§5. Equivalence

Let **L** be a fixed DSV, **K** the full subcategory of its kinds.

We have defined what an **L**-structure is; even, what a **C**-valued **L**-structure is, for any **C** with finite limits. In what follows, we will make the minimal assumption that **C** is a regular category (which is equivalent to saying that $\mathcal{P}(\mathbf{C})$, with "total" \mathcal{Q} , is a $\land \exists$ -fibration: just ignore **f** and \lor in the definition of $\land \lor \exists$ -fibration).

The category of **C**-valued **L**-structures, $\text{Str}_{C}(L)$, has objects the **C**-valued **L**-structures, and morphisms natural transformations; $\text{Str}_{C}(L)$ is a full subcategory of C^{L} (with **L** in its last occurrence understood as a mere category). We write Str(L) for $\text{Str}_{\text{Set}}(L)$.

Given $M \in \operatorname{Str}_{\boldsymbol{C}}(\boldsymbol{L})$, we have $M \upharpoonright \boldsymbol{K} \colon \boldsymbol{K} \longrightarrow \boldsymbol{C}$, its \boldsymbol{K} -reduct, the structure of kinds associated to M. For any $R \in \operatorname{Rel}(\boldsymbol{L})$, we have the canonical monomorphism $\operatorname{m}_R: M(R) \longrightarrow M[R] =$ $(M \upharpoonright \boldsymbol{K})[R]$ (see §1). For a natural transformation $(f: U \longrightarrow V) \in \boldsymbol{C}^{\boldsymbol{K}}$, we have the canonical arrow $f_{[R]}: U[R] \longrightarrow V[R]$ for which

for all $p \in R \mid \boldsymbol{L}$. If $(h: M \longrightarrow N) \in Str(\boldsymbol{L})$, then

which shows that $h \upharpoonright \mathbf{K} : M \upharpoonright \mathbf{K} \longrightarrow N \upharpoonright \mathbf{K}$ determines h (if any).

We have the forgetful functor $\mathcal{E}_{C, L} = \mathcal{E}: \operatorname{Str}_{C}(L) \longrightarrow C^{K}$; \mathcal{E} is faithful, by the last remark. \mathcal{E} is a fibration. Indeed, given $f: U \to V$ in C^{K} , and N over V (that is, $N \upharpoonright K = V$), then the Cartesian arrow $h: M \to N$ over f is obtained by defining M and h such that $M \upharpoonright K = U$, $h \upharpoonright K = f$ and, for all $R \in \operatorname{Rel}(L)$,

is a pullback (it is immediate to see that h so defined is Cartesian). As usual with fibrations, let us denote M so defined by $f^*(N)$, and the Cartesian arrow h by $\theta_f: f^*(N) \to N$.

 \mathcal{E} is a fibration with fibers that are preorders.

When in particular C = Set (which is the most important case), a functor $U: \mathbf{K} \to Set$ is called *separated* if $U(K) \cap U(K') = \emptyset$ whenever K, K' are distinct objects of \mathbf{K} . For a separated U, we define $|U| = \bigcup U(K)$; for a general U, we would put $|U| = \bigsqcup U(K) = K \in \mathbf{K}$ $\{(K, a) : k \in \mathbf{K}, a \in U(K)\}$. Of course, every functor is isomorphic to a separated one. When $f: U \to V$, and U is separated, for $a \in |U|$ we may write h(a) without ambiguity for $h_K(a)$ for which $a \in U(K)$. For notational simplicity, we will restrict attention to separated functors $\mathbf{K} \to Set$.

I will now isolate a property of a natural transformation $f: U \to V$ in $\mathbf{C}^{\mathbf{K}}$. Let first $\mathbf{C} = \text{Set}$. We say that f is very surjective if whenever $K \in \mathbf{K}$, $\langle a_p \rangle_{p \in K | \mathbf{K}} \in U[K]$, the mapping

$${}^{f}\langle a_{p}\rangle_{p\in K|\mathbf{K}}: UK(\langle a_{p}\rangle_{p\in K|\mathbf{K}}) \longrightarrow VK(\langle fa_{p}\rangle_{p\in K|\mathbf{K}}): a \mapsto f(a)$$

(see (3) in §1) is surjective.

For a general \boldsymbol{C} (assumed to be regular), $f: U \rightarrow V$ in $\boldsymbol{C}^{\boldsymbol{K}}$ is very surjective if for every

 $K \in \mathbf{K}$, the canonical map $p: U(K) \to P = U[K] \times_{V[K]} V(K)$ from the diagram below is surjective (a regular epimorphism):

It is clear that if f is an isomorphism (in $c^{\mathbf{K}}$), then it is very surjective. It is easy to see (by induction on the level of $K \in \mathbf{K}$) that very surjective implies surjective (being a regular epimorphism in $c^{\mathbf{K}}$), but not necessarily conversely.

In this section, we consider logic with dependent sorts only without equality; all *L*-formulas are without equality.

(1) Let $f: U \to V$ in $\boldsymbol{c}^{\boldsymbol{K}}$ be very surjective, and any $N \in \text{Str}_{\boldsymbol{C}}(\boldsymbol{L})$ over V. Let $h = \theta_f: M = f^*(N) \to N$.

(a) Let first $\mathbf{C} = \text{Set}$. *h* is elementary with respect to logic without equality in the sense that for any context \mathcal{X} and \mathbf{L} -formula φ (in logic with dependent sorts and without equality) with $\text{Var}(\varphi) \subset \mathcal{X}$, and any $\langle a_x \rangle_{x \in \mathcal{X}} \in M[\mathcal{X}]$,

$$M \models \varphi[\langle a_x \rangle_{x \in \mathcal{X}}] \iff N \models \varphi[\langle ha_x \rangle_{x \in \mathcal{X}}]$$

(b) For a general C which is a Heyting category (to interpret all *L*-formulas), for any φ and \mathcal{X} as above, there is a pullback

(the vertical monomorphisms are representatives for the subobjects $M[\mathcal{X}:\varphi] \in S(U[\mathcal{X}])$, $N[\mathcal{X}:\varphi] \in S(V[\mathcal{X}])$; in other words, (1b) says $M[\mathcal{X}:\varphi] = (f_{\mathcal{X}})^* N[\mathcal{X}:\varphi]$).

here, $f_{\mathcal{X}}$ is the canonical map determined through by the definition of $U[\mathcal{X}]$, $V[\mathcal{X}]$ as limits in C.

Obviously, (b) generalizes (a).

The proof for (a) can be given as a straightforward induction on the complexity of φ . The clause for atomic formulas is essentially the definition of M. For the propositional connectives, the induction step is automatic. By the duality in Set between \exists and \forall , it is enough to handle the inductive step involving \exists , which is done using the "very surjective" assumption. In Appendix B, I will take a "fibrational" view of the notion of equivalence, and give a detailed proof of the more general form (b).

