§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced here do not appear in *loc.cit.*, but most of the needed ingredients do.

Let $\begin{array}{c} \boldsymbol{\mathcal{E}} & \boldsymbol{\mathcal{E}}_{\mathcal{C}} \\ \mathcal{C} \downarrow &= \mathcal{C} \downarrow \\ \boldsymbol{\mathcal{B}} & \boldsymbol{\mathcal{B}}_{\mathcal{C}} \end{array}$ be a fibration; let \mathcal{Q} be a class of arrows in $\boldsymbol{\mathcal{B}}$. Assume:

- **B** has a terminal object, and pullbacks (**B** is left exact).
- Q is closed under pullbacks: when

is a pullback, then $q \in Q$ implies $q' \in Q$.

Each fiber C^A ($A \in B$) is a poset; in fact, it is a lattice (with top and bottom elements, denoted \mathbf{t}_A , \mathbf{f}_A ; the meet and join operations are written as \wedge_A , \vee_A , or more simply as \wedge, \vee if no confusion may arise).

For each $(q:A \rightarrow B) \in \mathcal{Q}$, $q^*: \mathcal{C}^B \longrightarrow \mathcal{C}^A$ has a left adjoint $\exists_q: \mathcal{C}^A \longrightarrow \mathcal{C}^B$, which satisfies the Beck-Chevalley condition with respect to *all* pullback squares (1), and which satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same as a functor

$$B^{\operatorname{op}} \longrightarrow \operatorname{Poset} : A \xrightarrow{f} B \longmapsto C^B \xrightarrow{f} C^A$$

to the category Poset of posets and order-preserving maps.)

The data \mathcal{C} , \mathcal{Q} as described make the pair $(\mathcal{C}, \mathcal{Q})$ a $\land \lor \exists$ -*fibration*. We may denote $(\mathcal{C}, \mathcal{Q})$ by \mathcal{C} ; we may write $\mathcal{Q}_{\mathcal{C}}$ for \mathcal{Q} . Dropping the references to $\mathbf{f}_{\mathcal{A}}$ and $\lor_{\mathcal{A}}$ results in

the notion of $\land \exists$ -*fibration*.

A morphism $M: C \rightarrow D$ of $\land \lor \exists$ -fibrations is a morphism of fibrations (among others,

 $\begin{array}{l} \mathbf{E}_{\mathcal{C}} \longrightarrow \mathbf{E}_{\mathcal{D}} \\ \mathbb{M} = (M_{1}, M_{2}) \ , \ M_{1} : \mathbf{B}_{\mathcal{C}} \rightarrow \mathbf{B}_{\mathcal{D}} \ , \ M_{2} : \mathbf{E}_{\mathcal{C}} \rightarrow \mathbf{E}_{\mathcal{C}} \ , \ \stackrel{\downarrow}{\underset{\mathcal{B}_{\mathcal{C}}}{\overset{\bigcirc}{\longrightarrow}} \mathbf{B}_{\mathcal{C}} \\ \text{subscripts 1 and 2, and write } M(A) \ \text{for } M_{1}(A) \ , etc.) \ \text{that takes } \mathcal{Q}_{\mathcal{C}} \text{-arrows to } \\ \mathcal{Q}_{\mathcal{D}} \text{-arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each } \\ \exists_{q} (q \in \mathcal{Q}_{\mathcal{C}}). \ M \ \text{is conservative with respect to a pair } (X, Y) \ \text{of predicates over the same base-object } A \ \text{if } MX \leq_{MA} MY \ \text{implies } X \leq_{A} Y \ ; \ M \ \text{is conservative if it is conservative for all such } (X, Y) \ . \end{array}$

The $\wedge \lor \exists$ -fibrations and their morphisms form a category $\land \lor \exists$. In fact, we can make $\land \lor \exists$ into a 2-category, by making $\land \lor \exists (\mathcal{C}, \mathcal{D})$ into a category; the latter is a full subcategory of $[\mathcal{C}, \mathcal{D}]$ (see p. 348 in [M3]). An arrow

$$\mathcal{C} \xrightarrow[N]{} \overset{M}{\xrightarrow{}} \mathcal{D}$$

is a natural transformation $h: M_1 \longrightarrow N_1$ satisfying $MP \leq_{h_A} NP$ for all $A \in \mathbf{B}_C$, $P \in \mathcal{C}^A$ (for the notation $X \leq_f Y$, see p. 349 in [M3]; $X \leq_f Y \iff X \leq f^* Y$).

