§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced

here do not appear in loc.cit., but most of the needed ingredients do.

E
E C
Let C| =CJ| be a fibration; let @ be a class of arrows in B . Assume:
B B
C

B has a terminal object, and pullbacks ( B is left exact) .

@ is closed under pullbacks: when

T ] T (1)

is a pullback, then ge@ implies g’€g .

Each fiber C’A ( AeB) is a poset; in fact, it is a lattice (with top and bottom elements,

denoted t A £ the meet and join operations are written as A or more simply as

A b
A, v if no confusion may arise).

A’ Va>
* B A .. A B .

For each (g:A—>B)e@, g :C~——>C" has a left adjoint EIq:C’ ——C~ , which
satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which

satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same

as a functor

*
B°® S poset : ALB > C'BLC‘A

to the category Poset of posets and order-preserving maps. )

The data C, @ as described make the pair (C, &) a av3-fibration. We may denote

(C, @) by C; we may write QC’ for @ . Dropping the references to £ 2 and v 2 results in
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the notion of Ad-fibration.

A morphism M:C-—>D of av3-fibrations is a morphism of fibrations (among others,
M= (M, M), My :Bp—>By, M,:Ex—>Ep, L o | ;in practice, we omit the
B,——B
C C

subscripts 1 and 2 , and write M(A) for M1 (A) , etc.) that takes QC—arrows to
QD—arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each
Elq( qEQC ). M is conservative with respect to a pair (X, Y) of predicates over the same
base-object A if MX< MY implies X<,Y; M is conservative if it is conservative for all

A
such (X, v) .

The Av3-fibrations and their morphisms form a category Av3 . In fact, we can make Av3
into a 2-category, by making Av3 (C,7D) into a category; the latter is a full subcategory of
[C, D1 (see p. 348 in [M3]). An arrow

M
c Jn.?D

N

is a natural transformation h:M; — Ny satisfying MP < n NP for all Ae Bo, peC? ( for
A

*
the notation X < Y& X<f Y).

<f Y, see p. 349 in [M3]; X<

£

For a category € with pullbacks, P(C) , the fibration of predicates of C, is the fibration C
with base-category € for which C=s (A) , the A-semi-lattice of subobjects of A, and for

f:A>B, £ :s (B) =S (A) is the usual pullback-mapping. To say that P(C) isa
av3-fibration, with @ the class of all arrows in C, is the same as to say that C is a

coherent category (see, e.g., [MR2]).

Consider P(Set) asa av3-fibration, with @ the class of all arrows in Set . A model of
C is a morphism C—>P(Set) . Mod (C) is the category of models of C ;Mod (C) =
Ava (C,P(Set)) . More generally, let us write ModD(C') for Ava(C,D) .

E
Until further notice, fix C = (Cl, @) , asmall av3-fibration. Proposition (5) below is the
B
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completeness theorem for Av3-fibrations, the fact that there are enough models of C to
distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used
for the proof of (5).

Let us write 1 for 1 B’ the terminal object of B; and t for t 1

disjunction property if for any X, Y e C’l, if Xv¥y =t ,theneither X=t,or Y=t .C has

£ for fl.C' has the

the existence property if whenever (! ,:A—1)ed and Xe C? , we have that 3 , (X)) =t

A A

*
implies the existence of some c:1-—>A suchthat ¢ (X) =t.

(1) Suppose C has the disjunction and the existence properties, and that t # £

(consistency). Then Mod (C) has an initial object ; in fact, M= (Ml’ M2) given by

M, =homg(1,-) andfor xeC®, M, (X) = {c:1 54 : ¢ (X)=t) is an initial object.

( M may be called the global-sections model C-—>P(Set) ; wesay c:1->A belongsto X

over A if c*(X) =t .)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the latter does

not include that of the present proposition.

For a fibration C, XeB and Xe C’A , the "slice" fibration C/ (A, X) was described in [M3].
The base-category of C/ (A, X) is B/A; the fiber over (BLA) €B/A is

{ve cB. v< £ ordered as CZ is. We have a canonical morphism

6=6A’ :C—C/ (A, X) thattakes BEB to (BxAa-"'52) ,and veCP to vax af
nYAm X ( Sn’ X; m:BXA——> B is the other projection).

