§5. Equivalence

Let L be a fixed DSV, K the full subcategory of its kinds.

We have defined what an L-structure is; even, what a C-valued L-structure is, for any C
with finite limits. In what follows, we will make the minimal assumption that C is a regular
category (which is equivalent to saying that P(C) , with "total" @, is a a3-fibration: just
ignore £ and v in the definition of Av3-fibration).

The category of C-valued L-structures, Str (L) , has objects the C-valued L-structures,

(o4
(L) is a full subcategory of ct (with L in
(L) .

and morphisms natural transformations; Str c

its last occurrence understood as a mere category). We write Str (L) for Str Set
Given MeStr (L) , we have MIK:K— C, its K-reduct, the structure of kinds associated

(o4
to M. For any ReRel (L) , we have the canonical monomorphism m_:M(R) ~—>M[R] =

R
(MIM'K) [R] (see §1). For a natural transformation (f:U—>V) € ck , we have the
canonical arrow f[R] :U[R] —> V[R] for which
f
ulr] — LBl yiR]
U 1%
”pl o l”p
K _— K
U( p) B v ( p)
p

forall peR|L.If (h:M—>N) € Str (L) , then

M(R) R N(R)
R O R

(MM'K) [R] —5 (N'K) [R]
[R]

which shows that hl'K:MIK——> NIK determines h (if any).
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We have the forgetful functor & c L:E :Str (L) — foad ; £ is faithful, by the last remark.

(o4
& is a fibration. Indeed, given £:U->V in CrK ,and N over V (thatis, NIK=V), then the
Cartesian arrow h:M->N over f is obtained by defining M and h such that MK = U,
h'K = f and, for all ReRel (L) ,

h

M(R) R N(R)

M O N

R R

UIlR] VI[R]
sy

is a pullback (it is immediate to see that h so defined is Cartesian). As usual with fibrations,

let us denote M so defined by £ (N) , and the Cartesian arrow h by 0 £ £ (N) >N.
& is a fibration with fibers that are preorders.

When in particular € = Set (which is the most important case), a functor U: K— Set is
called separated if U(K)NU(K’) =& whenever K, K’ are distinct objects of K. For a

separated U, we define |Ul = | J U(K) ; for a general U, we would put Ul = || U(R) =
KeK KeK
{ (K, a) : keK, acU(K) } . Of course, every functor is isomorphic to a separated one. When

f:U—V,and U is separated, for a€ |Ul we may write h(a) without ambiguity for
h,(a) for which ae U(K) . For notational simplicity, we will restrict attention to separated
functors K— Set .

I will now isolate a property of a natural transformation £:U—V in c® . Let first

C = Set . We say that £ is very surjective if whenever KeK <ap>peK\K€ U[K] , the
mapping

f< : UK(<ap>peK\K) HVK((fap>peK\K) : ab—f(a)

ap>pEK\K

(see (3) in §1) is surjective.
For a general C (assumed to be regular), £:U—V in K is very surjective if for every
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Ke K, the canonical map p:U(K) > P=U[K] X1 V(K from the diagram below is

[K]
surjective (a regular epimorphism):
£
U(K) K V(K)
u NO v
”Kl o P~ an
/ B )
U[K] VIK] .
g

It is clear that if £ is an isomorphism (in fond ), then it is very surjective. It is easy to see (by

induction on the level of Ke K) that very surjective implies surjective (being a regular

epimorphism in foad ), but not necessarily conversely.

In this section, we consider logic with dependent sorts only without equality; all L-formulas
are without equality.