For a category \mathbf{C} with pullbacks, $\mathcal{P}(\mathbf{C})$, the *fibration of predicates of* \mathbf{C} , is the fibration \mathcal{C} with base-category \mathbf{C} for which $\mathcal{C}^{A} = S(A)$, the \wedge -semi-lattice of subobjects of A, and for $f: A \rightarrow B$, $f^{*}: S(B) \rightarrow S(A)$ is the usual pullback-mapping. To say that $\mathcal{P}(\mathbf{C})$ is a $\wedge \lor \exists$ -fibration, with \mathcal{Q} the class of all arrows in \mathbf{C} , is the same as to say that \mathbf{C} is a coherent category (see, *e.g.*, [MR2]).

Consider $\mathcal{P}(\text{Set})$ as a $\wedge \lor \exists$ -fibration, with \mathcal{Q} the class of all arrows in Set. A model of \mathcal{C} is a morphism $\mathcal{C} \to \mathcal{P}(\text{Set})$. Mod (\mathcal{C}) is the category of models of \mathcal{C} ; Mod $(\mathcal{C}) = \land \lor \exists (\mathcal{C}, \mathcal{P}(\text{Set}))$. More generally, let us write $\operatorname{Mod}_{\mathcal{D}}(\mathcal{C})$ for $\land \lor \exists (\mathcal{C}, \mathcal{D})$.

Until further notice, fix $C = (C \downarrow, Q)$, a small $\land \lor \exists$ -fibration. Proposition (5) below is the **B**

completeness theorem for $\wedge \lor \exists$ -fibrations, the fact that there are enough models of C to distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used for the proof of (5).

Let us write **1** for $\mathbf{1}_{B}$, the terminal object of **B**; and **t** for \mathbf{t}_{1} , **f** for \mathbf{f}_{1} . C has the *disjunction property* if for any $X, Y \in C^{1}$, if $X \lor Y = \mathbf{t}$, then either $X = \mathbf{t}$, or $Y = \mathbf{t}$. C has the *existence property* if whenever $(!_{A}: A \to \mathbf{1}) \in Q$ and $X \in C^{A}$, we have that $\exists_{A}(X) = \mathbf{t}$ implies the existence of some $c: \mathbf{1} \to A$ such that $c^{*}(X) = \mathbf{t}$.

(1) Suppose C has the disjunction and the existence properties, and that $\mathbf{t} \neq \mathbf{f}$ (consistency). Then Mod(C) has an initial object; in fact, $M = (M_1, M_2)$ given by $M_1 = \hom_{\mathbf{B}}(\mathbf{1}, -)$ and for $X \in C^A$, $M_2(X) = \{c: \mathbf{1} \rightarrow A : c^*(X) = \mathbf{t}\}$ is an initial object.

(*M* may be called the *global-sections model* $\mathcal{C} \to \mathcal{P}(\text{Set})$; we say $c: \mathbf{1} \to A$ belongs to X over A if $c^*(X) = \mathbf{t}$.)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the latter does not include that of the present proposition.

For a fibration C, $X \in \mathbf{B}$ and $X \in C^A$, the "slice" fibration C/(A, X) was described in [M3]. The base-category of C/(A, X) is \mathbf{B}/A ; the fiber over $(B \xrightarrow{f} A) \in \mathbf{B}/A$ is $\{Y \in C^B \colon Y \leq_f X\}$, ordered as C^B is. We have a canonical morphism $\delta = \delta_{A, X} \colon C \to C/(A, X)$ that takes $B \in \mathbf{B}$ to $(B \times A \xrightarrow{\pi'} A)$, and $Y \in C^B$ to $Y \land X_{d \in f}$ $\pi^* Y \land \pi'^* X$ ($\leq_{\pi'} X$; $\pi \colon B \times A \longrightarrow B$ is the other projection).