Let M, N be **C**-valued **L**-structures. We say that they are **L**-equivalent, and we write $M \sim_{\mathbf{T}} N$, if there is a diagram

in $\operatorname{Str}_{\boldsymbol{C}}(\boldsymbol{L})$ such that $\overline{m} \upharpoonright \boldsymbol{K}$, $\overline{n} \upharpoonright \boldsymbol{K}$ are very surjective, and \overline{m} and \overline{n} are Cartesian arrows in the fibration $\mathcal{E}_{\boldsymbol{C}, \boldsymbol{L}}$. Paraphrased, this means that there exists a functor $W \in \boldsymbol{C}^{\boldsymbol{K}}$ and very surjective maps $m: W \to M \upharpoonright \boldsymbol{K}$, $n: W \to N \upharpoonright \boldsymbol{K}$ such that $m^*(M) = n^*(N)$, that is, for all $R \in \operatorname{Rel}(\boldsymbol{L})$,

(where the equality means equality of subobjects of W[R]). In case C = Set, (1') means that if $R \in \text{Rel}(L)$, $\langle C_p \rangle_{p \in R \mid \mathbf{K}} \in W[R]$, then

$$\langle mc_p \rangle_{p \in R \mid \mathbf{K}} \in M(R) \iff \langle nc_p \rangle_{p \in R \mid \mathbf{K}} \in N(R) .$$
^(1")

The data (W, m, n) are said to form an *L*-equivalence of *M* and *N*; in notation, $(W, m, n) : M \longleftrightarrow N$.

It is easy to see that the relation $\sim_{\mathbf{L}}$ is an equivalence relation (for a proof, see Appendix B). It is also clear that isomorphism of \mathbf{L} -structures implies \mathbf{L} -equivalence.

Let us write $M \equiv_{\mathbf{L}} N$ for: $M \models \sigma \iff N \models \sigma$ for all **L**-sentences in logic with dependent sorts and without equality. We have

$$(2)(a) \quad M \sim_{\boldsymbol{L}} N \implies M \equiv_{\boldsymbol{L}} N \quad .$$

This immediately follows from (1).

The word "equivalence" is used in "*L*-equivalence" because of the relationship to the various notions of "equivalence" used in category theory; see later.

At this point, the reader may want to look at Appendix C, which may help understand the concept of L-equivalence.

We now will exploit the fact that we have specified variables "with arbitrary parameters". In what follows, a *context* is a, not necessarily finite, set \mathcal{Y} of variables such that $y \in \mathcal{Y}$, $x \in \text{Dep}(\mathcal{Y})$ imply that $x \in \mathcal{Y}$. When we want to refer to the previous sense of "context", we will say "finite context". A *specialization* is a map of contexts whose restriction to all finite subcontexts of the domain is a specialization in the original sense. Just as in case of finite contexts, there is a correspondence between contexts and functors $F: \mathbf{K} \to \text{Set}$ which is an equivalence of the categories $\text{Set}^{\mathbf{K}}$ and $\text{Con}_{\infty}[\mathbf{K}]$, the category of all (small) contexts and specializations.

Given a context \mathcal{Y} and an *K*-structure *M*, the set $M[\mathcal{Y}]$ is defined by the formula (1), §1

(which was the definition of $M[\mathcal{Y}]$ for finite \mathcal{Y}). Given a formula φ with $\operatorname{Var}(\varphi) \subset \mathcal{Y}$, $M[\mathcal{Y}:\varphi]$ is the subset of $M[\mathcal{Y}]$ for which, for any $\langle a_{V} \rangle_{V \in \mathcal{Y}} \in M[\mathcal{Y}]$,

$$\left\langle a_{Y}^{}\right\rangle_{Y \in \mathcal{Y}} \in \mathbb{M}[\mathcal{Y}:\varphi] \quad \Longleftrightarrow \quad \left\langle a_{Y}^{}\right\rangle_{Y \in \mathcal{Y}'} \in \mathbb{M}[\mathcal{Y}':\varphi]$$

for any (equivalently, some) finite context \mathcal{Y}' with $\operatorname{Var}(\varphi) \subset \mathcal{Y}' \subset \mathcal{Y}$. As before, we write also $M \models \varphi[\langle a_{Y} \rangle_{Y \in \mathcal{Y}}]$ for $\langle a_{Y} \rangle_{Y \in \mathcal{Y}} \in M[\mathcal{Y}; \varphi]$.

Suppose \mathcal{X} is a context, M, N *L*-structures, $\vec{a} = \langle a_X \rangle_{X \in \mathcal{X}} \in M[\mathcal{X}]$, $\vec{b} = \langle b_X \rangle_{X \in \mathcal{X}} \in N[\mathcal{X}]$. We write

$$(W, m, n): (M, \vec{a}) \longleftrightarrow (N, \vec{b})$$
 (3)

if $(W, m, n) : M \xleftarrow{\mathbf{L}} N$ and there is $\langle s_X \rangle_{X \in \mathcal{X}} \in W[\mathcal{X}]$ such that $ms_X = a_X$ and $ns_X = b_X$ for all $x \in \mathcal{X}$. We write $(M, \vec{a}) \sim_{\mathbf{L}} (N, \vec{b})$ if there is (W, m, n) such that (3) holds.

With $M, N, \mathcal{X}, \vec{a}, \vec{b}$ as above, we write $(M, \vec{a}) \equiv_{\mathbf{L}} (N, \vec{b})$ for: for all \mathbf{L} -formulas φ with $\operatorname{Var}(\varphi) \subset \mathcal{X}$, we have $M \models \varphi[\langle a_X \rangle_{X \in \mathcal{X}}] \iff N \models \varphi[\langle b_X \rangle_{X \in \mathcal{X}}]$.

We have the following generalization of (2)(a):

(2)(b)
$$(M, \vec{a}) \sim_{\boldsymbol{L}} (N, \vec{b}) \implies (M, \vec{a}) \equiv_{\boldsymbol{L}} (N, \vec{b});$$

this also follows immediately from (1).

Let \mathcal{Y} be a context, x a variable such that $x \notin \mathcal{Y}$ but $\mathcal{Y} \cup \{x\}$ is a context (thus, $x_{x, p} \in \mathcal{Y}$ for all $p \in \mathbb{K}_{x} | \mathbf{K}$), and let Φ be a set of formulas in logic with dependent sorts over \mathbf{L} such that $\operatorname{Var}(\Phi) = \bigcup \operatorname{Var}(\varphi) \subset \mathcal{Y} \cup \{x\}$; such Φ is called a \mathcal{Y} -set (of formulas; with x any $\varphi \in \Phi$ variable as described with respect to \mathcal{Y}). Let M be an \mathbf{L} -structure, and $\vec{a} = \langle a_{y} \rangle_{y \in \mathcal{Y}} \in M[\mathcal{Y}]$. We say that Φ is satisfiable in (M, \vec{a}) if there is $a \in |M|$ (more precisely, $a \in MK_{x}[\langle a_{X_{x,p}} \rangle_{p \in K_{x}} | \mathbf{K}]$) such that $M \models \varphi[\vec{a}, a/x]$ (of course, $\vec{a}, a/x$ stands for $\langle a'_{y} \rangle_{y \in \mathcal{Y} \cup \{x\}}$ for which $a'_{y} = a_{y}$ for $y \in \mathcal{Y}$, and $a'_{x} = a$). Φ is *finitely* satisfiable in (M, \vec{a}) if every finite subset of Φ is satisfiable in (M, \vec{a}) . M is said to be \mathcal{Y} -**L**-saturated if for every $\vec{a} \in M[\mathcal{Y}]$ and every \mathcal{Y} -set Φ , if Φ is finitely satisfiable in (M, \vec{a}) , then Φ is satisfiable in (M, \vec{a}) .