(1) Let £:U—V in c® be very surjective, and any Ne Strc(L) over V. Let

hzef;sz*(N) SN,

(a) Let first € =Set . h is elementary with respect to logic without equality in the
sense that for any context 4 and L-formula ¢ (in logic with dependent sorts and without
equality) with Var (¢)cd’, and any <aX>XEIEM[I] ,

ME q’[<ax>xe/l’] —— NE qo[(haX>XEI]

(b) For a general € which is a Heyting category (to interpret all L-formulas), for any
¢ and A as above, there is a pullback

M[X: @] %N[I%qo]
. | (1b)

b 4
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(the vertical monomorphisms are representatives for the subobjects M[X:pleS(U[L]) ,

N[ZX:¢plesS(V[X]) ; in other words, (1b) says M[X: @] = (f/l’) *N[/l’:qo] ).

here, f ¥ is the canonical map determined through by the definition of U[X] , V[4] as

limits in C.

Obviously, (b) generalizes (a).

The proof for (a) can be given as a straightforward induction on the complexity of ¢ . The
clause for atomic formulas is essentially the definition of M . For the propositional
connectives, the induction step is automatic. By the duality in Set between 3 and V ,itis
enough to handle the inductive step involving 3, which is done using the "very surjective"”
assumption. In Appendix B, I will take a "fibrational" view of the notion of equivalence, and

give a detailed proof of the more general form (b) .

Let M, N be C-valued L-structures. We say that they are L-equivalent, and we write

M~ N, if there is a diagram

A,

in Str C,(L) such that mM'K, n'K are very surjective, and m and n are Cartesian arrows

in the fibration & c L Paraphrased, this means that there exists a functor e X and very

surjective maps m:W->MIK, n:W->NIK such that m (M) = n (N) , that is, for all
ReRel (L) ,
M(R) ¢<—M(R) X W[R] = N(R)XN[R]W[R] — > N(R)
m] I ] I (1
M[R] W[R] NI[R]
"R "R

M[R]

(where the equality means equality of subobjects of W[R] ). In case € =Set , (1') means that
if ReRel (L) , <Cp>pER | = W[R] , then
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<mcp>pER\KEM(R) = <ncp>pER\KEN(R) . (1

The data (W, m, n) are said to form an L-equivalence of M and N ; in notation,
(W, m, n) : M ?N .

It is easy to see that the relation ~_ is an equivalence relation (for a proof, see Appendix B).

L
It is also clear that isomorphism of L-structures implies L-equivalence.

Let us write M= LN for: MFo < Nko for all L-sentences in logic with dependent sorts
and without equality. We have

2)(a) MNLNZé MELN .

This immediately follows from (1).

The word "equivalence" is used in " L-equivalence" because of the relationship to the various

notions of "equivalence" used in category theory; see later.

At this point, the reader may want to look at Appendix C, which may help understand the
concept of L-equivalence.

We now will exploit the fact that we have specified variables "with arbitrary parameters". In
what follows, a context is a, not necessarily finite, set Y of variables such that ye ),
xeDep (y) imply that xe Y. When we want to refer to the previous sense of "context", we
will say "finite context". A specialization is a map of contexts whose restriction to all finite
subcontexts of the domain is a specialization in the original sense. Just as in case of finite

contexts, there is a correspondence between contexts and functors F:K— Set which is an

equivalence of the categories set® and Con_ [K] , the category of all (small) contexts and

specializations.

Given a context ) and an K-structure M, the set M[ )] is defined by the formula (1), §1
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(which was the definition of M[}Y] for finite ) ). Given a formula ¢ with Var (¢)c),
M[Y: @] is the subset of M[)] for which, for any (ay)yE),eM[)’] ,

(ay) e M J:0] — (ay)yey,eM[)”:qo]

vey

for any (equivalently, some) finite context Y’ with Var (¢@)c)y’c) . As before, we write
l ‘MI: . .
also (p[(ay)yey] for <ay>ye)7€ M[D: @]

Suppose X is a context, M, N L-structures, a:<ax>xe/l’e M[A], b:<bx>xe/l’e N[A] .

We write

(W, m, n) : (M, &) 5 (N, b) (3)

if (W, m, n) :Me—F—N and there is <Sx>xe/l£ w41 such that ms =a_ and nsX:bX

for all xeX . We write (M, 5) g, (N, B) if there is (W, m, n) such that (3) holds.

