i:I��J , a 1-cell in I , D O is the set of triples μ=(X, A, F X���A) withi i μ
o oi0 i1 #X∈C , A∈C and μ an isomorphism as shown; μ�����X , μ�����A . D A is the setI J i

of all entities

≅
μX F X�������Ai(�f , �F f � �g)iY F Y�������Bi ν
≅

with the displayed entity mapped to (X, A, μ) by d , to (Y, B, ν) by c , to f byi i
i

����� #a , and to g by a . For I � ι J , D O consists of alli0 i1 ����� ιj

μF X�������Ai ≅
� �(X, h � � �g) ,ιX� �
� �≅F X�������Bj ρ

and the displayed item is mapped to (X, A, μ) by o , to (X, B, ρ) by o , and to gι0 ι1
by o .ι2

#We leave it to the reader to verify that D so defined is an anadiagram.

#D satisfies a property that distinguishes it from diagrams; it is saturated, by which we mean

that it satisfies, for each i:I��J in I , the FOLDS sentence
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(A7) ∀X:O .∀A, B:O .∀s:O (X, A).∀f:A (A, B)I J i J
(Iso(f)���∃!t:O (X, B).∃g:A (X, X).(I (g)�A (s, t, g, f)) ;i I I i

here, Iso(f) abbreviates

∃h:A (B, A)∃k:A (A, A)∃ �:A (B, B).(I (k)�I ( �)�T (f, h, k)�T (h, f, �))J J J J J J J
.

In fact, it can be proved (although we will not need this result) that, up to isomorphism as

L [I]-structures, the saturated I-anadiagrams are precisely the ones of the formanadiag
#D , for some diagram D .

Given D as in (5), and another I-type diagram

� � � � � � � �D:I��Cat : ( 〈C 〉 , 〈F :C ��C 〉 , 〈h :F ��F 〉 i ) , (6)I I∈I i I J i:I��J ι i j �����I � ι J�����j

� �we say that D and D are equivalent, and write D � D , if there exist a family

� �〈E :C ���C 〉 of equivalence functors, and a family 〈e 〉 of naturalI I I I∈I i i:I��J
isomorphisms as in

EI �C �������CI I
� �� � ≅F � ≅ �� �F e :F 	E �����E 	F ,i� 
 � i i i I J iei �C �������CJ E JJ

satisfying the additional naturality condition:

ei �E 	F ������F 	EJ i i I
� ��E 	h � � �h 	EJ ι� � ι I� ��E 	F ������F 	EJ j e j Ij
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i
�����for every I � ι J in I . The data E=( 〈E 〉 , 〈e 〉 ) form an
����� I I∈I i i∈Arr(I)j

�equivalence of D and D , in notation,

� �E = ( 〈E 〉 , 〈e 〉 ):D�����D . (7)I I∈I i i∈Arr(I)

This notion of equivalence is a "bicategorical" notion; it is the equivalence in the internal

sense of the bicategory (actually, 2-category) Hom( 〈I 〉,Cat) of homomorphisms of

bicategories, pseudo-natural transformations and modifications, with 〈I 〉 the 2-category

generated by the 2-graph I . (The main part of the fact that the "one-way" formulation of

equivalence given above as the definition, and the "internal" concept just mentioned coincide,

is the symmetry of the relation � ; an outline of the proof of the symmetry of � is given

below.) It is the "good" notion of equivalence, the one that comes up in practice. For instance,

in Chapter 4 of [MP], diagrams of sketches, and diagrams of accessible categories are dealt

with, and the present notion of equivalence is the one which is operative. Specifically, the

Uniform Sketchability Theorem, one of the main results of [MP] (4.4.1 in [MP]) says that a

small diagram of accessible categories is equivalent to one obtained from a diagram of

sketches by taking the categories of models of the sketches involved.

�Although the fact is well-known, I outline the proof that the relation D � D is symmetric.

Since it is easily seen to be transitive and reflexive, � is an equivalence relation.

� � �Assume data as in (7); see also (4) and (6). We define E:D���D . With I∈Ob(I) ,

� I I ≅ � �A∈Ob(C ) , choose X =X ∈Ob(C ) and ε =ε :E X ���A ∈ Arr(C ) . Put E A =I A A I A A I A I I
� �X . For f:A��B ∈ Arr(C ) , E f is the arrow that makes the squareA I I

εAE X ���������AI A ≅
� � �E f � � �fI � �

� �≅E X ���������BI B εB

� � �commute. E so defined is a functor E :C ���C ; it is an equivalence functor; it is aI I I I
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� ≅ Iquasi-inverse of E : we have ε :E E ���1� with components the ε , andI I I I C AI
≅ � I -1η :1 ���E E with components η for which E (η ) = (ε ) . ForI C I I I, X I I, X E XI I

