
§§§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced

here do not appear in loc.cit., but most of the needed ingredients do.

EE �
Let �� = �� be a fibration; let � be a class of arrows in B . Assume:

B B
�

B has a terminal object, and pullbacks ( B is left exact) .

� is closed under pullbacks: when

qA���������B
� �� � (1)� �� � �q’A’��������B’

is a pullback, then q∈� implies q’∈� .

AEach fiber � ( A∈B ) is a poset; in fact, it is a lattice (with top and bottom elements,

denoted t , f ; the meet and join operations are written as � , � , or more simply asA A A A
� , � if no confusion may arise).

* B A A BFor each (q:A��B)∈� , q :� ���� has a left adjoint ∃ :� ���� , whichq
satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which

satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same

as a functor

*op f B f AB ���Poset : A���B ��� � �����

to the category Poset of posets and order-preserving maps. )

The data � , � as described make the pair (�, �) a ��∃-fibration. We may denote

(�, �) by � ; we may write � for � . Dropping the references to f and � results in
� A A
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the notion of �∃-fibration.

A morphism M:���� of ��∃-fibrations is a morphism of fibrations (among others,

E ����E
� �

M=(M , M ) , M :B ��B , M :E ��E , � � � ; in practice, we omit the1 2 1 � � 2 � � B ����B
� �

subscripts 1 and 2 , and write M(A) for M (A) , etc.) that takes � -arrows to1 �
� -arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each
�

∃ ( q∈� ). M is conservative with respect to a pair (X, Y) of predicates over the sameq �
base-object A if MX≤ MY implies X≤ Y ; M is conservative if it is conservative for allMA A
such (X, Y) .

The ��∃-fibrations and their morphisms form a category ��∃ . In fact, we can make ��∃
into a 2-category, by making ��∃(�,�) into a category; the latter is a full subcategory of

[�, �] (see p. 348 in [M3]). An arrow

M
�������
� �h �
�������N

Ais a natural transformation h:M ���N satisfying MP ≤ NP for all A∈B , P∈� ( for1 1 h �A
*the notation X ≤ Y , see p. 349 in [M3]; X≤ Y ��	 X≤f Y ).f f

For a category C with pullbacks, �(C) , the fibration of predicates of C , is the fibration �

Awith base-category C for which � =S(A) , the �-semi-lattice of subobjects of A , and for

*f:A��B , f :S(B)��S(A) is the usual pullback-mapping. To say that �(C) is a

��∃-fibration, with � the class of all arrows in C , is the same as to say that C is a

coherent category (see, e.g., [MR2]).

Consider �(Set) as a ��∃-fibration, with � the class of all arrows in Set . A model of

� is a morphism ����(Set) . Mod(�) is the category of models of � ; Mod(�) =

��∃(�,�(Set)) . More generally, let us write Mod (�) for ��∃(�,�) .
�

E
Until further notice, fix � = (��,�) , a small ��∃-fibration. Proposition (5) below is the

B
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completeness theorem for ��∃-fibrations, the fact that there are enough models of � to

distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used

for the proof of (5).

Let us write 1 for 1 , the terminal object of B ; and t for t , f for f . � has theB 1 1
1disjunction property if for any X, Y ∈ � , if X�Y = t , then either X = t , or Y = t . � has

Athe existence property if whenever (! :A��1)∈� and X∈� , we have that ∃ (X) = tA !A
*implies the existence of some c:1��A such that c (X) = t .

(1) Suppose � has the disjunction and the existence properties, and that t ≠ f

(consistency). Then Mod(�) has an initial object ; in fact, M=(M , M ) given by1 2
A *M =hom (1,-) and for X∈� , M (X) = {c:1��A : c (X)=t} is an initial object.1 B 2

( M may be called the global-sections model ����(Set) ; we say c:1��A belongs to X

*over A if c (X)=t .)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the latter does

not include that of the present proposition.

AFor a fibration � , X∈B and X∈� , the "slice" fibration �/(A, X) was described in [M3].

fThe base-category of �/(A, X) is B/A ; the fiber over (B���A)∈B/A is

B B{Y∈� : Y≤ X} , ordered as � is. We have a canonical morphismf
π’ B ⋅δ=δ :����/(A, X) that takes B∈B to (B×A����A) , and Y∈� to Y�X =A, X def

* *π Y�π’ X ( ≤ X ; π:B×A���B is the other projection).π’

For a ��∃-fibration � , we define the ��∃-fibration � = �/(A, X) by also putting

fB�����C( � � � ) ∈ � �	
 f∈� .
� � � defA
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(2) �/(A, X) is a ��∃-fibration, and δ :����/(A, X) is a map ofA, X
��∃-fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of

[M3] that the forgetful functor B/A��B creates pullbacks; with this, the required instances of

the Beck-Chevalley and Frobenius reciprocity conditions become clear.

