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Introduction

1. This work introduces First-Order Logic with Dependent Sorts (FOLDS). FOLDS is
inspired by Martin-Löf’s Theory of Dependent Types (TDT) [M-L]; in fact, FOLDS may
be regarded a proper part of TDT, similarly to ordinary first-order logic being a proper
part of higher-order logic. At the same time, FOLDS is of a much simpler nature than
the theory of dependent types. First of all, the expressive power of FOLDS is no more
than that of ordinary first-order logic; in fact, FOLDS may be regarded as a constrained
form of Multi-Sorted First-Order Logic (MSFOL). Secondly, the syntax of FOLDS is quite
simple, only slightly more complicated than that of MSFOL.

In general terms, the significance of FOLDS is analogous to that of ordinary first-order
logic (FOL). On the one hand, FOL has a simple and powerful semantic metatheory; on
the other hand, FOL is the basis of a multitude of specific foundational theories. Corre-
spondingly, FOLDS has a simple semantic metatheory, not essentially more complicated
than that for FOL. It is one of the aims of this work to develop the basic semantic theory
of FOLDS. On the other hand, I make a start on showing that FOLDS is good, and
better than FOL, for the purposes of formal systems dealing with sets, categories, and
more general categorical concepts.

FOLDS is very simple; for the understanding of the motivation for, and the basic
mechanics of, FOLDS there is no need for any prior knowledge of the, by now, extensive
literature of dependent types. I find the idea of FOLDS so simple and natural (we will
also see that FOLDS is useful, which is another issue) that I am thoroughly surprised
by the apparent fact that, in the literature, it has not so far been singled out for study.
(Nevertheless, there are important pointers to FOLDS in the literature that I will point
out below.) Incidentally, I decided to use the word “sort”, instead of “type”, in “first-
order logic with dependent sorts”, to emphasize the closeness of FOLDS to MSFOL, and
because of the strongly-felt connotation, in phrases like “type-theory”, of the word “type”,
that implies the presence of a higher-order structure; you would not say “multi-typed first-
order logic”, would you?

J. Cartmell [C] introduced a syntax of variable types for the purposes of a novel
presentation of generalized algebraic theories; Cartmell’s syntax was also “abstracted
from . . . Martin-Löf type theory”. FOLDS differs in two ways from Cartmell’s syntax.
Firstly, in Cartmell’s syntax, there are no logical operators in the usual sense; there
are no propositional connectives, or quantifiers; FOLDS has them, with quantification
constrained in the natural way already given in TDT. Secondly, the type-structure of
FOLDS is much simpler than that of Cartmell’s syntax.

Cartmell’s syntax may be characterized as the result of abstracting the structure of
contexts, types, terms and equality out of TDT. FOLDS has the first two of these, contexts
and types (although the latter are called “sorts”), but it does not have the third, terms
(except in the rudimentary form of mere variables), and it has equality in a greatly
restricted form only.

The restriction on the use of equality in FOLDS is a fundamental feature. FOLDS is
to be used in formulating categorical situations in which, for example, equality of objects
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of a category is not an admissible primitive. The absence of term-forming operators, to
be interpreted as functions, is a consequence of the absence of equality; it seems to me
that the notion of “function” is incoherent without equality.

It is convenient to regard FOLDS a logic without equality entirely, and deal with
equality, as much as is needed of it, as extralogical primitives.

It is worth-while for the reader at this point to make a quick comparison of the way
[C] formulates the theory of categories (pp. 212, 213 in [C]), and the way FOLDS formu-
lates the same (see 1, p.11). Let me emphasize that essentially this particular instance
of FOLDS have been introduced early on by G. Blanc [B], in his characterization (math-
ematically equivalent to P. Freyd’s earlier characterization) of first-order properties of
categories invariant under equivalence of categories. A. Preller [P] makes the specifica-
tion of the specific instance of FOLDS clearer. The theme of invariance under equivalence
is in fact the main theme for this work; see below.

The FOLDS formulation of the theory of categories is, admittedly, longer than the
Cartmell formulation. It consists in writing out the axioms of “category” in essentially
the usual first-order terms, with a special regard for the typing of variables. The main
points to observe are that (1) no equality on objects is used; (2) equality of arrows is used
only when the arrows already are assumed to be parallel; and (3) quantification on arrows
is restricted to one hom-set at a time.

The formulation in [C] is more “mathematical”; in particular, the essential algebraic
nature of the concept of category is clear on it, whereas, because of the presence of the
usual first-order operators that in general do not yield essentially algebraic concepts, in the
FOLDS formulation the essential algebraic quality of the concept of category is obscured.

In the case of the theory of categories, the notions of context in the two formulations
coincide; in fact, now a context is a finite diagram of objects and arrows represented by
variables. Below, we will take a look at the formulations of the concept of a category with
finite limits in the two frameworks, when the differences become greater.

The most obvious difference of the two formulations is that the one in FOLDS is purely
relational, in Cartmell’s syntax, purely operationaI. In FOLDS, the concepts of identity
and composition are represented by relations, rather than operations as in [C]. The arity
of a relation is the type of a particular context; the places of a relation are to be filled by
variables forming a context of a given type. To give an example, in case of composition as
a relation, the variables filling the places of the relation T (for (commutative) triangle)
form a system consisting of variables U, V,W, u, v, w (not necessarily all distinct), related
to each other by sorting data

U, V,W :O; u :A(U, V ), v ∈ A(V,W ), w ∈ A(U,W )

(O for “object”, A for “arrow”),
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or more pictorially,
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T then says of this diagram that it is commutative.

A general context in the FOLDS language for categories is a finite graph of object
and arrow variables, with sorting data specifying which object variable is the domain of
each arrow variable, and the same for codomain (when we say “graph”, we mean to imply
that there is no arrow-variable without a corresponding object-variable designated as its
domain, or codomain).

An immediate consequence of the absence of operations in FOLDS is the simplification
of the notions of context and type (sort) in FOLDS with respect to the Cartmell syntax.
To see the effect of this, we take the example of the theory of categories with finite limits.
Although this example is not discussed in [C], it is highly relevant to the subject of [C]
as acknowledged by the title of Section 6: “Essentially algebraic theories and categories
with finite limits”.

In the Cartmell syntax, pullbacks would be introduced by the following introductory
rules:

U, V,W ∈ Ob, v ∈ Hom(V, U), w ∈ Hom(W,U) : pb0(U, V,W, v, w) ∈ Ob

(here, the “informal syntax” allows writing pb0(v, w) in place of the longer term);

U, V,W ∈ Ob, v ∈ Hom(V, U), w ∈ Hom(W,U) :

pb1(v, w) ∈ Hom(pb0(v, w), V ), pb2(v, w) ∈ Hom(pb0(v, w),W ).

(Of course, one has in mind the pullback diagram

pb0(v, w) W
pb2(v,w)

//

V

pb0(v, w)

OO

pb1(v,w)

V U
v // U

W

OO

w .)

There are further terms and rules expressing the universal property of the pullback.

Now, in FOLDS, we have two possibilities. One is simply adopting the same language
of categories as before; after all, pullbacks are first-order definable in the language of
categories; in fact, pullbacks are definable in FOLDS over the language of categories.
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Another possibility would be adopting an additional primitive relation of arity the diagram

P Wq
//

V

P

OO

p

V U
v // U

W

OO

w ;

we would do this if we wanted (as we may) to keep down the quantifier complexity of the
axioms of the resulting theory. In either case, appropriate first-order axioms, formulated
in FOLDS, are adopted.

Now, compare the notions of context and type (sort) in the Cartmell formulation, to
those in the FOLDS formulations, in this example. In either of the FOLDS formulations,
the notions of context and type remain the same as in the previous example of the theory of
categories; in particular, contexts are finite graphs of variables. However, in the Cartmell
formulation, because of the presence of terms of arbitrarily high complexity, both of the
type of an object and of an arrow, contexts and types of arbitrarily high complexity will
come up. In particular, the second rule above features a type with a place filled by a term
which is not a variable.

This example explains the reason for the complexity of the definition of the general
concept of theory in Cartmell’s syntax; see Section 6, loc.cit. In particular, the definition
of “type” cannot be made independent of the axioms of the theory in question; what
counts as a well-formed type depends on what axioms are present. This is not at all
unexpected; M. Coste’s earlier syntax for essentially algebraic theories [Co] (not referred
to in [C]) also had this feature. In contrast, in FOLDS, there is no such complication in
the definition of “type” (“sort”).

Let me point out another aspect in which FOLDS is simpler than Cartmell’s syntax.
In FOLDS, one never substitutes in a sort expression; in the formal system, there is a
substitution rule, but it does not effect sorts. Related to this is the circumstance that the
sorting of variables can be given rigidly; that is, when we say that the variable x is of
sort X , where the sort X may contain further variables, we mean a formal, once-for-all
specification concerning x . In FOLDS, in contrast to Cartmell’s syntax, it is impossible
to have the same variable x to be declared of types X and Y unless X and Y are
literally the same.

I consider the just-described feature of FOLDS to be of foundational importance. The
view underlying FOLDS is that sort-declarations are not subject to logical manipulation;
they are not propositions; one cannot negate a sort-declaration. One cannot ask whether
x is of sort X within logic; the variable x being of sort X is a purely notational, or
conventional, matter. More pointedly, membership in a set is not a matter for logic; what
is the matter for logic is whether certain elements, declared to belong to various sets, do
or do not satisfy certain predicates. One should compare simple type theory (higher-order
logic), in which typing of variables is also absolute. The difference in FOLDS is only
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that the type of a variable may also contain variables; however, the latter variables are
uniquely determined from the variable being typed.

There is an important difference between the FOLDS-formulation and the Cartmell
formulation, indicated above, of the notion of category with finite limits; in fact, the
very notions formulated, not just their formulation, differ. Cartmell’s syntax formalizes
the notion of category with specified finite limits; FOLDS (in our application) formalizes
the notion of category with finite limits, with the latter defined only up to isomorphism.
Moreover, Cartmell’s syntax cannot formalize the latter notion, for the simple reason that
that notion is not an essentially algebraic one. Conversely, FOLDS, with the restriction
that no equality on objects is allowed, cannot formalize the notion of category with
specified finite limits.

It is possible to recapture the full expressive power, and more, of Cartmell’s syntax
within the framework of FOLDS. This will essentially be shown in Appendix C, when
discussing “global equality”. However, FOLDS with global equality captures more than
Cartmell’s syntax; because of this, it fails to represent that syntax faithfully. Thus,
Cartmell’s syntax is not rendered superfluous, or redundant, in any sense by what we do
here. There is a similar situation with Coste’s syntax for essentially algebraic theories
mentioned above. Coste’s syntax is one using the unique existential quantifier; it can
be easily subsumed under the simpler regular logic which uses the ordinary existential
quantifier. The point of Coste’s syntax, and of Cartmell’s, is that they capture exactly
the essentially algebraic doctrine. In addition, I want to stress the great practical value
of Cartmell’s syntax. It is, in my opinion, the most practical specification language for
structures such as (possibly) higher dimensional categories, with (possible) additional
structure.

In this work, I present two ways of introducing FOLDS, which, however, are ultimately
equivalent; one in §1, the other in Appendix A. The one in Appendix A is the more direct
one. It starts with a simultaneous inductive definition of the concepts of kind, context,
sort and variable, together with some other auxiliary concepts. Kinds are the heads
(names) of sorts; each sort is obtained by appropriately filling out the places of a kind by
variables. After defining the syntax in a global manner, one isolates specific vocabularies,
or similarity types, for the purposes of formulating specific theories in FOLDS.

On the other hand, the treatment in §1 starts with the idea of a vocabulary for FOLDS
(a DSV: “Dependent Sorts Vocabulary”)). It is interesting that the data for a DSV can
be naturally and succinctly captured by a, usually finite, one-way category. One-way
categories were isolated by F.W. Lawvere in [L]; a category is one-way if its endomorphism
monoids are trivial; in the skeletal case, this means that there are no non-trivial circuits
of arrows. Subsequently, Lawvere observed that one-way categories are intimately related
to the sketch-based syntax of [M1]. Their appearance in this paper is related to their
role in [M1], although this fact is not worked out here. The DSV as a one-way category
has objects the kinds and the relation-symbols; the latter are “top”-level objects in the
category; the arrows between kinds represent the dependencies built into the syntax.

The formulation of FOLDS based on one-way categories is simpler than the “direct”
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approach. In fact, it can be put into a succinct algebraic form, in the form of certain
hyperdoctrine-type structures. We will exploit this possibility for the presentation of the
Gödel and the Kripke completeness theorems for FOLDS.

2. Let me indicate the foundational motivation behind this work.

P. Benaceraff, in a well-known paper [Ben] entitled “What numbers could not be”,
expressed a criticism of the set-theoretical reconstruction of mathematical concepts such
as that of “natural number”. Benaceraff’s point is that any one set-theoretical definition
of “natural number” gives rise to truths, such as “17 has exactly seventeen members”,
that become false under an alternative, but equally legitimate set-theoretical definition of
“natural number” (his illustration compares the von Neumann definition 0 = ∅, n + 1 =
n ∪ {n}) and the Zermelo definition ( 0 = ∅, n + 1 = {n} ). Thus, the set-theoretical
reconstruction of mathematics is inevitably cluttered with irrelevant and arbitrary truths.

