§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced here do not appear in loc.cit., but most of the needed ingredients do.

Let $\underset{\boldsymbol{B}}{\mathcal{C}}=\stackrel{{ }^{\mathbf{E}} \mathcal{C}}{\mathcal{C}_{\downarrow}}$ be a fibration; let \mathcal{Q} be a class of arrows in \boldsymbol{B}. Assume:
\boldsymbol{B} has a terminal object, and pullbacks (\boldsymbol{B} is left exact).
\mathcal{Q} is closed under pullbacks: when

is a pullback, then $q \in \mathcal{Q}$ implies $q^{\prime} \in \mathcal{Q}$.
Each fiber $\mathcal{C}^{A}(A \in \boldsymbol{B})$ is a poset; in fact, it is a lattice (with top and bottom elements, denoted $\mathbf{t}_{A}, \mathbf{f}_{A}$; the meet and join operations are written as \wedge_{A}, \vee_{A}, or more simply as \wedge, \vee if no confusion may arise).

For each $(q: A \rightarrow B) \in \mathcal{Q}, q^{*}: \mathcal{C}^{B} \longrightarrow \mathcal{C}^{A}$ has a left adjoint $\exists_{q}: \mathcal{C}^{A} \longrightarrow \mathcal{C}^{B}$, which satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).
(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same as a functor

$$
\boldsymbol{B}^{\mathrm{op}} \longrightarrow \text { Poset }: A \xrightarrow{f} B \longmapsto \mathcal{C}^{B} \xrightarrow{f^{*}} \mathcal{C}^{A}
$$

to the category Poset of posets and order-preserving maps.)

The data \mathcal{C}, \mathcal{Q} as described make the pair $(\mathcal{C}, \mathcal{Q})$ a $\wedge \vee \exists$-fibration. We may denote $(\mathcal{C}, \mathcal{Q})$ by \mathcal{C}; we may write $\mathcal{Q}_{\mathcal{C}}$ for \mathcal{Q}. Dropping the references to \mathbf{f}_{A} and \vee_{A} results in
the notion of $\wedge \exists$-fibration.

A morphism $M: \mathcal{C} \rightarrow \mathcal{D}$ of $\wedge \vee \exists$-fibrations is a morphism of fibrations (among others,

subscripts 1 and 2 , and write $M(A)$ for $M_{1}(A)$, etc.) that takes $\mathcal{Q}_{\mathcal{C}}$-arrows to $\mathcal{Q}_{\mathcal{D}}$-arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each $\exists_{q}\left(q \in \mathcal{Q}_{\mathcal{C}}\right) . M$ is conservative with respect to a pair (X, Y) of predicates over the same base-object A if $M X \leq_{M A} M Y$ implies $X \leq_{A} Y ; M$ is conservative if it is conservative for all such (X, Y).

The $\wedge \vee \exists$-fibrations and their morphisms form a category $\wedge \vee \exists$. In fact, we can make $\wedge \vee \exists$ into a 2-category, by making $\wedge \vee \exists(\mathcal{C}, \mathcal{D})$ into a category; the latter is a full subcategory of $[\mathcal{C}, \mathcal{D}]$ (see p. 348 in [M3]). An arrow

$$
\mathcal{C} \xrightarrow[N]{\downarrow h} \mathcal{D}
$$

is a natural transformation $h: M_{1} \longrightarrow N_{1}$ satisfying $M P \leq_{h_{A}} N P$ for all $A \in \mathbf{B}_{\mathcal{C}}, P \in \mathcal{C}^{A}$ (for the notation $X \leq_{f} Y$, see p. 349 in [M3]; $X \leq_{f} Y \Longleftrightarrow X \leq f^{*} Y$).