With M, N, 2, 5, 13 as above, we write (1, a ) = 1 (N, 5) for: for all L-formulas ¢ with
Var (@)cd, we have MP(p[(aX)XEI] = NP(p[(bX)XEI] .

We have the following generalization of (2)(a) :

@) (14 a) ~, (N, b) — (M a) = (N b) ;

L

this also follows immediately from (1) .

Let ) be a context, x a variable such that x¢) but JU{x} is a context (thus, X pe)’

9

for all pe KX| K),and let ® be a set of formulas in logic with dependent sorts over L such
that var (®)=\_J var (¢) C JU{x)} ;such ® iscalleda J-set (of formulas; with x any
variable as described with respect to ). Let M be an L-structure, and

%: M ) W . o e . - . .
a (ay)yE),E (D] e say that @ is satisfiable in (M, a) if there is a€ |M| (more
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precisely, aeMKX[ (a ] ) such that MI=(p[§, a/x] (of course, 5, a/x

)
Xy o pE KX|K
stands for <ay>ye)/1){x}
satisfiable in (1M, a ) if every finite subset of @ is satisfiable in (14 a ) . M 1s said to be

for which a}’/,:ay for ye ), and a=a ). @ is finitely

J-L-saturated if for every aeM[)] and every J-set @, if @ is finitely satisfiable in

(M, a) , then @ is satisfiable in (M, a) .

Let k be an infinite cardinal. We say that M is Kk, L-saturated if it is )-L-saturated for

every context ) with cardinality smaller than «x .

For saturated models for ordinary first order logic, see [CK]. In [MR2], one can find a detailed
introduction to saturated and special models for multisorted logic; the basic facts and their

proofs in the multisorted context do not essentially differ from the original one-sorted versions.

K, L-saturation is K-saturation with respect to L-formulas. Since L-formulas form a part of
the multisorted formulas over |L| , it is clear that if M, an L-structure, i1s K-saturated as a
structure for the similarity type |L| ,then M is kK, L-saturated. More generally, suppose that
we have "interpreted” L in a theory S in ordinary multisorted first-order logic; that is, we
have a C-valued L-structure I:L——>C, for C the Lindenbaum-Tarski category [S] of S
(see [MR]; [S] is a Boolean category). Then if M is a model of S, or equivalently,
M:C—Set is a coherent functor, and M is Kk-saturated in the ordinary sense, then the
L-structure MML=MI:L—>Set is K, L-saturated.

By the cardinality of the structure M, #M, we mean the cardinality of its underlying set
M|
(4) Suppose the L-structures M, N are K, L-saturated, and both are of cardinality <k .

Then the converses of (2)(a) and (2)(b) hold:

M= N = M~ N;

and more generally, if 4 is a context of size < K, aeM (x, BEN [X] , then
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(M, a) =, (N.b) — (M &) ~ (N, b)

Proof.

For a given infinite cardinal «k, and a given context 4 of cardinality less than x, let
U=UTxK, X1 be a context such that ## = xk, XU , and for every sort X with Var (X)c¥ ,
the cardinality of the set of variables xeZ/ with x:X is equal to k. It is easy to see that
such an # exists; we define contexts le. by recursion on i<k for k the height of K let
U Oz@ ;if le. has been defined, pick, for every sort X whose kind is of level i and for
which Vvar (X) c le. , aset VX of variables v:X such that #VX:K, and let Zli+1 be the

union of Zli and all the Vy for all such X ;if k=w, let lez iya)”i ; let lellk .