The way out of this requires a language of mathematics in which one talks about the
system (N, 0, S) of the natural numbers in such a way that any property of (N, 0, S) that
can be expressed in the language is necessarily invariant under isomorphism of structures
of the form (A; a ∈ A, f : A→ A) . We quickly realize, as did Benaceraff, that in such a
language, we cannot allow an equality predicate relating things belonging to various sets;
we may contemplate equality a =A a′ of elements a, a′ of a fixed, but arbitrary, set A
only. As a consequence, we cannot allow an equality predicate whose arguments are sets;
for if A and B are sets, A = B should imply that ∀a ∈ A.∃b ∈ B.a = b , but the last
use of the equality predicate is not restricted to elements of a fixed set!

Doing mathematics under such restrictions is not as absurd as it may sound first. In
fact, considering sets to be objects of a category, with functions as arrows, and using the
FOLDS language of category theory mentioned above, one may do, specifically in the
Lawvere-Tierney theory of elementary toposes with a natural numbers object, a signifi-
cantly large part of mathematics, without violating the said exclusions, and in fact, fully
observing the above-italicized requirement.

One may contemplate a comprehensive language of abstract mathematics, with the
property that in it, only “relevant”, that is, suitably invariant, predicates can be expressed.
In the case of properties of sets, “suitably invariant” means “invariant under isomorphism
(bijection)”. In the contemplated foundational framework, sets are singled out among
arbitrary totalities by the quality of a set that an equality predicate on its elements as
arguments is present as part of the “structure” of the set. The totality of all sets is not a
set, since there is no equality predicate on sets as arguments.

But then, what kind of structure does the totality of all sets form? Answer: a category.
The isomorphisms will be particular arrows. We quickly realize that, to do set-theory,
we need more general arrows than isomorphisms. In category theory, equality of parallel
arrows is fundamental; we stipulate that the arrows from a fixed object to another fixed
object form a set. We find that there are other categories, such as that of groups and
homomorphisms, which in many ways are similar to that of sets and functions. For in-
stance, we do not want to have equality of groups as a primitive. Categories appear as



7

generalizations of sets; every set is a category, a discrete category. There is, in general, no
such thing as the “underlying set of the objects of a category”, not because of size consid-
erations, but rather because, in general, there is no equality predicate whose arguments
are the objects of the category.

We find that the idea of an isomorphism of categories, let alone equality of categories,
is incoherent; it is obvious that the notion of an isomorphism of two categories must involve
reference to equality of objects in each of the categories. This entails that a totality of
categories cannot be, in general, a category; in any category, the notion of isomorphism
is well-defined. For totalities of categories, we must have a new type of structure, some
kind of 2-dimensional category.

However, in our quest for the “perfectly invariant” language we quickly get into conflict
with standard category theory. The trouble is that we must conclude that the notion of
functor, surely a mainstay of the subject, is not acceptable. The problem with it is that it
implicitly refers to equality of objects in the codomain category, in the requirement that
its value at any given object in the domain category be uniquely determined. Is there a
way out of this?

In an old paper ([Kel]), G. M. Kelly described a common situation one finds oneself in
when one wants to define a functor. It appears that all data are there to define the functor,
still, it is not possible to canonically single out the value of the functor at an argument-
object; one needs to make an arbitrary choice of a value, while it is also clear that it
is immaterial what choice one makes. Frequently, the choice cannot be made without
the Axiom of Choice. Kelly described in precise terms what the data are like before one
makes the arbitrary choices. Relatively recently, without knowing about Kelly’s paper,
I also went through a similar consideration, and made a formal definition of the notion
of anafunctor (a term suggested by D. Pavlovic), anticipated by Kelly some thirty years
ago (he did not give a name to the concept). (Related ideas occurred to R. Paré some
time ago.) I have found that one can live, quite well actually, with anafunctors, without
converting them into functors by making non-canonical choices. There is a basic category
theory that, in its main outline, does not deviate too much from the standard one, and
which uses anafunctors in place of functors; this theory gets by to a large extent without
the Axiom of Choice. The beginnings of anafunctor theory is presented in [M2].

Let me emphasize that the work in [M2] is done in a traditional set-theoretic frame-
work. The “perfectly invariant” foundation is not yet available for use; the mathematical
work in [M2] is intended to help formulate such a foundation.

I envisage a foundational set-up, a universe of abstract concepts, in which we have
sets, functions, categories and anafunctors as specific distinct kinds of entities. It is clear
that we cannot stop here. We will have natural transformations of anafunctors. But
the totality of all categories, anafunctors and natural transformations of the latter will
form a new kind of entity, an anabicategory. This differs from a bicategory in that each
composition operation of 1 -cells, one for each triple of objects ( 0 -cells), instead of being
a functor, is an anafunctor. [M2] treats the afore-mentioned concepts.

The concepts of anafunctor and anabicategory mentioned above are “non-radical”
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revisions of established notions of category theory. As Kelly explained in [Kel], using
a global version of the Axiom of Choice, anafunctors can be “converted” into functors.
Technically, this amounts to saying that, under an appropriate Axiom of Choice, every
anafunctor is isomorphic to a functor (this makes sense since a functor is canonically an
anafunctor; “anafunctor” is a generalization of “functor”). Thus, under the full force of
the usual set-theoretic foundations, anafunctors are of no importance. (Let me mention
in this context that the global Axiom of Choice we have in mind is in fact meaningless in
the Invariant Foundation, since it talks about a function with values which are sets, the
very idea of which is inexpressible because of the lack of equality on sets. In fact, Kelly
already in loc.cit. considered the global type of choice involved here more suspect than
ordinary choice.)

The universe of the Invariant Foundation is not clearly defined as yet. It should
contain ana-n -categories for all natural n ’s; the totality of ana-n -categories, with their
morphisms, etc., will form an ana- (n+1) -category. The task of formulating these concepts
is closely related with the task of defining the general notion of “weak n -category”,
mentioned in [BD].

3. In the previous subsection I gave an incomplete outline of the universe of the Invariant
Foundation. The contribution of the present work is to the language of that foundation.
The proposal is to use FOLDS as the basic language.

For any vocabulary L for FOLDS, taken (for convenience) completely without equal-
ity. I introduce the notion of L -equivalence of L -structures; this is the replacement
for the notion of isomorphism for ordinary kinds of structure. An L -structure M is
at the same time an ordinary structure for an ordinary language |L| ; the properties of
M expressible in FOLDS are particular ordinary first-order properties of M as an |L| -
structure, but not vice versa. It turns out (General Invariance Theorem, GIT) that the
first-order properties that are invariant under L -equivalence are precisely the ones that
are expressible in FOLDS over L . This indicates that L -equivalence is the right notion
of “isomorphism” for structures for FOLDS.

As was mentioned above, anafunctors are a generalization of functors. But, upon
closer look, we see that the requirements of the “logic of (generalized) equality” impose
an additional condition on anafunctors. Whereas an anafunctor determines its value at a
given argument up to isomorphism, meaning that any two possible values are isomorphic,
in the case of a saturated anafunctor, the value determined also no more than up to
isomorphism, meaning that any object isomorphic to a possible value is also one. (The
precise definition also refers to the given isomorphism between a possible value and a new
object.) The requirement of saturation is an extension of the principle of substitutability
of equal for equal, transferred to isomorphism from equality. Now, it turns out that
every anafunctor, in particular every functor, has a canonically defined saturation, a
parallel saturated anafunctor, to which it is isomorphic. The right notion of “functor” is
“saturated anafunctor”.

On the one hand, we have traditional types of categorical structures, examples which
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are (1) categories, (2) diagrams of categories, functors and natural transformations, and
(3) bicategories, etc.. We have notions of equivalence for each of these kinds; e.g., the one
for bicategories is usually called “biequivalence”.

On the other hand, we have anaversions of each of the above kinds of structure. In
particular, we have a canonical saturation of any structure of each of the above kinds;
in case of the first (category), the saturation is identical to the original. Each kind of
anastructure has a vocabulary L for FOLDS as its similarity type; as a result, we have
the notion of L -equivalence for these anastructures. The chief point of the work here is
that the concept of equivalence for traditional structures of a given kind, and the concept
of L -equivalence for their saturations correspond to each other. E.g., two bicategories are
biequivalent iff their saturations are L -equivalent, where L is the FOLDS vocabulary
for anabicategories.

The saturation A# of a categorical structure (e.g., bicategory) A is quite simply
defined in terms of A ; in particular, the definition is a first-order interpretation. As a
result, any first-order property, and in particular, any FOLDS property, of A# is also, by
a direct translation, a first-order property of A . Hence, it is meaningful to ask of a first-
order property P of A whether it is expressible as a FOLDS property of A# . We have
the conclusion that this holds iff P is invariant under equivalence of the appropriate kind.
E.g., a first-order property of a variable bicategory A is invariant under biequivalence iff
it is expressible in FOLDS as a property of the saturation of A . This theorem is a result
of a combination of the relation of the two kinds of equivalence mentioned above, and an
appropriate generalization of the GIT.

The last result for categories is due to P. Freyd [F], and G. Blanc [B]; Blanc’s for-
mulation is closer to the spirit of this work. A detailed proof is available in [FS]. The
methods of the present work are entirely different from Freyd’s. Restricted to the case
of categories, the former give stronger results, although the additional strength that I
cannot reproduce by Freyd’s methods seems of minor importance. More important is the
fact that Freyd’s methods employ the axiom of choice, through the use of the skeleton of
a category, and thus do not generalize to “constructive category theory”. In Appendix
E, I give a proof of the GIT for intuitionistic FOLDS. This gives rise to an intuitionistic
version of the Freyd-Blanc characterization theorem for properties of categories invariant
under equivalence. This does not seem to be accessible by the methods of [FS].

The main mathematical results of the present work are thus syntactic characterizations
of formulas that are invariant under equivalence, in various senses of “equivalence”. For
the statement of these results, there is no need to understand the anaconcepts. In fact,
for the case of bicategories, I organized the presentation in a way that does not refer to
anabicategories explicitly, although, in this way, I missed the proof of the full strength of
the main result. By contrast, in the case of diagrams of categories, functors and natural
transformations, the anaconcepts are displayed.

From the foundational point of view, the results give confirmation to the idea that
FOLDS employed in the context of anastructures is a suitable foundational language. I
expect that the analysis started here will extend with similar results to higher dimensions.
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This is a concrete matter in the case of tricategories [GPS]; but I believe the case of general
n -dimensional structures will soon be accessible too. I find it an interesting proposition,
verified up to dimension 2 here, and conjectured to hold in all dimensions, that the
appropriate notion of equivalence, “weak n -equivalence” in the terminology of [BD], has
a form, namely L -equivalence for the saturations of the structures involved, which is of
a general “logical nature”; the original notion of “weak n -equivalence” looks a priori to
be a rather involved idea.

4. Let me give an overview of the contents. I have organized the material into seven
sections and five appendices, with the obvious implication as to what parts I felt to be the
more important ones. Section 1 is the basic introduction to the syntax and semantics of
FOLDS. The reader may immediately look at Appendix A, which contains the alternative,
“more logical”, introduction of FOLDS. Section 2 contains the formal systems for the
classical, intuitionistic and coherent versions of FOLDS. Section 3 is a purely algebraic
(categorical) study of “fibrations with quantification”. I deal with hyperdoctrine-like
structures; specifically, fibrations in which the base category has finite limits, but there is
a distinguished class of arrows along which quantification is allowed. The applications to
FOLDS is given in Section 4. I was surprised at the appropriateness of this simple idea
for the purposes of FOLDS. The (Gödel, Kripke) completeness of the systems of Section 2
are thus seen to be a special case of something much more general.

Section 5 introduces the concept of L -equivalence, the main new concept of the work,
and proves, in a suitably general form, the General Invariance Theorem (GIT). Appendices
B and C are elaborations on the theme of L -equivalence. In Appendix C, I give, among
others, proofs that follow the spirit of the treatment in [FS]. Sections 6 and 7 work out
the conclusions concerning the three kinds of categorical structure we discussed above.
In 6, the example of a single functor between two categories as a categorical structure
is considered in some detail. In particular fibrations are such structures. Appendix D
contains some of the calculations for Section 7.

Finally, Appendix E does two main things. One is the extension of the theory of
L -equivalence to intuitionistic logic and Kripke models. The other is ordinary Craig
interpolation and Beth definability for FOLDS.

I would like to thank George Janelidze and Dusko Pavlovic for valuable conversations
on the subject of this work.

1. Logic with dependent sorts

First, we describe the kinds of structure which the assertions of logic with dependent sorts
are about.