For a category \boldsymbol{C} with pullbacks, $\mathcal{P}(\boldsymbol{C})$, the fibration of predicates of \boldsymbol{C}, is the fibration \mathcal{C} with base-category \boldsymbol{C} for which $\mathcal{C}^{A}=S(A)$, the \wedge-semi-lattice of subobjects of A, and for $f: A \rightarrow B, f^{*}: S(B) \rightarrow S(A)$ is the usual pullback-mapping. To say that $\mathcal{P}(\boldsymbol{C})$ is a $\wedge \vee \exists$-fibration, with \mathcal{Q} the class of all arrows in \boldsymbol{C}, is the same as to say that \boldsymbol{C} is a coherent category (see, e.g., [MR2]).

Consider $\mathcal{P}($ Set $)$ as a $\wedge \vee \exists$-fibration, with \mathcal{Q} the class of all arrows in set. A model of \mathcal{C} is a morphism $\mathcal{C} \rightarrow \mathcal{P}($ Set $) . \operatorname{Mod}(\mathcal{C})$ is the category of models of $\mathcal{C} ; \operatorname{Mod}(\mathcal{C})=$ $\wedge \vee \exists(\mathcal{C}, \mathcal{P}($ Set $))$. More generally, let us write $\operatorname{Mod} \mathcal{D}^{(\mathcal{C})}$ for $\wedge \vee \exists(\mathcal{C}, \mathcal{D})$.

Until further notice, fix $\mathcal{C}=(\underset{\mathcal{C}}{\downarrow}, \underline{\mathcal{E}})$, a small $\wedge \vee \exists$-fibration. Proposition (5) below is the B
completeness theorem for $\wedge \vee \exists$-fibrations, the fact that there are enough models of \mathcal{C} to distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used for the proof of (5).

Let us write $\mathbf{1}$ for $1_{\boldsymbol{B}}$, the terminal object of \mathbf{B}; and \mathbf{t} for $\mathbf{t}_{\mathbf{1}}, \mathbf{f}$ for $\mathbf{f}_{\mathbf{1}} \cdot \mathcal{C}$ has the disjunction property if for any $X, Y \in \mathcal{C}^{\mathbf{1}}$, if $X \vee Y=\mathbf{t}$, then either $X=\mathbf{t}$, or $Y=\mathbf{t} . \mathcal{C}$ has the existence property if whenever $\left(!_{A}: A \rightarrow \mathbf{1}\right) \in \mathcal{Q}$ and $X \in \mathcal{C}^{A}$, we have that $\exists_{!_{A}}(X)=\mathbf{t}$ implies the existence of some $c: 1 \rightarrow A$ such that $C^{*}(X)=\mathbf{t}$.
(1) Suppose \mathcal{C} has the disjunction and the existence properties, and that $\mathbf{t} \neq \mathbf{f}$ (consistency). Then $\operatorname{Mod}(\mathcal{C})$ has an initial object ; in fact, $M=\left(M_{1}, M_{2}\right)$ given by $M_{1}=\operatorname{hom}_{\boldsymbol{B}}(\mathbf{1},-)$ and for $X \in \mathcal{C}^{A}, M_{2}(X)=\left\{C: \mathbf{1} \rightarrow A: C^{*}(X)=\mathbf{t}\right\}$ is an initial object.
(M may be called the global-sections model $\mathcal{C} \rightarrow \mathcal{P}$ (Set) ; we say $c: 1 \rightarrow A$ belongs to X over A if $C^{*}(X)=\mathbf{t}$.)

The proof is identical to that of 2.2 , p. 351 in [M3], although the statement of the latter does not include that of the present proposition.

For a fibration $\mathcal{C}, X \in \boldsymbol{B}$ and $X \in \mathcal{C}^{A}$, the "slice" fibration $\mathcal{C} /(A, X)$ was described in [M3]. The base-category of $\mathcal{C} /(A, X)$ is \boldsymbol{B} / A; the fiber over $(B \xrightarrow{f} A) \in \boldsymbol{B} / \boldsymbol{A}$ is $\left\{Y \in \mathcal{C}^{B}: Y \leq_{f^{X}}\right.$, ordered as \mathcal{C}^{B} is. We have a canonical morphism $\delta=\delta_{A, X}: \mathcal{C} \rightarrow \mathcal{C} /(A, X)$ that takes $B \in B$ to $\left(B \times A \xrightarrow{\pi^{\prime}} A\right)$, and $Y \in \mathcal{C}^{B}$ to $Y \dot{\wedge} X$ d $\overline{\bar{e}} \bar{f}$ $\pi^{*} Y \wedge \pi^{\prime *} X\left(\leq_{\pi^{\prime}} X ; \quad \pi: B \times A \longrightarrow B\right.$ is the other projection $)$.