Next, enumerate Z as a sequence (u a> o< N such a way that for each <k, (u oc> a<pB

is a context; equivalently, such that for each <k, Dep (u B) Clu,: o< B} . Note first of all
that for any finite context ), there is an enumeration )= { Y i<n} such that ( Y ) i< is
a context for all j<n ; enumerate first the level-0 variables, next the level-1 ones, etc. Call
such an enumeration of Y "good". Now, take first an arbitrary enumeration (v _) of

o’ o<K

U ; define the increasing sequence (f3 oc> o<k of ordinals and the partial enumeration

(u }/> v<B by induction on « as follows. For a limit ordinal o , 3 azlimﬁ 5 - For
o o<o
)

o=0+1,let (u be a good enumeration of Dep (v5) U{v5} , and let

i<n

ﬁ5+i
ﬁa:ﬁ5+n.
For every sort X such that Var (X)c¥,let (u o ) vei

X,V
order of all u o of sort X for which u aezl’ . Finally, for any o<k ,let v[a] be the ordinal

be an enumeration in increasing

v for which ocX, v o where X is the sort of u o

.
) ) < _
Assume A is a context of size < K, #M#N< K, a (aX>XE{1,eM[/l’] ,

BzU%QX€IEAHI],am1(M;g)EL(N;B).Fm%myIWﬁHtMK(U&Q “MK(C) ,

PEK]| K
let us fix an enumeration (eg) =(e, > ¢) of the set MK(C) ; here, A, >
E/E<A™ VTR ¢, &8<AL 2 K, ¢

<K.

Consider #/=U[k, X1 constructed above.
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We define a context Z, a subset of X, by deciding, recursively on o<k , whether u o

belongs to Z or not; furthermore, we also define, for each u an , elements ¢ ae IM| and
d of Nl . Let Z o denote the set of all u, with <o for which u ﬁeZ ,and c[a] be the

sequence (cZ> e IUZOCEM[IUZOC] for which cxzaX( xel) and CUB:CB ( uBeZa ).

Similarly, we have dlal € vIHUZ o) - The induction hypothesis of the construction is that
(M, clo+l]) =, (M, dlo+1]) . (5)

Suppose o < Kk, and Z o Z[oc] , d [a] have been defined so that, for all f<o,

(MM, 8[ﬁ+1] ) = (MM, 3[ﬁ+1] ) . Since in the definition of " = ", formulas with finitely

many free variables are involved, we can conclude that

(1, clo]) =, (M, d[a]) . (©6)

Look at the variable u, and its sort X . If uaezl’,we let uan, Comly d=b_ .(05)

is now an automatic consequence of (6).

If not all the variables in X (which are u B s for B<a) arein Z,then u aEZ , and we are

finished with the stage o .

Assume that u ae/l’ and all the variables in X are in Z . Look at the ordinal v = v[a] ;
write Vv in the form v=2-u or v=2-u+1 as the case may be. Let first v=2-u . With

X=K((ug ) = MK(CZ) and its

: pEK|K) , consider the M-sort MK((CB )

5 PEK]| K

previously fixed enumeration (e ?;') E<A (=(e % o §> E<h ). If u=A , then again
s s K, c

u aEZ . If, however, u<A ,then u an . Moreover, ¢ 0 daf € "

Let & be the 4UZ o Set of all formulas ¢ with Var (¢)ctuZ aQ{ u a} for which
MF@IClal, e,/ ] - T claim that @ is finitely satisfiable in (1, dlal) .Let ¥ bea

finite subset of ® . For ¢= /\ ¥, we have MI=(p[Z'[oc] , e“/u] , hence,

M= (Eluaqo) [clal] (note that Elua(p is well-formed, since for every zevVar (@) , Z#U,

we have ze zl’uza , hence Dep (z) c/l’uza , and uae Dep (z) ). As a consequence, by (6),
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NE (Jug) [81[0(] ] . This means that ¥ is satisfiable in (N, g?[oc] ) as desired.

Since #(4UZ,) <k, and N is k, L-saturated, ® is satisfiable in (N, d[a]) , by

d £ NK ( (d B ) , say. The choice of ® ensures that (5) holds.
b

PEK| K)
In case v=2-u+1, we proceed similarly, with the roles of M and N interchanged.

With the construction completed, we put Z= | | Z o We let w be the functor
o<K
Fg:K—Set associated with the context Z (see §4). m:w—MIK, n:wW— NIK are defined

by m(ua) =c n(ua) = da( uan) . The definition ensures that AcZ and

a’
m(x) = a, . n(x) =bX(X€/l’).

