
§§§2. Formal systems

In this section, a vocabulary L for logic with dependent sorts is assumed fixed. Relations,

formulas, etc., are all from/over L .

*For a formula ϕ , Var (ϕ) is "the set of all variables in ϕ , free or bound". More

* * * *precisely, Var (ϕ) = Var(ϕ) for atomic ϕ ; Var (ϕ�ψ) = Var (ϕ)∪Var (ψ) , and

similarly for the other connectives;

* * *Var (∀xϕ) = Var (∃xϕ) = {x}∪Dep(x)∪Var (ϕ) .

Let � , � be contexts. A map s:���� is called a specialization if whenever x∈� ,

x:K( 〈x 〉 ) , we have X=K( 〈s(x ) 〉 ) is a sort, and s(x):X .p p∈K�L p p∈K�L
The identity map ���� is a specialization, the composite of specializations is a

specialization. Moreover, if a specialization is a bijection, then its inverse is also a

specialization, and the restriction of a specialization to a subset of its domain which is a

context is also a specialization. A notation such as s:���� will refer to a specialization.

For a sort X , resp. a formula ϕ , and a specialization s:���� such that Var(X)⊂� , resp.

Var(ϕ)⊂� , we define X�s , resp. ϕ�s , "the result of substituting s(x) for all free

occurrences of x in X , resp. in ϕ , simultaneously for all x∈� ".

If X is the sort K( 〈x 〉 ) , and if ϕ is the atomic formula R( 〈x 〉 ) , wep p∈K�L p p∈R�L
put

X�s = K( 〈s(x ) 〉 ) , ϕ�s = R( 〈s(x ) 〉 ) .def p p∈K�L def p p∈R�L

For the equality formula ϕ:=: x= y , ϕ�s :=: s(x)= s(y) . The property of sX X�s
being a specialization ensures that X�s is a sort, and ϕ�s is a(n atomic) formula in both

cases.

(ϕ�ψ)�s = (ϕ�s)�(ψ�s) ,def

and similarly for the other connectives.
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Suppose ϕ = ∀xψ . Let us first assume that �=Var(∀xϕ) . Consider the sort X of x ,

*x:X ; let y be a variable of sort X�s which is new in the sense that y∉Var (ψ)∪�∪� .

Define t to be the function t:�∪{x}����∪{y} for which t�� = s , and t(x) = y

(note that x∉� ). Notice that Var(X)⊂� , Var(X�s)⊂� , thus �∪{x} and �∪{y} are

contexts, and t is a specialization. We put (∀xψ)�s = ∀y(ψ�t) . For a generaldef
s:���� , (∀xψ)�s is defined as (∀xψ)�s’ , with s’ = s�Var(∀xψ) . We make a

similar definition for ∃ in place of ∀ .

Since in the above description, y was not uniquely determined by the conditions given,

substitution is not quite well-defined. We may correct this by making a particular, but

artificial, choice of y . A better procedure is to identify the formulas obtained by different

choices of y ; this we do by defining the equivalence relation on formulas of one being an

alphabetic variant of the other. However, for defining "alphabetic variant" it is convenient to

use substitution. As long as substitution is not "well-defined", what we have is a relation

" ϕ�s = θ " of three variables ϕ, s, θ rather than an operation (ϕ, s)���ϕ�s .

Let ϕ be a formula, x and u variables of the same sort (for which we write x�u ), and

assume that for all v∈Var(ϕ) , x∉Dep(v) (that is, either x∉Var(ϕ) or it is a "top"

element in Var(ϕ) ). Then the mapping

s:Var(ϕ)∪{x}��Var(ϕ)∪{u} ,

defined by s(v)=v for v∈Var(ϕ)-{x} and s(x)=u , is a specialization. Under these

conditions, we put ϕ�(x��u) = ϕ�s [more precisely, " ϕ�(x��u) = θ " iffdef
" ϕ�s = θ " ].

The relation ϕ�ψ , " ϕ is an alphabetic variant of ψ ", is defined as follows.

If ϕ is atomic, then ϕ�ψ iff ϕ = ψ .

ϕ �ϕ � ψ iff ψ = ψ �ψ for some ψ with ϕ �ψ (i=1, 2) ; and similarly for1 2 1 2 i i i
the other connectives.

