
§§§1. Logic with dependent sorts

First, we describe the kinds of structure which the assertions of logic with dependent sorts are

about.

It is well-known from categorical logic that the similarity types that are graphs (having sorts

the objects, and unary sorted operation symbols only) are sufficient for all purposes. The

simplest consideration here replaces a relation-symbol sorted as R ⊂ A ×...×A by a new1 n
pisort R , and operations R����A , i=1, ..., n . Our first move is to restrict attention toi

one-way graphs; in fact, more conveniently, to one-way categories.

The concept of one-way category is due to F. W. Lawvere [L]. In [M1], I reproduce Lawvere's

observation to the effect that categories of finite sketches obtained by the repeated use of the

Csecond construction of [M1] starting from Set are exactly the ones of the form Set , with

C a finite one-way category.

A one-way category is one in which all endomorphisms are trivial (identities). In a skeletal

one-way category, for any objects A and B , it is not possible that there are proper

(non-identity) arrows in both direction A��B and B��A . As a consequence, there are no

cycles (positive-length paths A ��A ��...��A of proper arrows with A =A ).0 1 n 0 n

We are mainly interested in finite, skeletal, one-way categories. However, for certain purposes,

we need to relax the finiteness condition.

A category C has finite fan-out (I owe this concept to Jim Otto) if for every object A , there

are altogether finitely many arrows with domain A ; the set �{C(A, C): C∈Ob(C)} is

finite. A simple category is one which is one-way, skeletal, and has finite fan-out.

A simple category is reverse-well-founded; in other words, it satisfies the ascending chain

condition: there are no infinite paths A ��A ��...��A ��A ��... ( n<ω ) consisting0 1 n n+1
of proper arrows. (Namely, any such would have to have the objects A pairwise distinct, byn
the above, and that would mean, a fortiori, infinitely many arrows out of A .)0

If L is a simple category, the set Ob(L) of objects is partitioned as in
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⋅Ob(L) = ���Lii< �

into non-empty levels L , for i< � , � the height of L , �≤ω , such that L consist of thei 0
objects A for which there is no proper arrow with domain A , and such that, for i>0 , Li
consists of those objects A for which all proper arrows A��B have B∈L = ���L , and<i jj<i
there is at least one arrow A��B with B∈L . (If A∈Ob(L) , and for all properi-1

⋅ ⋅f:A��B , B∈���L , then A∈���L ; in fact A∈L for some i not greater than thei i ii<ω i<ω
maximum of the levels of the codomains of the finitely many proper arrows with domain A

⋅plus one. Therefore, if A∈Ob(L)-���L , then there is a proper A��B withii<ω
⋅B∈Ob(L)-���L , and thus there is an infinite proper path out of A .) All proper arrows goii<ω

from a level to a lower level. Of course, the height of a finite simple category is finite.

A maximal object in a simple category is one which is not the codomain of a proper arrow.

Every object of the maximal level (if any) is maximal, but not necessarily conversely.

By a vocabulary for logic with dependent sorts, or DS vocabulary, or even DSV,

we mean a simple category given with a distinguished, but otherwise arbitrary (possibly

empty) set of maximal objects. The distinguished maximal objects of the DSV are its relation

symbols (or relations); the rest of its objects are its kinds. We write Rel(L) and Kind(L)

for the sets of relations and of kinds of L , respectively.

DS vocabularies are our similarity types for structures for logic with dependent sorts;

concomitantly, they figure as vocabularies for the syntax of logic with dependent sorts. Unlike

in multisorted logic, the arrows of a DSV do not enter the syntax of FOLDS as

operation-symbols; the role of the arrows in a DSV and their composition will serve to

determine the "dependence structure" of the variables.

Here are some examples for DSV's .

A
� �d� �cL : � �graph � �
O
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�T dt =ct , dt =ct ,t � �t �t 1 0 2 10� � 1� 2� � � dt =dt , di =ci .L : 2 0cat i �A ���������� I
� � relations: I , Td� �c� �� �
O

A1
d � �c1� � 1� �

L : A dd =dc , cd =cc .2-graph 1 1 1 1� �d� �c� �� �
O

Only non-identity arrows are shown. The proper arrows are those shown and their composites,

among which we have the equalities shown, and no more. E.g., there are three distinct arrows

T��O . L and L have no relations. The dots in L signify that Igraph 2-graph cat
and T are relations.