Let κ be an infinite cardinal. We say that *M* is κ , *L*-saturated if it is \mathcal{Y} -*L*-saturated for every context \mathcal{Y} with cardinality smaller than κ .

For saturated models for ordinary first order logic, see [CK]. In [MR2], one can find a detailed introduction to saturated and special models for multisorted logic; the basic facts and their proofs in the multisorted context do not essentially differ from the original one-sorted versions.

 κ , **L**-saturation is κ -saturation with respect to **L**-formulas. Since **L**-formulas form a part of the multisorted formulas over $|\mathbf{L}|$, it is clear that if M, an **L**-structure, is κ -saturated as a structure for the similarity type $|\mathbf{L}|$, then M is κ , **L**-saturated. More generally, suppose that we have "interpreted" **L** in a theory S in ordinary multisorted first-order logic; that is, we have a **C**-valued **L**-structure $I: \mathbf{L} \longrightarrow \mathbf{C}$, for **C** the Lindenbaum-Tarski category [S] of S(see [MR]; [S] is a Boolean category). Then if M is a model of S, or equivalently, $M: \mathbf{C} \rightarrow \text{Set}$ is a coherent functor, and M is κ -saturated in the ordinary sense, then the **L**-structure $M \upharpoonright \mathbf{L} = MI: \mathbf{L} \rightarrow \text{Set}$ is κ , **L**-saturated.

By the *cardinality of* the structure M, #M, we mean the cardinality of its underlying set |M|.

(4) Suppose the *L*-structures *M*, *N* are κ , *L*-saturated, and both are of cardinality $\leq \kappa$. Then the converses of (2)(a) and (2)(b) hold:

$$M \equiv_{\boldsymbol{L}} N \implies M \sim_{\boldsymbol{L}} N ;$$

and more generally, if \mathcal{X} is a context of size $< \kappa$, $\vec{a} \in M[\mathcal{X}]$, $\vec{b} \in N[\mathcal{X}]$, then

$$(M, \vec{a}) \equiv_{\boldsymbol{L}} (N, \vec{b}) \implies (M, \vec{a}) \sim_{\boldsymbol{L}} (N, \vec{b})$$

Proof.

For a given infinite cardinal κ , and a given context \mathcal{X} of cardinality less than κ , let $\mathcal{U}=\mathcal{U}[\kappa, \mathcal{X}]$ be a context such that $\#\mathcal{U}=\kappa$, $\mathcal{X}\subset\mathcal{U}$, and for every sort X with $\operatorname{Var}(X)\subset\mathcal{U}$, the cardinality of the set of variables $x\in\mathcal{U}$ with x:X is equal to κ . It is easy to see that such an \mathcal{U} exists; we define contexts \mathcal{U}_i by recursion on $i\leq k$ for k the height of κ ; let $\mathcal{U}_0=\emptyset$; if \mathcal{U}_i has been defined, pick, for every sort X whose kind is of level i and for which $\operatorname{Var}(X) \subset \mathcal{U}_i$, a set V_X of variables v:X such that $\#V_X=\kappa$, and let \mathcal{U}_{i+1} be the union of \mathcal{U}_i and all the V_X for all such X; if $k=\omega$, let $\mathcal{U}_{\omega}=\bigcup_{i<\omega}\mathcal{U}_i$; let $\mathcal{U}=\mathcal{U}_k$.

Next, enumerate \mathcal{U} as a sequence $\langle u_{\alpha} \rangle_{\alpha < \kappa}$ in such a way that for each $\beta < \kappa$, $\langle u_{\alpha} \rangle_{\alpha < \beta}$ is a context; equivalently, such that for each $\beta < \kappa$, $\text{Dep}(u_{\beta}) \subset \{u_{\alpha} : \alpha < \beta\}$. Note first of all that for any finite context \mathcal{Y} , there is an enumeration $\mathcal{Y}=\{y_{i}:i < n\}$ such that $\langle y_{i} \rangle_{i < j}$ is a context for all j < n; enumerate first the level-0 variables, next the level-1 ones, etc. Call such an enumeration of \mathcal{Y} "good". Now, take first an arbitrary enumeration $\langle v_{\alpha} \rangle_{\alpha < \kappa}$ of \mathcal{U} ; define the increasing sequence $\langle \beta_{\alpha} \rangle_{\alpha < \kappa}$ of ordinals and the partial enumeration $\langle u_{\gamma} \rangle_{\gamma < \beta_{\alpha}}$ by induction on α as follows. For a limit ordinal α , $\beta_{\alpha} = \lim_{\delta < \alpha} \beta_{\delta}$. For $\alpha = \delta + 1$, let $\langle u_{\beta_{\delta} + i} \rangle_{i < n}$ be a good enumeration of $\text{Dep}(v_{\delta}) \cup \{v_{\delta}\}$, and let $\beta_{\alpha} = \beta_{\delta} + n$.

For every sort X such that $\operatorname{Var}(X) \subset \mathcal{U}$, let $\langle u_{\alpha_{X, V}} \rangle_{V < K}$ be an enumeration in increasing order of all u_{α} of sort X for which $u_{\alpha} \notin \mathcal{X}$. Finally, for any $\alpha < \kappa$, let $v[\alpha]$ be the ordinal v for which $\alpha_{X, V} = \alpha$ where X is the sort of u_{α} .

Assume \mathcal{X} is a context of size $\langle \kappa, \#M, \#N \leq \kappa, \vec{a} = \langle a_X \rangle_{X \in \mathcal{X}} \in M[\mathcal{X}]$, $\vec{b} = \langle b_X \rangle_{X \in \mathcal{X}} \in N[\mathcal{X}]$, and $(M, \vec{a}) \equiv_{\mathbf{L}} (N, \vec{b})$. For any *M*-sort $MK(\langle c_p \rangle_{p \in K} | \mathbf{K}) = MK(\vec{c})$, let us fix an enumeration $\langle e_{\xi} \rangle_{\xi < \lambda} = \langle e_{K, \vec{c}, \xi} \rangle_{\xi < \lambda_{K, \vec{c}}}$ of the set $MK(\vec{c})$; here, $\lambda_{K, \vec{c}} \leq \kappa$.