For a $\wedge \vee \exists$-fibration \mathcal{C}, we define the $\wedge \vee \exists$-fibration $\mathcal{D}=\mathcal{C} /(A, X)$ by also putting

(2) $\mathcal{C} /(A, X)$ is a $\wedge \vee \exists$-fibration, and $\delta_{A, X}: \mathcal{C} \rightarrow \mathcal{C} /(A, X)$ is a map of $\wedge \vee \exists$-fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of [M3] that the forgetful functor $\boldsymbol{B} / \boldsymbol{A} \rightarrow \boldsymbol{B}$ creates pullbacks; with this, the required instances of the Beck-Chevalley and Frobenius reciprocity conditions become clear.
(3) If $\left(!_{A}: A \rightarrow \mathbf{1}\right) \in \mathcal{Q}$ and $X \in \mathcal{C}^{A}$ such that $\exists!_{A}(X)=\mathbf{t}$, then $\delta_{A, X}$ is conservative. If $X_{1} \vee X_{2}=\mathbf{t}$, and $Y, Z \in \mathcal{C}^{B}$, then either $\delta_{\mathbf{t}, X_{1}}$ or $\delta_{\mathbf{t}, X_{2}}$ is conservative with respect to (Y, Z).

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of $\mathcal{C} /(A, X)$ (compare 2.8 in [M3]), we conclude from (2) and (3) that
(4) For any given $A \in \boldsymbol{B}, X, Y \in \mathcal{C}^{A}$, there are a $\wedge \vee \exists$-fibration \mathcal{C}^{\star} having the disjunction and existence properties, and a map $\mathcal{C} \rightarrow \mathcal{C}^{*}$ of $\wedge \vee \exists$-fibrations which is conservative with respect to (X, Y).
(5) For any given $A \in \boldsymbol{B}, X, Y \in \mathcal{C}^{A}$, there is $M: \mathcal{C} \rightarrow \mathcal{P}$ (Set), a map of $\wedge \vee \exists$-fibrations, which is conservative with respect to (X, Y).

Proof. In $\mathcal{C} /(A, X)$, with $\mathbf{1}^{=1} \mathcal{C} /(A, X)$ and $\delta=\delta_{A, X}$, we have the global element

$$
d_{A}: 1 \longrightarrow \delta(A): A \longrightarrow A \times A
$$

that belongs to $\delta(X)$; moreover, a_{A} belongs to $\delta(Y)$ over A iff $X \leq Y$. Now, start with X, Y over A in \mathcal{C} such that $X \nsubseteq Y$; pass to $\mathcal{C}^{\prime}=\mathcal{C} /(A, X) ;$ in \mathcal{C}^{\prime},
$\mathbf{t}=d_{A}^{*} \delta(X) \nsubseteq d_{A}^{*} \delta(Y)=Y^{\prime}$. By (4), there is $\Phi: \mathcal{C}^{\prime} \rightarrow \mathcal{C}^{*}$ which is conservative with respect to $\left(\mathbf{t}, Y^{\prime}\right)$ such that \mathcal{C}^{*} has the disjunction and existence properties. By (1), we have the global-sections model $N: \mathcal{C}^{\star} \rightarrow \mathcal{P}$ (Set). The global-sections model is automatically conservative with respect to any pair (\mathbf{t}, Z) over 1 in its domain. We conclude that, for $P=N \circ \Phi: \mathcal{C}^{\prime} \rightarrow \boldsymbol{P}($ Set $), ~ P$ is conservative with respect to (\mathbf{t}, Y^{\prime}), that is,

$$
P\left(d_{A}^{*} \delta(X)\right) \nsubseteq P\left(d_{A}^{*} \delta(Y)\right)
$$

It follows that

$$
P(\delta(X)) \nsubseteq P(\delta(Y))
$$

For $M=P \circ \delta: \mathcal{C} \rightarrow \mathcal{P}($ Set $)$, this means that $M(X) \nsubseteq M(Y)$.