� � ≅ � �i:I��J in I , we define e :F E ���E F as the compositei i J J i

� � -1� �η F E E e E E F ε
� J i J � � J i I � � � J i I � �F E ��������E E F E ���������E F E E ��������E F .i J ≅ J J i J ≅ J i I J ≅ J i

� � � �〈e 〉 will be compatible with the h , and give E:D���D as desired.i i∈Arr(I) ι

Let K be the full subcategory of L [I] consisting of the objects O and A0 anadiag I I
#for all I∈Ob(I) . A restricted context is a context over K . We have D�K = D �K ,0 0 0

#and hence, for a restricted context � , D[�] = D [�] .

�With � a restricted context, an augmented I-diagram of type � is a pair (D, a) where

� � � �D:I��Cat , and a∈D[�] ; notations such as (D, a) , (D, b) denote augmented

� � � � � �I-diagrams. We write E:(D, a)���(D, b) for the following: E:D���D with E as in (7)

� � �such that E(a)=b in the obvious sense that E (a )=b . The relation ��� betweenI x x
augmented diagrams is defined thus:

� � � � � � � �(D, a)���(D, b) �		
 there exists E:(D, a)���(D, b) .

� � � � � �We write (D, a)���(D, b) for: there exists (D, c) such that

� � � � � � � �(D, a)��(D, c)���(D, b) . The relation ��� is the equivalence relation generated by

�
��� ; this can be seen directly, but it also follows from (8) below. In particular, when �=∅ ,

�the relation ��� coincides with � for I-diagrams (since � is an equivalence relation).

� � �(8) For augmented I-diagrams (D, a) , (D, b) of the same type, we have
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� � � � # � �# �(D, a)���(D, b) ���� (D , a) ≈ (D , b) ;L

here, L = L [I] .anadiag

�As a special case, for (mere) I-diagrams D and D ,

� # �#D � D ���� D ≈ D .L

# � �# �Proof. (A)(���:) Let (�, r , r ):(D , a)���(D , b) be a normal L, ≈-equivalence0 1 L
� # � �# � � �(see 5.(2")). Let c∈�[�] ( � the type of (D , a) , (D , b) ) for which r (c)=a ,0

� �r (c)=b .1

* # * �# #Let M=r (D )=r (D ) , a standard L-structure. Since D is an anadiagram, and the0 1
concept of "anadiagram" is elementary in FOLDS over L , by 5.(1)(a), M is an anadiagram.

� � �Let D be obtained from M by cleavage. We show that there is an equivalence E:D�	
D

which extends

� #m�K =θ �K :M�K =D�K �
D �K =D�K0 m 0 0 0 0 0

(that is, E =(θ ) for all I∈Ob(I) ; here, we used the notation (7) for E ), and similarly,I m I
� � � � � � � � �there is E:D�	
D extending n�K . In particular, it will follow that E(c)=a , E(c)=b0
� � � � � � �and (D, a)���(D, c)���(D, b) as desired.

� �We use a notation for D that is analogous to (6). The functor E :C �	
C is defined byI I I
the effect m and m ; since θ :M�
D preserves the relations I and T , E is aO A m I I II I
functor. By the normality of r , E induces bijections on hom-sets, and by the surjectivity0 I
of r on O , E is a surjective equivalence.0 I I

� �Let i:I�
J . Looking back at how the cleavage D was defined, we see that F X = A ,i X
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# # �with s ∈MO (X, A ) . Then m(s )∈D O (mX, mA )=D O (E X, E F X) . By theX i X X i X i I J i
# ≅ �definition of D , this means that ms :F E X���E F X . We put e =ms . To see thatX i I J i iX X

≅ � �e = 〈e 〉 is a natural transformation e :F E ���E F , let f:X��Y ∈ C .i iX X∈Ob(C ) i i I J i II
� �We see that F f is defined by the property that M(A )(s , s , f, F f) should hold. Buti i X Y i

# �θ preserves A ; hence, D (A )(e , e , E f, E F f) , which, by the definition ofm i i iX iY I J i
#D , means

eiX �F E X���������E F Xi I J i
� � �F E f� � �E F fi I � � J i
� �

�F E Y���������E F Y ,i I e J iiY

which is the naturality of e .i

i
�����Let I � ι J be given. The naturality condition on (e , e ) with respect to ι:i��j is
����� i jj

� � � �seen as follows. Let X∈Ob(C ) . The definition of the component h :F X��F X isI ιX i j
i j �defined (in the process of cleavage) by the condition MO (s , s , h ) . The mapι X X ιX

# # i j �θ :M��D preserves the relation O . It follows that D O (ms , ms , mh ) holds; thatm ι ι X X ιX
# � #is, D O (e , e , E h ) holds. Considering the definition of D O , this says thatι iX jX J ιX ι

e
� iXE F X������F E XJ i i I

� � �E h � � �hJ ιX� � ιE X
� � I
�E F X������F E XJ j e j IjX

which is what we wanted.