A(3) If (! :A��1)∈� and X∈� such that ∃ (X) = t , then δ isA ! A, XA
Bconservative. If X �X = t , and Y, Z∈� , then either δ or δ is conservative1 2 t t, X t, X1 2

with respect to (Y, Z) .

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of �/(A, X) (compare 2.8 in

[M3]), we conclude from (2) and (3) that

A *(4) For any given A∈B , X, Y∈� , there are a ��∃-fibration � having the

*disjunction and existence properties, and a map ���� of ��∃-fibrations which is

conservative with respect to (X, Y) .

A(5) For any given A∈B , X, Y∈� , there is M:����(Set) , a map of

��∃-fibrations, which is conservative with respect to (X, Y) .

Proof. In �/(A, X) , with 1=1 and δ=δ , we have the global element
�/(A, X) A, X

d :1���δ(A) : A�������A×AA � �
� �1 � 	 π’A A
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that belongs to δ(X) ; moreover, d belongs to δ(Y) over A iff X≤Y . Now, start withA
X, Y over A in � such that X�Y ; pass to �’=�/(A, X) ; in �’ ,

* * *t=d δ(X) � d δ(Y)=Y’ . By (4), there is Φ:�’��� which is conservative with respectA A
*to (t, Y’) such that � has the disjunction and existence properties. By (1), we have the

*global-sections model N:� ���(Set) . The global-sections model is automatically

conservative with respect to any pair (t, Z) over 1 in its domain. We conclude that, for

P=N�Φ : �’���(Set) , P is conservative with respect to (t, Y’) , that is,

* *P(d δ(X)) � P(d δ(Y)) .A A

It follows that

P(δ(X)) � P(δ(Y)) .

For M = P�δ : ����(Set) , this means that M(X) � M(Y) .

A ����∃∀-fibration is a ��∃-fibration � such that

A * B Aevery fiber � is a Heyting algebra, and for all f:A��B , f :� ��� is a

homomorphism of Heyting algebra; and

*for each q∈� , q (also) has a right adjoint which satisfies the Beck-Chevalley
�

condition with respect to all (relevant) pullback squares.

For a category C with pullbacks, to say that �(C) is a ����∃∀-fibration, with � the

class of all arrows in C , is the same as what we usually express by saying that C is a

Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not

Anecessarily small) category A , Set is a Heyting category. See e.g. [MR2]. The coherent

A Astructure in Set (the ��∃-fibration structure in �(Set ) ), although not the full

AHeyting-structure, is "computed pointwise"; that is, the projections π :�(Set )���(Set)A
( A∈A ) are morphisms of ��∃-fibrations.
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E Mod(�)Given any small ��∃-fibration �� , we may form �(Set ) , and we have the
B

evaluation morphism

Mod(�)e : ���������������(Set )
�

X ��������� [M���M(X)]� ����������� �� �
� �
A ��������� [M���M(A)]

of ��∃-fibrations.

Mod(�)(6) For a small ����∃∀-fibration � , e :�����(Set ) is a morphism of
�

����∃∀-fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows

from (5). We need to show that e preserves Heyting implications in the fibers, and ∀ 's;
� f

we limit ourselves to the second task. By using the way the ∀ 's are computed in anyf
A

�(Set ) , our task is as follows.

A BAssume M:���Set , a morphism of ��∃-fibrations; (f:A��B)∈� , X∈� , ∀ X∈�f
and b∈M(B)-M(∀ X) . We want the existence of N∈Mod(�) , a homomorphism h:M��Nf
and a∈N(A)-N(X) such that h (b) = (Nf)(a) .A

Let us use ordinary multisorted first-order logic to talk about models of � and

homomorphisms between them. Consider the language L=L(�) whose sorts are the objects

of B , operation-symbols are the arrows of B , and relation-symbols are all unary, and they

Acorrespond to the predicates P∈� ; P is sorted P⊂A . It is clear that every M∈Mod(�)

may be regarded an L-structure; morphisms in Mod(�) are exactly the morphisms of

L-structures. Moreover, there is a (coherent) theory T=T(�) over L such that

Mod(�) = Mod(T) .