Consider $\mathcal{U}=\mathcal{U}[\kappa, \mathcal{X}]$ constructed above.

We define a context \mathcal{Z} , a subset of \mathcal{U} , by deciding, recursively on $\alpha < \kappa$, whether u_{α} belongs to \mathcal{Z} or not; furthermore, we also define, for each $u_{\alpha} \in \mathcal{Z}$, elements $c_{\alpha} \in |\mathcal{M}|$ and $d_{\alpha} \in |\mathcal{N}|$. Let \mathcal{Z}_{α} denote the set of all u_{β} with $\beta < \alpha$ for which $u_{\beta} \in \mathcal{Z}$, and $\vec{c}[\alpha]$ be the sequence $\langle c_{z} \rangle_{z \in \mathcal{X} \cup \mathcal{Z}_{\alpha}} \in \mathcal{M}[\mathcal{X} \cup \mathcal{Z}_{\alpha}]$ for which $c_{x} = a_{x}(x \in \mathcal{X})$ and $c_{u_{\beta}} = c_{\beta}(u_{\beta} \in \mathcal{Z}_{\alpha})$. Similarly, we have $\vec{d}[\alpha] \in v[\mathcal{X} \cup \mathcal{Z}_{\alpha}]$. The induction hypothesis of the construction is that

$$(M, \vec{c}[\alpha+1]) \equiv_{\boldsymbol{L}} (M, \vec{d}[\alpha+1]) .$$
(5)

Suppose $\alpha < \kappa$, and \mathcal{Z}_{α} , $\vec{c}[\alpha]$, $\vec{d}[\alpha]$ have been defined so that, for all $\beta < \alpha$, $(M, \vec{c}[\beta+1]) \equiv_{\mathbf{L}} (M, \vec{d}[\beta+1])$. Since in the definition of " $\equiv_{\mathbf{L}}$ ", formulas with finitely many free variables are involved, we can conclude that

$$(M, \vec{c}[\alpha]) \equiv_{\mathbf{L}} (M, \vec{d}[\alpha]) . \tag{6}$$

Look at the variable u_{α} and its sort X. If $u_{\alpha} \in \mathcal{X}$, we let $u_{\alpha} \in \mathcal{Z}$, $c_{\alpha} = a_{u_{\alpha}}$, $d_{\alpha} = b_{u_{\alpha}}$. (5) is now an automatic consequence of (6).

If not all the variables in X (which are u_{β} 's for $\beta < \alpha$) are in \mathbb{Z} , then $u_{\alpha} \notin \mathbb{Z}$, and we are finished with the stage α .

Assume that $u_{\alpha} \notin \mathcal{X}$ and all the variables in X are in \mathcal{Z} . Look at the ordinal $v = v[\alpha]$; write v in the form $v=2 \cdot \mu$ or $v=2 \cdot \mu+1$ as the case may be. Let first $v=2 \cdot \mu$. With $X = K(\langle u_{\beta_{p}} \rangle_{p \in K} | \mathbf{x})$, consider the *M*-sort $MK(\langle c_{\beta_{p}} \rangle_{p \in K} | \mathbf{x}) = MK(\vec{c})$ and its previously fixed enumeration $\langle e_{\xi} \rangle_{\xi < \lambda}$ ($= \langle e_{K}, \vec{c}, \xi \rangle_{\xi < \lambda_{K}, \vec{c}}$). If $\mu \ge \lambda$, then again $u_{\alpha} \notin \mathcal{Z}$. If, however, $\mu < \lambda$, then $u_{\alpha} \in \mathcal{Z}$. Moreover, $c_{\alpha} \det e_{\mu}$.

Let Φ be the $\mathcal{X} \cup \mathcal{Z}_{\alpha}$ -set of all formulas φ with $\operatorname{Var}(\varphi) \subset \mathcal{X} \cup \mathcal{Z}_{\alpha} \cup \{u_{\alpha}\}$ for which $M = \varphi[\vec{c}[\alpha], e_{\mu}/u_{\alpha}]$. I claim that Φ is finitely satisfiable in $(N, \vec{d}[\alpha])$. Let Ψ be a finite subset of Φ . For $\varphi = \bigwedge \Psi$, we have $M = \varphi[\vec{c}[\alpha], e_{\mu}/u]$, hence,

 $M = (\exists u_{\alpha} \varphi) [\vec{c}[\alpha]]$ (note that $\exists u_{\alpha} \varphi$ is well-formed, since for every $z \in Var(\varphi)$, $z \neq u_{\alpha}$, we have $z \in \mathcal{X} \cup \mathcal{Z}_{\alpha}$, hence $Dep(z) \subset \mathcal{X} \cup \mathcal{Z}_{\alpha}$, and $u_{\alpha} \notin Dep(z)$). As a consequence, by (6),

 $N \models (\exists u \varphi) [\vec{d}[\alpha]]$. This means that Ψ is satisfiable in $(N, \vec{d}[\alpha])$ as desired.

Since $\#(\mathcal{X} \cup \mathcal{Z}_{\alpha}) < \kappa$, and *N* is κ , *L*-saturated, Φ is satisfiable in $(N, \vec{d}[\alpha])$, by $d_{\alpha} \in NK(\langle d_{\beta_{p}} \rangle_{p \in K} | \mathbf{K})$, say. The choice of Φ ensures that (5) holds.

In case $v=2 \cdot \mu+1$, we proceed similarly, with the roles of M and N interchanged.

With the construction completed, we put $\mathcal{Z} = \bigcup_{\alpha < \kappa} \mathcal{Z}_{\alpha}$. We let W be the functor $F_{\mathcal{Z}}: \mathbf{K} \to \text{Set}$ associated with the context \mathcal{Z} (see §4). $m: W \to M \upharpoonright \mathbf{K}$, $n: W \to N \upharpoonright \mathbf{K}$ are defined by $m(u_{\alpha}) = c_{\alpha}$, $n(u_{\alpha}) = d_{\alpha}(u_{\alpha} \in \mathcal{Z})$. The definition ensures that $\mathcal{X} \subset \mathcal{Z}$ and $m(x) = a_{x}$, $n(x) = b_{x}(x \in \mathcal{X})$.

Let us see that *m* is very surjective. Let $K \in \mathbf{K}$. W[K] is the set of all tuples $\langle z_p \rangle_{p \in K} | \mathbf{K}$ for which each $z_p \in \mathbf{Z}$, and $X = K(\langle z_p \rangle_{p \in K} | \mathbf{K})$ is a (well-formed) sort; $WK(\langle z_p \rangle_{p \in K} | \mathbf{K})$ is the set of all $z \in \mathbf{Z}$ such that z: X. So, assume that $X = K(\langle z_p \rangle_{p \in K} | \mathbf{K}) = K(\langle u \beta_p \rangle_{p \in K} | \mathbf{K})$ is a sort, and

$$a \in MK(\langle mz_p \rangle_{p \in K} | \mathbf{K}) = MK(\langle c \beta_p \rangle_{p \in K} | \mathbf{K}) = MK(\vec{c})$$

Then $a=e_{K, \vec{c}, \mu}$ for some $\mu < \lambda_{K, \vec{c}}$, and for $\alpha = \alpha_{X, 2 \cdot \mu}$, the construction at stage α puts $u_{\alpha}: X$ into \mathcal{Z} ; that is, $u_{\alpha} \in WK(\langle z_{p} \rangle_{p \in K | \mathbf{K}})$, with $a=c_{\alpha}=mu_{\alpha}$ as desired.