For a $\wedge \lor \exists$ -fibration \mathcal{C} , we define the $\wedge \lor \exists$ -fibration $\mathcal{D} = \mathcal{C} / (A, X)$ by also putting $(\overset{B}{\longrightarrow} \overset{f}{\underset{A^{\mathcal{L}}}{\bigcirc} \mathcal{C}}) \in \mathcal{Q}_{\mathcal{D}} \xleftarrow{}_{def} f \in \mathcal{Q}$. (2) $\mathcal{C}/(A, X)$ is a $\wedge \vee \exists$ -fibration, and $\delta_{A, X}: \mathcal{C} \to \mathcal{C}/(A, X)$ is a map of $\wedge \vee \exists$ -fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of [M3] that the forgetful functor $B/A \rightarrow B$ creates pullbacks; with this, the required instances of the Beck-Chevalley and Frobenius reciprocity conditions become clear.

(3) If $(!_A: A \to \mathbf{1}) \in \mathcal{Q}$ and $X \in \mathcal{C}^A$ such that $\exists_{!_A}(X) = \mathbf{t}$, then $\delta_{A, X}$ is conservative. If $X_1 \lor X_2 = \mathbf{t}\mathbf{t}$, and $Y, Z \in \mathcal{C}^B$, then either $\delta_{\mathbf{t}, X_1}$ or $\delta_{\mathbf{t}, X_2}$ is conservative with respect to (Y, Z).

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of C/(A, X) (compare 2.8 in [M3]), we conclude from (2) and (3) that

(4) For any given $A \in \mathbf{B}$, $X, Y \in \mathcal{C}^A$, there are a $\wedge \vee \exists$ -fibration \mathcal{C}^* having the disjunction and existence properties, and a map $\mathcal{C} \to \mathcal{C}^*$ of $\wedge \vee \exists$ -fibrations which is conservative with respect to (X, Y).

(5) For any given $A \in \mathbf{B}$, $X, Y \in \mathcal{C}^A$, there is $M: \mathcal{C} \to \mathcal{P}(\text{Set})$, a map of $\land \lor \exists$ -fibrations, which is conservative with respect to (X, Y).

Proof. In $\mathcal{C}/(A, X)$, with $1=1_{\mathcal{C}/(A, X)}$ and $\delta=\delta_{A, X}$, we have the global element

that belongs to $\delta(X)$; moreover, d_A belongs to $\delta(Y)$ over A iff $X \leq Y$. Now, start with X, Y over A in C such that $X \leq Y$; pass to $\mathcal{C}' = \mathcal{C}/(A, X)$; in \mathcal{C}' , $\mathbf{t} = d_A^* \delta(X) \leq d_A^* \delta(Y) = Y'$. By (4), there is $\Phi: \mathcal{C}' \to \mathcal{C}^*$ which is conservative with respect to (\mathbf{t}, Y') such that \mathcal{C}^* has the disjunction and existence properties. By (1), we have the global-sections model $N: \mathcal{C}^* \to \mathcal{P}(\text{Set})$. The global-sections model is automatically conservative with respect to any pair (\mathbf{t}, Z) over **1** in its domain. We conclude that, for $P=N\circ\Phi: \mathcal{C}'\to \mathcal{P}(\text{Set})$, P is conservative with respect to (\mathbf{t}, Y') , that is,

$$P(d_A^*\delta(X)) \leq P(d_A^*\delta(Y))$$
.

It follows that

$$P(\delta(X)) \leq P(\delta(Y))$$

For $M = P \circ \delta : \mathcal{C} \rightarrow \mathcal{P}(\texttt{Set})$, this means that $M(X) \leq M(Y)$.

A $\wedge \vee \rightarrow \exists \forall$ -*fibration* is a $\wedge \vee \exists$ -fibration \mathcal{C} such that

every fiber \mathcal{C}^A is a Heyting algebra, and for all $f:A \to B$, $f^*:\mathcal{C}^B \to \mathcal{C}^A$ is a homomorphism of Heyting algebra; and

for each $q \in Q_C$, q^* (also) has a right adjoint which satisfies the Beck-Chevalley condition with respect to all (relevant) pullback squares.

