
§§§4. The syntax of first–order logic with dependent sorts as a fibration

Let L be a DSV; let K be the full subcategory of the kinds. Consider the category B=BK
which is the free finite-limit completion of K : i:K��B , and for any category S with finite

*limits, i :Lex(B,S)���Fun(K,S) is an equivalence of categories ( Lex(B,S) is the

Kcategory of left exact functors B��S , Fun(K,S) = S the category of all functors K��S ,

*i is defined as composition with i ).

K opIt is well-known that for any (small) category K , B can be given as (Fp(Set ))K
( Fp(M) is the full subcategory of finitely presentable objects of M ), with i:K⊂B the

K opfunctor i:K��(Fp(Set )) induced by Yoneda. (The small-colimit completion of A is

op op(A ) (A )Y:A��Set ; the finite-colimit completion of A is Y:A��Fp(Set ) ;

opop op (A ) optherefore, the finite limit completion of A is Y:A ��(Fp(Set )) ).

KNow, for any simple category K , Fp(Set ) is the category of finite functors K��Set ; a

functor F:K��Set is finite if El(F)={(K, a): K∈Ob(K), a∈FK} is a finite set.

Namely, each finite functor is finitely presentable, the finite functors are closed under finite

Kcolimits in Set , and every functor is the filtered colimit of the collection of its finite

subfunctors (the latter uses that K has finite fan-out); this suffices.

KThus, B can be taken to be the opposite of the category Fin(Set ) of finite functors

K��Set ; the canonical functor i:K��B is (induced by) Yoneda.

Let Con[K] be the category whose objects are the contexts (of variables over K ), and

whose arrows are the specializations. I claim that

KCon[K] � Fin(Set ) .

Let F:K���Set be a finite functor. I define a mapping
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F(K, a) ���� y : El(F)����VARK, a

into the class VAR of variables as follows:

F Fy = 〈2,Y , a 〉K, a def K, a

where

F FY = K( 〈y 〉 ) .K, a K , (Fp)(a) p∈K�Kp

FThis is a legitimate definition by recursion on the level of K . Y is a type; this requiresK, a
that

F FK ( 〈y 〉 ) = Y ,p K , (F(qp))(a) q∈K �K K , (Fp)(a)qp p p

Fwhich is true since (F(qp))(a) = (Fq)((Fp)(a)) . Hence, y is a variable.K, a

FWe let � = {y : (K, a)∈El(F)} . It is immediate that � is a context. We have aF def K, a F
bijection

F ≅(K, a)���y : El(F)���� .K, a F

If h:F���G is a natural transformation, we let s=s :� ��� be defined byh F G
F G F Gs(y )=y . s is a specialization: this requires that Y �s = Y ,K, a K, h (a) K, a K, h (a)K K

which is the same as h ((Fp)(a)) = (Gp)(h a) ( p:K��K ) , which holds by theK K pp
naturality of h . It is immediate that we have a bijection

≅h ��� s : Nat(F, G)�����Spec(� , � ) .h F G

h kAlso, if F���G���H , then s = s �s , and s =1 .kh k h 1 �F F
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Thus far, we have seen that we have the full and faithful functor

F �F K�h ���� s : Fin(Set )����Con[K] (1)
� h�
G �G

Now, given a context � , define F=F :K��Set by FK = {z∈�: K =K} , and� z
Fp:FK��FK by (Fp)(z)=x ; F is a finite functor. Moreover, we have the mapp z, p

Fs : z ��� y : ����� ;K , z Fz

s is a specialization since

F Fz : K ( 〈x 〉 ) , y : K { 〈y 〉 ,z z, p p∈K�K K , z z K , (Fp)(z) p∈K �Kz p z

F Fand s(x ) = y = y , by the definition of F .z, p K , x K , (Fp)(z)z z, p p

It is clear that s is a bijection, i.e., an isomorphism in Con[K] .

We have verified that (1) is an equivalence of categories, thus our claim.

It is easy to see that the image of (1) consists of those contexts � for which

z∈� �� (K , a(z)) is a 1-1 function.z

KIt is clear that although the categories Fin(Set ) , Con[K] are large, they are essentially

small.