Let us see that m is very surjective. Let KeK. W[K] is the set of all tuples (zp)

PEK|K
for which each zpeZ ,and X=K( (zp)

PEK]| g isa (well-formed) sort; WK ( <Zp>pEK| )
is the set of all zeZ such that z:X. So, assume that

X=K( <Zp>pEK| x) =K <uﬁp>pEK| % is a sort, and

aeMK((mzp)p = MK(cC)

EK|K) = MK(<Cﬁp>pEK|K)

Then a=e_ - for some u<A & and for ox = « , the construction at stage «

K,C,‘LL X,2"LL

puts u,:X into Z ; that is, u,£ WK ( <Zp>p€K| K) , with a=c,=mu, as desired.

The fact that n is very surjective is seen analogously.

We have that (W, m, n) : M TN , since (1") is a consequence of (5) being true for all

0<K ; one has to apply (5) to atomic formulas.

This completes the proof of (4).

Let € be a small Boolean category. By a model of C we mean a functor M: C— Set
preserving the Boolean structure (that is, M is a coherent functor). We write MFC to say that
M is a model of C.
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There is a theory T c” (L c’ 2 C,) in multisorted first-order logic, with L c the underlying
graph of €, such that the models of C are the same as the models of T c (note that both the
models of € and the models of T c are particular diagrams L c
subobject @eS cld) , AeC, there is a (simply defined) L C—formula @ (x) with a single
free variable x:A such that for every MFC and acM(A) , Mr@lal (& MF@la/x] ) iff

aeM(@) (cM(A) ). See [MR].

— Set ). Moreover, for any

For oces (1 C,) , a subobject of the terminal object in C, we write Mo for M(o)=1 in

Set . We will call a subobject of 1 ¢ & sentence in C.

Let I:L—C a C-valued L-structure (in particular, I:L— C is a functor from L as a
category). When C is the Lindenbaum-Tarski category [S] of a theory S=(L < 2 ) in
ordinary multisorted logic (see [MR] or [M?]), then such an I is what we should consider an
interpretation of the DS vocabulary L in the theory S. An example is obtained by taking
S=(lol,2[L]) (for 2[L] ,see §1), and for IT:L— [S] the [S]-structure defined by
I(A)=[a:t] for AeL where a:A,and for f:A—>B,

I(f)=(at>b:fa=b):[a:t] > [b:t]. I:L—[S] is the canonical interpretation of
logic with dependent types in multisorted logic. In this case, for any formula ¢ of FOLDS

over L, with Var (¢)cd, we have I[1:@] :m*[/l’:(p*] ; here,

m:I[X:p] — {&} 45f HA’KX is the canonical monomorphism, m" denotes pulling back
X€E

along m; (p* was defined in §1.

For a general I:L—C, and for an L-sentence O, let us write I (0) for the sentence
I[@:0] of €.Incase €c=[S], I(0) also stands for any one of the S-equivalent

L s-sentences which are the representatives of the C-subobject I(0) .

When MEC, the composite MT:L->Set is an L-structure. We also write MI'L for MT ;
ML isthe L-reduct of M (via I).

Let ¢ and D be small Boolean categories, I:L—C and J:L— D . Notational conventions

introduced above for I:L-—>C are valid for J:L— D, mutatis mutandis.

(7)(a) Assume that o is a sentence of C, 7 a sentence of D, and for all M=C, NFD,
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MEO & MerLNrL —— NET.

Then there is an L-sentence O in logic with dependent sorts without equality such that for all
MEC, NED, we have

MEo — MILEO and NILE O — NET.

For a more general formulation, consider a finite L-context 4, and the object I[X]1eC.