� � 	 
 � 	 
(B)("only if") We show that (D, a)���(D, b) implies (D, a)≈ (D, b) . Since ≈ isL L
an equivalence relation, the desired assertion will follow.
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� � � �Suppose that E:(D, a)���(D, b) ; E is taken in the notation in (7) ; we construct

# � ≈ �# �(�, r , r ):(D , a)���(D , b) . The kinds of L are as in0 1 L

A AI J
� � � �d � �c d � �cI� � I J� � J
� � � �
O ������� O �������� OI o i o Ji0 i1

with i:I��J in I ; we have to define � on these kinds.

r
� � � ≅ � � 0We put �O = {(X, X, σ): X∈DO , X∈DO , σ:E X���X} , with (X, X, σ)����X ,I I I I

r
� 1 �(X, X, σ)����X . The "very surjective" condition on r , r at O holds by the essential0 1 I

surjectivity of E .I

�X X
� � � ��

�A = {((X, X, σ), (Y, Y, τ), f�, f�) :I def � �
Y �Y

σ �E X�����XI �
� � �f(X, X, σ), (Y, Y, τ)∈�O , E f� � � } ,I I �

�E Y�����YI τ

� �with the displayed item being mapped to (X, X, σ) by �d , to (Y, Y, τ) by �c , to fI I
�by r , and to f by r . The mapping0 1

� # �# � �f����f : D A(X, Y)����D A(X, Y)

� �so defined, with fixed (X, X, σ), (Y, Y, τ)∈�O , is a bijection; this holds since E is anI I
equivalence of categories. This shows the "very surjective" condition for r , r at A , as0 1 I

�well as the preservation of E .AI

� � � � ≅
�O = {((X, X, σ), (A, A, α), μ): (X, X, σ)∈�O , (A, A, α)∈�O , μ:F X���A} ,i def I J i
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� �with the displayed item being mapped to (X, X, σ) by �o , to (A, A, α) by �o , toi0 i1
� � � � �(X, A, μ)∈DO by r , and to (X, A, μ)∈DO by r where μ is determined by thei 0 i 1

following commutativity:

� σ � �F E X�������F Xi I ≅ i
� �e �≅ �iX� �
� ��� �E F X � � μ (9)J i ��� �E μ�≅ �J � �
� �

≅ �E A ������� A .J α

�Note that since all given arrows are isomorphisms, μ is uniquely determined, and it is an

isomorphism. Moreover, since E is an equivalence of categories, the mappingJ

� # �# � �μ��μ : D O (X, A)����D O (X, A)i i

so defined (with the rest of the data fixed) is a bijection, which shows the "very surjective"

�condition at O , and the preservation of E .i Oi

This completes the data for (�, r , r ) ; it remains to verify the necessary properties.0 1

Let us consider the preservation of the relation A by (�, r , r ) . What we have to do isi 0 1
this. We take four items

x ∈�O , x ∈�O , x ∈�A , x ∈�Ad i c i a I a Ji i i0 i1

such that (x , x , x , x )∈�[A ] , that is,d c a a ii i i0 i1

(10) �o (x ) = �d (x ) , �o (x ) = �d (x ) ,i0 d I a i1 d J ai i0 i i1
�o (x ) = �c (x ) , �o (x ) = �c (x ) ;i0 c I a i1 c J ai i0 i i1

93



we consider their r and r -projections; and we have to show that0 1
#(r x , r x 〉 , r x , r x ) ∈ D A (11)0 d 0 c 0 a 0 a ii i i0 i1

if and only if

�#(r x , r x , r x , r x ) ∈ D A . (12)1 d 1 c 1 a 1 a ii i i0 i1

� �Let x = ((X, X, σ), (A, A, α), μ)di
≅ � ≅ � ≅with σ:E X���X , α:E A���A , μ:F X���A ;I J i

� �x = ((Y, Y, τ), (B, B, β), ν)ci
≅ � ≅ � ≅with τ:E Y���Y , β:E B���B , ν:F Y���B ;I J i

o o o oi0 i1 i0 i1note that x �����σ , x �����α , x �����τ , x �����β .d d c ci i i i

The first and third of the above conditions (10) force the first two components of x to beai0
� �(X, X, σ) and (Y, Y, τ) , respectively. Let