Thus, B , the free finite-limit completion of K , can be taken to be the opposite of the

category Con[K] of contexts with specializations as arrows. To describe the canonical

embedding i:K��B under the latest construal of the completion B , let us define, for any

K∈K , the context

K� = {x :p∈K�K} (2)K def p
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Kfor which X = X = K( 〈x 〉 ) is a sort, and a(X)= 〈p 〉 . In theK def p p∈K�K p∈K�K
Kdefinition of � , the only essential points are that K( 〈x 〉 ) is a sort, and that theK p p∈K�K

Kmapping p��x is 1-1. X is "the most general sort" of the kind K ; every other such sortp K
is of the form X �s for some specialization s with domain � . Further, letK K

* ⋅� = � ∪ {x } ,K def K K

where x :X , and, for the sake of definiteness, x is taken to be the specific variable forK K K
which a(x )=1 . Note that under the equivalence F��� between finite functors andK K F

*contexts, � is the context that corresponds to the representable functor K(K, -):K��Set .K

opWhen a context � is considered an object of B = (Con[K]) , it is written as [�] .

Arrows s:���� of Con[K] correspond to arrows [s]:[�]��[�] .

The canonical embedding i:K��B (having the universal property of the finite limit

*completion) has i(K) = [� ] .K

The morphism p:K��K is taken by i to the arrowp

* *[s ]:[� ]���[� ]p K Kp

for the specialization

K* * p s K s Ks :� ��� : x ��� x (q:K ��K ) , x ��� x . (3)p K K q qp p q K pp p

Note that in the category B , the object [� ] is the same as i[K] for the " B-valuedK
Φ iK-structure i:K��B ", that is, the limit of the composite K�(K-{K})���K���B .

We single out four classes of arrows in Con[K] , � ⊂� ⊂� ⊂� . � consists of the0 1 2 3 0
*inclusion-arrows incl:� ��� , where K ranges over the kinds. � consists of theK K 1

⋅inclusion-arrows of the form incl:����∪{x} , where � is any (finite) context, and
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⋅
�∪{x} is also a context (for this, it is necessary and sufficient that x∉� and Dep(x)⊂� ).

� is the class of all 1-1 arrows i:���� where card(�)=card(�)+1 . Finally, � is2 3
the class of all 1-1 arrows ���� .

⋅ ⋅Every time s:���� is a specialization, and t:�∪{y}���∪{x} extends s , with

t(y)=x , we have the pushout diagram

incl ⋅
������������∪{y}
� �s� �t (4)� �
� � ⋅
������������∪{x}incl

in Con[K] . All arrows in � are pushouts of ones in � . To see this, for a given1 0
incl ⋅ incl * incl ⋅

��������∪{x} , apply (4) to � ������� as ��������∪{y} , and s:� ���K K Kx x x
Kxgiven by s(x ) = x .p x, p

It is clear that � is the closure of � under isomorphisms (meaning that q:A��B∈� iff2 1 2
there is q’:A’��B’∈� with some commutative1

qA������B
� �≅� � �≅
� �
A’�����B’ ).q’

(4) shows that any arrow q:A��B in � has a pushout along any a:A��A’ that is again1
in � . Thus, � is closed under pushout, and in fact it is the closure of � under pushout.1 2 0

� is the closure of � under composition. Indeed, given any inclusion i:���� , there is a3 2
finite sequence �=� ⊂� ⊂...⊂� ⊂� =� of contexts0 1 n-1 n

nsuch that card(� )=card(� )+1 ; enumerate �-� as 〈y 〉 such that the level ofi+1 i i 1
K is non-increasing, and put � =�∪{x , ...x } . This shows that every inclusiony i 1 ii
i:���� is the composite of arrows in � ; since every 1-1 arrow is isomorphic to an1
inclusion, the assertion follows.
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Without talking about syntax, [� ] = {[q]: q∈� } may be described as the class of0 0
K oparrows of the form q:iK��[K] , where K∈K , i:K��B=(Fin(Set )) is induced by

Φ iYoneda, and [K] is the limit of the composite K�(K-{1 })���K���B . [� ] is theK 2
closure of [� ] under pullback. [� ] is the class of all epimorphisms; also, it is the0 3
closure of [� ] under composition.2

≠For the purposes for logic without equality, we let the class � of arrows in B be either

[� ] ( = {[q]:q∈� } or [� ] ; both [� ] and [� ] are closed under pullback, and2 2 3 2 3
the second class is the closure of the first under composition. (According the remarks at the

end of the last section, the two possible choices are essentially equivalent).

= ≠Corresponding to logic with equality, we have � , which is obtained by adding to � all

⋅ ⋅isomorphic copies of arrows of the form [p] for p of the form p:�∪{x, y}���∪{x}

such that x and y are distinct variables of the same type, their kind is a maximal one, and

p is defined so that p�� is the identity and p(x)=p(y)=x . Categorically, if we put

⋅A=[�] , B=[�∪{x}] , and q:B��A , q=[incl] , we have [p]=δ=B��B× B , theA
diagonal.