It is well-known from categorical logic that the similarity types that are graphs (having
sorts the objects, and unary sorted operation symbols only) are sufficient for all purposes.
The simplest consideration here replaces a relation-symbol sorted as R ⊂ A1 × . . .× An
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by a new sort R , and operations R
pi−→Ai, i = 1, . . . , n . Our first move is to restrict

attention to one-way graphs ; in fact, more conveniently, to one-way categories.
The concept of one-way category is due to F.W. Lawvere [L]. In [M1], I reproduce

Lawvere’s observation to the effect that categories of finite sketches obtained by the re-
peated use of the second construction of [M1] starting from Set are exactly the ones of
the form SetC , with C a finite one-way category.

A one-way category is one in which all endomorphisms are trivial (identities). In a
skeletal one-way category, for any objects A and B , it is not possible that there are
proper (non-identity) arrows in both direction A → B and B → A . As a consequence,
there are no cycles (positive-length paths A0 → A1 → . . . → An of proper arrows with
A0 = An ).

We are mainly interested in finite, skeletal, one-way categories. However, for certain
purposes, we need to relax the finiteness condition.

A category C has finite fan-out (I owe this concept to Jim Otto) if for every object
A , there are altogether finitely many arrows with domain A ; the set

⊔{C (A,C) : C ∈
Ob(C )} is finite. A simple category is one which is one-way, skeletal, and has finite
fan-out.

A simple category is reverse-well-founded; in other words, it satisfies the ascending
chain condition: there are no infinite paths A0 → A1 → . . .→ An → An+1 → . . . (n < ω)
consisting of proper arrows. (Namely, any such would have to have the objects An
pairwise distinct, by the above, and that would mean, a fortiori, infinitely many arrows
out of A0 .)

If L is a simple category, the set Ob(L) of objects is partitioned as in

Ob(L) =
•⋃

i<`

Li

into non-empty levels Li , for i < ` , ` the height of L , ` ≤ ω , such that L0 consist of the
objects A for which there is no proper arrow with domain A , and such that for i > 0 , Li
consists of those objects A for which all proper arrows A→ B have B ∈ L<i =

⋃
j<i

Lj ,

and there is at least one arrow A → B with B ∈ Li−1 . (If A ∈ Ob(L) , and for all

proper f : A→ B , B ∈
·⋃

i<ω

Li , then A ∈
·⋃

i<ω

Li ; in fact A ∈ Li for some i not greater

than the maximum of the levels of the codomains of the finitely many proper arrows with

domain A plus one. Therefore, if A ∈ Ob(L) −
·⋃

i<ω

Li , then there is a proper A → B

with B ∈ Ob(L)−
·⋃

i<ω

Li , and thus there is an infinite proper path out of A .) All proper

arrows go from a level to a lower level. Of course, the height of a finite simple category is
finite.

A maximal object in a simple category is one which is not the codomain of a proper
arrow. Every object of the maximal level (if any) is maximal, but not necessarily con-
versely.
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By a vocabulary for logic with dependent sorts, or DS vocabulaty, or even DSV, we mean
a simple category given with a distinguished, but otherwise arbitrary (possibly empty)
set of maximal objects. The distinguished maximal objects of the DSV are its relation
symbols (or relations); the rest of its objects are its kinds. We write Rel(L) and Kind(L)
for the sets of relations and of kinds of L , respectively.

DS vocabularies are our similarity types for structures for logic with dependent sorts;
concomitantly, they figure as vocabularies for the syntax of logic with dependent sorts.
Unlike in multisorted logic, the arrows of a DSV do not enter the syntax of FOLDS as
operation-symbols; the role of the arrows in a DSV and their composition will serve to
determine the “dependence structure” of the variables.

Here are some examples for DSV’s.

Lgraph :

O

A

²²

d

O

A

²²

c

Lcat :

Ṫ

²²

t1

Ṫ

²²

t2

Ṫ

²²

t0

O

A

²²
d

O

A

²²
c

İoo i
dt1=ct0, dt2=ct1,
dt2=dt0, di=ci.
relations: I,T

L2-graph : A

A1

²²

d1

A

A1

²²

c1

O

A

²²

d

O

A

²²

c

dd1=dc1, cd1=cc1.

Only non-identity arrows are shown. The proper arrows are those shown and their
composites, among which we have the equalities shown, and no more. E.g., there are
three distinct arrows T → O . Lgraph and L2-graph have no relations. The dots in Lcat

signify that I and T are relations.
For a DSV L , and an object A in it, we write A|L for the set of proper arrows with

domain A (the notation resembles the notation A ↓ L for the comma category). For an
arrow p , Kp denotes its codomain.
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Given a DSV L , the intended structures for L , the L -structures, are the functors
M : L → Set in which for each relation R ∈ Rel(L) the following holds: the family
〈M(p) : M(R) → M(Kp)〉p∈R|L of functions, indexed by the proper arrows in L with
domain R , is jointly monomorphic: for a, b ∈ M(R) , if M(p)(a) = M(p)(b) for all
p ∈ R|L , then a = b . The condition means that M(R) is essentially a subset of the set
u

p∈R|L
M(Kp) , actually a subset of M [R] ; here, for any A ∈ Ob(L) ,

M [A] =
def
{〈ap〉p ∈ u

p∈A|L
M(Kp) :M(q)(ap) = ap′ whenever qp = p′} (1)

(M [A] is the limit (joint pullback) of the diagram A↓(L − {1A}) Φ−→L
M−→ Set (with

Φ the forgetful functor) mapping (A → K) to M(K) ). We will usually (and without
loss of generality) assume that in case R ∈ Rel(L) , the canonical monomorphism mM

R
:

M(R) ½M [R] taking a to 〈(Mp)(a)〉p∈R|Kp is an inclusion of sets.
We recognize that the Lgraph -structures are the graphs, the L2-graph -structures are the

2-graphs. Categories are particular Lcat -structures. If M is a category, for M as an
Lcat -structure, M(O) , M(A) are the sets of objects and of arrows, M(d) and M(c) are
the domain and codomain functions; as a consequence, M [T] is the set of triangles

U Ww
//

V

U

??

u

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
V

W

v

ÂÂ?
??

??
??

??
??

??

in M ; by definition, M(T) is the set of commutative triangles, a subset of M [T] ; M(I)
is the set of identity arrows. In fact, we realize that the Lcat -structures are exactly the
category-sketches of [M1].

For L a DSV, |L| denotes its underlying graph. Any (small) graph L can be used as
a similarity type for multisorted logic; the L -structures are the graph-maps (diagrams)
L → Set ; C -valued L -structures are the diagrams L → C . Multisorted first-order
logic with L as vocabulary uses the objects of L as sorts and the arrows of L as sorted
unary operation symbols; we always allow equality (to be interpreted in the standard way)
when we refer to multisorted logic. For these matters, see [MR1]. First-order logic with
dependent sorts over L will be a proper part of multisorted first order logic over |L| .

To be sure, the |L| -structures are not exactly the L -structures; the latter are those
among the former that satisfy a certain set

∑
[L] of axioms over |L| , to be described

next.
∑

[L] consists of the following sentences:

∀x ∈ A.
∧
{q(p(x)) = p′(x) : p, p′ ∈ A|L, q ∈ Arr(L, qp = p′},

one for each A ∈ Ob(L) (= Kind(L ∪ Rel(L)); and

∀x ∈ R.∀y ∈ R.[(
∧

p∈R|L
p(x) = p(y))→ x = y],
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one for each R ∈ Rel(L) .

One feature of logic with dependent sorts is that there will not be any operation
symbols (explicitely) used in it; thus, the just-listed sentences are definitely not in logic
with dependent sorts over L .

Let us explain the intuition behind logic with dependent sorts for the case when the
vocabulary is Lcat . First of all, logic with dependent sorts is a (proper) part of what
we know as ordinary multisorted logic over |Lcat| , the (a) language of categories. In
logic with dependent sorts over Lcat , we have variables ranging over O ; we can quantify
these variables. However, instead of variables ranging over A , we will have ones that
range over A(U, V ) , where U and V are variables of sort O . A(U, V ) is a “dependent
sort”, one depending on the variables U and V . A variable u ranging over A(U, V )
is of sort A(U, V ) , and we write u : A(U, V ) . Of course, we should think of A(U, V )
as hom(U, V ) , and of u : A(U, V ) as u : U → V . In terms of the semantics of Lcat -
structures, the interpretation of A(U, V ) in M is {a ∈ MA : (Md)(a) = (Mc)(a)} .
Thus, we have no variables ranging over all arrows at once; only ones ranging over arrows
with a fixed domain and codomain.

An immediate consequence of this is that if a formula has the free variables U and
V , and also u : U → V (that is, u : A(U, V ) ), then forming ∀Uφ should and will be
illegal; the free variable u in ∀Uφ has lost its fixed reference to a domain.

In FOLDS in general, and in particular over Lcat , we will have a restricted use of
equality only. The reason for this is our main aim, which is to formulate languages
for categorical structures in which all statements are invariant under the equivalence
appropriate for the kind of categorical structure at hand. Typically, equivalences do not
respect equality of certain kinds of entities; in the case of categories, equality of objects,
in the case of bicategories, equality of objects ( 0 -cells) and equality of 1 -cells. In FOLDS
with restricted equality, we will allow “fiberwise equality” over maximal kinds; in the case
of Lcat , this means fiberwise equality over A . The restrictions on equality in FOLDS
over Lcat will correspond to the intuition that in category theory, one should not refer
to equality of objects, and equality on arrows should be mentioned only with reference to
arrows which have the same domain and the same codomain.

The above remarks, made for the case L = Lcat , on how logic with dependent sorts
over L is constrained with respect to ordinary first-order multi-sorted logic over |L| have
natural extensions to the case of a general vocabulary L . The constraints will be built
into the general definition of the syntax.

Before giving the general definitions, to illustrate FOLDS (first-order logic with de-
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pendent sorts), we write down the axioms for category in this logic.

∀U : O.∃i : U → U.I(i);

∀U : O.∀i : U → U.∀j : U → U.(I(i) ∧ I(j)→ i = j);

∀U : O.∀V : O.∀W : O.∀u : U → V.∀v : V → W.∃w : U → W.T(u, v, w);

∀U : O.∀V : O.∀W : O.∀u : U → V.∀v : V → W.∀w : U → W.∀w′ : U → W

(T(u, v, w) ∧ T(u, v, w′)→ w = w′);

∀U : O.∀i : U → U.∀u : U → V.T(i, u, u);

∀U : O.∀i : U → U.∀u : V → U.T(u, i, u);

∀U : O.∀V : O.∀W : O.∀X : O.

∀u : U → V.∀v : V → W.∀w : U → W.∀x : W → X.∀y : V → X.∀z : U → X

((T(u, v, w) ∧ T(v, x, y) ∧ T (w, x, z))→ T(u, y, z)).

We have applied certain abbreviations in writing these formulas. The atomic formula I(i)
should be really I(U, i) ; U is also a variable in it; in fact, i : U → U cannot appear
anywhere without U . Similarly, T(u, v, w) is really T(U, V,W, u, v, w) . However, the
abbreviations used are systematic, and can be made into a formal feature. Also, w = w′

is an atomic formula depending on all of the variables U,W,w,w′ ; it is written, more
fully, as w =A(U,W ) w

′ .
Many of the usual properties of categories, and of diagrams of objects and arrows

in categories, can be expressed in FOLDS over Lcat . For instance, the definition of
elementary topos (with operations defined by universal properties up to isomorphism, not
specified as univalued operations) can be given as a finite set of sentences in FOLDS over
Lcat ; the reader will find it easy to write down the axioms for elementary topos in the
style of the above axioms for category. As Freyd [F] and Blanc [B] have shown, and as we
will see below, this is closely related to the fact that the usual properties of categories,
and of diagrams in categories, are invariant under equivalence of categories.

Let us turn to the formal specification of the syntax of logic with dependent sorts. We
fix a DSVL . For a while, only the kinds in L will be used; let K be the full subcategory
of L on the objects the kinds; K is a simple category, the category of kinds of L ; it
may be regarded as a DSV without relations.

Note that kinds have been assigned a level in K ; levels range over the natural numbers
less than k , where k is the height of K . Recall that for any K ∈ K , we use the notation
K|K for the set of all proper arrows p : K → Kp with domain K . The set K|K will
figure as the arity of the symbol K . In particular, the ones with empty arity are exactly
the level- 0 kinds.
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We are going to define what sorts are, and what variables of a given sort are. These
notions are relative to a given L (actually, to the category K of kinds of L ), which is
considered fixed now.

When X is anything, we write x : X to mean that x = 〈2, X, a〉 for some (any) a .
When we have defined sorts, and X is a sort, x : X is to be read as “ x is a variable of
sort X ”.

By definition, a sort is an entity of the form

〈1, K, 〈xp〉p∈K|K 〉
such that K is a kind, and for each p ∈ K|K , and for

Xp =
def
〈1,Kp, 〈xqp〉q∈Kp|K 〉,

we have xp : Xp .
We will also write K(〈xp〉p∈K|K for 〈1, K, 〈xp〉p∈K|K 〉 ; thus, a sort is obtained by

filling in the “ p th” place of a kind K , for any p in the arity K|K of K , by a suitable
variable xp . The sort K(〈xp〉p∈K|K ) is said to be of the kind K .