For a DSV L , and an object A in it, we write A�L for the set of proper arrows with

domain A (the notation resembles the notation A�L for the comma category). For an arrow

p , K denotes its codomain.p

Given a DSV L , the intended structures for L , the L-structures, are the functors

M:L��Set in which for each relation R∈Rel(L) the following holds: the family

〈M(p):M(R)��M(K ) 〉 of functions, indexed by the proper arrows in L withp p∈R�L
domain R , is jointly monomorphic: for a, b∈M(R) , if M(p)(a)=M(p)(b) for all

p∈R�L , then a=b . The condition means that M(R) is essentially a subset of the set

� M(K ) , actually a subset of M[R] ; here, for any A∈Ob(L) ,pp∈R�L

M[A] = { 〈a 〉 ∈ � M(K ) : M(q)(a )=a whenever qp=p’} (1)def p p p p p’p∈A�L

Φ M( M[A] is the limit (joint pullback) of the diagram A�(L-{1 })���L���Set (with ΦA
the forgetful functor) mapping (A��K) to M(K) ). We will usually (and without loss of

generality) assume that in case R∈Rel(L) , the canonical monomorphism
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Mm :M(R)��M[R] taking a to 〈(Mp)(a) 〉 is an inclusion of sets.R p∈R�Kp

We recognize that the L -structures are the graphs, the L -structures are thegraph 2-graph
2-graphs. Categories are particular L -structures. If M is a category, for M as ancat
L -structure, M(O) , M(A) are the sets of objects and of arrows, M(d) and M(c) arecat
the domain and codomain functions; as a consequence, M[T] is the set of triangles

V�u �� ��v�� �	
U ��������� Ww

in M ; by definition, M(T) is the set of commutative triangles, a subset of M[T] ; M(I) is

the set of identity arrows. In fact, we realize that the L -structures are exactly thecat
category-sketches of [M1] .

For L a DSV , L� denotes its underlying graph. Any (small) graph L can be used as a

similarity type for multisorted logic; the L-structures are the graph-maps (diagrams)

L��Set ; C-valued L-structures are the diagrams L��C . Multisorted first-order logic with

L as vocabulary uses the objects of L as sorts and the arrows of L as sorted unary operation

symbols; we always allow equality (to be interpreted in the standard way) when we refer to

multisorted logic. For these matters, see [MR1]. First-order logic with dependent sorts over L

will be a proper part of multisorted first order logic over L .

To be sure, the L�-structures are not exactly the L-structures; the latter are those among the

former that satisfy a certain set Σ[L] of axioms over L� , to be described next. Σ[L]

consists of the following sentences:

∀x∈A.(���{q(p(x))=p’(x) : p, p’∈A�L, q∈Arr(L) , qp=p’} ,

one for each A∈Ob(L) ( = Kind(L)∪Rel(L) ) ; and

∀x∈R.∀y∈R.[( ��� p(x)=p(y)) ��� x=y] ,
p∈R�L

one for each R∈Rel(L) .
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One feature of logic with dependent sorts is that there will not be any operation symbols

(explicitly) used in it; thus, the just-listed sentences are definitely not in logic with dependent

sorts over L .

Let us explain the intuition behind logic with dependent sorts for the case when the vocabulary

is L . First of all, logic with dependent sorts is a (proper) part of what we know ascat
ordinary multisorted logic over �L � , the (a) language of categories. In logic withcat
dependent sorts over L , we have variables ranging over O ; we can quantify thesecat
variables. However, instead of variables ranging over A , we will have ones that range over

A(U, V) , where U and V are variables of sort O . A(U, V) is a "dependent sort", one

depending on the variables U and V . A variable u ranging over A(U, V) is of sort

A(U, V) , and we write u:A(U, V) . Of course, we should think of A(U, V) as

hom(U, V) , and of u:A(U, V) as u:U��V . In terms of the semantics of

L -structures, the interpretation of A(U, V) in M is {a∈MA:(Md)(a)=(Mc)(a)} .cat
Thus, we have no variables ranging over all arrows at once; only ones ranging over arrows

with a fixed domain and codomain.

An immediate consequence of this is that if a formula has the free variables U and V , and

also u:U��V (that is, u:A(U, V) ), then forming ∀Uϕ should and will be illegal; the free

variable u in ∀Uϕ has lost its fixed reference to a domain.