⋅If s:�∪{x, y}���� , then for x’=s(x) , y’=s(y) and �’=�-{x’, y’} , �’ is a

context, since no variable z can have x’∈Dep(z) or y’∈Dep(z) , by the maximality

⋅assumption on the kind of x and y ; � = �’∪{x’, y’} . We have a pushout

⋅ p ⋅
�∪{x, y}��������∪{x}

� �s� �t� �
� �

⋅ ⋅
�’∪{x’, y’}������’∪{x’}p’

=with the evident p’ and t . It follows that all pullbacks of the additional arrows in � are

=again of the same form, thus � is closed under pullback. Also, all the additional arrows in

=
� are pullbacks of the specific ones [p ] where K is a maximal kind,K

⋅ ⋅ ⋅ *p :� ∪{x , y}���� ∪{x } ; here, � ∪{x }=� defined above, etc.K K K K K K K K

52



Suppose T=(L, Σ) is a theory; there are six possibilities for the logic: coherent,

intuitionistic, or classical, each with or without equality. We define a fibration

E
� = [T] = �� , with a set �=� of distinguished (quantifiable) arrows in B . B has been�B

≠ =given in the foregoing; we use � when we exclude equality, � otherwise, as � .

A formula-in-a-context is an ordered pair (�, ϕ) , written as [�:ϕ] , such that � is a

context, and ϕ is a formula with Var(ϕ)⊂� . With a given � , [�:ϕ] is called a

formula-over � .

E [�]To define �� , for [�]∈B , the fiber � is given as the set of equivalence classes
B

[�:ϕ]/� of formulas-over � under the equivalence relation�

[�:ϕ] � [�:ψ] ���� T � ϕ���ψ and T � ψ���ϕ� � �

(the range of the formulas ϕ , ψ , and the deducibility relation � is understood according to

[�]the logic in question). In what follows, we will write [�:ϕ] for [�:ϕ]/� . � is�
partially ordered by

[�:ϕ] ≤ [�:ψ] ���� T � ϕ���ψ ;� �

by the rules (Taut) and (Cut) this is well-defined and it is a partial order. Finally, for

*s:���� in Con[K] , that is, [s]:[�]���[�] , [s] ([�:ϕ]) = [�:ϕ�s] . Bydef
* � �the rule (Subst) , [s] :� ���� is a map of posets.

XSince (ϕ�s)�t = ϕ�ts , and ϕ�id = ϕ , we have a (pseudo)functor ���� ,

[s] *([�]�����[�]) �� [s] ; thus, we have a fibration. The rules for connectives (not

counting the last two) make sure that each fiber has the necessary (propositional) structure,

where each operation is given by the corresponding syntactic operation on formulas; e.g.,

[�:ϕ] 	 [�:ψ] = [�:ϕ	ψ] .[�]

⋅ ⋅For [i]:[�∪{x}]����[�] ( i:������∪{x} the inclusion) in [� ] and1
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⋅⋅ [�∪{x}] ⋅ [�][�∪{x}:ϕ]∈� , we have ∃ ([�∪{x}:ϕ]) = [�:∃xϕ] ∈� , and[i]
similarly for ∀ in place of ∃ . This follows from the rules (∃) and (∀) . As we pointed out

⋅in Section 2 , if Var(ϕ)⊂�∪{x} , then ∀xϕ , ∃xϕ are well-formed. Since every arrow q

in [� ] is an isomorphic copy of a composite of arrows in [� ] , the operation ∃ , or3 1 q
∀ , will be well-defined, and can be expressed in terms of ∃ , or ∀ , for r∈[� ] .q r r 1

In the case of logic with equality, we have, for

⋅ [p] ⋅δ:[�∪{x}]�����[�∪{x, y}] ,

= ⋅an additional arrow in � , ∃ (t ⋅ ) = [�∪{x, y}:x= y] , and more generally,δ [�∪{x}] �
⋅ ⋅∃ ([�∪{x}:ϕ]) = [�∪{x, y}: x= y � ϕ] . This is F. W. Lawvere's observation on[δ] �

the definition of equality in hyperdoctrines [L2]. The claimed equality can be deduced by

using the rules of equality. We also have that

⋅ ⋅∀ ([�∪{x}:ϕ]) = [�∪{x, y}: x= y���ϕ] .[δ] �

The fact that substitution is compatible with the logical operations gives that for any

* � �specialization s:���� , [s] :� ���� preserves the (propositional) structure, and that

the Beck-Chevalley conditions are fulfilled. We obtain a ��∃-fibration, a ����∃∀-fibration

and a ��¬∃-fibration in the respective cases of coherent logic, intuitionistic logic and

classical logic; the presence of the rules (��) , (�∃) ensures this in the coherent case, and

that of (¬) in the classical case.