When X is a sort, and x : X , that is, x = 〈2, X, a〉 for some a , x is called a variable
of sort X ; a is called the parameter of the variable x . Usually, the notation x : X will
imply that X is a sort.

Note that every variable “carries” its own sort with it. This is in contrast with the prac-
tice of most of the relevant literature (see e.g. [C]), where variables are “locally” declared
to be of certain definite sorts, but by themselves, they do not carry sort-information. For
a sort X = K(〈xp〉p∈K|K ) , Var(X) =

def
{xp : p ∈ K|K} ; and if x : X , Dep(x) =

def
Var(X) ;

x depends on the variables in Dep(x) .
Note also that any parameter gives rise to a variable of a given sort; for any sort X ,

and for any a whatever, 〈2, X, a〉 is a variable of sort X . In the “purely syntactic”
contexts, it suffices to restrict the parameters to be natural numbers (thereby ensuring
a countable infinite recursive set of variables of each sort). However, for the purposes
of model-theory, it is convenient to have a proper class of variables of each sort (as a
consequence, we have a proper class of sorts). Let us call a variable natural when its
parameter, as well as that of each variable it depends on, etc., is a natural number.

For a variable y , let’s write Xy for the sort of y (y : Xy) , and let’s use the notation

y : Xy = Ky(〈xy,p〉p∈Ky |L) (1′)

displaying the ingredients of the sort Xy in dependence on y . Also, let’s write a(y) for
the parameter of y .

The first question arising concerning the definition of “sort” is whether the constituent
entities Xp are also sorts; the answer is “yes”. Assume X = 〈1, K, 〈xp〉p∈K|K 〉 is a sort.
Applying the definition of “sort” to Xp , for q ∈ Kp|K , we want that for

(Xp)q = 〈1,Kq, 〈x(rq)p〉r∈Kq |K 〉,
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we have xqp : (Xp)q . But since Kq = Kqp and (rq)p = r(qp) , we have (Xp)q = Xqp ; and
xqp : Xqp , by X being a sort.

Although the definition unambiguously defines what sorts and variables are, it is not
(quite) clear, for instance, that for every K ∈ K , there are sorts of the kind K .
We show that the sorts of the kind K are in a bijective correspondence with families
〈ap〉p∈K|K of arbitrary entities ap ; the correspondence maps X = 〈1, K, 〈xp〉p∈K|K 〉 to
a(X) =

def
〈a(xp)〉p∈K|K for which xp = 〈2, Xp, ap〉 for a suitable Xp .

We want to prove that for any 〈ap〉p∈K|K , there is a unique sort X of the kind K
with a(X) = 〈ap〉p∈K|K .

Let K∈K and 〈ap〉p∈K|K be given. By recursion on the level of Kp , for each p∈K|K ,
we define Xp (a sort, as it turns out), and the variable xp :Xp . Let p∈K|K . We put

Xp =
def
〈1,Kp, 〈xqp〉q∈Kp|K 〉, and xp =

def
〈2, Xp, ap〉.

Since for each q ∈ Kp|K , Kqp is of lower level than Kp , the entity xqp has been defined;
thus, Xp and xp are defined for p as well. This defines Xp and xp for all p .

Put X =
def
〈1, K, 〈xp〉p∈K|K 〉 . Then Xp formed for X as in the definition of “sort” is the

same as the Xp we just defined. Since xp : Xp , X is a sort. Clearly, a(X) = 〈ap〉p∈K|K .
The uniqueness of X with this property is (also) easily seen.
Let us remark that for kinds K of level 0 , there is exactly one sort of the kind K ,

namely K(∅) ; this can safely be identified with K itself.
Let us consider the case K = Lgraph . We have the level- 0 sort O ; let us use the

letters U, V,W, . . . for denoting variables of sort O ; U : O , etc. The level- 1 sorts are
of the form A(〈xp〉p∈{d,c}) with xd, xc : O , for which we write A(xd, xc) . Thus, we have
sorts A(U, V ),A(V, U),A(U,U), . . . Let us use u, v , for variables of level 1 ; we may have
u : A(U, V ) , which we paraphrase as u : U → V .

In the case of Lgraph , the ones listed are all the sorts and variables.
For K = L2-graph , we have the additional sorts of the kind A1 . Let us write d10

for the arrow dd1 = dc1 , and c10 for cd1 = cc1 . A1|K = {d10, c10, d1, c1} . Writing
A1(xd10 , xc10 , xd1 , xc1) for A(〈xp〉p∈{d10,c10,d1,c1}) , we see that the sorts of level- 2 are those

A(U, V, u, v)

for which U :O, V :O, u :U → V and v :U → V . Here, U and V , as well as u and v ,
may coincide. We would like to paraphrase A(U, V, u, v) as

A(U
u //
v

// V ).

Before we complete the definition of the syntax of logic with dependent sorts, let us discuss
the semantics of sorts. To begin with an example, let us take K = L2-graph . Now, we
know that the intended K -structures are the functors K → Set . But we may take a
different view. We may say that a K -structure M consists of
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a set MO
for each A,B ∈M(O), a set MA(A,B),

and
for each A,B ∈M(O) and f, g ∈MA(A,B), a set MA1(A,B; f, g).

This way of thinking of a K -structure emphasizes that an “arrow” f cannot be
conceived of before its “domain and codomain” A,B , which have to be elements of MO ,
have been given; there is a similar consideration for “2-cells”. Also note that this kind of
K -structure is not literally the same as a functor K → Set . The main difference is that,
in the new version of the concept, we are not saying anything about the sets MA(A,B)
being disjoint from each other for distinct pairs (A,B) . Recall the two different styles
of definition of “category” (or “2-category”). The one in which arrows determine their
domain and codomain is in the spirit of our notion of structure in the original sense; the
other in which we talk about a function A,B 7→ hom(A,B) assigning a hom -set to pairs
of objects is related to the new concept.

The second version of the concept of K -structure has the following general form. A
K -structure M is given by specifying when, for K ∈ K , the entities MK(〈ap〉p∈K|K )
are defined, and when they are, what sets they are; such data are subject to the following
condition:

(2) MK(〈ap〉p∈K|K ) is defined iff for each p ∈ K|K , MKp(〈aqp〉q∈Kp|K )

is defined and ap ∈MKp(〈aqp〉q∈Kp|K ).

This formulation hides the recursive character of the concept. Once it is clarified, for all
K of level less than i , when MK(〈ap〉p∈K|K ) is defined, and if so, what set it is, then
for any K of level i , MK(〈p〉p∈K|K ) is defined iff for all p ∈ K|K ,MKp(〈aqp〉q∈Kp|K )
is defined, and ap ∈ MKp(〈aqp〉q∈Kp|K ) (note that each Kp is of level < i ), and in that
case, MK(〈ap〉p∈K|K ) is any set.

Any functor M : K → Set gives rise to a K -structure in the new sense. For any
K ∈ K , define M [K] as in (1); declare that MK(〈ap〉p∈K|K ) is defined iff 〈ap〉p∈K|K ∈
M [K] , and in that case, put

MK(〈ap〉p∈K|K ) =
def
{a ∈MK :

∧

p∈K|K
(Mp)(a) = ap}. (3)

It is clear (using that M is a functor) that now, (2) is satisfied.
But conversely, “essentially all” K -structures in the second sense are obtained as

functors K → Set . The passage from a structure in the new sense to one in the old
sense is as follows. Given a K -structure M in the new sense, for any K ∈ K , M(K)
is defined as the disjoint union of all defined sets MK(〈ap〉p∈K|K ) , indexed by the tuples
〈ap〉p∈K|K , and, for p : K → Kp , M(p) is given by M(p)(〈〈ap〉p∈K|K , a〉) = ap ; this
defines a functor K → Set .

Making the statement that the two notions of K -structure are “essentially equivalent”
precise would require defining what we mean by an isomorphism of two K -structures M
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and N in the new sense, and showing that the above two passages represent an equivalence
of the category of functors K → Set with natural isomorphisms as arrows on the one
hand, and the category of K -structures in the new sense, with isomorphisms in the new
sense between them as arrows on the other. We will not go through this exercise, and
return to our original concept of “K -structure” (“L -structure”). However, the concept
of an M -sort as a set of the form (3) will be used.

Let us now return to the full DS vocabulary L , and define what L -formulas in
logic with dependent sorts are. We will have two versions: logic with dependent sorts
with (restricted) equality, and logic with dependent sorts without equality. FOLDS with
unrestricted equality also makes sense; however, it turns out to be essentially the same
as full multisorted logic with equality over |L| (see Appendix C), hence, it is of no real
interest.

Let us fix L .
Atomic formulas are defined very similarly to sorts. An atomic formula in logic with

dependent sorts without equality is an entity of the form

〈3, R, 〈xp〉p∈R|L〉
such that R is a relation in L , and for each p ∈ R|L , and

Xp =
def
〈1,Kp, 〈xqp〉q∈Kp|K 〉,

we have xp : Xp . Under these conditions, the Xp are sorts (just as with the definition of
“sort”). We write R(〈xp〉p∈R|L) for 〈3, R, 〈xp〉p∈R|L〉 .

In logic with (restricted) equality, we also have additional atomic formulas as follows.
For any maximal kind K (maximal object of K ), sort X = K(〈xp〉p∈K|K ) , and variables
x, y , both of sort X , we have that 〈4, X, x, y〉 , written as

x =X y,

is an atomic (equality) formula.
We define formulas φ and the set Var(φ) of the free variables of φ by a simultaneous

induction. Any atomic formula is a formula; if φ = R(〈xp〉p∈R|L) , Var(φ) = {xp : p ∈
R|L} ; if φ :=: x =X y , Var(φ) = Var(X) ∪ {x, y}.

The sentential connectives t, f ,∧,∨,→,¬,↔ can be applied in an unlimited manner;
Var() for the compound formulas formed using connectives is defined in the expected
way; e.g., Var(φ ∧ ψ) = Var(φ) ∪ Var(ψ) .

Suppose φ is a formula, x is a variable such that there is no y ∈ Var(φ) with
x ∈ Dep(y) . Then ∀xφ , ∃xφ are (well-formed) formulas;

Var(∀xφ) =
def

Var(∃xφ) =
def
(Var(φ)− {x}) ∪Dep(x).

All formulas are obtained as described. (Of course, we have some determinations such as
∀xφ =

def
〈∀, x, φ〉 , where ∀ = 7 (?), etc.)
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Let us make some remark on logic with (restricted) equality. Just as in ordinary first-
order logic, the syntax of logic without equality is the same as that of logic with equality,
with the equality-symbol understood as another relation symbol; it is only the semantics
that makes the difference.

Formally, for each maximal kind K , add to L an additional relation ĖK with mor-

phisms EK
eK0 //
eK1

// K subject to peK0 = peK1 , for all p ∈ K|L ; let us denote by Leq

the extension of L by these additions. The equality formula x =X y corresponds to
EK(〈zr〉r∈EK |L) where zeK0

= x, zeK1
= y, zpeK0

= zpeK1
= xp . Up to the exchange of these

two formulas, for each maximal K , the syntax of FOLDS with (restricted) equality over
L , and the syntax of FOLDS without equality over Leq coincide.

A context is a finite set Y of variables such that if y ∈ Y , then Dep(y) ⊂ Y . It is
easy to see that for any formula φ,Var(φ) is a context.

We explain the semantics of logic with dependent sorts. Let M be any L -structure.
Let Y be a context. We define

M [Y ] =
def
{〈ay〉y∈Y : ay ∈MK(〈axy,p〉p∈Ky |L) for all y ∈ Y} (4)

(recall the notations (1’) and (3)).1

By recursion on the complexity of the formula φ , we define M [Y : φ] , the interpreta-
tion of φ in M in the context Y , whenever Y is a context such that Var(φ) ⊂ Y ; we
will have that M [Y : φ] ⊂ M [Y ] . For an atomic formula R(〈xp〉p∈R|K ) , we stipulate for
any 〈ay〉y∈Y ∈M [Y ] ,

〈ay〉y∈Y ∈M [Y : R(〈xp〉p∈R|K )] ⇐⇒
def
〈axp〉p∈R|K ∈M(R)

(recall that M(R) ⊂M [R] ; clearly, 〈axp〉p∈R|K ∈M [R] automatically).
In case of logic with equality,

〈ay〉y∈Y ∈M [Y : u =X v] ⇐⇒
def

au = av.

For the propositional connectives, the clauses are the expected ones; e.g.,

〈ay〉y∈Y ∈M [Y : ψ ∧ θ] ⇐⇒
def
〈ay〉y∈Y ∈M [Y : ψ] and 〈ay〉y∈Y ∈M [Y : θ].

Let us consider ∀xψ , and a context Y such that Var(∀xψ) ⊂ Y . Let x : K(〈xp〉p∈K|L) .
First, assume that x /∈ Y ; this is the case in particular when

Y = Var(∀xψ) = (Var(ϕ)− {x}) ∪Dep(x).