In FOLDS in general, and in particular over L , we will have a restricted use of equalitycat
only. The reason for this is our main aim, which is to formulate languages for categorical

structures in which all statements are invariant under the equivalence appropriate for the kind

of categorical structure at hand. Typically, equivalences does not respect equality of certain

kinds of entities; in the case of categories, equality of objects, in the case of bicategories,

equality of objects (0-cells) and equality of 1-cells. In FOLDS with restricted equality, we will

allow "fiberwise equality" over maximal kinds; in the case of L , this means fiberwisecat
equality over A . The restrictions on equality in FOLDS over L will correspond to thecat
intuition that in category theory, one should not refer to equality of objects, and equality on

arrows should be mentioned only with reference to arrows which have the same domain and

the same codomain.

The above remarks, made for the case L = L , on how logic with dependent sorts over Lcat
is constrained with respect to ordinary first-order multi-sorted logic over �L� have natural

extensions to the case of a general vocabulary L . The constraints will be built into the general
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definition of the syntax.

Before giving the general definitions, to illustrate FOLDS (first-order logic with dependent

sorts), we write down the axioms for category in this logic.

∀U:O.∃i:U��U.I(i) ;

∀U:O.∀i:U��U.∀j:U��U.(I(i)�I(j)��i=j) ;

∀U:O.∀V:O.∀W:O.∀u:U��V.∀v:V��W.∃w:U��W.T(u, v, w) ;

∀U:O.∀V:O.∀W:O.∀u:U��V.∀v:V��W.∀w:U��W.∀w’:U��W

(T(u, v, w)�T(u, v, w’)���w=w’) ;

∀U:O.∀i:U��U.∀u:U��V.T(i, u, u) ;

∀U:O.∀i:U��U.∀u:V��U.T(u, i, u) ;

∀U:O.∀V:O.∀W:O.∀X:O.

∀u:U��V.∀v:V��W.∀w:U��W.∀x:W��X.∀y:V��X.∀z:U��X

((T(u, v, w)�T(v, x, y)�T(w, x, z))���T(u, y, z)) .

We have applied certain abbreviations in writing these formulas. The atomic formula I(i)

should be really I(U, i) ; U is also a variable in it; in fact, i:U��U cannot appear

anywhere without U . Similarly, T(u, v, w) is really T(U, V, W, u, v, w) . However, the

abbreviations used are systematic, and can be made into a formal feature. Also, w=w’ is an

atomic formula depending on all of the variables U, W, w, w’ ; it is written, more fully, as

w= w’ .A(U, W)

Many of the usual properties of categories, and of diagrams of objects and arrows in

categories, can be expressed in FOLDS over L . For instance, the definition of elementarycat
topos (with operations defined by universal properties up to isomorphism, not specified as

univalued operations) can be given as a finite set of sentences in FOLDS over L ; thecat
reader will find it easy to write down the axioms for elementary topos in the style of the above

axioms for category. As Freyd [F] and Blanc [B] have shown, and as we will see below, this is

closely related to the fact that the usual properties of categories, and of diagrams in categories,

are invariant under equivalence of categories.

Let us turn to the formal specification of the syntax of logic with dependent sorts. We fix a

DSV L . For a while, only the kinds in L will be used; let K be the full subcategory of L

on the objects the kinds; K is a simple category, the category of kinds of L ; it may regarded

as a DSV without relations.
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Note that kinds have been assigned a level in K ; levels range over the natural numbers less

than k , where k is the height of K . Recall that for any K∈K , we use the notation K�K

for the set of all proper arrows p:K��K with domain K . The set K�K will figure as thep
arity of the symbol K . In particular, the ones with empty arity are exactly the level-0 kinds.

We are going to define what sorts are, and what variables of a given sort are. These notions

are relative to a given L (actually, to the category K of kinds of L ), which is considered

fixed now.

When X is anything, we write x:X to mean that x = 〈2, X, a 〉 for some (any) a . When

we have defined sorts, and X is a sort, x:X is to be read as " x is a variable of sort X ".