For a category \mathbf{C} with pullbacks, to say that $\mathcal{P}(\mathbf{C})$ is a $\wedge \vee \to \exists \forall$ -fibration, with \mathcal{Q} the class of all arrows in \mathbf{C} , is the same as what we usually express by saying that \mathbf{C} is a Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not necessarily small) category \mathbf{A} , Set^{\mathbf{A}} is a Heyting category. See e.g. [MR2]. The coherent structure in Set^{\mathbf{A}} (the $\wedge \vee \exists$ -fibration structure in $\mathcal{P}(\mathsf{Set}^{\mathbf{A}})$), although not the full Heyting-structure, is "computed pointwise"; that is, the projections $\pi_A: \mathcal{P}(\mathsf{Set}^{\mathbf{A}}) \to \mathcal{P}(\mathsf{Set})$ ($A \in \mathbf{A}$) are morphisms of $\wedge \vee \exists$ -fibrations.

Given any small AVE-fibration $\mathcal{C}_{\downarrow}^{\mathcal{E}}$, we may form $\mathcal{P}(\text{Set}^{\text{Mod}(\mathcal{C})})$, and we have the evaluation morphism

of $\land \lor \exists$ -fibrations.

(6) For a small $\wedge \vee \to \exists \forall$ -fibration \mathcal{C} , $\mathbf{e}_{\mathcal{C}}: \mathcal{C} \longrightarrow \mathcal{P}(\mathsf{Set}^{\mathsf{Mod}(\mathcal{C})})$ is a morphism of $\wedge \vee \to \exists \forall$ -fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows from (5). We need to show that $e_{\mathcal{C}}$ preserves Heyting implications in the fibers, and \forall_f 's; we limit ourselves to the second task. By using the way the \forall_f 's are computed in any $\mathcal{P}(\text{Set}^{\mathbf{A}})$, our task is as follows.

Assume $M: \mathcal{C} \to \text{Set}$, a morphism of $\wedge \forall \exists$ -fibrations; $(f:A \to B) \in \mathcal{Q}$, $X \in \mathcal{C}^A$, $\forall_f X \in \mathcal{C}^B$ and $b \in M(B) - M(\forall_f X)$. We want the existence of $N \in \text{Mod}(\mathcal{C})$, a homomorphism $h: M \to N$ and $a \in N(A) - N(X)$ such that $h_A(b) = (Nf)(a)$.

Let us use ordinary multisorted first-order logic to talk about models of \mathcal{C} and homomorphisms between them. Consider the language $L=L(\mathcal{C})$ whose sorts are the objects of \mathcal{B} , operation-symbols are the arrows of \mathcal{B} , and relation-symbols are all unary, and they correspond to the predicates $P \in \mathcal{C}^{\mathcal{A}}$; P is sorted $P \subset \mathcal{A}$. It is clear that every $M \in Mod(\mathcal{C})$ may be regarded an L-structure; morphisms in $Mod(\mathcal{C})$ are exactly the morphisms of L-structures. Moreover, there is a (coherent) theory $T=T(\mathcal{C})$ over L such that $Mod(\mathcal{C}) = Mod(T)$.

For a given L-structure M, homomorphisms $h: M \to N$ with varying N are in a 1-1

correspondence with models of $\text{Diag}^+(M)$, the positive diagram of M, which is a set of atomic sentences in the diagram language L(|M|) in which an individual constant \underline{a} of sort A has been added to L for each sort and $a \in M(A)$; the elements $\text{Diag}^+(M)$ are those atomic sentences that are true in $(M, \underline{a})_{a \in |M|}$. We may also define $\text{Diag}^+(M)$ as $D_b(M) \cup D_p(M)$, where $D_b(M)$ contains all $f(\underline{a}) = \underline{B}\underline{b}$ for which $f: A \to B$ in B, $a \in M(A)$, $b \in M(B)$ and (Mf)(a) = (b); and $D_p(M)$ contains all $P(\underline{a})$ where $A \in B$, $P \in C^A$ and $a \in M(P) \subset M(A)$.