The fact that n is very surjective is seen analogously.

We have that $(W, m, n) : M \leftarrow \mathbf{L} \to N$, since (1") is a consequence of (5) being true for all $\alpha < \kappa$; one has to apply (5) to atomic formulas.

This completes the proof of (4).

Let \boldsymbol{C} be a small Boolean category. By a *model of* \boldsymbol{C} we mean a functor $M: \boldsymbol{C} \rightarrow \text{Set}$ preserving the Boolean structure (that is, M is a coherent functor). We write $M \models \boldsymbol{C}$ to say that M is a model of \boldsymbol{C} . There is a theory $\mathbb{T}_{\mathbf{C}} = (\mathbb{L}_{\mathbf{C}}, \Sigma_{\mathbf{C}})$ in multisorted first-order logic, with $\mathbb{L}_{\mathbf{C}}$ the underlying graph of \mathbf{C} , such that the models of \mathbf{C} are *the same* as the models of $\mathbb{T}_{\mathbf{C}}$ (note that both the models of \mathbf{C} and the models of $\mathbb{T}_{\mathbf{C}}$ are particular diagrams $\mathbb{L}_{\mathbf{C}} \rightarrow \text{Set}$). Moreover, for any subobject $\varphi \in \mathbb{S}_{\mathbf{C}}(A)$, $A \in \mathbf{C}$, there is a (simply defined) $\mathbb{L}_{\mathbf{C}}$ -formula $\underline{\varphi}(x)$ with a single free variable x:A such that for every $M \models \mathbf{C}$ and $a \in M(A)$, $M \models \underline{\varphi}[a]$ ($\iff M \models \underline{\varphi}[a/x]$) iff $a \in M(\varphi)$ ($\subseteq M(A)$). See [MR].

For $\sigma \in S(1_{c})$, a subobject of the terminal object in c, we write $M \models \sigma$ for $M(\sigma) = 1$ in Set. We will call a subobject of 1_{c} a *sentence* in c.

Let $I: \mathbf{L} \to \mathbf{C}$ a \mathbf{C} -valued \mathbf{L} -structure (in particular, $I: \mathbf{L} \to \mathbf{C}$ is a functor from \mathbf{L} as a category). When \mathbf{C} is the Lindenbaum-Tarski category [S] of a theory $S = (\mathbb{L}_{S}, \Sigma_{S})$ in ordinary multisorted logic (see [MR] or [M?]), then such an I is what we should consider an *interpretation* of the DS vocabulary \mathbf{L} in the theory S. An example is obtained by taking $S = (|\mathbf{L}|, \Sigma[\mathbf{L}])$ (for $\Sigma[\mathbf{L}]$, see §1), and for $I: \mathbf{L} \to [S]$ the [S]-structure defined by $I(A) = [a:\mathbf{t}]$ for $A \in \mathbf{L}$ where a:A, and for $f: A \to B$, $I(f) = \langle a \mapsto b: fa=b \rangle: [a:\mathbf{t}] \to [b:\mathbf{t}]$. $I: \mathbf{L} \to [S]$ is the *canonical* interpretation of logic with dependent types in multisorted logic. In this case, for any formula φ of FOLDS over \mathbf{L} , with $\operatorname{Var}(\varphi) \subset \mathcal{X}$, we have $I[\mathcal{X}:\varphi] = m^*[\mathcal{X}:\varphi^*]$; here, $m: I[\mathcal{X}:\varphi] \longrightarrow \{\mathcal{X}\}_{d \in \mathbf{I}} \prod_{x \in \mathcal{X}} K_x$ is the canonical monomorphism, m^* denotes pulling back along m; φ^* was defined in §1.

For a general $I: \mathbf{L} \to \mathbf{C}$, and for an \mathbf{L} -sentence θ , let us write $I(\theta)$ for the sentence $I[\emptyset:\theta]$ of \mathbf{C} . In case $\mathbf{C}=[S]$, $I(\theta)$ also stands for any one of the *S*-equivalent L_S -sentences which are the representatives of the \mathbf{C} -subobject $I(\theta)$.

When $M \models C$, the composite $MI: L \rightarrow Set$ is an *L*-structure. We also write $M \upharpoonright L$ for MI; $M \upharpoonright L$ is the *L*-reduct of *M* (via *I*).

Let **C** and **D** be small Boolean categories, $I: \mathbf{L} \to \mathbf{C}$ and $J: \mathbf{L} \to \mathbf{D}$. Notational conventions introduced above for $I: \mathbf{L} \to \mathbf{C}$ are valid for $J: \mathbf{L} \to \mathbf{D}$, *mutatis mutandis*.

(7)(a) Assume that σ is a sentence of C, τ a sentence of D, and for all $M \models C$, $N \models D$,

$$M \models \sigma \& M \upharpoonright \mathbf{L} \sim_{\mathbf{T}} N \upharpoonright \mathbf{L} \implies N \models \tau .$$

Then there is an **L**-sentence θ in logic with dependent sorts without equality such that for all $M \models C$, $N \models D$, we have

$$M \models \sigma \implies M \upharpoonright \mathbf{L} \models \theta \qquad \text{and} \qquad N \upharpoonright \mathbf{L} \models \theta \implies N \models \tau .$$

For a more general formulation, consider a finite **L**-context \mathcal{X} , and the object $\mathcal{I}[\mathcal{X}] \in \mathbf{C}$. $\mathcal{I}[\mathcal{X}]$ is defined as a finite limit in \mathbf{C} ; see the end of §1; let $\pi_{[X]} : \mathcal{I}[\mathcal{X}] \to \mathcal{I}(\mathbb{K}_X)$ be the limit projections ($x \in \mathcal{X}$). Given any $M \models \mathbf{C}$, we have similar projections $\rho_{[X]} : (M \upharpoonright \mathbf{L}) [\mathcal{X}] \to M \mathcal{I}(\mathbb{K}_X)$ in Set, and a canonical isomorphism $\mu : (M \upharpoonright \mathbf{L}) [\mathcal{X}] \stackrel{\cong}{\longrightarrow} M(\mathcal{I}[\mathcal{X}])$ making each diagram

$$(M^{\uparrow}L) [\mathcal{X}] \xrightarrow{\mu} M(\mathcal{I}[\mathcal{X}]) \xrightarrow{\cong} M(\mathcal{I}[\mathcal{$$

commute. If $\vec{a} = \langle a_X \rangle_{X \in \mathcal{X}} \in (M \upharpoonright \mathcal{L}) [\mathcal{X}]$, we write $\langle \vec{a} \rangle$ for $\mu(\vec{a}) \in M(\mathcal{I}[\mathcal{X}])$. Once again, similar conventions apply in the context of $J: \mathcal{L} \to \mathcal{D}$.