By definition, a sort is an entity of the form

〈1, K, 〈x 〉 〉p p∈K�K

such that K is a kind, and for each p∈K�K , and for

X = 〈1, K , 〈x 〉 〉 ,p def p qp q∈K �Kp

we have x :X .p p

We will also write K( 〈x 〉 ) for 〈1, K, 〈x 〉 〉 ; thus, a sort is obtained byp p∈K�K p p∈K�K
filling in the " pth " place of a kind K , for any p in the arity K�K of K , by a suitable

variable x . The sort K( 〈x 〉 ) is said to be of the kind K .p p p∈K�K

When X is a sort, and x:X , that is, x= 〈2, X, a 〉 for some a , x is called a variable of

sort X ; a is called the parameter of the variable x . Usually, the notation x:X will imply

that X is a sort.

Note that every variable "carries" its own sort with it. This is in contrast with the practice of

most of the relevant literature (see e.g. [C]), where variables are "locally" declared to be of

certain definite sorts, but by themselves, they do not carry sort-information. For a sort

X = K( 〈x 〉 ) , Var(X) = {x :p∈K�K} ; and if x:X , Dep(x) = Var(X) ;p p∈K�K def p def
x depends on the variables in Dep(x) .

20



Note also that any parameter gives rise to a variable of a given sort; for any sort X , and for

any a whatever, 〈2, X, a 〉 is a variable of sort X . In the "purely syntactic" contexts, it

suffices to restrict the parameters to be natural numbers (thereby ensuring a countable infinite

recursive set of variables of each sort). However, for the purposes of model-theory, it is

convenient to have a proper class of variables of each sort (as a consequence, we have a proper

class of sorts). Let us call a variable natural when its parameter, as well as that of each

variable it depends on, etc., is a natural number.

For a variable y , let's write X for the sort of y ( y:X ), and let's use the notationy y

y:X =K ( 〈x 〉 ) (1')y y y, p p∈K �Ly

displaying the ingredients of the sort X in dependence on y . Also, let's write a(y) fory
the parameter of y .

The first question arising concerning the definition of "sort" is whether the constituent entities

X are also sorts; the answer is "yes". Assume X = 〈1, K, 〈x 〉 〉 is a sort. Applyingp p p∈K�K
the definition of "sort" to X , for q∈K �K , we want that forp p

(X ) = 〈1, K , 〈x 〉 〉 ,p q q (rq)p r∈K �Kq

we have x :(X ) . But since K = K and (rq)p = r(qp) , we have (X ) =qp p q q qp p q
X ; and x :X , by X being a sort.qp qp qp

Although the definition unambiguously defines what sorts and variables are, it is not (quite)

clear, for instance, that for every K∈K , there are sorts of the kind K . We show that the sorts

of the kind K are in a bijective correspondence with families 〈a 〉 of arbitraryp p∈K�K
entities a ; the correspondence maps X = 〈1, K, 〈x 〉 〉 top p p∈K�K
a(X) = 〈a(x ) 〉 for which x = 〈2, X , a 〉 for a suitable X .def p p∈K�K p p p p

We want to prove that for any 〈a 〉 , there is a unique sort X of the kind K withp p∈K�K
a(X)= 〈a 〉 .p p∈K�K

Let K∈K and 〈a 〉 be given. By recursion on the level of K , for each p∈K�K ,p p∈K�K p
we define X (a sort, as it turns out), and the variable x :X . Let p∈K�K . We putp p p
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X = 〈1,K , 〈x 〉 〉 , and x = 〈2, X , a 〉 .p def p qp q∈K �K p def p pp

Since for each q∈K �K , K is of lower level than K , the entity x has been defined;p qp p qp
thus, X and x are defined for p as well. This defines X and x for all p .p p p p

Put X = 〈1, K, 〈x 〉 〉 . Then X formed for X as in the definition of "sort" isdef p p∈K�K p
the same as the X we just defined. Since x :X , X is a sort. Clearly,p p p
a(X) = 〈a 〉 .p p∈K�K

The uniqueness of X with this property is (also) easily seen.

Let us remark that for kinds K of level 0 , there is exactly one sort of the kind K , namely

K(∅) ; this can safely be identified with K itself.

Let us consider the case K = L . We have the level-0 sort O ; let us use the lettersgraph
U , V , W , ... for denoting variables of sort O ; U:O , etc. The level-1 sorts are of the

form A( 〈x 〉) with x , x :O , for which we write A(x , x ) . Thus, wep p∈{d,c} d c d c
have sorts A(U, V) , A(V, U) , A(U, U) , ... Let us use u , v , for variables of level 1 ; we

may have u:A(U, V) , which we paraphrase as u:U��V .