Returning to our task, let a be a new individual constant of sort A; under the assumptions, we need the satisfiability of the set

$$T \cup D_{b}(M) \cup D_{p}(M) \cup \{\neg X(a)\} \cup \{\underline{b} = B_{b}f(a)\}$$

Assume this fails. By compactness, there are finite subsets $D \subset D_{b}(M)$, $D' \subset D_{p}(M)$ such that

$$T \cup D \cup D' \models \underline{b} = {}_{B} f(\underline{a}) \longrightarrow X(\underline{a}) \quad .$$

Let $\langle c_i \rangle_{i < n}$ be distinct elements of M, $c_i \in M(C_i)$, each distinct from b, such that every \underline{c} that occurs in $D \cup D'$ is one of the \underline{c}_i , or is \underline{b} . Let z_i be distinct variables, z_i of sort C_i ; y a variable of sort B, x one of sort A, all distinct. Let us replace c_i by z_i , b by y; we obtain \overline{D} from D, $\overline{D'}$ from D', and we get that

$$T \models \forall \langle z_i \rangle_{i < n} \forall y \forall x (\land \overline{D} \land \land \overline{D}' \land y = {}_B f(x) \longrightarrow X(x)) .$$

$$(7)$$

Working inside the category **B** with finite limits, we can construct as an appropriate finite limit an object *C* together with morphisms $\pi_i: C \to C_i$, $\pi: C \to B$ such that for any *L*-structure *N*, $N \models (\bigwedge \overline{D}) [\langle c_i \rangle_{i < n} b / \langle z_i \rangle_{i < n} Y]$ iff there is $c \in N(C)$ with $N(\pi_i)(c) = c_i$, $N(\pi)(c) = b$ (actually, c is then uniquely given). In particular, there is an element $c \in M(C)$ such that $M(\pi_i)(c) = c_i$, $M(\pi)(c) = b$. For any $\alpha \in \overline{D'}$, let α^* be the element of the fiber over *C* given as follows: if $\alpha :=: P(z_i)$, $\alpha^*_{d \in f} \pi_i^*(P)$; if $\alpha :=: P(Y)$, $\alpha^*_{d \in f} \pi^*(P)$. Let $Q = \bigwedge \{\alpha^*: \alpha \in \overline{D'}\} \in C^C$. Notice that $c \in M(Q)$. Consider the pullback-square

$$\begin{array}{ccc} \operatorname{Ax}_{B}C & & \rho \\ g \\ g \\ c & & \downarrow f \\ C & & \pi \end{array} \xrightarrow{} B \end{array}$$

We claim that

$$g^{*}(Q) \leq a^{*}(X)$$
 . (8)

By (5), it suffices to check that this holds in each model $N \in Mod(C)$. Assume $N \in Mod(C) = Mod(T)$, $d \in N(g^*(Q))$, c = (Ng)d, $a = (N\rho)d$, $c_i = (N\pi_i)c$, $b = (N\pi)c$; we have b = (Nf)a, $N \models (\bigwedge \overline{D}) [\langle c_i \rangle_{i < n} b / \langle z_i \rangle_{i < n} Y]$ by the defining property of $(C, \langle \pi_i \rangle_i, \pi)$ and $N \models (\bigwedge \overline{D'}) [\langle c_i \rangle_{i < n} b / \langle z_i \rangle_{i < n} Y]$ by the definition of Q. Since N satisfies the sentence in (7), it follows that $a \in NX$, and thus $d \in N(a^*(X))$, which shows the claim.

Since $f \in Q$, also $g \in Q$. By (8), $Q \le \forall_g \rho^*(X) = \pi^* \forall_f(X)$. However, in M, $c \in M(Q)$, but $c \notin \pi^* \forall_f(X)$, since $b \notin \forall_f(X)$; this is a contradiction.

A $\wedge \vee \neg \exists$ -*fibration* is a $\wedge \vee \exists$ -fibration in which every fiber is a Boolean algebra. Every $\wedge \vee \neg \exists$ -fibration is a $\wedge \vee \rightarrow \exists \forall$ -fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced above, the class \mathcal{Q} of "quantifiable" arrows may be required, in addition, to be closed under composition. If $(\mathcal{C}, \mathcal{Q})$ is a "quantificational" fibration (of one of the four kinds introduced above), then, with \mathcal{Q}° the closure of \mathcal{Q} under composition, $(\mathcal{C}, \mathcal{Q}^{\circ})$ is again one of the same kind as the reader will readily see. Also, any morphism $f: (\mathcal{C}, \mathcal{Q}) \to (\mathcal{C}', \mathcal{Q}')$ of one of the four kinds is a morphism $f: (\mathcal{C}, \mathcal{Q}^{\circ}) \to (\mathcal{C}', \mathcal{Q}'^{\circ})$ of the same kind.