(7)(b) Assume that \mathcal{X} is a finite \mathbf{L} -context, $\sigma \in S_{\mathbf{C}}(\mathcal{I}[\mathcal{X}])$, $\tau \in S_{\mathbf{D}}(\mathcal{J}[\mathcal{X}])$, and for all $M \models \mathbf{C}$, $N \models \mathbf{D}$, $\vec{a} \in (M \upharpoonright \mathbf{L}) [\mathcal{X}]$, $\vec{b} \in (N \upharpoonright \mathbf{L}) [\mathcal{X}]$,

$$\langle \vec{a} \rangle \in M(\sigma) \& (M \upharpoonright \boldsymbol{L}, \vec{a}) \sim_{\boldsymbol{L}} (N \upharpoonright \boldsymbol{L}, \vec{b}) \implies \langle \vec{b} \rangle \in N(\tau) .$$
 (8)

Then there is an \mathbf{L} -formula θ in logic with dependent sorts without equality with $\operatorname{Var}(\varphi) \subset \mathcal{X}$ such that

$$\sigma \leq_{\mathcal{I}[\mathcal{X}]} \mathcal{I}[\mathcal{X}:\theta] , \qquad \mathcal{J}[\mathcal{X}:\theta] \leq_{\mathcal{J}[\mathcal{X}]} \tau .$$
(8)

Note that (8') may be written equivalently as

for all
$$M \models \mathbf{C}$$
, $N \models \mathbf{D}$, $\vec{a} \in (M \upharpoonright \mathbf{L})$ $[\mathcal{X}]$ and $\vec{b} \in (N \upharpoonright \mathbf{L})$ $[\mathcal{X}]$,
 $\langle \vec{a} \rangle \in M(\sigma) \longrightarrow M \upharpoonright I \models \theta[\vec{a}]$ and $N \upharpoonright J \models \theta[\vec{b}] \longrightarrow \langle \vec{b} \rangle \in N(\tau)$.

Proof. Let us extend the vocabulary $L_{\boldsymbol{C}}$ to $L_{\boldsymbol{C}}(c)$ by adding a single new individual constant c of sort $A_{def} = I[\mathcal{X}]$. For any $\varphi \in S_{\boldsymbol{C}}(A)$, let $\varphi(c)$ denote $\underline{\varphi}(c/x)$, the result of substituting c for x in $\underline{\varphi}(x)$. For an \boldsymbol{L} -formula θ with $\operatorname{Var}(\theta) \subset \mathcal{X}$, let $\theta(c)$ stand for $(I[\mathcal{X}:\theta])(c)$. Similarly, we introduce $d: B_{def} = J[\mathcal{X}]$; for $\psi \in S_{\boldsymbol{D}}(B)$, $\psi(d)$ and for θ as before, $\theta(d)$.

Let Θ be the set of all **L**-formulas θ with $\operatorname{Var}(\theta) \subset \mathcal{X}$ such that $\sigma \leq_A \mathcal{I}[\mathcal{X}:\theta]$. Consider the set $\Sigma_{d \in f} \Sigma_{\mathbf{D}} \cup \{\theta(d) : \theta \in \Theta\}$ of $\mathbb{L}_{\mathbf{D}}(d)$ -sentences. I claim that

$$(L_{\boldsymbol{p}}(d), \Sigma) \models \tau(d) .$$
⁽⁹⁾

Once the claim is proved, by compactness there are finitely many $\theta_i \in \Theta$ (i < n) such that $(L_{\mathbf{D}}(d), \Sigma_{\mathbf{D}} \cup \{\theta_i(d) : i < n\}) \models \tau(d)$, which means, for $\theta = \bigwedge_{i < n} \theta_i \in \Theta$ that $(L_{\mathbf{D}}(d), \Sigma_{\mathbf{D}}) \models \theta(d) \rightarrow \tau(d)$, that is, $(L_{\mathbf{D}}(d), \Sigma_{\mathbf{D}}) \models \forall x : B. (\underline{\theta}(x) \rightarrow \underline{\tau}(x))$, which means $J[\mathcal{X}: \theta] \leq_B \tau$; thus, it is enough to see the claim.

Assume that there is an infinite cardinal $\lambda \ge \# \mathbb{L}_{\mathbf{C}}$ such that $\lambda^+ = 2^{\lambda}$ (see below for the legitimacy of this assumption). Let $\kappa = \lambda^+$. According to the existence theorem for saturated models (see [CK], [MR2]), any $\mathbb{L}_{\mathbf{D}}(d)$ -structure is elementarily equivalent to a κ -saturated structure of cardinality $\leq \kappa$. Therefore, to show (9), take (N, b/d), a κ -saturated model of cardinality $\leq \kappa$ of $(\mathbb{L}_{\mathbf{D}}(d), \Sigma)$, to show $(N, b/d) \models \tau(d)$.

Let Φ be the set of **L**-formulas φ with $\operatorname{Var}(\varphi) \subset \mathcal{X}$ such that $b \in N(\mathcal{I}[\mathcal{X}:\varphi]) \subset NB$; for every **L**-formula φ with $\operatorname{Var}(\varphi) \subset \mathcal{X}$, exactly one of φ , $\neg \varphi$ belongs to Φ . Since (N, b/d) is a model of $(\operatorname{L}_{\mathbf{D}}(d), \Sigma)$, with Σ defined as it is, we have $\Theta \subset \Phi$. I make the subclaim that the theory

$$(L_{\boldsymbol{c}}(C), \Sigma_{\boldsymbol{c}} \cup \{\sigma(C)\} \cup \{\varphi(C): \varphi \in \Phi\})$$
(10)

is consistent. Consider a finite subset $\{\varphi_i : i < n\}$ of Φ . If

 $(L_{\boldsymbol{c}}(C), \Sigma_{\boldsymbol{c}} \cup \{\sigma(C)\} \cup \{\varphi_{i}(C): i < n\})$ were not consistent, then we would have, for $\varphi = \bigwedge_{i < n} \varphi_{i} \in \Phi$, that $\sigma \leq_{A} I[\mathcal{X}: \neg \varphi]$, which would mean that $\neg \varphi \in \Theta \subset \Phi$, contradicting $\varphi \in \Phi$. This shows the subclaim.