For a av3-fibration C, we define the Av3-fibration D = C/ (A, X) by also putting

£
(B\z/c) € Qﬂﬁ feg.
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2) C/ (A, X) isa av3-fibration, and SA X:C’%C’/ (A, X) is a map of

9

Av3-fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of
[M3] that the forgetful functor B/A— B creates pullbacks; with this, the required instances of

the Beck-Chevalley and Frobenius reciprocity conditions become clear.

@) If (1, ,:A>1)eQ and XeC® suchthat 3, (X) =t ,then &, . is
A ' a A X
) B B ) ) )
conservative. If X vXy= b, and Y, ZzeC~ , then either 6t, X, or 5t, X, is conservative

with respect to (Y, Z) .

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of C/ (4, X) (compare 2.8 in
[M3]), we conclude from (2) and (3) that

(4) For any given AeB, X, Ye C’A , there are a Av3-fibration C* having the

*
disjunction and existence properties, and a map C-—>C of av3-fibrations which is

conservative with respect to (X, Y) .

(5) For any given AeB, X, YEC'A,there is M:C-—>P(Set) , amap of

anv3-fibrations, which is conservative with respect to (X, Y) .

Proof. In C/ (A4, X) , with 1=1 and 6=6 we have the global element

C/ (A, X) A X’

dA:1%5(A) : A—— S AXA

1A\Aﬁ’
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that belongs to 0 (X) ; moreover, d ) belongs to d(Y) over A iff X<Y. Now, start with
X, Y over A in C suchthat X{Y;passto C'=C/ (A, X) ;in C’ ,

tzd;lé (X) £ d:;B (Y)=Y’ . By (4), there is ®:C’ %C* which is conservative with respect
to (t, Y’) suchthat C " has the disjunction and existence properties. By (1), we have the

*
global-sections model N:C —>7P(Set) . The global-sections model is automatically
conservative with respect to any pair (t, Z) over 1 in its domain. We conclude that, for
P=No® : C’ —>P(Set) , P is conservative with respect to (t, Y’ ) , that is,

P(dAS(X)) iP(dA5(Y)) .
It follows that
P(O(X)) £ P(O(Y)) .

For M= Po§ : C—>P(Set) , this means that M(X) £ M(Y) .

A Av— 3V-fibration is a av3-fibration C such that

every fiber C? isa Heyting algebra, and for all f:A-—>B, £:CB5c? isa

homomorphism of Heyting algebra; and

for each qEQC, , q* (also) has a right adjoint which satisfies the Beck-Chevalley

condition with respect to all (relevant) pullback squares.

For a category € with pullbacks, to say that P(C) isa Av— JV-fibration, with @ the
class of all arrows in C, is the same as what we usually express by saying that C is a

Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not
necessarily small) category A , set? isa Heyting category. See e.g. [MR2]. The coherent
structure in Set® (the Av3-fibration structure in P( SetA) ), although not the full

Heyting-structure, is "computed pointwise"; that is, the projections 7 a° P SetA) —P(Set)

( AeA) are morphisms of Av3-fibrations.
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E
Given any small av3-fibration C| , we may form P(Set
B

Mod (C) ) , and we have the

evaluation morphism

ep: C P(seted(C)
}f F— [M—M(X) ]
Al— > [M—M(A) ]

of Av3-fibrations.

Mod (C)

(6) For a small Av— 3V-fibration C, ecs C—7P(set ) 1is a morphism of

Av — 3V-fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows
from (5). We need to show that e ¢ preserves Heyting implications in the fibers, and V f's;

we limit ourselves to the second task. By using the way the V f's are computed in any

P SetA) , our task is as follows.

Assume M:C->Set , a morphism of Av3-fibrations; (f:A->B)egd, XeC‘A, VerC'B
and beM(B) —M(VfX) . We want the existence of NeMod (C) , a homomorphism h:M—>N
and aeN(A)-N(X) such that h,(b) = (Nf) (&) .