Let Y ′ = Y∪̇{x} ; Y ′ is a context. When 〈ay〉y∈Y ∈ M [Y ] and a ∈ MK(〈axp〉p∈K|L) ,
let 〈ay〉y∈Y(a/x) denote 〈a′y〉y∈Y ′ for which a′y = ay for y ∈ Y , and a′x = a . We see

1 hardcoded
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that 〈ay〉y∈Y(a/x) ∈ M [Y ′] as follows. Note that for y ∈ Y , we have x /∈ Dep(y) (since
x ∈ Dep(y) would imply that x ∈ Y) ; as a consequence, a′y ∈ MKy(〈a′xy,p〉p∈Ky |L is
equivalent to ay ∈MKy(〈axy,p〉p∈Ky|L for y ∈ Y ; while for y = x , the same holds by the
assumption on a . We define

〈ay〉y∈Y ∈M [Y : ∀xψ]⇐⇒
def

for all a ∈MK(〈axp〉p∈K|L) , we have 〈ay〉y∈Y(a/x) ∈M [Y ′ : ψ];

and
〈ay〉y∈Y ∈M [Y : ∃xψ]⇐⇒

def

there is a ∈MK(〈axp〉p∈K|L) such that 〈ay〉y∈Y(a/x) ∈M [Y ′ : ψ].

In the general case for Y ⊃ Var(∀xψ) , define

〈ay〉y∈Y ∈M [Y : ∀xψ] ⇐⇒ 〈ay〉y∈Ŷ ∈M [Ŷ : ∀xψ],
〈ay〉y∈Y ∈M [Y : ∃xψ] ⇐⇒ 〈ay〉y∈Ŷ ∈M [Ŷ : ∃xψ],

where Ŷ = Var(∀xψ) = Var(∃xψ) . It is clear that when x /∈ Y , the second definition
gives the same answer as the first one.

As usual, we also write M ² φ[〈ay〉y∈Y ] for 〈ay〉y∈Y ∈M [Y : φ] .
This completes the definition of the standard, Set -valued semantics of FOLDS.
Let us note that when φ is a formula in logic with equality over L , and φ̂ is the

corresponding formula in logic without equality over Leq , obtained by exchanging the
equality subformulas for EK -formulas, and M is an L -structure, then M [Y : φ] =
M [Y : φ̂] ; in the latter instance, M denotes the standard Leq -structure in which each
EK is interpreted as true equality. In short, the semantics of logic with equality over
L coincides with the semantics of logic without equality over Leq when the latter is
restricted to standard structures.

Let us formulate a simple translation of logic with dependent sorts into ordinary
multisorted logic. This amounts to a mapping φ 7→ φ∗ of L -formulas φ of FOLDS to
|L| -formulas of multisorted logic. Let us agree that every variable x : X , with X a sort
of kind K , will be regarded, in multisorted logic over |L| , a variable of sort K .

The mapping φ 7→ φ∗ will be so defined that the free variables of φ∗ are exactly the
same as those of φ . Moreover, the essential property of the translation is that, for any
L -structure M ,

M ² φ[〈ay〉y∈Y ]⇐⇒M ² φ∗[〈ay〉y∈Y ];
here, in the second instance, we referred to the usual notion of truth for multisorted logic.
The definition is this:
for an atomic formula φ :=: R(〈xp〉p∈R|K ),

φ∗ =
def
Ṙ(〈xp〉p∈R|K ) =

def
∃y ∈ R.

∧

p∈R|L
p(y) =Kp xp; (5)
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for an equality formula φ :=: x =X y ,

φ∗ =
def

x =K y

(here, X is a sort of the kind K );

( )∗ commutes with propositional connectives;

(∀xφ)∗ =
def
∀x(

∧

p∈K|L
p(x) =Kp xp → φ∗);

(∃xφ)∗ =
def
∃x(

∧

p∈K|L
p(x) =Kp xp ∧ φ∗)

(in the last two clauses, x : K(〈xp〉p∈K|L) ).
We have a straightforward extension of the semantics of logic with dependent sorts

to interpretations in categories so that the standard semantics will appear as the special
case when the target category is Set . First of all notice that the notion of C -valued L -
structure makes sense for any category C ; it is that of a functor M : L→ C such that
for any R ∈ Rel(L) , the family 〈M(p)〉p∈R|L of morphisms in C is jointly monomorphic.
The use of the notation M : L → C will imply that M is a C -valued L -structure.
From now on, let us assume, at least, that C has finite limits.

Let M : L→ C . For any object A of L (kind or relation), we define M [A] as the

limit (joint pullback) of the diagram A ↓ (L− {1A}) φ−→L
M−→C , with Φ the forgetful

functor; M ◦ Φ maps p : A → Kp to M(Kp ). Let us write πp , or πMp , for the limit
projection M [A] → M(Kp) , and let πA = πMA : M(A) → M [A] be the canonical arrow
for which πp ◦ πA = M(p) for all p ∈ A|L . When A is a relation R , then πR is
a monomorphism; we also write mM

R for πMR . When A is a kind K , then U [K] and
πUp : U(K)→ U [K] are defined for any U:K→C (formally, by using the above definition
for K in place for L ); of course, when U=M ¹K , then U [K] =M [K] , πUp = πMp .

Continuing, let Y be a context; we will define M [Y ] . We construct a graph 〈Y〉 and a
diagram ΦY:〈Y〉−→L as follows. The objects of 〈Y〉 are the elements of Y , Ob〈Y〉 = Y .
The arrows of 〈Y〉 are 〈y, z; p〉 : y → z , one for each p ∈ Ky|L such that z = xy,p. ΦY
maps y to Ky , 〈y, z; p〉 : y → z to p : Ky → Kp(= Kz) . M [Y ] is defined as the limit
of the composite MΦY : 〈Y〉 −→ C ; let us denote the projections for this limit by
πy = πMy = πMY,y :M [Y ]→M(Ky) (y ∈ Y) .

We define M [Y : φ] as a certain subobject of M [Y ] , by recursion on the complexity
of φ .

Let φ be the atomic formula R(〈xp〉p∈R|L) , and let Y be a context such that Var(φ) =
{xp : p ∈ R|L} ⊂ Y . Let f :M [Y ]→M [R] be the arrow, given by the universal property
of the limit defining M [R] , for which πp ◦ f = πxp (p ∈ R|L) . M [Y : φ] is defined by
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the pullback

M [Y ] M [R]
f

//

M [Y : φ]

M [Y ]

²²

mM
Y,φ

²²

M [Y : φ] M(R)// M(R)

M [R]

²²

mM
R

²²

(that is, M [Y : φ] as a subobject of M [Y ] is represented by the monomorphism mM
Y,φ ).

For formulas built by a propositional connective from simpler formulas, the definition
is the expected one. E.g.,

M [Y : φ→ ψ] =M [Y : φ] −→M [Y : ψ],

where on the right-hand-side, reference is made to the Heyting implication −→ in the
subobject lattice S(M [Y ]) ; of course, M [Y : φ → ψ] is defined if and only if the corre-
sponding instance of Heyting implication is defined in S(M [Y ]) .

Let x /∈Y , and Var(∀xφ)⊂Y . We have f :M [Y∪̇{x}] → M [Y ] for which πy ◦f =
π′
y (y ∈ Y ; πy = πMY,y, π

′
y = πMY∪̇{x},y) . Let ∃f ,∀f : S(M [Y∪̇{x}]) ⊃→ S(M [Y ]) be the

partial left and right adjoints to f ∗ : M [Y ] → M [Y∪̇{x}] , the latter defined by pulling
back along f . We define

M [Y : ∃xφ] = ∃f (M [Y∪̇{x} : φ]),
M [Y : ∀xφ] = ∀f (M [Y∪̇{x} : φ]).

For M [Y : ∃xφ] or M [Y : ∀xφ] to be defined, it is necessary and sufficient that the
corresponding instance of ∃f , respectively ∀f be defined.

For the coherent part of the language (atomic formulas, t, f ,∧,∨, ∃) to be inter-
pretable in the category, it suffices that C is a coherent category (see e.g. [MR1]). For
the interpretation of the full language, it suffices to have that C is a Heyting category
(see e.g. [MR2]).
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2. Formal systems

In this section, a vocabulary L for logic with dependent sorts is assumed fixed. Relations,
formulas, etc., are all from/over L .

For a formula φ,Var∗(φ) is “the set of all variables in φ , free or bound”. More
precisely, Var∗(φ) = Var(φ) for atomic φ; Var∗(φ∧ψ) = Var∗(φ)∪Var∗(ψ) , and similarly
for the other connectives;

Var∗(∀xφ) = Var∗(∃xψ) = {x} ∪Dep(x) ∪ Var∗(φ).

Let X ,Y be contexts. A map s : X → Y is called a specialization if whenever x ∈ X ,
x : K(〈xp〉p∈K|L) , we have X = K(〈s(xp)〉p∈K|L) is a sort, and s(x) : X . The identity
map X → X is a specialization, the composite of specializations is a specialization.
Moreover, if a specialization is a bijection, then its inverse is also a specialization, and
the restriction of a specialization to a subset of its domain which is a context is also a
specialization. A notation such as s : X → Y will refer to a specialization.

For a sort X , resp. a formula φ , and a specialization s : X → Y such that Var(X) ⊂
X , resp. Var(φ) ⊂ X , we define X|s , resp. φ|s , “the result of substituting s(x) for all
free occurences of x in X , resp. in φ , simultaneously for all x ∈ X ”.

If X is the sort K(〈xp〉p∈K|L) , and if φ is the atomic formula R(〈xp〉p∈R|L) , we put

X|s =
def

K(〈s(xp)〉p∈K|L), φ|s =
def

R(〈s(xp)〉p∈R|L).

For the equality formula φ :=: x =X y, φ|s :=: s(x) =X|s s(y) . The property of s being
a specialization ensures that X|s is a sort, and φ|s is a(n atomic) formula in both cases.

(φ ∧ ψ)|s =
def

(φ|s) ∧ (ψ|s),

and similarly for the other connectives.
Suppose φ = ∀xψ . Let us first assume that X = Var(∀xφ) . Consider the sort

X of x , x : X ; let y be a variable of sort X|s which is new in the sense that y /∈
Var∗(ψ)∪X ∪Y . Define t to be the function t : X ∪{x} −→ Y∪{y} for which t ¹ X = s ,
and t(x) = y (note that x /∈ X ). Notice that Var(X) ⊂ X ,Var(X|s) ⊂ Y , thus X ∪{x}
and Y ∪ {y} are contexts, and t is a specialization. We put (∀xψ)|s =

def
∀y(ψ|t) . For a

general s : X → Y , (∀xψ)|s is defined as (∀xψ|s′ , with s′ = s ¹ Var(∀xψ) . We make a
similar definition for ∃ in place of ∀ .

Since in the above description, y was not uniquely determined by the conditions
given, substitution is not quite well-defined. We may correct this by making a particular,
but artificial, choice of y . A better procedure is to identify the formulas obtained by
different choices of y ; this we do by defining the equivalence relation on formulas of one
being an alphabetic variant of the other. However, for defining “alphabetic variant” it is
convenient to use substitution. As long as substitution is not “well-defined”, what we have
is a relation “φ|s = θ ” of three variables φ, s, θ rather than an operation (φ, s) 7→ φ|s .
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Let φ be a formula, x and u variables of the same sort (for which we write x ' u ),
and assume that for all v ∈ Var(φ), x /∈ Dep(v) (that is, either x /∈ Var(φ) or it is a
“top” element in Var(φ) ). Then the mapping

s : Var(φ) ∪Dep(x) ∪ {x} → Var(φ) ∪Dep(x) ∪ {u},
defined by s(v) = v for v ∈ Var(φ) ∪ Dep(x) − {x} and s(x) = u , is a specialization
(note that Dep(u) = Dep(x) ). Under these conditions, we put φ|(x 7→ u) =

def
φ|s [more

precisely, “φ|(x 7→ u) = θ ” iff “φ|s = θ ”].
The relation φ ∼ ψ , “φ is an alphabetic variant of ψ ”, is defined as follows.
If φ is atomic, then φ ∼ ψ iff φ = ψ .
φ1 ∧ φ2 ∼ ψ iff ψ = ψ1 ∧ ψ2 for some ψi with φi ∼ ψi(i = 1, 2) ; and similarly for

the other connectives.
∀xφ ∼ ψ iff ψ = ∀x′φ′ for some x′ ' x and φ′ such that, for some u for which

u ' x ' x′ and u /∈ Var∗(φ)∪Var∗(φ′) , we have that φ|(x 7→ u) ∼ φ′|(x′ 7→ u) . Similarly
for ∃ in place of ∀ . [More precisely, we should say, in place of φ|(x 7→ u) ∼ φ′|(x′ 7→ u) ,
that for some σ and τ such that “φ|(x 7→ u) = σ ” and “φ|(x′ 7→ u) = τ ”, we have
σ ∼ τ .]