Now, let $(\underline{M}, \underline{a}/c)$ be a κ -saturated model of (10) of cardinality $\leq \kappa$. Let $\vec{a} \in (\underline{M} \upharpoonright L) [\mathcal{X}]$ such that $\underline{a} = \langle \vec{a} \rangle$ (see (7')) and $\vec{b} \in (\underline{N} \upharpoonright L) [\mathcal{X}]$ such that $\underline{b} = \langle \vec{b} \rangle$. Then, for any L-formula θ with $\forall ar(\theta) \subset \mathcal{X}$ such that $\underline{M} \upharpoonright L \models \theta[\vec{a}]$, we have $\neg \theta \notin \Phi$, hence $\theta \in \Phi$, hence $N \upharpoonright L \models \theta[\vec{b}]$. This says that $(\underline{M} \upharpoonright L, \vec{a}) \equiv_{L} (\underline{N} \upharpoonright L, \vec{b})$. By (4), $(\underline{M} \upharpoonright L, \vec{a}) \sim_{L} (\underline{N} \upharpoonright L, \vec{b})$, and by the (8), the assumption of the proposition, $\langle \vec{b} \rangle \in N(\tau)$, that is, $\underline{N} \models \underline{\tau}[\langle \vec{b} \rangle / x]$, that is, $(\underline{N}, \underline{b}/d) \models \tau(d)$ as promised.

The set-theoretic assumption used in the proof is redundant, by a general absoluteness theorem (arithmetic statements are absolute with respect to the constructible universe, in which the Generalized Continuum Hypothesis (GCH) holds; see [J]). On the other hand, one may use "special" models in place of saturated ones, and avoid the use of GCH; see [CK], [MR2].

(11)(a) Assume that *S* is a theory in multisorted logic, and $I: \mathbf{L} \to [S]$ is an interpretation of the DSV **L** in *S*. Suppose that the class Mod(S) of models of *S* is invariant under **L**-equivalence in the sense that for any L_S -structures *M* and *N*, $M \in Mod(S)$ and $M \upharpoonright \mathbf{L} \sim_{\mathbf{L}} N \upharpoonright \mathbf{L}$ imply that $N \in Mod(S)$. Then *S* is **L**-axiomatizable; that is, for a set Θ of **L**-sentences, $Con_{L_S}(\{I(\theta): \theta \in \Theta\}) = Con_{L_S}(\Sigma_S)$; here, $Con_L(\Phi)$ is the set of *L*-sentences that are consequences of the theory (L, Φ) .

Note that the conclusion can also be expressed by saying that for any L_S -structure M, $M \models \Sigma_S$ iff $M \upharpoonright \mathbf{L} \models \Theta$.

(11)(b) More generally, assume, in addition to S and $I: \mathbf{L} \to [S]$, a theory T in a language extending that of $S(L_S \subset L_T)$ such that

for any $M, N \in Mod(T), M \upharpoonright _{S} \in Mod(S)$ and $M \upharpoonright _{T} \sim _{T} N \upharpoonright _{I}$ imply that

 $N \mid L_{S} \in Mod(S)$.

Then, there is a set Θ of **L**-sentences such that, for any $M \models T$, $M \models \Sigma_{S}$ iff $M \upharpoonright L \models \Theta$.

(11)(a) is the special case when $T = (L_S, \emptyset)$.

Proof of (11)(b). For any $\tau \in \Sigma_{G}$, $M \models T$ and $N \models T$, we have

$$M\models \Sigma_{S} \& M \upharpoonright \mathbf{L} \sim_{\mathbf{L}} N \upharpoonright \mathbf{L} \implies N\models \tau \; .$$

By appropriately coding the condition $M \upharpoonright \mathbf{L} \sim \mathbf{L} N \upharpoonright \mathbf{L}$ in first order logic with suitable additional primitives, and by applying compactness, we can find $\sigma[\tau]$, a finite conjunction of elements of Σ_{σ} , such that for any $M \models T$ and $N \models T$,

$$M\models\sigma[\tau] \& M\upharpoonright \mathbf{L}_{\mathbf{L}} N\upharpoonright \mathbf{L} \implies N\models\tau.$$

Then by (7)(a), applied to $\mathbf{C}=\mathbf{D}=[T]$, and $I=J:\mathbf{L}\xrightarrow{I}[S]\xrightarrow{\text{incl}}[T]$, we can find $\theta[\tau]$, an \mathbf{L} -sentence, such that $T\models\sigma[\tau]\longrightarrow I(\theta[\tau])$, $T\models I(\theta[\tau])\longrightarrow \tau$. Clearly, $\Theta=\{\theta[\tau]:\tau\in\Sigma_S\}$ is then appropriate for the assertion.

We leave it to the reader to formulate a version of (11) with formulas in a given context \mathcal{X} instead of sentences.

The following, which is a special case of (7)(b), says that a first-order property invariant under L-equivalence is expressible in logic with dependent types over L.

(12) Let $I: \mathbf{L} \to \mathbf{C}$ be as before. Assume that \mathcal{X} is a finite \mathbf{L} -context, $\sigma \in S(I[\mathcal{X}])$, and for all $M, N \models \mathbf{C}$ and $\vec{a} \in (M \upharpoonright \mathbf{L}) [\mathcal{X}]$, $\vec{b} \in (N \upharpoonright \mathbf{L}) [\mathcal{X}]$,

$$\langle \vec{a} \rangle \in M(\sigma)$$
 & $(M \upharpoonright L, \vec{a}) \sim_{L} (N \upharpoonright L, \vec{b}) \implies \langle \vec{b} \rangle \in N(\sigma)$

Then there is an **L**-formula θ in logic with dependent sorts without equality with $\operatorname{Var}(\theta) \subset \mathcal{X}$ such that $\sigma = \operatorname{T}[\mathcal{X}] \mathbb{I}[\mathcal{X}:\theta]$.

The notion of *L*-equivalence as defined is relevant to FOLDS without equality. However, frequently we deal with FOLDS with restricted equality. As explained in §1, when *M* is an *L*-structure, it can be considered as an L^{eq} -structure, with the additional relations E_K interpreted as true equality; let us write *M* for the resulting "standard" L^{eq} -structure as well. What does it mean to have an equivalence $(W, m, n) : M \xleftarrow{} N$ for *L*-structures *M*, *N*? Clearly, this is to say that $(W, m, n) : M \xleftarrow{} N$ and, for any maximal kind *K*, and $\vec{c} \in W[K]$, $c_1, c_2 \in WK(m\vec{c})$, we have that $mc_1 = mc_2$ iff $nc_1 = nc_2$. Let us write $(W, m, n) : M \xleftarrow{} N$ for $(W, m, n) : M \xleftarrow{} N$, and let us call such (W, m, n) an *L*, \approx -equivalence; also, write $M \approx_L N$ for $M \sim_{L^{eq}} N$; note that throughout, *M* and *N* are *L*-structures.

Let us define $M \equiv {}_{\boldsymbol{L}} = N$ as we did $M \equiv {}_{\boldsymbol{L}} N$ above, except that we refer to logic with equality. Then, using the translation $\varphi \mapsto \hat{\varphi}$ mentioned in §1, we obviously have $M \equiv {}_{\boldsymbol{L}} = N \iff {}_{\boldsymbol{L}} = M$. $M \equiv {}_{\boldsymbol{L}} e^{eq} N$. Thus, by (2)(a) we have

(13) For *L*-structures *M* and *N*, $M \approx_{\boldsymbol{L}} N \implies M \equiv_{\boldsymbol{L}}^{=} N$.