Let us use ordinary multisorted first-order logic to talk about models of C and
homomorphisms between them. Consider the language L=L (C) whose sorts are the objects

of B, operation-symbols are the arrows of B, and relation-symbols are all unary, and they

correspond to the predicates peC? ; P is sorted PCA . Itis clear that every MeMod (C)
may be regarded an L-structure; morphisms in Mod (C) are exactly the morphisms of
L-structures. Moreover, there is a (coherent) theory T=T (C) over L such that

Mod (C) = Mod(T) .

For a given L-structure M, homomorphisms h:M-—>N with varying N are in a 1-1
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correspondence with models of Diag’ (M) , the positive diagram of M, which is a set of

atomic sentences in the diagram language L ( |M| ) in which an individual constant a of
sort A has been added to L for each sort and a€M(A) ; the elements Di ag+ (M) are

those atomic sentences that are true in (M, a) . We may also define DiagJr (M) as

ae | M|
Db(M) UDp(M) , Where Db(M) contains all f(g):Bl_J for which f:A—B in B,

aeM(A) , beM(B) and (Mf) (a)=(b) ;and Dp(M) contains all P(a) where A€B,

PEC'A and aeM(P)CM(A) .

Returning to our task, let a be a new individual constant of sort A ; under the assumptions,
we need the satisfiability of the set

TV Dy (1) qu(M) U {=X(a)} v i{b=gf(a)} .

Assume this fails. By compactness, there are finite subsets DCD, (M) , D’ CDp (M) such that

b

TUDUD' F b=pf(a) — X(a)

Let ( c ) i<n be distinct elements of 1M, c,EM(C.) , each distinct from b, such that
every c that occursin DUD’ is one of the c;.or is b.Let z, be distinct variables, z,

of sort C,; va variable of sort B, x one of sort A, all distinct. Let us replace c; by

Z: s b by y; we obtain D from D, D’ from D’, and we get that

TE V(Zi>i<nVyVX( /\ DA /\ D’/\yzBf(X) — X(x)) . (7

Working inside the category B with finite limits, we can construct as an appropriate finite

limit an object C together with morphisms n.,:C>C,, m:C—>B such that for any
L-structure N, NE( /\ D) [ <ci ) i<n?’/ ( z, ) ;<pY] iff thereis ceN(C) with

N(7.) (c) = éi , N(m) (c) = b (actually, ¢ is then uniquely given). In particular, there

is an element ceM(C) such that M(7.) (¢) = c., M(n) (c) = b. For any aeD’ , let

1
Ot* be the element of the fiber over C given as follows: if o :=: P(Zi) , a*défnZ(P) ;
if o:=: P(y), Oé*dgfn'*(P) .Let 0= /\ {OC*: QeD’'} € ¢ . Notice that ceEM(Q) .

Consider the pullback-square
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We claim that

g (o) <a (x). ®)

By (5), it suffices to check that this holds in each model NeMod (C) . Assume
NeMod (C) =Mod (T) , deN(g (0)) , ¢=(Ng)d, a=(Np)d, c,=(Nm,)c,
b= (Nm) ¢ ; we have b= (Nf)a, N=( /\D)[{c;). b/{z;). vl by the defining

property of (C, (ni)i, n) and NE( /\ D) [(éi>i<nb/(zi>i<ny] by the definition
*

of Q. Since N satisfies the sentence in (7), it follows that aeNx, and thus deN (a (X)),
which shows the claim.

Since fe@, also ged . By (8), stgp*(x) = n*vf(x) . However, in M, ceM(Q) ,

*
but cgm V f(X ) , since bgV f(X ) ; this 1s a contradiction.

A Av—3-fibration is a av3-fibration in which every fiber is a Boolean algebra. Every
nv—3-fibration is a Av— 3V-fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced
above, the class @ of "quantifiable" arrows may be required, in addition, to be closed under

composition. If (C, @) is a "quantificational” fibration (of one of the four kinds introduced

above), then, with @° the closure of @ under composition, (C, Q%) is again one of the
same kind as the reader will readily see. Also, any morphism f£: (C, &) —> (C’, @’) of one

of the four kinds is a morphism f£: (C, 9°) > (C’, @' °) of the same kind.
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