One shows in a routine manner that ∼ is an equivalence relation, φ ∼ ψ implies
that Var(φ) = Var(ψ) , and ∼ is compatible with substitution: if φ ∼ ψ , “φ|s = φ′ ”,
and “ψ|s = ψ′ ” imply that φ′ ∼ ψ′ . In particular, substitution ( )|s is an operation on
equivalence classes of ∼ . Note that the logical operations are compatible with ∼; φ ∼ ψ
implies that ∀xφ ∼ ∀xψ , etc. Also, the semantics of alphabetic variants are identical.
Henceforth, we identify alphabetic variants. In other words, a formula is, strictly speaking,
an equivalence class of the “alphabetic variant” relation ∼ .

When s : X → Y , Var(φ) ⊂ X , we have Var(φ|s) ⊂ Y . If, in addition, t : Y → Z ,
then (φ|s)|t = φ|(ts) . Also, φ|1X = φ .

An entailment is an entity of the form φ=⇒
X
ψ , where φ, ψ are formulas, X is a

context, and Var(φ),Var(ψ) ⊂ X . We formulate rules of inference involving entailments.
Each rule is a relation R(ε0, . . . , εn−1; εn) between entailments εo, . . . , εn−1, εn; εo, . . . , εn−1

are the premises, εn is the conclusion of the respective instance of R . We display
instances of R in the form

Rε0 ε1 εn−1

εn
.

n may be 0 , in which case we have a rule with no premises, an axiom schema.

I. Structural rules:

(Taut)
φ X

+3 φ

(Cut)
φ X

+3 ψ ψ X
+3 σ

φ X
+3 σ
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(Subst)
φ X

+3 ψ

φ|s Y
+3 ψ|s (s : X // Y)

II. Rules for the connectives

( t )
ψ X

+3 t

( f )
f X

+3 ψ

(∧ )
θ X

+3 φ θ X
+3 ψ

θ X
+3 φ ∧ ψ

(∨ )
φ X

+3 θ ψ X
+3 θ

φ ∨ ψ X
+3 θ

(→ )
θ ∧ φ X

+3 ψ

θ X
+3 φ→ ψ

(¬ )
t X

+3 θ ∨ ¬θ (¬θ abbreviates θ // f)

(∧∨ )
(φ ∨ ψ) ∧ θ X

+3 (φ ∧ θ) ∨ (ψ ∧ θ)

III. Quantifier rules

(∀ )
θ

X .∪{x}
+3 φ

θ X
+3 ∀xφ (x /∈ X )

(∃ )
φ

X .∪{x}
+3 θ

∃xφ X
+3 θ

(x /∈ X )
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(∧∃ )
θ ∧ ∃xφ X

+3 ∃x(θ ∧ φ) (x /∈ Var(θ))

IV. Equality Axioms

(E1 ) t X
+3 x =X x

(E2 ) x =X y X
+3 y =X x

(E3 )
x =X y ∧ φ X

+3 φ|(x 7→ y)

In the rules, φ, ψ, θ and σ range over formulas, x over variables, X and Y over finite
contexts. An implicit condition is that each entailment shown has to be well-formed. E.g.,
in (t) and (f) , Var(σ) ⊂ X . In (∀) and (∃) , Var(θ) ⊂ X ; since x /∈ X is explicitely
assumed, it follows that x /∈ Var(θ) . Note that, in the same rules, the condition for the
well-formedness of ∀xφ , ∃xφ is satisfied as a consequence of the other provisos. More
precisely, if X is a context, Var(φ) ⊂ X .∪{x} (in particular x /∈ X ) , then ∀xφ , ∃xφ
are well-formed. Namely, for y ∈ Var(φ) , if y 6= x , then y ∈ X , hence Dep(y) ⊂ X ,
and thus x /∈ Dep(y) ; and if y = x , then x /∈ Dep(x) anyway.

For (E3) , note that since X is a sort of a maximal kind, φ|(x 7→ y) is well-defined.
The double-lined “rules” contain more than one rule. The double line indicates that

inference can proceed in both directions. E.g., in (∨) , three rules are contained: the one
that infers the entailment below from the two above , and the ones allowing
to infer either of the two entailments above from the one below .

We have coherent, classical and intuitionistic logic with dependent sorts, each with or
without equality. Coherent logic involves the (coherent) operators t, f ,∧,∨,∃ ; classical
and intuitionistic logics, in addition, involve the remaining two, → and ∀ . Coherent
logic without equality has the rules all those in groups I, II and III not mentioning →
and ∀ in their names; intuitionistic logic also has the additional rules (→) and (∀) (and
then (∧∨), (∧∃) become superfluous); classical logic has also the remaining rule (¬) .
The versions with equality also have the rules (E1) , (E2) and (E3) .

A coherent formula is one built up by the coherent operators starting with the atomic
formulas; an entailment φ=⇒

X
ψ is coherent if both φ, ψ are coherent formulas. A co-

herent theory in logic with dependent sorts is pair T = (L, Σ) of a DS vocabulary L
and a set Σ of coherent entailments over L . Conscoh(T ) is the least set of coherent
L -entailments that contains Σ as a subset, and is closed under the rules for coherent
logic; we write T ` ε , or T `coh ε , and say that ε is deducible from T in coherent logic
with dependent sorts, for ε ∈ Conscoh(T ) . Again, we have the versions with or without
equality.
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A theory in intuitionistic logic, or in classical logic (with dependent sorts) is defined
similarly, mutatis mutandis. Again, we have logic with or without equality. Aside the
exclusion of equality in the logics without equality, all formulas are used, in contrast to
coherent logic. We have the concept T ` ε of deducibility for each of these logics with
dependent sorts.

We have completeness theorems for the various logics (coherent, intuitionistic, clas-
sical) with dependent sorts. What these completeness theorems show is that logic with
dependent sorts is “self-contained”. The initial view of logic with dependent sorts is that
it is a fragment of ordinary multi-sorted logic. The fact that truths in the fragment can
be deduced by deductions using only formulas also in the fragment is a sign, indeed, a
necessary sign, that the fragment deserves the designation “logic.”

To formulate completeness, let us fix a semantic category C (in the first instance,
C = Set ). Let M be a C -valued L -structure. Let us write M ² φ=⇒

X
ψ for M [X :

φ] ≤M [X ] M [X : ψ] , and say that M satisfies the entailment φ=⇒
X
ψ . A model of a

theory T = (L,Σ) is a C -valued L -structure that satisfies all entailments in Σ . For a
theory T , and an entailment ε , let us write T ²C ε , and say that the entailment ε is a
C -consequence of T , to mean that all C -valued models M of T satisfy ε . For a class
C of categories, T ²C ε means that T ²C ε for all C ε C .

ModC (T ) is the category of all C -valued models of T ; it is a full subcategory of
Fun(L,C ) . We write Mod(T ) when C = Set .

The completeness theorem for coherent logic, as well as for classical logic, with depen-
dent sorts, with or without equality, is expressed by the equivalence

T ` ε⇐⇒ T |=Set ε

(of course, the symbol ` is to be taken in any one of the four distinct senses corresponding
to the four logics listed; ε accordingly ranges over the entailments of the corresponding
logic). The completeness theorem for intuitionistic logic with dependent sorts, with or
without equality, is

T ` ε⇐⇒ T |=Kr ε,

where Kr (for Kripke) denotes the class of categories of the form SetP , with P any
poset.

As usual (see e.g., [MR2]), the completeness theorem for intuitionistic logic with de-
pendent sorts may be formulated in the style of Kripke’s semantics.

We will prove all of the completeness theorems in §4.

3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations intro-
duced here do not appear in loc.cit., but most of the needed ingredients do.

Let C
E

↓
B
= C

EC↓
BC

be a fibration; let Q be a class of arrows in B . Assume:
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B has a terminal object, and pullbacks (B is left exact).

Q is closed under pullbacks: when

A′ B′q′ //

A

A′

OOA B
q // B

B′

OO

¤
(1)2

is a pullback, then q ∈ Q implies q′ ∈ Q .
Each fiber CA(A ∈ B) is a poset; in fact, it is a lattice (with top and bottom elements,

denoted tA, fA ; the meet and join operations are written as ∧A,∨A , or more simply as
∧,∨ if no confusion may arise).

For each (q : A → B) ∈ Q, q∗ : CB −→ CA has a left adjoint ∃q : CA −→ CB , which
satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which
satisfies Fronebius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interest in here) is the
same as a functor

Bop −→ Poset : A
f−→B 7−→ CB f∗−→CA

to the category Poset of posets and order-preserving maps.)
The data C,Q as described make the pair (C,Q) a ∧ ∨ ∃ -fibration. We may denote

(C,Q) by C ; we may write QC for Q . Dropping the references to fA and ∨A results in
the notion of ∧∃ -fibration.

A morphism M : C → D of ∧ ∨ ∃ -fibrations is a morphism of fibrations (among

others, M = (M1,M2),M1 : BC → BD,M2 : EC → EC,

BC BC//

EC

BC
²²

EC ED// ED

BC
²²

◦ ; in practice, we omit

the subscripts 1 and 2 , and write M(A) for M1(a) , etc.) that takes QC -arrows to
QD -arrows, induces lattice homomorphisms on the fibers, and preserves all instances of
each ∃q(q ∈ QC) . M is conservative with respect to a pair (X, Y ) of predicates over
the same base-object A is MX ≤MA MY implies X ≤A Y ; M is conservative if it is
conservative for all such (X,Y ) .

The ∧ ∨ ∃ -fibrations and their morphisms form a category ∧ ∨ ∃ . In fact, we can
make ∧∨∃ into a 2 -category, by making ∧∨∃(C,D) into a category; the latter is a full
subcategory of [C,D] (see p. 348 in [M3]). An arrow

C D
M //C D
N

//↓ h

is a natural transformation h : M1 −→ N1 satisfying MP ≤hA NP for all A ∈ BC, P ∈
CA (for the notation X ≤f Y , see p. 349 in [M3]; X ≤f Y ⇐⇒ X ≤ f ∗Y ) .
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For a categorty C with pullbacks, P(C ) , the fibration of predicates of C , is the
fibration C with base-category C for which CA = S(A) , the ∧ -semi-lattice of subobjects
of A , and for f : A→ B, f ∗ : S(B)→ S(A) is the usual pullback-mapping. To say that
P(C ) is a ∧ ∨ ∃ -fibration, with Q the class of all arrows in C , is the same as to say
that C is a coherent category (see, e.g., [MR2]).

Consider P(Set) as a ∧ ∨ ∃ -fibration, with Q the class of all arrows in Set . A
model of C is a morphism C → P(Set) . Mod(C) is the category of models of C ;
Mod(C) = ∧ ∨ ∃(C,P(Set) ). More generally, let us write ModD(C) for ∧ ∨ ∃(C,D) .

Until further notice, fix C = (C
E

↓
B
,Q) , a small ∧ ∨ ∃ -fibration. Proposition (5) below

is the completeness theorem for ∧∨∃ -fibrations, the fact that there are enough models of
C to distinguish between any pair of different predicates in a fiber. The ones preceding
(5) are use for the proof of (5).

Let us write 1 for 1B , the terminal object of B ; and t for t1 , f for f1 . C has the
disjunction property if for any X, Y ∈ C1 , if X ∨ Y = t , then either X = t , or Y = t .
C has the existence property if whenever (!A : A → 1) ∈ Q and X ∈ CA , we have that
∃!A(X) = t implies the existence of some c : 1→ A such that c∗(X) = t .

(1) Suppose C has the disjunction and the existence properties, and that t 6= f
(consistency). Then Mod(C) has initial object; in fact, M = (M1,M2) given by M1 =
homB(1,−) and for X ∈ CA,M2(X) = {c : 1→ A : c∗(X) = t} is an initial object.

(M may be called the global-sections model C → P(Set) ; we say c : 1 → A belongs
to X over A is c∗(X) = t .)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the
latter does not include that of the present proposition.

For a fibration C , X ∈ B and X ∈ CA , the “slice” fibration C/(A,X) was described

in [M3]. The base-category of C/(A,X) is B/A ; the fiber over (B
f−→A) ∈ B/a is

{Y ∈ CB : Y ≤f X} , ordered as CB is. We have a canonical morphism δ = δA,X : C →
C/(A,X) that takes B ∈ B to (B×A π′−→A) , and Y ∈ CB to Y ∧̇X =

def
π∗y∧π′X(≤π, X;

π : B × A −→ B is the other projection).

For a ∧ ∨ ∃ -fibration of C , we define the ∧ ∨ ∃ -fibration D = C/(A,X) by also

putting


 B

A
""EE

EE
B C

O

f // C

A
||yy

yy


 ∈ QD⇐⇒

def
f ∈ Q .

(2) C/(A,X) is a ∧∨∃ -fibration, and δA,X : C/(A,X) is a map of ∧∨∃ -fibrations.
The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and

(ii) of [M3] that the forgetful functor B/A→ B creates pullbacks; with this, the required
instances of the Beck-Chevalley and Frobenius reciprocity conditions become clear.

(3) If (!A : A → 1) ∈ Q and X ∈ CA such that ∃!A(X) = t , then δA,X is conser-
vative. If X1 ∨X2 =t t , and Y, Z ∈ CB , then either δt,X1 or δt,X2 is conservative with
respect to (Y, Z) .