 L,\approx -equivalences can be "normalized" in a certain way, which will be useful for us later.

Let $U, V \in \text{Set}^{K}$. A very surjective morphism $f: U \to V$ is *normal* if for any maximal kind K, and any $\vec{a} \in U[K]$, "f is 1-1 in the fiber over \vec{a} ", that is, if $b, c \in UK(\vec{a})$, then f(b) = f(c) implies b = c. Together with the very surjective condition, this says that f induces a bijection $UK(\vec{a}) \xrightarrow{\cong} VK(f\vec{a})$.

Let M, N be **L**-structures. A normal \mathbf{L},\approx -equivalence $(W, m, n): M \xleftarrow{\approx} \mathbf{L} \otimes \mathbb{R}$ is an \mathbf{L},\approx -equivalence in which both m and n are normal. We have the fact

(14) For any **L**-structures M, N, if $M \approx_{\mathbf{L}} N$, then there is a normal \mathbf{L}, \approx -equivalence

$$(W, m, n) : M \xleftarrow{\approx} N$$

The argument is as follows. Start with any \mathbf{L},\approx -equivalence $(W, m, n): M \stackrel{\approx}{\leftarrow} N$. Define $W' \in \operatorname{Set}^{\mathbf{K}}$ by setting W' K = WK for all $K \in \mathbf{K}$ except the maximal ones; for a maximal K, $W' K_{\operatorname{def}} = WK/\sim$, where \sim is the equivalence relation on WK for which $b\sim c$ iff b and c are over the same $\vec{a} \in W[K]$, and m(b) = m(c). When in this definition, we replace m by n, the result is the same; this is because (W, m, n) being an \mathbf{L},\approx -equivalence, m(b) = m(c) iff n(b) = n(c) for b, c over the same element in W[K]. For an arrow $p: K \to K_p$, W'(p) = W(p) when K is not maximal (in which case K_p is not maximal either); and for K maximal, $(W'p)(b/\sim) = (Wp)(b)$; the latter is well-defined, since by the definition of \sim , if $b\sim c$, then (Wp)(b) = (Wp)(c). Clearly, $W': \mathbf{K} \to \operatorname{Set}$ is well-defined, and we have obvious maps $p: W \to W'$, $m': W' \to M \upharpoonright \mathbf{K}$, $n': W' \to N \upharpoonright \mathbf{K}$ such that

I claim that $(W', m', n') : M \xleftarrow{\approx} IN$; the normality condition is clearly satisfied. Consider a relation *R* in **L**. In the commutative diagram

the outside rectangle and the right-hand square are pullbacks. It follows that the left-hand square is a pullback too. Obviously, $p_{[R]}$ is surjective. It follows that q is surjective. This determines the subobject $(m'^*M) R \rightarrow W'[R]$ as the image of $(m^*M) R \rightarrow W[R]$ under $p_{[R]}$. Switching to N from M, $(n'^*N) R \rightarrow W'[R]$ is the image of $(n^*N) R \rightarrow W[R]$

under $p_{[R]}$. Since $(m^*M) R =_{W[R]} (n^*N) R$, it follows that $(m'^*M) R =_{W'[R]} (n'^*N) R$ as desired. The additional condition concerning equality is clearly satisfied.

Notice that the above proof works for an essentially arbitrary c in place of Set.

Note that if $m: W \to M \upharpoonright K$ is normal, then m^*M formed from M as a standard L^{eq} -structure is a standard L^{eq} -structure too. Put in another way, the standard fiberwise equality relations on the maximal kinds in m^*M are formed by the same pullback operation from the corresponding relation on M as any primitive L-relation.

We have the following variant of (12).

(15) Let \mathbf{C} be a small Boolean category, $I: \mathbf{L} \to \mathbf{C}$. Assume that \mathcal{X} is a finite \mathbf{L} -context, $\sigma \in S(I[\mathcal{X}])$, and for all $M, N \models \mathbf{C}$ and $\vec{a} \in (M \upharpoonright \mathbf{L})[\mathcal{X}]$, $\vec{b} \in (N \upharpoonright \mathbf{L})[\mathcal{X}]$,

$$\langle \vec{a} \rangle \in M(\sigma)$$
 & $(M \upharpoonright \mathbf{L}, \vec{a}) \approx_{\mathbf{T}} (N \upharpoonright \mathbf{L}, \vec{b}) \implies \langle \vec{b} \rangle \in N(\sigma)$

Then there is an **L**-formula θ in logic with dependent sorts with equality with $\operatorname{Var}(\theta) \subset \mathcal{X}$ such that $\sigma = \prod_{\mathcal{X}} \mathcal{I}[\mathcal{X}:\theta]$.

Proof. By definition, for each maximal K, $I[\mathbf{E}_K] = I(K) \times_{I[K]} I(K)$. Let us form $I^{eq}: \mathbf{L}^{eq} \longrightarrow \mathbf{C}$ extending $I: \mathbf{L} \rightarrow \mathbf{C}$ by specifying that, $I^{eq}(\mathbf{E}_K) = I[\mathbf{E}_K]$, with $I^{eq}(\mathbf{e}_{K0}) = I^{eq}(\mathbf{e}_{K1}) = 1_{I[\mathbf{E}_K]}$. We apply (12) to $I^{eq}: \mathbf{L}^{eq} \rightarrow \mathbf{C}$. For $M \models \mathbf{C}$, $M \upharpoonright \mathbf{L}^{eq} = M \circ I^{eq}$ is, clearly, the same as $M \upharpoonright \mathbf{L}$ as a standard \mathbf{L}^{eq} -structure. Thus,

$$(M \upharpoonright \boldsymbol{L}^{eq}, \vec{a}) \sim (M \upharpoonright \boldsymbol{L}^{eq}, \vec{b}) \iff (M \upharpoonright \boldsymbol{L}, \vec{a}) \approx_{\boldsymbol{L}} (M \upharpoonright \boldsymbol{L}, \vec{b})$$

Thus, from the hypothesis of (15), that of (12) follows. By (12), we have some θ in FOLDS without equality over \mathbf{L}^{eq} such that $\sigma =_{\mathcal{I}[\mathcal{X}]} \mathcal{I}^{eq}[\mathcal{X}:\theta]$; but clearly, for θ' in FOLDS with equality over \mathbf{L} such that $\hat{\theta}' = \theta$, we have $\mathcal{I}[\mathcal{X}:\theta'] = \mathcal{I}^{eq}[\mathcal{X}:\theta]$; thus $\sigma =_{\mathcal{I}[\mathcal{X}]} \mathcal{I}[\mathcal{X}:\theta']$ as required.