In the case of L , the ones listed are all the sorts and variables.graph

For K = L , we have the additional sorts of the kind A . Let us write d for the2-graph 1 10
arrow dd =dc , and c for cd =cc . A �K = {d ,c ,d ,c } . Writing1 1 10 1 1 1 10 10 1 1
A (x ,x ,x ,x ) for A( 〈x 〉 ) , we see that the sorts1 d c d c p p∈{d ,c ,d ,c }10 10 1 1 10 10 1 1
of level-2 are those

A(U, V, u, v)

for which U:O , V:O , u:U��V and v:U��V . Here, U and V , as well as u and v ,

may coincide. We would like to paraphrase A(U, V, u, v) as

u
�����A(U V) .
�����v
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Before we complete the definition of the syntax of logic with dependent sorts, let us discuss

the semantics of sorts. To begin with an example, let us take K = L . Now, we2-graph
know that the intended K-structures are the functors K��Set . But we may take a different

view. We may say that a K-structure M consists of

a set MO ,

for each A, B∈M(O) , a set MA(A, B) ,

and

for each A, B∈M(O) and f, g∈MA(A, B) , a set MA (A, B; f, g) .1
This way of thinking of a K-structure emphasizes that an "arrow" f cannot be conceived of

before its "domain and codomain" A, B, which have to be elements of MO , have been given;

there is a similar consideration for "2-cells". Also note that this kind of K-structure is not

literally the same as a functor K��Set . The main difference is that, in the new version of the

concept, we are not saying anything about the sets MA(A, B) being disjoint from each other

for distinct pairs (A, B) . Recall the two different styles of definition of "category" (or

"2-category"). The one in which arrows determine their domain and codomain is in the spirit

of our notion of structure in the original sense; the other in which we talk about a function

A, B��hom(A, B) assigning a hom-set to pairs of objects is related to the new concept.

The second version of the concept of K-structure has the following general form. A

K-structure M is given by specifying when, for K∈K , the entities MK( 〈a 〉 ) arep p∈K�K
defined, and when they are, what sets they are; such data are subject to the following

condition:

(2) MK( 〈a 〉 ) is defined iff for each p∈K�K , MK ( 〈a 〉 ) isp p∈K�K p qp q∈K �Kp
defined and a ∈ MK ( 〈a 〉 ) .p p qp q∈K �Kp

This formulation hides the recursive character of the concept. Once it is clarified, for all K of

level less than i , when MK( 〈a 〉 ) is defined, and if so, what set it is, then for anyp p∈K�K
K of level i , MK( 〈a 〉 ) is defined iff for all p∈K�K , MK ( 〈a 〉 ) isp p∈K�K p qp q∈K �Kp
defined, and a ∈ MK ( 〈a 〉 ) (note that each K is of level <i ), and in thatp p qp q∈K �K pp
case, MK( 〈a 〉 ) is any set.p p∈K�K

Any functor M:K��Set gives rise to a K-structure in the new sense. For any K∈K , define

M[K] as in (1) ; declare that MK( 〈a 〉 ) is defined iff 〈a 〉 ∈ M[K] , andp p∈K�K p p∈K�K
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in that case, put

MK( 〈a 〉 ) = {a∈MK: ��� (Mp)(a)=a } . (3)p p∈K�K def pp∈K�K

It is clear (using that M is a functor) that now, (2) is satisfied.

But conversely, "essentially all" K-structures in the second sense are obtained as functors

K��Set . The passage from a structure in the new sense to one in the old sense is as follows.

Given a K-structure M in the new sense, for any K∈K , M(K) is defined as the disjoint

union of all defined sets MK( 〈a 〉 ) , indexed by the tuples 〈a 〉 , and, forp p∈K�K p p∈K�K
p:K��K , M(p) is given by M(p)( 〈 〈a 〉 , a 〉)=a ; this defines a functorp p p∈K�K p
K��Set .

Making the statement that the two notions of K-structure are "essentially equivalent" precise

would require defining what we mean by an isomorphism of two K-structures M and N in

the new sense, and showing that the above two passages represent an equivalence of the

category of functors K��Set with natural isomorphisms as arrows on the one hand, and the

category of K-structures in the new sense, with isomorphisms in the new sense between them

as arrows on the other. We will not go through this exercise, and return to our original concept

of " K-structure" (" L-structure"). However, the concept of an M-sort as a set of the form (3)

will be used.