A $\wedge \vee \rightarrow \exists \forall$-fibration is a $\wedge \vee \exists$-fibration \mathcal{C} such that
every fiber \mathcal{C}^{A} is a Heyting algebra, and for all $f: A \rightarrow B, f^{*}: \mathcal{C}^{B} \rightarrow \mathcal{C}^{A}$ is a homomorphism of Heyting algebra; and
for each $q \in \mathcal{Q}_{\mathcal{C}}, \quad q^{*}$ (also) has a right adjoint which satisfies the Beck-Chevalley condition with respect to all (relevant) pullback squares.

For a category \boldsymbol{C} with pullbacks, to say that $\mathcal{P}(\boldsymbol{C})$ is a $\wedge \vee \rightarrow \exists \forall$-fibration, with \mathcal{Q} the class of all arrows in \boldsymbol{C}, is the same as what we usually express by saying that \boldsymbol{C} is a Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not necessarily small) category $\boldsymbol{A}, \operatorname{Set}^{\boldsymbol{A}}$ is a Heyting category. See e.g. [MR2]. The coherent structure in $\operatorname{Set}^{\boldsymbol{A}}$ (the $\wedge \vee \exists$-fibration structure in $\mathcal{P}\left(\operatorname{Set}^{\boldsymbol{A}}\right)$), although not the full Heyting-structure, is "computed pointwise"; that is, the projections $\pi_{A}: \mathcal{P}$ (Set $\left.{ }^{\boldsymbol{A}}\right) \rightarrow \boldsymbol{\mathcal { P }}$ (Set) ($A \in \boldsymbol{A}$) are morphisms of $\wedge \vee \exists$-fibrations.

Given any small $\wedge \vee \exists$-fibration $\mathcal{C} \downarrow$, we may form $\mathcal{P}\left(\operatorname{Set}{ }^{\operatorname{Mod}(\mathcal{C})}\right.$), and we have the B
evaluation morphism

of $\wedge \vee \exists$-fibrations.
(6) For a small $\wedge \vee \rightarrow \exists \forall$-fibration \mathcal{C}, ${ }_{\mathcal{C}}: \mathcal{C} \longrightarrow \mathcal{P}\left(S e t^{\operatorname{Mod}(\mathcal{C})}\right)$ is a morphism of $\wedge \vee \rightarrow \exists \forall$-fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows from (5). We need to show that ${ }^{e} \mathcal{C}$ preserves Heyting implications in the fibers, and \forall_{f} 's; we limit ourselves to the second task. By using the way the \forall_{f} 's are computed in any $\mathcal{P}\left(\right.$ Set $\left.^{\boldsymbol{A}}\right)$, our task is as follows.

Assume $M: \mathcal{C} \rightarrow$ Set, a morphism of $\wedge \vee \exists$-fibrations; $(f: A \rightarrow B) \in \mathcal{Q}, \quad X \in \mathcal{C}^{A}, \forall{ }_{f}^{X \in \mathcal{C}^{B}}$ and $b \in M(B)-M\left(\forall f^{X}\right)$. We want the existence of $N \in \operatorname{Mod}(\mathcal{C})$, a homomorphism $h: M \rightarrow N$ and $a \in N(A)-N(X)$ such that $h_{A}(b)=(N f)(a)$.