The construction [T] has the universal property of the fibration of the appropriate kind that

is freely generated by T . In what follows, we describe this universal property in a somewhat

incomplete way, namely, for "target" fibrations of the form �(C) , rather than arbitrary

(suitably structured) fibrations.

For a relation R∈Rel(L) , we make a definition of the context � analogously to � inR K
R � R(2) : � = {x :p∈R�L} such that R = R( 〈x 〉 ) is a well-formed atomicR def p def p p∈R�L

�formula, and α(X)= 〈p 〉 . R is the "most general" atomic formula using the relationp∈R�L
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R . Moreover, for p∈R�L , we let

K* * p R Rs :� ��� : x ��� x (q:K ��K ) , x ��� x .p K R q qp p q K pp p

Changing the meaning of the symbol Mod (�) , let us use the notation now in the variable�
sense of either of ��∃(�,�) , ����∃∀(�,�) , ��¬∃(�,�) as the context requires it,

according to which logic we are dealing with. In what follows, C is a category having enough

structure for the logic at hand: it is a coherent, a Heyting or a Boolean category in the three

respective cases.

We have a "forgetful" functor

-( ) : Mod ([T])���Mod (T) (5)�(C) C

-defined as follows. Given P=(P , P )∈Mod ([T]) , we define P :L��C ,1 2 �(C)
- - * -P ∈Mod (T) , by P (K) = P ([� ]) ; for p:K��K , P (p)=P ([s ]) (see (3))C 1 K p 1 p

-(more briefly, P �K=P �i , for the canonical embedding i:K��B ); for R∈Rel(L) ,1
- �P (R) the domain of a monomorphism m representing the subobject P ([� :R]) of2 R

-P ([� ]) ; and for p:R��K , P (p) = P ([s ])�m .1 R p 1 p

-For h:P��Q in Mod ([T]) (that is, h:P ��Q with properties), h = h�i ; it is�(C) 1 1
- - -easy to see that h is an arrow P ��Q .

In the case of coherent logic, the functor (5) is full and faithful, and in the case of intuitionistic

and classical logics,

- iso iso( ) : Mod ([T])���Mod (T) , (6)�(C) C

with both categories restricted to have only isomorphisms as arrows (thus, they are groupoids),

is full and faithful. The faithfulness is obvious; the fullness requires an easy proof by induction

on the complexity of formulas.
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In fact, in the case of coherent logic, (5), and in the other two cases, (6), is an equivalence of

categories. Indeed, if M:L��C is a model of T , we define

[M] : [T] ���� �(C)

by [M] ([�]) = M[�] , [M] ([�:ϕ]) = M[�:ϕ] . The fact that M is a model ensures1 2
that [M] is well-defined (on equivalence classes); the rules of the logic, built into the

definition of [T] , ensure that [M] is a morphism of fibrations with the appropriate

-preservation properties. Finally, we have j :[M] �K ≅ M�K whose components areM
*canonical isomorphisms M([� ])≅M(K) , and j is in fact an isomorphismK M

-j :[M] ≅ M .M

The completeness theorem

T � ε ��� T � εSet

for coherent logic with dependent sorts, with or without equality, is now an immediate

consequence of 3.(5). Indeed,

T � ϕ ���ψ ���� [�:ϕ] ≤ [�:ψ] in [T]
�

�

by the construction of [T] ;

���� for all P:[T]���(Set) , P[�:ϕ] ≤ P[�:ψ]

by 3.(5) ;

���� for all M�T , M� ϕ ���ψ
�

by the above description of the equivalence Mod (T) � Mod ([T]) ,C �(�)
���� T � ϕ ���ψSet

�

by definition.

3.(6) gives a proof of the completeness theorem for intuitionistic logic. 3.(6) says that there is

a category K , namely Mod(T) , such that T has a conservative Heyting morphism into

KSet ; changing here K into a small category, and then into a poset is an easy matter; see

[MR2], [M3].
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As it is well-known, completeness for classical logic follows from that for coherent logic

directly.

In summary, it is worth emphasizing that the study of first-order logic with dependent sorts

E
without equality is the same as the study of "quantificational" fibrations (��, �) where the

B
K opbase category is B=((Set ) ) for a simple category K , with � being the class offin

all epimorphisms in B . This is a remarkably simple algebraic description of the objects of our

interest, even though it is not one that is conjured up immediately by the idea of "first-order

logic with dependent sorts".
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