I[X] is defined as a finite limit in C; see the end of §1; let 7« I —>1T (KX) be the

[x]
limit projections ( xed’ ). Given any MFC, we have similar projections

0 [x]° (MtL) [X] %MI(KX) in Set , and a canonical isomorphism

w: (ML) [A] SsM(T[d]) making each diagram

) ( ')

© _——M(rm

o
[x] MT (K )K
X

[x]

commute. If 5:<ax>xe/l£ (MML) [X] , we write (&) for u(a)eM(I[X]) .Once again,

similar conventions apply in the context of J:L—>D.

(7)(b) Assume that 4 is a finite L-context, GESC,(I[I] ), TE SD(J[I] ),

and for all M=C, NED, ac (ML) [X] ., be (N'L) [X] ,

(a)eM(o) & (ML, a) ~, (NIL, p) —— (b)eN(T) . (8)

Then there is an L-formula O in logic with dependent sorts without equality with
Var (@) cd such that

I(t:01, J[X:0] SJ[I]T' (8"

GSI[I]

Note that (8') may be written equivalently as
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for all M=C, NED, ac (MML) [X] and be (N'L) [X] .

(a)eM(o) = MM TFO[a] and NMJFO[b] —> (b)eN(T) .

Proof. Let us extend the vocabulary L c o Lale) by adding a single new individual

constant ¢ of sort A A1 . For any (peSC(A) ,let ¢(c) denote @(c/x) ,the

= I[
def
result of substituting ¢ for x in @(x) . Foran L-formula 6 with Var (0)cd, let 0(c)
stand for (I[4:01) (c) . Similarly, we introduce d:B —fJ[/l’] ; for YesS,(B) , w(d)

de
and for O as before, 6(d) .

Let © be the set of all L-formulas 6 with Var (0)cd such that o < 2 I[X:0] . Consider
the set X~ 43f ZDU{ 0(d) : 60} of LD(d) -sentences. I claim that

(LD(d),Z) Ft(d) . )

Once the claim is proved, by compactness there are finitely many 91.6@ ( i<n) such that
(LD(d), ZDU{Gl.(d) :i<n}) E 7(d) , which means, for 6= /\ 91. € O that

i<n
(LD(d), ZD) FO(d) —t(d) , thatis, (LD(d), ZD) FVx:B.(0(x)— 1(x)) , which

means J[X:0] SB 7T ; thus, it is enough to see the claim.

Assume that there is an infinite cardinal A>#L c such that )L+:2)L

legitimacy of this assumption). Let k=A% . According to the existence theorem for saturated

(see below for the

models (see [CK], [MR2]), any L D(d ) -structure is elementarily equivalent to a K-saturated
structure of cardinality < k . Therefore, to show (9), take (N, b/d) , a k-saturated model of

cardinality <k of (L_(d), Z) ,toshow (N, b/d) E 7(d) .

D
Let ® be the set of L-formulas ¢ with Var (¢)cd such that be N(I[X:¢@]) C NB; for
every L-formula ¢ with Var (¢)cd, exactly one of ¢, —¢ belongs to ® . Since

(N, b/d) 1samodel of (L_(d), 2) , with 2 defined as it is, we have © c ® . I make the
subclaim that the theory

D

(Lgle), Zguio(c) }u{g(c) :ged}) (10)

is consistent. Consider a finite subset {g,: i<n} of ®.If
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(Lc( c), ZCU{G( c) }U{qol. (¢) : 1<n}) were not consistent, then we would have, for

o= /\ qol.ed) ,that o< a7l [4:=¢@] , which would mean that —¢@e® c ® , contradicting
i<n

@e® . This shows the subclaim.

Now, let (14, a/c) be a k-saturated model of (10) of cardinality < k. Let ae (MML) [X]
such that a=(a) (see (7')) and be (N'L) [] such that bz(fp) . Then, for any
L-formula 0 with Var (0)ct such that MMLEO [5] , we have —0¢® , hence 0c® , hence

NI‘LI=9[B] . This says that (MIL, a) = NI, B) .By (4), (M'L, a) YL (NTL, B) , and

I (
by the (8), the assumption of the proposition, <B>EN () ,thatis, NFT[ (B)/x] , that is,
(N, b/d) E 7(d) as promised.