Let us use ordinary multisorted first-order logic to talk about models of \mathcal{C} and homomorphisms between them. Consider the language $L=L(\mathcal{C})$ whose sorts are the objects of \boldsymbol{B}, operation-symbols are the arrows of \boldsymbol{B}, and relation-symbols are all unary, and they correspond to the predicates $P \in \mathcal{C}^{A} ; P$ is sorted $P \subset A$. It is clear that every $\operatorname{M\in \operatorname {Mod}(\mathcal {C})}$ may be regarded an L-structure; morphisms in $\operatorname{Mod}(\mathcal{C})$ are exactly the morphisms of L-structures. Moreover, there is a (coherent) theory $T=T(\mathcal{C})$ over L such that $\operatorname{Mod}(\mathcal{C})=\operatorname{Mod}(T)$.

For a given L-structure M, homomorphisms $h: M \rightarrow N$ with varying N are in a 1-1
correspondence with models of $\mathrm{Diag}^{+}(M)$, the positive diagram of M, which is a set of atomic sentences in the diagram language $L(|M|)$ in which an individual constant \underline{a} of sort A has been added to L for each sort and $a \in M(A)$; the elements Diag $^{+}(M)$ are those atomic sentences that are true in $(M, \underline{a}) a \in|M|$. We may also define $\operatorname{Diag}^{+}(M)$ as $D_{\mathrm{b}}(M) \cup \mathrm{D}_{\mathrm{p}}(M)$, where $\mathrm{D}_{\mathrm{b}}(M)$ contains all $f(\underline{a})={ }_{B} \underline{b}$ for which $f: A \rightarrow B$ in \boldsymbol{B}, $a \in M(A), \quad b \in M(B)$ and $(M f)(a)=(b) ;$ and $D_{\mathrm{p}}(M)$ contains all $P(\underline{a})$ where $A \in \boldsymbol{B}$, $P \in \mathcal{C}^{A}$ and $a \in M(P) \subset M(A)$.

Returning to our task, let a be a new individual constant of sort A; under the assumptions, we need the satisfiability of the set

$$
T \cup \mathrm{D}_{\mathrm{b}}(M) \cup \mathrm{D}_{\mathrm{p}}(M) \cup\{\neg X(\underset{\sim}{a})\} \cup\left\{\underline{b}={ }_{B} f(\underset{\sim}{a})\right\} .
$$

Assume this fails. By compactness, there are finite subsets $D \subset D_{\mathrm{b}}(M), D^{\prime} \subset D_{\mathrm{p}}(M)$ such that

$$
T \cup D \cup D^{\prime} \vDash \underline{b}={ }_{B} f(\underset{\sim}{a}) \longrightarrow X(\underset{\sim}{a}) .
$$

Let $\left\langle c_{i}\right\rangle_{i<n}$ be distinct elements of $M, C_{i} \in M\left(C_{i}\right)$, each distinct from b, such that every \underline{C} that occurs in $D \cup D^{\prime}$ is one of the \underline{C}_{i}, or is \underline{b}. Let z_{i} be distinct variables, z_{i} of sort $C_{i} ; y$ a variable of sort B, x one of sort A, all distinct. Let us replace C_{i} by $z_{i}, \quad b$ by y; we obtain \bar{D} from D, \bar{D}^{\prime} from D^{\prime}, and we get that

$$
\begin{equation*}
T \vDash \forall\left\langle z_{i}\right\rangle_{i<n} \forall y \forall x\left(\wedge \bar{D} \wedge \wedge \bar{D}^{\prime} \wedge y={ }_{B} f(x) \longrightarrow X(x)\right) . \tag{7}
\end{equation*}
$$