For a given L-structure M , homomorphisms h:M��N with varying N are in a 1-1
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+correspondence with models of Diag (M) , the positive diagram of M , which is a set of

atomic sentences in the diagram language L(�M�) in which an individual constant a of
�

+sort A has been added to L for each sort and a∈M(A) ; the elements Diag (M) are

+those atomic sentences that are true in (M, a) . We may also define Diag (M) as
� a∈�M�

D (M) ∪ D (M) , where D (M) contains all f(a)= b for which f:A��B in B ,b p b � B�
a∈M(A) , b∈M(B) and (Mf)(a)=(b) ; and D (M) contains all P(a) where A∈B ,p �

AP∈� and a∈M(P)⊂M(A) .

Returning to our task, let a be a new individual constant of sort A ; under the assumptions,�
we need the satisfiability of the set

T ∪ D (M) ∪ D (M) ∪ {¬X(a)} ∪ {b= f(a)} .b p � � B �

Assume this fails. By compactness, there are finite subsets D⊂D (M) , D’⊂D (M) such thatb p

T ∪ D ∪ D’ � b= f(a) ��� X(a) .
� B � �

Let 〈c 〉 be distinct elements of M , c ∈M(C ) , each distinct from b , such thati i<n i i
every c that occurs in D∪D’ is one of the c , or is b . Let z be distinct variables, z

� �i � i i
of sort C ; y a variable of sort B , x one of sort A , all distinct. Let us replace c byi i

� �z , b by y ; we obtain D from D , D’ from D’, and we get thati

� �T � ∀〈z 〉 ∀y∀x(���D	���D’	y= f(x) ��� X(x)) . (7)i i<n B

Working inside the category B with finite limits, we can construct as an appropriate finite

limit an object C together with morphisms π :C��C , π:C��B such that for anyi i
� � � �L-structure N , N�(���D)[ 〈c 〉 b/ 〈z 〉 y] iff there is c∈N(C) withi i<n i i<n

� � � � �N(π )(c) = c , N(π)(c) = b (actually, c is then uniquely given). In particular, therei i
�is an element c∈M(C) such that M(π )(c) = c , M(π)(c) = b . For any α∈D’ , leti i

* * *α be the element of the fiber over C given as follows: if α :=: P(z ) , α = π (P) ;i def i
* * * � Cif α :=: P(y) , α = π (P) . Let Q = ���{α : α∈D’} ∈ � . Notice that c∈M(Q) .def

Consider the pullback-square
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ρA× C�������AB �g� �f� �� �
C ������� Bπ

We claim that

* *g (Q) ≤ a (X) . (8)

By (5), it suffices to check that this holds in each model N∈Mod(�) . Assume

� * � � � � � �N∈Mod(�)=Mod(T) , d∈N(g (Q)) , c=(Ng)d , a=(Nρ)d , c =(Nπ )c ,i i
� � � � � � �b=(Nπ)c ; we have b=(Nf)a , N�(���D)[ 〈c 〉 b/ 〈z 〉 y] by the definingi i<n i i<n

� � �property of (C, 〈 π 〉 , π) and N�(���D’)[ 〈c 〉 b/ 〈z 〉 y] by the definitioni i i i<n i i<n
� � *of Q . Since N satisfies the sentence in (7), it follows that a∈NX , and thus d∈N(a (X)) ,

which shows the claim.

* *Since f∈� , also g∈� . By (8), Q ≤ ∀ ρ (X) = π ∀ (X) . However, in M , c∈M(Q) ,g f
*but c∉π ∀ (X) , since b∉∀ (X) ; this is a contradiction.f f

A �	¬∃-fibration is a �	∃-fibration in which every fiber is a Boolean algebra. Every

�	¬∃-fibration is a �	��∃∀-fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced

above, the class � of "quantifiable" arrows may be required, in addition, to be closed under

composition. If (�, �) is a "quantificational" fibration (of one of the four kinds introduced


 
above), then, with � the closure of � under composition, (�, � ) is again one of the

same kind as the reader will readily see. Also, any morphism f:(�, �)��(�’, �’) of one


 
of the four kinds is a morphism f:(�, � )��(�’, �’ ) of the same kind.
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