Let us now return to the full DS vocabulary L , and define what L-formulas in logic with

dependent sorts are. We will have two versions: logic with dependent sorts with (restricted)

equality, and logic with dependent sorts without equality. FOLDS with unrestricted equality

also makes sense; however, it turns out to be essentially the same as full multisorted logic with

equality over �L� (see Appendix C), hence, it is of no real interest.

Let us fix L .

Atomic formulas are defined very similarly to sorts. An atomic formula in logic with

dependent sorts without equality is an entity of the form

〈3, R, 〈x 〉 〉p p∈R�L
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such that R is a relation in L , and for each p∈R�L , and

X = 〈1,K , 〈x 〉 〉 ,p def p qp q∈K �Kp

we have x :X . Under these conditions, the X are sorts (just as with the definition ofp p p
"sort"). We write R( 〈x 〉 ) for 〈3, R, 〈x 〉 〉 .p p∈R�L p p∈R�L

In logic with (restricted) equality, we also have additional atomic formulas as follows. For any

maximal kind K (maximal object of K ), sort X=K( 〈x 〉 ) , and variables x , y ,p p∈K�K
both of sort X , we have that 〈4, X, x, y 〉 , written as

x = y ,X

is an atomic (equality) formula.

We define formulas ϕ and the set Var(ϕ) of the free variables of ϕ by a simultaneous

induction. Any atomic formula is a formula; if ϕ = R( 〈x 〉 ) , Var(ϕ) =p p∈R�L
{x :p∈R�L} ; if ϕ:=: x = y , Var(ϕ)=Var(X)∪{x, y} .p X

The sentential connectives t , f , � ,� , �� , ¬ ,��� can be applied in an unlimited manner;

Var( ) for the compound formulas formed using connectives is defined in the expected way;

e.g., Var(ϕ�ψ) = Var(ϕ)∪Var(ψ) .

Suppose ϕ is a formula, x is a variable such that there is no y∈Var(ϕ) with

x∈Dep(y) . Then ∀xϕ , ∃xϕ are (well-formed) formulas;

Var(∀xϕ) = Var(∃xϕ) = (Var(ϕ)-{x}) ∪ Dep(x) .def def

All formulas are obtained as described. (Of course, we have some determinations such as

∀xϕ = 〈∀, x, ϕ〉 , where ∀ = 7 (?), etc.)def

Let us make some remark on logic with (restricted) equality. Just as in ordinary first-order

logic, the syntax of logic with equality is the same as that of logic with equality, with the

equality-symbol understood as another relation symbol; it is only the semantics that makes the

difference.

25



�Formally, for each maximal kind K , add to L an additional relation E , with morphismsK
eK0

������� eqE K subject to pe =pe , for all p∈K�L ; let us denote by L theK������� K0 K1eK1
extension of L by these additions. The equality formula x = y corresponds toX
E ( 〈z 〉 ) where z =x , z =y , z =z =x . Up to theK r r∈E �L e e pe pe pK K0 K1 K0 K1
exchange of these two formulas, for each maximal K , the syntax of FOLDS with (restricted)

eqequality over L , and the syntax of FOLDS without equality over L coincide.

A context is a finite set � of variables such that if y∈� , then Dep(y)⊂� . It is easy to see

that for any formula ϕ , Var(ϕ) is a context.

We explain the semantics of logic with dependent sorts. Let M be any L-structure. Let � be

a context. We define

M[�] = { 〈a 〉 : a ∈MK( 〈a 〉 ) for all y∈�} (4)def y y∈� y x p∈K �Ly, p y

(recall the notations (1') and (3)).

By recursion on the complexity of the formula ϕ , we define M[�:ϕ] , the interpretation of

ϕ in M in the context � , whenever � is a context such that Var(ϕ)⊂� ; we will have

that M[�:ϕ] ⊂ M[�] . For an atomic formula R( 〈x 〉 ) , we stipulate, for anyp p∈R�K
〈a 〉 ∈M[�] ,y y∈�

〈a 〉 ∈ M[�:R( 〈x 〉 )] ����� 〈a 〉 ∈ M(R)y y∈� p p∈R�K x p∈R�Kdef p

(recall that M(R) ⊂ M[R] ; clearly, 〈a 〉 ∈ M[R] automatically).x p∈R�Kp

In case of logic with equality,

〈a 〉 ∈ M[�:u= v] ����� a = a .y y∈� X u vdef

For the propositional connectives, the clauses are the expected ones; e.g.,
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〈a 〉 ∈ M[�:ψ�θ] �����y y∈� def
〈a 〉 ∈ M[�:ψ] and 〈a 〉 ∈ M[�:θ] .y y∈� y y∈�

Let us consider ∀xψ , and a context � such that Var(∀xψ)⊂� . Let x:K( 〈x 〉 ) .p p∈K�L
First, assume that x∉� ; this is the case in particular when

�=Var(∀xψ)=(Var(ϕ)-{x})∪Dep(x) .

⋅Let �’=� ∪{x} ; �’ is a context. When 〈a 〉 ∈M[�] and a∈MK( 〈a 〉 ) ,y y∈� x p∈K�Lp
let 〈a 〉 (a/x) denote 〈a’ 〉 for which a’=a for y∈� , and a’=a . We seey y∈� y y∈�’ y y x
that 〈a 〉 (a/x) ∈ M[�’] as follows. Note that for y∈� , we have x∉Dep(y)y y∈�
(since x∈Dep(y) would imply that x∈� ); as a consequence, a’∈MK ( 〈a’ 〉y y x p∈K �Ly, p y
is equivalent to a ∈MK ( 〈a 〉 for y∈� ; while for y=x , the same holds byy y x p∈K �Ly, p y
the assumption on a . We define

〈a 〉 ∈M[�:∀xψ] �����y y∈� def

for all a∈MK( 〈a 〉 ) , we have 〈a 〉 (a/x)∈M[�’:ψ] ;x p∈K�L y y∈�p

and

〈a 〉 ∈M[�:∃xψ] �����y y∈� def

there is a∈MK( 〈a 〉 ) such that 〈a 〉 (a/x)∈M[�’:ψ] .x p∈K�L y y∈�p

In the general case for � ⊃ Var(∀xψ) , define

�〈a 〉 ∈M[�:∀xψ] ��� 〈a 〉 � ∈M[�:∀xψ] ,y y∈� y y∈�
�〈a 〉 ∈M[�:∃xψ] ��� 〈a 〉 � ∈M[�:∃xψ] ,y y∈� y y∈�

�where � = Var(∀xψ) = Var(∃xψ) . It is clear that when x∉� , the second definition gives

the same answer as the first one.
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As usual, we also write M�ϕ[ 〈a 〉 ] for 〈a 〉 ∈M[�:ϕ] .y y∈� y y∈�

This completes the definition of the standard, Set-valued semantics of FOLDS.

�Let us note that when ϕ is a formula in logic with equality over L , and ϕ is the

eqcorresponding formula in logic without equality over L , obtained by exchanging the

�equality subformulas for E -formulas, and M is an L-structure, then M[�:ϕ] = M[�:ϕ] ;K
eqin the latter instance, M denotes the standard L -structure in which each E is interpretedK

as true equality. In short, the semantics of logic with equality over L coincides with the

eqsemantics of logic without equality over L when the latter is restricted to standard

structures.

Let us formulate a simple translation of logic with dependent sorts into ordinary multisorted

*logic. This amounts to a mapping ϕ��ϕ of L-formulas ϕ of FOLDS to �L�-formulas of

multisorted logic. Let us agree that every variable x:X , with X a sort of kind K , will be

regarded, in multisorted logic over L , a variable of sort K .

* *The mapping ϕ��ϕ will be so defined that the free variables of ϕ are exactly the same

as those of ϕ . Moreover, the essential property of the translation is that, for any L-structure

M ,

*M � ϕ[ 〈a 〉 ] ��� M � ϕ [ 〈a 〉 ] ;y y∈� y y∈�

here, in the second instance, we referred to the usual notion of truth for multisorted logic. The

definition is this:

for an atomic formula ϕ :=: R( 〈x 〉 ) ,p p∈R�K
* �ϕ = R( 〈x 〉 ) = ∃y∈R. �	
 p(y)= x ; (5)def p p∈R�K def K pp∈R�L p

for an equality formula ϕ :=: x= y ,X
*ϕ = x= ydef K

(here, X is a sort of the kind K ) ;
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*( ) commutes with propositional connectives;