∀xϕ � ψ iff ψ = ∀x’ϕ’ for some x’�x and ϕ’ such that, for some u for which

* *u�x�x’ and u∉Var (ϕ)∪Var (ϕ') , we have that ϕ�(x��u) � ϕ’�(x’��u) .

Similarly for ∃ in place of ∀ . [More precisely, we should say, in place of

ϕ�(x��u) � ϕ’�(x’��u) , that for some σ and τ such that " ϕ�(x��u) = σ " and

33



" ϕ�(x’��u) = τ ", we have σ � τ .]

One shows in a routine manner that � is an equivalence relation, ϕ�ψ implies that

Var(ϕ) = Var(ψ) , and � is compatible with substitution: if ϕ � ψ , " ϕ�s = ϕ’ ", and

" ψ�s = ψ’ " imply that ϕ’ � ψ’ . In particular, substitution ( )�s is an operation on

equivalence classes of � . Note that the logical operations are compatible with � ; ϕ�ψ
implies that ∀xϕ � ∀xψ , etc. Also, the semantics of alphabetic variants are identical.

Henceforth, we identify alphabetic variants. In other words, a formula is, strictly speaking, an

equivalence class of the "alphabetic variant" relation � .

When s:���� , Var(ϕ)⊂� , we have Var(ϕ�s)⊂� . If, in addition, t:���� , then

(ϕ�s)�t = ϕ�(ts) . Also, ϕ�1 = ϕ .�

An entailment is an entity of the form ϕ ��� ψ , where ϕ , ψ are formulas, � is a context,
�

and Var(ϕ) , Var(ψ) ⊂ � . We formulate rules of inference involving entailments. Each

rule is a relation �(ε , ..., ε ; ε ) between entailments ε , ..., ε , ε ;0 n-1 n 0 n-1 n
ε , ..., ε are the premises, ε is the conclusion of the respective instance of � . We0 n-1 n
display instances of � in the form

ε ε ε0 1 n-1� ����������������� .εn

n may be 0 , in which case we have a rule with no premises, an axiom schema.

I. Structural rules:

(Taut) ���������
ϕ ��� ϕ

�

ϕ ��� ψ ψ ��� σ
� �(Cut) �������������������

ϕ ��� σ
�
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ϕ ��� ψ
�(Subst) ������������� ( s:����� )

ϕ�s ��� ψ�s
�

II. Rules for the connectives

(t) ���������
ψ ��� t

�

(f) ���������
f ��� ψ

�

θ ��� ϕ θ ��� ψ
� �(�) �������������������

θ ��� ϕ�ψ
�

ϕ ��� θ ψ ��� θ
� �(�) �������������������

ϕ�ψ ��� θ
�

θ�ϕ ��� ψ
�(��) ��������������

θ ��� ϕ��ψ
�

(¬) ������������ ( ¬θ abbreviates θ��f )
t ��� θ�¬θ

�

(��) ������������������������
(ϕ�ψ)�θ ��� (ϕ�θ)�(ψ�θ)

�

III. Quantifier rules

θ ������� ϕ⋅
�∪{x}(∀) ��������������� ( x∉� )

θ ������� ∀xϕ
�
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ϕ ������� θ⋅�∪{x}(∃) ��������������� ( x∉� )
∃xϕ ������� θ

�

(�∃) ������������������ ( x∉Var(θ) )
θ�∃xϕ ��� ∃x(θ�ϕ)

�

IV. Equality axioms

(E ) ������������1 t ��� x= xX�

(E ) ���������������2 x= y ��� y= xX X�

(E ) �����������������������3 x= y � ϕ ��� ϕ�(x��y)X �

In the rules, ϕ , ψ , θ and σ ranges over formulas, x over variables, � and � over finite

contexts. An implicit condition is that each entailment shown has to be well-formed. E.g., in

(t) and (f) , Var(σ)⊂� . In (∀) and (∃) , Var(θ) ⊂ � ; since x∉� is explicitly

assumed, it follows that x∉Var(θ) . Note that, in the same rules, the condition for the

well-formedness of ∀xϕ , ∃xϕ is satisfied as a consequence of the other provisos. More

⋅precisely, if � is a context, Var(ϕ)⊂�∪{x} (in particular x∉� ), then ∀xϕ , ∃xϕ are

well-formed. Namely, for y∈Var(ϕ) , if y≠x , then y∈� , hence Dep(y)⊂� , and thus

x∉Dep(y) ; and if y=x , then x∉Dep(x) anyway.