The set-theoretic assumption used in the proof is redundant, by a general absoluteness theorem
(arithmetic statements are absolute with respect to the constructible universe, in which the
Generalized Continuum Hypothesis (GCH) holds; see [J]). On the other hand, one may use
"special" models in place of saturated ones, and avoid the use of GCH; see [CK], [MR2].

(11)(a) Assume that S is a theory in multisorted logic, and I:L— [S] is an interpretation
of the DSV L in S . Suppose that the class Mod (S) of models of S is invariant under

S—structures M and N, MeMod(S) and
ML ~ LN 'L imply that NeMod (S) . Then S is L-axiomatizable; that is, for a set © of
({1(6):6e0}) = ConL (ZS) ; here, ConL(d)) is the set of

S S

L-sentences that are consequences of the theory (L, @) .

L-equivalence in the sense that for any L

L-sentences, Conp

Note that the conclusion can also be expressed by saying that for any L g structure 17, MEX s
iff MILFO .

(11)(b) More generally, assume, in additionto S and I:L— [S] ,atheory T ina
language extending that of S (L L ) such that

for any M, NeMod (T), MI‘LSeMod(S) and MI'L wLNI‘L imply that
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NPLSeMod(S) .
Then, there is a set © of L-sentences such that, for any M=T, MEX s iff MMLEO .

(11)(a) is the special case when T=( a) .

LS s
Proof of (11)(b). For any 7€ ZS ,MFT and NET, we have

MI=ZS& MerLNrL — NET.

By appropriately coding the condition ML~ N 'L in first order logic with suitable additional
primitives, and by applying compactness, we can find o[ 7] , a finite conjunction of elements
of ZS , such that for any MFT and NET,

MFoO[T] &MI‘LNLNI‘L = NET.

Then by (7)(a), applied to C=D=[T] ,and I=J: L% [S5] & [T] , we can find

0[7],an L-sentence, such that TFo[7]-——I(0[7]) , TEI(0[7])— 7. Clearly,
O={0[71]: 1€X S} is then appropriate for the assertion.

We leave it to the reader to formulate a version of (11) with formulas in a given context 4

instead of sentences.

The following, which is a special case of (7)(b), says that a first-order property invariant under

L-equivalence is expressible in logic with dependent types over L.

(12) Let I:L—>C be as before. Assume that 4 is a finite L-context, oeS(I[X]) , and

for all M, NeC and ac (MM'L) [X] ., be (NI'L) [4] ,

(a)eM(o) & (ML, a) ~, (NIL b) —= (b)eN(0)

Then there is an L-formula O in logic with dependent sorts without equality with

Var (0) ct such that G:I[/l’] I[X:07.

72



The notion of L-equivalence as defined is relevant to FOLDS without equality. However,

frequently we deal with FOLDS with restricted equality. As explained in §1, when M is an

L-structure, it can be considered as an Leq—structure, with the additional relations E K

interpreted as true equality; let us write M for the resulting "standard" £5%structure as well.

What does it mean to have an equivalence (W, m, n) : M qu\f for L-structures M, N?
L

Clearly, this is to say that (w, m, n) : M ?N and, for any maximal kind K, and ce WIK] ,

eWK(mg) , we have that mc.,=mc. iff nc,=nc, . Let us write (W, m, n) :M%N

€1 < 17MC; 1715
for (W, m, n) :M TqN , and let us call such (W, m, n) an L, =-equivalence; also, write
L
M zLN for M ~ eq I ; note that throughout, ¥ and N are L-structures.
L

Let us define M= _ N aswedid M= LN above, except that we refer to logic with equality.
=

Then, using the translation (pH(;) mentioned in §1, we obviously have M= N <
L=
M= N . Thus, by (2)(a) we have
A

(13) For L-structures M and N, M= N= M= _N .