* *(∀xϕ) = ∀x( ��� p(x)= x ��� ϕ ) ;def K pp∈K�L p

* *(∃xϕ) = ∃x( ��� p(x)= x � ϕ )def K pp∈K�L p

(in the last two clauses, x:K( 〈x 〉 ) ).p p∈K�L

We have a straightforward extension of the semantics of logic with dependent sorts to

interpretations in categories so that the standard semantics will appear as the special when the

target category is Set . First of all notice that the notion of C-valued L-structure makes

sense for any category C ; it is that of a functor M:L��C such that for any R∈Rel(L) , the

family 〈M(p) 〉 of morphisms in C is jointly monomorphic. The use of the notationp∈R�L
M:L��C will imply that M is a C-valued L-structure. From now on, let us assume, at least,

that C has finite limits.

Let M:L��C . For any object A of L (kind or relation), we define M[A] as the limit (joint

Φ Mpullback) of the diagram A�(L-{1 })���L���C , with Φ the forgetful functor; M	ΦA
Mmaps p:A��K to M(K ) . Let us write π , or π , for the limit projectionp p p p

MM[A]��M(K ) , and let π =π :M(A)��M[A] be the canonical arrow for whichp A A
Mπ 	π =M(p) . When A is a relation R , then π is a monomorphism; we also write mp A R R

M Ufor π . When A is a kind K , then U[K] and π :U(K)��U[K] are defined for anyR p
U:K��C (formally, by using the above definition for K in place of L ); of course, when

U MU=M�K , then U[K]=M[K] , π = π .p p

Continuing, let � be a context; we will define M[�] . We construct a graph 〈� 〉 and a

diagram Φ : 〈� 〉���L as follows. The objects of 〈� 〉 are the elements of � ,
�

Ob 〈� 〉 = � . The arrows of 〈� 〉 are 〈y, z; p 〉:y��z , one for each p∈K �L such thaty
z=x . Φ maps y to K , 〈y, z; p 〉:y��z to p:K ��K (=K ) . M[�] is definedy, p � y y p z
as the limit of the composite MΦ : 〈� 〉���C ; let us denote the projections for this limit by

�
M Mπ =π =π :M[�]��M(K ) (y∈�) .y y �, y y
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We define M[�:ϕ] as a certain subobject of M[�] , by recursion on the complexity of ϕ .

Let ϕ be the atomic formula R( 〈x 〉 ) , and let � be a context such thatp p∈R�L
Var(ϕ)={x :p∈R�L} ⊂ � . Let f:M[�]��M[R] be the arrow, given by the universalp
property of the limit defining M[R] , for which π �f=π ( p∈R�L ). M[�:ϕ] is definedp xp
by the pullback

M[�:ϕ]������M(R)
M � � � Mm � � m�, ϕ � � R

M[�]�������M[R]f

M(that is, M[�:ϕ] as a subobject of M[�] is represented by the monomorphism m ).�, ϕ

For formulas built by a propositional connective from simpler formulas, the definition is the

expected one. E.g.,

M[�:ϕ��ψ] = M[�:ϕ]���M[�:ψ] ,

where on the right-hand-side, reference is made to the Heyting implication ��� in the

subobject lattice S(M[�]) ; of course, M[�:ϕ��ψ] is defined if and only if the

corresponding instance of Heyting implication is defined in S(M[�]) .

⋅Let x∉� , and Var(∀xϕ)⊂� . We have f:M[�∪{x}]��M[�] for which π �f=π’y y
M M ⋅( y∈� ; π =π , π’=π ⋅ ). Let ∃ , ∀ :S(M[�∪{x}]) ⊃�� S(M[�]) be they �, y y �∪{x}, y f f

* ⋅partial left and right adjoints to f :M[�]��M[�∪{x}] , the latter defined by pulling back

along f . We define

⋅M[�:∃xϕ] = ∃ (M[�∪{x}:ϕ]) ,f

⋅M[�:∀xϕ] = ∀ (M[�∪{x}:ϕ]) .f

For M[�:∃xϕ] or M[�:∀xϕ] to be defined, it is necessary and sufficient that the

corresponding instance of ∃ , respectively ∀ be defined.f f
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For the coherent part of the language (atomic formulas, t , f , � , � , ∃ ) to be interpretable in

the category, it suffices that C is a coherent category (see e.g. [MR1]). For the interpretation

of the full language, it is suffices to have that C is a Heyting category (see e.g. [MR2]).
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