Working inside the category \boldsymbol{B} with finite limits, we can construct as an appropriate finite limit an object C together with morphisms $\pi_{i}: C \rightarrow C_{i}, \pi: C \rightarrow B$ such that for any L-structure $N, \quad N=(\wedge \bar{D})\left[\left\langle\dot{C}_{i}\right\rangle_{i<n} \dot{\bar{b}} /\left\langle z_{i}\right\rangle_{i<n}{ }^{y}\right]$ iff there is $\dot{C} \in N(C)$ with $N\left(\pi_{i}\right)(\dot{C})=\dot{C}_{i}, N(\pi)(\dot{C})=\dot{b}$ (actually, \dot{C} is then uniquely given). In particular, there is an element $C \in M(C)$ such that $M\left(\pi_{i}\right)(c)=c_{i}, M(\pi)(c)=b$. For any $\alpha \in \bar{D}^{\prime}$, let α^{*} be the element of the fiber over C given as follows: if $\alpha:=: P\left(z_{i}\right), \alpha^{*}{ }_{\mathrm{de}} \overline{\mathrm{e}}_{\mathrm{f}} \pi_{i}^{*}(P)$; if $\alpha:=: P(y), \alpha^{*} \mathrm{~d} \overline{\overline{\mathrm{e}}} \mathrm{f} \pi^{*}(P)$. Let $Q=\Lambda\left\{\alpha^{*}: \alpha \in \bar{D}^{\prime}\right\} \in \mathcal{C}^{C}$. Notice that $c \in M(Q)$. Consider the pullback-square

We claim that

$$
\begin{equation*}
g^{*}(Q) \leq a^{*}(X) \tag{8}
\end{equation*}
$$

By (5), it suffices to check that this holds in each model $N \in \operatorname{Mod}(\mathcal{C})$. Assume $N \in \operatorname{Mod}(\mathcal{C})=\operatorname{Mod}(T), \dot{d} \in N\left(g^{*}(Q)\right), \dot{c}=(N g) \dot{d}, \quad \dot{a}=(N \rho) \dot{d}, \quad \dot{c}_{i}=\left(N \pi_{i}\right) \dot{c}$, $\dot{b}=(N \pi) \dot{c}$; we have $\dot{b}=(N f) \dot{a}, \quad N F(\wedge \bar{D})\left[\left\langle\dot{C}_{i}\right\rangle_{i<n} \dot{b} /\left\langle z_{i}\right\rangle_{i<n} Y\right]$ by the defining property of $\left(C,\left\langle\pi_{i}\right\rangle_{i}, \pi\right)$ and $N F\left(\wedge \bar{D}^{\prime}\right)\left[\left\langle\dot{C}_{i}\right\rangle_{i<n} \dot{b} /\left\langle z_{i}\right\rangle_{i<n} y\right]$ by the definition of Q. Since N satisfies the sentence in (7), it follows that $\dot{a} \in N X$, and thus $\dot{d} \in N\left(a^{*}(X)\right)$, which shows the claim.

Since $f \in \mathcal{Q}$, also $g \in \mathcal{Q} . \operatorname{By}(8), Q \leq \forall_{g} \rho^{*}(X)=\pi^{*} \forall_{f}(X)$. However, in $M, \quad c \in M(Q)$, but $c \notin \pi^{*} \forall_{f}(X)$, since $\quad b \notin \forall_{f}(X)$; this is a contradiction.

A $\wedge \vee \neg \exists$-fibration is a $\wedge \vee \exists$-fibration in which every fiber is a Boolean algebra. Every $\wedge \vee \neg \exists$-fibration is a $\wedge \vee \rightarrow \exists \forall$-fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced above, the class \mathcal{Q} of "quantifiable" arrows may be required, in addition, to be closed under composition. If $(\mathcal{C}, \mathcal{Q})$ is a "quantificational" fibration (of one of the four kinds introduced above), then, with \mathcal{Q}° the closure of \mathcal{Q} under composition, $\left(\mathcal{C}, \mathcal{Q}^{\circ}\right)$ is again one of the same kind as the reader will readily see. Also, any morphism $f:(\mathcal{C}, \mathcal{Q}) \rightarrow\left(\mathcal{C}^{\prime}, \mathcal{Q}^{\prime}\right)$ of one of the four kinds is a morphism $\mathrm{f}:\left(\mathcal{C}, \mathcal{Q}^{\circ}\right) \rightarrow\left(\mathcal{C}^{\prime}, \mathcal{Q}^{\prime}{ }^{\circ}\right)$ of the same kind.