L

L,=-equivalences can be "normalized" in a certain way, which will be useful for us later.
Let U, Ve set® . A very surjective morphism f£:U—V is normal if for any maximal kind
K, and any ac U[K] ," £ is 1-1 in the fiber over a " that is, if b, ce UK(Q) , then
f(b)=£(c) implies b=c . Together with the very surjective condition, this says that £

induces a bijection UK(a) —=>VK(fa) .

Let M, N be L-structures. A normal L,=-equivalence (W, m, n) :M%N is an

L,=-equivalence in which both m and n are normal. We have the fact

(14) For any L-structures M, N,if M= LN , then there is a normal L,=-equivalence
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(W, m, n) :M%N.

The argument is as follows. Start with any L,=-equivalence (W, m, n) : M %N . Define

weset® by setting W’ K=WK for all KeK except the maximal ones; for a maximal X,
W'K 43 fWK/ ~, where ~ is the equivalence relation on WK for which b~c iff b and ¢
are over the same acW([K] , and m(b)=m(c) . When in this definition, we replace m by

n , the result is the same; this is because (W, m, n) being an L,=-equivalence, m(b)=m(c)
iff n(b)=n(c) for b, c over the same element in W[K] . For an arrow p:K%Kp ,

W' (p)=W(p) when K is not maximal (in which case Kp is not maximal either); and for K
maximal, (W’'p) (b/~)=(wp) (b) ; the latter is well-defined, since by the definition of ~ ,
if bvc,then (Wp) (b)=(Wp) (c) . Clearly, W’ :K— Set is well-defined, and we have
obvious maps p:W-—>W’' , m' :W' —>MIK, n’:W’ —>NIK such that

I claim that (W', m’, n’):M %N ; the normality condition is clearly satisfied. Consider a

relation R in L. In the commutative diagram

* q *
(m MR—*——>(m" MR———> MR

| | |

W[R] ——— > W' [R] ?M[R]
PIR] [R]

the outside rectangle and the right-hand square are pullbacks. It follows that the left-hand
square is a pullback too. Obviously, p [R] is surjective. It follows that g is surjective. This
determines the subobject (m’ *M) R >—> W' [R] as the image of (m*M) R >—>W[R] under

PR . Switching to N from M, (n’*N)RHW’ [R] is the image of (n*N)R>%W[R]
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under p . Since (m*M) R = (n*N) R, it follows that

[R] [R]

(m’ *M) R=_, [R] (n’ *N) R as desired. The additional condition concerning equality is

clearly satisfied.

Notice that the above proof works for an essentially arbitrary € in place of Set .

*
Note that if m:w—>MIM'K is normal, then m M formed from M as a standard 5% structure
is a standard LS%-structure too. Put in another way, the standard fiberwise equality relations

on the maximal kinds in m M are formed by the same pullback operation from the

corresponding relation on M as any primitive L-relation.
We have the following variant of (12).

(15) Let c be a small Boolean category, I:L—C . Assume that 4 is a finite L-context,

oeS(I[X]) ,and for all M, NEC and ac (ML) [X] , be (NIML) [A] ,

(a)eM(0) & (ML, a) =, (N'L b) —= (b)eN(0)

Then there is an L-formula 6 in logic with dependent sorts with equality with Var (0)cd

such that o = I[X:07.

I[4]

Proof. By definition, for each maximal K, I[E K] =T (K) I(K) .Letus form

*I[K]
9159 ¢ extending I:L—>C by specifying that, qu(EK) = I[E.], with

1°%(e, ) =T (e, ) =1 . We apply (12) to 1°9:1°9 > ¢. For MFC,

I[EK]

Mt £€9=po 789 is, clearly, the same as MI'L as a standard % structure. Thus,

(M€, a) ~ eq (NzfY By — (ML, a) ~. (NIL, b)
L
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Thus, from the hypothesis of (15), that of (12) follows. By (12), we have some 6 in FOLDS

without equality over 9 such that o = ! [4:0] ; but clearly, for 6’ in FOLDS

I[d]
with equality over L such that 0 = 0,wehave I[X:0'] =159 [F:0] ; thus C=riy
I[X:0']1 asrequired.

]
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