� � � � �x = ((X, X, σ), (Y, Y, τ), f:X��Y, f:X��Y) ;ai0

we have

σ �E X�����XI ��fE f� � � . (13)I �
�E Y�����YI τ

Similarly,

� � � � �x = ((A, A, α), (B, B, β), g:A��B, g:A��B)ai1

with
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α �E A�����AJ ��gE g� � � . (14)J � �E B�����BJ β

(11) means

μF X�������Ai�F f � �g , (15)iF Y�������Bi ν

whereas (12) means

�� � μ �F X�������Ai � � ��F f � �g (16)i� � �F Y�������Bi �ν

� � �where μ and ν are defined as μ is in (9); we want to see that (15) iff (16). Consider the

following diagram:

�� � μ �F X ��������������������������������� Ai � � �	 F σ 1 α
	 i 
 �� � e E μ 
 �� � iX J �� F E X�������E F X�������E A �� 2 i I J i J �� 3 4 5 �� �� � � � � ��F f� F E f� E F f� E g� �gi � i I � J i � J � �� �� � �� F E Y�������E F Y�������E B �� 
 i I e J i E ν J 	 �� 
 iY J 	 �� 
 � 	 �� F τ 6 β � � i �F Y ��������������������������������� B .i �ν

� �The cells 1 and 6 commute, by the definitions of μ and ν (see (9)). 2 commutes by

(13), 3 by the naturality of e , and 5 by (14). Note that all arrows except the verticali
ones are isomorphisms. If (15) commutes, then so does 4 ; the resulting commutativity of the

outside square is (16) as desired. Conversely, if (16) commutes, then so does 4 (using the

isomorphisms in the diagram), and since E is faithful, so does (15).J
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i
�����Let us look at the similar verification of preservation of O ; I � ι J . We takeι �����j

(x , x , x )∈�[O ] , that is,o o o ιι0 ι1 ι2

� �x = ((X, X, σ), (A, A, α), μ) ∈ �Oo iι0
≅ � ≅ � ≅with σ:E X���X , α:E A���A , μ:F X���A ;I J i

� �x = ((X, X, σ), (B, B, β), ρ) ∈ �Oo jι1
≅ � ≅with the same σ as above, and β:E B���B , ρ:F X���BJ i

(since we must have �o (x ) = �o (x ) (see the first equation in (4)), the firsti0 o j0 oι0 ι1
components of x and x have to agree);o oι0 ι1

� � � � �x = ((A, A, α), (B, B, β), g:A��B, g:A��B)o ι2

#with (9) holding (see the other two equations in (4)). Looking at the definition of D O ,ι
�#D O , what we have to see is thatι

�μ � � μ �F X�������A F X�������Ai ≅ i ≅
� � � � ��h � � �g iff h � � �g . (17)ιX� � ιX� �
� � � �≅F X�������B � � ≅ �j ρ F X�������Bj ρ

Consider
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�� � μ �F X ��������������������������������� Ai � � �� F σ 1 α	� i 	 �� 
 e E μ 	 �� � iX J �� 2 F E X�������E F X�������E A �� i I J i J �� � 4 5 �� � h � 3 E h � � ��h �� ιE X� J ιX� E g� �gιX� I � � J � �� �� � �� F E X�������E F X�������E B �� 	 j I e J j E ρ J � �� 	 jX J � �� 	 � � �� F τ 6 β � � j �F X ��������������������������������� B .j �ρ

The cells 1 and 6 commute for reasons as before. 2 commutes because of the naturality of

�h , 3 because of the naturality of (e , e ) with respect to ι:i��j , 5 because ofι i j
(14). 4 is the antecedent of (17) with E applied to it, the outer square is the succedent ofJ
(17). The assertion in (17) follows.

The remaining properties are the preservation of the T , I , and of the equalities on theI I
A , O . These are immediately seen.I i

� �We need that (�, r , r ) "relates a to b ". For � the restricted context involved,0 1
� � � � � �a= 〈a 〉 , b= 〈b 〉 ; we want c= 〈c 〉 ∈D[�] such that r (c)=a ,x x∈� x x∈� x x∈� 0

� � ≅r (c)=b . For x∈� , K =O , define c =1 :E a ���b ∈ �O ; we have1 x I x E a I x X II x
r c =a , r c =b . For x∈� , x:A (y, z) , define c =(c , c , a , b )∈�A ;0 x x 1 x x I x y z x x I
c ∈�A indeed holds since this meansx I

cyE (a )����bI y y
� �E (a )� � �bI x � � x

E (a )����bI z c zz

and this holds since E (a )=b ; also, r (c )=a , r (c )=b .I x x 0 x x 1 x x

This completes the proof of (8).
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