See 2.7 in [M3].
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By a straightforward transfinite iteration of the construction of C/(A,X) (compare
2.8 in [M3]), we conclude from (2) and (3) that

(4) For any given A ∈ B , X, Y ∈ CA , there are a ∧ ∨ ∃ -fibration C∗ having the
disjunction and existence properties, and a map C → C∗ of ∧ ∨ ∃ -fibrations which is
conservative with respect to (X,Y ) .

(5) For any given A ∈ B , X, Y ∈ CA , there is M : C → P(Set) , a map of ∧ ∨ ∃ -
fibrations, which is conservative with respect to (X, Y ) .

Proof. In C/(A,X) , with 1 = 1C/(A,X) and δ = δA,X , we have the global element

dA : 1 −→ δ(A) :

A

A

1A

ÂÂ?
??

??
??

??
??

??
A A× A// A× A

A

π′

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

that belongs to δ(X) ; moreover, dA belongs to δ(Y ) over A iff X ≤ Y . Now, start
with X,Y over A in C such that X � Y ; pass to C ′ = C/(A,X) ; in C ′ , t = d∗Aδ(X) �
d∗Aδ(Y ) = Y ′ . By (4), there is Φ : C ′ → C∗ which is conservative with respect to
(t, Y ′) such that C∗ has the disjunction and existence properties. By (1), we have the
global-sections model N : C∗ → P(Set) . The global-sections model is automatically
conservative with respect to any pair ( t, Z) over 1 in its domain. We conclude that, for
P = N ◦ Φ : C ′ → P(Set) , P is conservative with respect to (t, Y ′) , that is,

P (d∗Aδ(X)) � P (d∗Aδ(Y )).

It follows that

P (δ(X)) � P (δ(Y )).

For M = P ◦ δ : C → P(Set) , this means that M(X) �M(Y ) .
A ∧∨ → ∃∀ -fibration is a ∧ ∨ ∃ -fibration C such that

• every fiber CA is a Heyting algebra, and for all f : A → B, f ∗ : CB → CA is a
homomorphism of Heyting algebra; and

• for each q ∈ QC, q∗ (also has a right adjoint which satisfies the Beck-Chevalley
condition with respect to all (relevant) pullback squares.

For a category C with pullbacks, to say that P(C ) is a ∧∨ → ∃∀ -fibration, with
Q the class of all arrows in C , is the same as what we usually express by saying that
C is a Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for
any (not necessarily small) category A , SetA is a Heyting category. See e.g. [MR2]. The
coherent structure in SetA (the ∧∨∃ -fibration structure in P(SetA) ), although not the
full Heyting-structure, is “computed pointwise”; that is, the projections πA : P(SetA)→
P(Set)(A ∈ A) are morphisms of ∧ ∨ ∃ -fibrations.
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Given any small ∧ ∨ ∃ -fibration C ↓EB , we may form (PSetMod(C)) , and we have the
evaluation morphism

eC : C P(SetMod(C))Â //

A [M 7→M(A)]Â //

X

A

_

²²

X [M 7→M(X)]Â // [M 7→M(X)]

[M 7→M(A)]

_

²²

of ∧ ∨ ∃ -fibrations.
(6) For a small ∧∨ → ∃∀ -fibration C, eC : C −→ P(SetMod(C)) is a morphism of

∧∨ → ∃∀ -fibrations.
Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative
follows from (5). We need to show that eC preserves Heyting implications in the fibers,
and ∀f ’s; we limit ourselves to the second task. By using the way the ∀f ’s are computed
in any P(SetA) , our task is as follows.

Assume M : C → Set , a morphism of ∧ ∨ ∃ -fibrations; (f : A → B) ∈ Q, X ∈
CA,∀fX ∈ CB and b ∈ M(B) −M(∀fX) . We want the existence of N ∈ Mod(C) , a
homomorphism h :M → N and a ∈ N(A)−N(X) such that hA(b) = (Nf)(a) .

Let us use ordinary multisorted first-order logic to talk about models of C and homo-
morphisms between them. Consider the language L = L(C) whose sorts are the objects
of B , operation-symbols are the arrows of B , and relation-symbols are all unary, and
they correspond to the predicates P ∈ CA ; P is sorted P ⊂ A . It is clear that every
M ∈ Mod(C) may be regarded an L -structure; morphisms in Mod(C) are exactly the
morphisms of L -structures. Moreover, there is a (coherent) theory T = T(C) over L
such that Mod(C) = Mod(T ) .

For a given L -structure M , homomorphisms h : M → N with varying N are in a
1-1 correspondence with models of Diag+(M) , the positive diagram of M , which is a set
of atomic sentences in the diagram language L(|M |) in which an individual constant a
of sort A has been added to L for each sort and a ∈ M(A) ; the elements Diag+(M)
as Db(M) ∪ Dp(M) , where Db(M) contains all f(a) = Bb for which f : A → B in
B , a ∈ M(A), b ∈ M(B) and (Mf)(a) = (b) ; and Dp(M) contains all P (a) where
A ∈ B , P ∈ CA and a ∈M(P ) ⊂M(A) .

Returning to our task, let a
∼

be a new individual constant of sort A ; under the

assumptions, we need the satisfiability of the set

T ∪ Db(M) ∪ Dp(M) ∪ {¬X(a
∼
)} ∪ {b =B f(a∼

)}.

Assume this fails. By compactness, there are finite subsets D ⊂ Db(M), D′ ⊂ Dp(M)
such that

T ∪D ∪D′ |= b =B f(a∼
) −→ X(a

∼
).
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Let 〈ci〉i<n be distinct elements of M, ci ∈M(Ci) , each distinct from b , such that every
c that occurs in D ∪D′ is one of the ci , or is b . Let zi be distinct variables, zi of sort
Ci ; y a variable of sort B , x one of sort A , all distinct. Let us replace ci by zi , b by
y ; we obtain D from D , D′ from D′ , and we get that

T |= ∀〈zi〉i<n∀y∀x(
∧

D ∧
∧

D′ ∧ y =B f(x)→ X(x)). (7)

Working inside the category B with finite limits, we can construct as an appropriate finite
limit an object C together with morphisms πi : C → Ci, π : C → B such that for any
L -structure N , N |= (

∧
D)[〈ċi〉i<nḃ/〈zi〉i<ny] iff there is ċ ∈ N(C) with N(πi)(ċ) =

ċi, N(π)(ċ) = ḃ (actually, ċ is then uniquely given). In particular, there is an element
c ∈M(C) such that M(πi)(c) = ci,M(π)(c) = b . For any α ∈ D′ , let a∗ be the element
of the fiber over C given as follows: if α :=: P (zi), a

∗ =
def
π∗
i (P ) ; if α :=: P (y), a∗ =

def
π∗(P ) .

Let Q =
∧{α∗ : α ∈ D′} ∈ CC . Notice that c ∈M(Q) . Consider the pullback-square

C Bπ
//

A×B C

C

g

²²

A×B C A
ρ // A

B

f

²²

We claim that

g∗(Q) ≤ a∗(X). (8)

By (5), it suffices to check that this holds in each model N ∈ Mod(C) . Assume N ∈
Mod(C) = Mod(T ), ḋ ∈ N(g∗(Q)), ċ = (Ng)ḋ, ȧ = (Nρ)ḋ, ċi = (Nπi)ċ, ḃ = (Nπ)ċ ; we
have ḃ = (Nf)ȧ, N |= (

∧
D)[〈ċi〉i<nḃ/〈zi〉i<ny] by the defining property of (C, 〈πi〉i, π)

and N |= (
∧
D′)[〈ċi〉i<nḃ/〈zi〉i<ny] by the definition of Q . Since N satisfies the sentence

in (7), it follows that ȧ ∈ NX , and thus ḋ ∈ N(a∗(X)) , which shows the claim.
Since f ∈ Q , also g ∈ Q . By (8), Q ≤ ∀gρ∗(X) = π∗∀f (X) . However, in M ,

c ∈M(Q) , but c /∈ π∗∀f (X) , since b /∈ ∀f (X) ; this is a contradiction.
A ∧ ∨ ¬∃ -fibration is a ∧ ∨ ∃ -fibration in which every fiber is a Boolean algebra.

Every ∧ ∨ ¬∃ -fibration is a ∧∨ → ∃∀ -fibration.
Without essentially changing the concepts, in each of the various kinds of fibrations

introduced above, the class Q of “quantifiable” arrows may be required, in addition,
to be closed under composition. If (C,Q) , is a “quantificational” fibration (of one of
the four kinds introduced above), then, with Q◦ the closure of Q under composition,
(C,Q◦) is again one of the same kind as the reader will readily see. Also any morphism
f : (C,Q) → (C ′,Q′) of one of the four kinds is a morphism f : (C,Q◦) → (C ′,Q′◦) 3 of
the same kind.

3 note how I grouped Q′ which leads to Q′◦ instead of Q′◦ - a small difference, but may be (not?)
desirable
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4. The syntax of first-order logic with dependent sorts as a fibration

Let L be a DSV; let K be the full subcategory of the kinds. Consider the category
B = BK which is the free finite-limit completion of K : i : K → B , and for any cate-
gory S with finite limits, i∗ : Lex(B ,S) −→ Fun(K ,S) is an equivalence of categories
( Lex(B ,S) is the category of left exact functors B → S ,Fun(K ,S) = SK the category
of all functors K → S , i∗ is defined as composition with i ).

It is well-known that for any (small) category K ,BK can be given as (Fp(SetK ))op

(Fp(M ) is the full subcategory of finitely presentatble objects of M ), with i : K ⊂ B
the functor i : K → (Fp(SetK ))op induced by Yoneda. (The small-colimit completion
of A is Y : A → Set(A

op) ; the finite-colimit completion of A is Y : A → Fp(SetA
op)) ;

therefore, the finite limit completion of Aop is Y : Aop → (Fp(SetA
op)))op) .

Now, for any simple category K , Fp(SetK ) is the category of finite functors K → Set ;
a functor F : K → Set is finite if El(F ) = {(K, a) : K ∈ Ob(K ), a ∈ FK} is a finite
set. Namely, each finite functor is finitely presentable, the finite functors are closed under
finite colimits in SetK , and every functor is the filtered colimit of the collection of its
finite subfunctors (the latter uses that K has finite fan-out); this suffices.

Thus, B can be taken to be the opposite of the category Fin(SetK ) of finite functors
K → Set ; the canonical functor i : K → B is (induced by) Yoneda.

Let Con[K ] be the category whose objects are the contexts (of variables over K ,
and whose arrows are the specializations. I claim that

Con[K ] ' Fin(SetK ).

Let F : K −→ Set be a finite functor. I define a mapping

(K, a) 7−→ yFK,a : El(F ) −→ VAR

into the class VAR of variables as follows:

yFK,a =
def
〈2,YFK,a, a〉

where
yFK,a = K(〈yFKp,(Fp)(a)〉p∈K|K ).

This is a legitimate definition by recursion on the level of K . YFK,a is a type; this requires
that

Kp(〈yFKqp,(F (qp))(a)〉q∈Kp|K = YFKp,(Fp)(a),

which is true since (F (qp))(a) = (Fq)((Fp)(a)) . Hence yFK,a is a variable.
We let YF =

def
{yFK,a : (K, a) ∈ El(f)} . It is immediate that YF is a context. We have

a bijection

(K, a) 7−→ yFK,a : El(F )
∼=−→YF .

If h : F −→ G is a natural transformation, we let s = sh : YF → YG be defined by
s(yFK,a) = yGK,hK(a).s is a specialization: this requires that YFK,a|s = YGK,hK(a) , which is the
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same as hKp((Fp)(a)) = (Gp)(hKa)(p : K → Kp) , which holds by the naturality of h . It
is immediate that we have a bijection

h 7−→ sh : Nat(F,G)
∼=−→ Spec(YF ,YG).

Also, if F
h−→G

k−→H , then skh = sk ◦ sh , and s1F = 1YF
.

Thus far, we have seen that we have the full and faithful functor

F

↓
G
h 7−→ sh

YF↓
YG

: Fin(SetK ) −→ Con[K ] (1)

Now, given a context Z , define F = FZ : K → Set by FD = {z ∈ Z : Kz = K} , and
Fp : FK → FKp by (Fp)(z) = xz,p ; F is a finite functor. Morevoer, we have the map

s : z 7−→ YFKz ,z : Z −→ YF ;

s is a specialization since

z : Kz(〈xz,p〉p∈K|K ), YFKz ,z : Kz{〈yFKp,(Fp)(z)〉p∈Kz |K ,

and s(xz,p) = yFKz ,xz,p
= yFKp,(Fp)(z)

, by the definition of F .