For (E ) , note that since X is a sort of a maximal kind, ϕ�(x��y) is well-defined.3

The double-lined "rules" contain more than one rule. The double line indicates that inference

can proceed in both directions. E.g., in (�) , three rules are contained: the one that infers the

entailment below �� from the two above �� , and the ones allowing to infer either of the

two entailments above �� from the one below �� .

We have coherent, classical and intuitionistic logic with dependent sorts, each with or without
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equality. Coherent logic involves the (coherent) operators t , f , � , � , ∃ ; classical and

intuitionistic logics involve the remaining two, �� and ∀ . Coherent logic without equality

has the rules all those not mentioning �� and ∀ in their names; intuitionistic logic also has

the additional rules (��) and (∀) (and then (��) , (�∃) become superfluous);

classical logic has also the remaining rule (¬) . The versions with equality also have the

rules (E ) , (E ) and (E ) .1 2 3

A coherent formula is one built up by the coherent operators starting with the atomic formulas;

an entailment ϕ ��� ψ is coherent if both ϕ , ψ are coherent formulas. A coherent theory in
�

logic with dependent logic is a pair T=(L, Σ) of a DS vocabulary L and a set Σ of

coherent entailments over L . Cons (T) is the least set of coherent L-entailments thatcoh
contains Σ as a subset, and is closed under the rules for coherent logic; we write T � ε , or

T � ε , and say that ε is deducible from T in coherent logic with dependent sorts, forcoh
ε∈Cons (T) . Again, we have the versions with or without equality.coh

A theory in intuitionistic logic , or in classical logic (with dependent sorts) is defined similarly,

mutatis mutandis. Again, we have logic with or without equality. Aside the exclusion of

equality in the logics without equality, all formulas are used, in contrast to coherent logic. We

have the concept T � ε of deducibility for each of these logics with dependent sorts.

We have completeness theorems for the various logics (coherent, intuitionistic, classical) with

dependent sorts. What these completeness theorems show is that logic with dependent sorts is

"self-contained". The initial view of logic with dependent sorts is that it is a fragment of

ordinary multi-sorted logic. The fact that truths in the fragment can be deduced by deductions

using only formulas also in the fragment is a sign, indeed, a necessary sign, that the fragment

deserves the designation "logic".

To formulate completeness, let us fix a semantic category C (in the first instance,

C = Set ). Let M be a C-valued L-structure. Let us write M� ϕ ���ψ for
�

M[�:ϕ] ≤ M[�:ψ] , and say that M satisfies the entailment ϕ ���ψ . A model of aM[�]
�

theory T=(L, Σ) is a C-valued L-structure that satisfies all entailments in Σ . For a theory

T , and an entailment ε , let us write T � ε , and say that the entailment ε is aC
C-consequence of T , to mean that all C-valued models M of T satisfy ε . For a class �

of categories, T � ε means that T � ε for all C∈� .
� C
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Mod (T) is the category of all C-valued models of T ; it is a full subcategory ofC
Fun(L,C) . We write Mod(T) when C = Set .

The completeness theorem for coherent logic, as well as for classical logic, with dependent

sorts, with or without equality, is expressed by the equivalence

T � ε ��� T � εSet

(of course, the symbol � is to be taken in any one of the four distinct senses corresponding to

the four logics listed; ε accordingly ranges over the entailments of the corresponding logic).

The completeness theorem for intuitionistic logic with dependent sorts, with or without

equality, is

T � ε ��� T � ε ,Kr

Pwhere Kr (for Kripke) denotes the class of categories of the form Set , with P any poset.

As usual (see e.g. [MR2]), the completeness theorem for intuitionistic logic with dependent

sorts may be formulated in the style of Kripke's semantics.

We will prove of the completeness theorems in §4.
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