It is clear that s is a bijection, i.e., an isomorphism in Con[K ] .
We have verified that (1) is an equivalence of categories, thus our claim.
It is easy to see that the image of (1) consists of those contexts Z for which z ∈ Z 7→

(Kz, a(z)) is a 1-1 function.
It is clear that although the categories Fin(SetK ),Con[K ] are very large, they are

essentially small.
Thus, B , the free finite-limit completion of K , can be taken to be the opposite of the

category Con[K ] of contexts with specializations as arrows. To describe the canonical
embedding i : K 7→ B under the latest construal of the completion B , let us define, for
any K ∈ K , the context

XK =
def
{xKp : p ∈ K|K}

for which X = XK =
def
K(〈xKp 〉p∈K|K ) is a sort, and a(X) = 〈p〉p∈K|K . In the definition

of XK , the only essential points are that K(〈xKp 〉p∈K|K ) is a sort, and that the mapping
p 7→ xKp is 1-1 XK is the “most general sort” of the kind K ; every other such sort is of
the form XK |s for some specialization s with domain XK . Further, let

X ∗
K =

def
XK∪̇{xK},

where xK : XK , and, fo rthe sake of definiteness, xK is taken to be the specific variable
for which a(xK) = 1K . Note that under the equivalence F 7→ YF between finite functors
and contexts, X ∗

K is the context that corresponds to the representable functor K (K,−) :
K → Set .
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When a context X is considered an object of B = (Con[K ])op , it is written as [X ] .
Arrows s : X → Y of Con[K ] correspond to arrows [s] : [Y ]→ [X ] .

The canonical embedding i : K → B (having the universal property of the finite
limit completion) has i(K) = [X ∗

K ] .
The morphism p : K → Kp is taken by i to the arrow

[sp] : [X ∗
K ] −→ [X ∗

Kp
]

for the specialization

sp : X ∗
Kp
→ X ∗

K : xKp
q

s7→ xKqp(q : Kp → Kq), xKp

s7→ xKp . (3)

Note that in the category B , the object [XK ] is the same as i[K] for the “B -valued K -

structure i : K → B ”, that is, the limit of the composite K ↓ (K −{K}) Φ−→K
i−→B .

We single out four classes of arrows in Con[K ],Q0 ⊂ Q1 ⊂ Q2 ⊂ Q3.Q0 consists of
the inclusion-arrows incl : XK → X ∗

K , where K ranges over the kinds. Q1 consists of
the inclusion-arrows of the form incl : X → X∪̇{x} , where X is any (finite) context,
and X .∪{x} is also a context (for this, it is necessary and sufficient that x /∈ X and
Dep(x) ⊂ X ) . Q2 is the class of all 1-1 arrows i : X → Y where card(Y) = card(X )+1 .
Finally, Q3 is the class of all 1-1 arrows X → Y .

Every time s : Y → X is a specialization, and t : Y .∪{y} → Y .∪{x} extends s , with
t(y) = x , we have the pushout diagram

X X .∪{x}
incl

//

Y

X

s

²²

Y Y .∪{y}incl // Y .∪{y}

X .∪{x}

t

²²¤
(4)

in Con[K ] . All arrows in Q1 are pushouts of ones in Q0 . To see this, for a given

X incl // X .∪{x} , apply (4) to XKx

incl // X ∗
Kx

as Y incl // Y .∪{y} , and s : XKx → X
given by s(xKx

p ) = xx,p .
It is clear that Q2 is the closure of Q1 under isomorphisms (meaning that q : A →

B ∈ Q2 iff there is q′ : A′ → B′ ∈ Q1 with some commutative

A′ B′
q′

//

A

A′

∼=

²²

A B
q // B

B′

∼=

²²

◦ ).

(4) shows that any arrow q : A→ B in Q1 has a pushout along any a : A→ A′ that is
again in Q1 . Thus Q2 is closed under pushout, and in fact it is the closure of Q0 under
pushout.
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Q3 is the closure of Q2 under composition. Indeed, given any inclusion i : X → Y ,
there is a finite sequence X = X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn = Y of contexts such that
card(Xi+1) = card(Xi) + 1 ; enumerate Y − X as 〈yi〉n1 such that the level of Kyi is
non-increasing, and put Xi = X ∪ {x1, . . . xi} . This shows that ever inclusion i : X → Y
is the composite of arrows in Q1 ; since every 1-1 arrow is isomorphic to an inclusion, the
assertion follows.

Without talking about syntax, [Q0] = {[q] : q ∈ Q0} may be described as the class of
arrows of the form q : iK → [K] , where K ∈ K , i : K → B = (Fin(SetK))op is induced

by Yoneda, and [K] is the limit of the composite K ↓ (K − {1K}) Φ−→K
i−→B . [Q2]

is the closure of [Q0] under pullback. [Q3] is the class of all epimorphisms; also, it is the
closure of [Q2] under composition.

For the purposes for logic without equality, we let the class Q 6= of arrows in B be
either [Q2](= {[q] : q ∈ Q2} or [Q3] ; both [Q2] and [Q3] are closed under pullback, and
the second class is the closure of the first under composition. (According the remarks at
the end of the last section, the two possible choices are essentially equivalent).

Corresponding to logic with equality, we have Q= , which is obtained by adding to Q 6=

all isomorphic copies of arrows of the form [p] for p of the form p : X .∪{x, y} → X .∪{x}
such that x and y are distinct variables of the same type, their kind is a maximal one,
and p is defined so that p ¹ X is the identity and p(x) = p(y) = x . Categorically, if we
put A = [X ], B = [X .∪{x}] , and q : B → A, q = [incl] , we have [p] = δ = B → B×AB ,
the diagonal.

If s : X .∪{x, y} −→ Y , then for x′ = s(x) , y′ = s(y) and X ′ = Y − {x′, y′} , X ′ is
a context, since no variable z can have x′ ∈ Dep(z) or y′ ∈ Dep(z) , by the maximality
assumption on the kind of x and y ; Y = X ′ .∪{x′, y′} . We have a pushout

X ′ .∪{x′, y′} X ′ .∪{x′}
p′

//

X .∪{x, y}

X ′ .∪{x′, y′}

s

²²

X .∪{x, y} X .∪{x}p // X .∪{x}

X ′ .∪{x′}

t

²²

with the evident p′ and t . It follows that all pullbacks of the additional arrows in Q=

are again of the same form, thus Q= is closed under pullback. Also, all the additional
arrows in Q= are pullbacks of the specific ones [pK ] where K is a maximal kind, pK :
XK

.∪{xK , y} −→ XK
.∪{xK} ; here XK

.∪{xK} = X ∗
K defined above, etc.

Suppose T = (L,
∑

) is a theory; there are six possibilities for the logic: coherent,
intuitionistic, or classical, each with or without equality. We define a fibration C = [T ] =

C
E

↓
B
, with a set Q = QC of distinguished (quantifiable) arrows in B . B has been given

in the foregoing; we use Q 6= when we exclude quality, Q= otherwise, as Q .
A formula-in-a-context is an ordered pair (X , φ) , written as [X : φ] , such that X is

a context, and φ is a formula with Var(φ) ⊂ X . With a given X , [X : φ] is called a
formula-over X .
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To define C
E

↓
B
, for [X ] ∈ B , the fiber C[X ] is given as the set of equivalence classes

[X : φ]/∼X of formulas-over X under the equivalence relation

[X : φ] ∼X [X : ψ]⇐⇒ T ` φ=⇒
X
ψ and T ` ψ=⇒

X
φ

(the range of the formulas φ, ψ , and the deducidibility relation ` is understood according
to the logic in question). In what follows, we will write [X : φ] for [X : φ]/∼X .C[X ] is
partially ordered by

[X ;φ] ≤X [X : ψ]⇐⇒ T ` φ=⇒
X
ψ;

by the rules (Taut) and (Cut) this is well-defined and it is a partial order. Finally, for
s : X → Y in Con[K ] , that is, [s] : [Y ] −→ [X ] , [s]∗([X : φ]) =

def
[Y : φ|s] . By the rule

(Subst) , [s]∗ : CX −→ CY is a map of posets.

Since (φ|s)|t = φ|ts , and φ|id = φ , we have a (pseudo)functor X 7→ CX , ([X ] [s]←→[Y ])
7→ [s]∗ ; thus, we have a fibration. The rules for connectives (not counting the last two)
make sure that each fiber has the necessary (propositional) structure, where each operation
is given by the corresponding syntactic operation on formulas; e.g., [X : φ]∧[X ] [X : ψ] =
[X : φ ∧ ψ] .

For [i] : [X .∪{x}] −→ [X ](i : X −→ X .∪{x} the inclusion) in [Q1] and [X .∪{x} :

φ] ∈ C [X
.∪{x}] , we have ∃[i]([X

.∪{x} : φ]) = [X : ∃xφ] ∈ C[X ] , and similarly for ∀ in
place of ∃ . This follows from the rules (∃) and (∀) . As we pointed out in Section 2,
if Var(φ) ⊂ X .∪{x} , then ∀Xφ, ∃xφ are well-formed. Since every arrow q in [Q3] is
an isomorphic copy of a composite of arrows in [Q1] , the operation ∃q , or ∀q , will be
well-defined, and can be expressed in terms of ∃r or ∀r , for r ∈ [Q1] .

In the case of logic with equality, we have, for

δ : [X .∪{x}] [p]←→[X .∪{x, y}],

an additional arrow in Q=,∃δ(t[X .∪{x}]) = [X .∪{x, y} : x =X y] , and more generally,

∃[δ]([X
.∪{x} : φ]) = [X .∪{x, y} : x =X y ∧ φ] . This is F.W. Lawvere’s observation the

definition of equality in hyperdoctrines [L2]. The claimed equality can be deduced by
using the rules of equality. We also have that

∀[δ]([X
.∪{x} : φ]) = [X .∪{x, y} : x =X y −→ φ].

The fact that substitution is compatible with the logical operations gives that for any
specialization s : Y → X , [s]∗ : CX −→ CY preserves the (propositional) structure, and
that the Beck-Chevalley conditions are fulfilled. We obtain a ∧∨∃ -fibration, a ∧∨ → ∃∀ -
fibration and a ∧ ∨ ¬∃ -fibration in the respective cases of coherent logic, intuitionistic
logic and classic logic; the presence of the rules (∧∨), (∧∃) ensures this in the coherent
case, and that of (¬) in the classical case.
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The construction [T ] has the universal property of the fibration of the appropriate
kind that is freely generated by T . In what follows, we describe this universal property
in a somewhat incomplete way, namely, for “target” fibrations of the form P(C ) , rather
than arbitraty (suitably structured) fibrations.

For a relation R ∈ Rel(L) , we make a definition of the context XR analogously to
XK in (2): XR =

def
{xRp : p ∈ R|L} such that R =

def
R(〈xRp 〉p∈R|L) is a well-formed atomic

formula, and α(X) = 〈p〉p∈R|L . R is the “most general” atomic formula using the relation
R . Moreover, for p ∈ R|L , we let

sp : X ∗
Kp
→ X ∗

R : xKp
q 7−→ xRqp(q : Kp → Kq), xKp 7−→ xRp .

Changing the meaning of the symbol ModD(C) , let us use the notation now in the variable
sense of either of ∧ ∨ ∃(C,D),∧∨ → ∃∀(C,D),∧ ∨ ¬∃(C,D) as the context requires it,
according to which logic we are dealing with. In what follows, C is a category having
enough structure for the logic at hand: it is a coherent, a Heyting or a Boolean category
in the three respective cases.

We have a “forgetful” functor

()− : ModP(C )([T ]) −→ ModC (T ) (5)

defined as follows. Given P = (P1, P2) ∈ ModP(C )([T ]) , we define P− : L → C , P− ∈
ModC (T ) , by P−(K) = P1([X ∗

K ]) ; for p : K → Kp, P
−(p) = P1([sp]) (see (3)) (more

briefly, P− ¹ K = P1 ◦ i , for the canonical embedding i : K → B) ; for R ∈
Rel(L), P−(R) the domain of a monomorphism m representing the subobject P2([XR :
R]) of P1([XR]) ; and for p : R→ Kp, P

−(p) = P1([sp]) ◦m .
For h : P → Q in ModP(C )([T ]) (that is, h : P1 → Q1 with properties), h− = h ◦ i ;

it is easy to see that h− is an arrow P− → Q− .
In the case of coherent logic, the functor (5) is full and faithful, and in the case of

intuitionistic and classical logics,

()− : Modiso
P(C )([T ]) −→ Modiso

C (T ), (6)

with both categories restricted to have only isomorphisms as arrows (thus, they are
groupoids), is full and faithful. The faithfulness is obvious, the fullness requires an easy
proof by induction on the complexity of formulas. In fact, in the case of coherent logic,
(5), and in the other two cases, (6), is an equivalence of categories. Indeed, if M : L→ C
is a model of T , we define

[M ] : [T ] −→ P(C )

by [M ]1([X ]) = M [X ], [M ]2([X : φ]) = M [X : φ] . The fact that M is a model ensures
that [M ] is well-defined (on equivalence classes); the rules of the logic, built into the
definition of [T ] , ensure that [M ] is a morphism of fibrations with the appropriate
preservation properties. Finally, we have jM : [M ]− ¹ K ∼= M ¹ K whose components
are canonical isomorphisms M([X ∗

K ])
∼= M(K) , and jM is in fact an isomorphism jM :

[M ]− ∼= M .
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The completeness theorem
T ` ε⇐⇒ T ²Set ε

for coherent logic with dependent sorts, with or without equality, is now an immediate
consequence of 3.(5). Indeed,

T ` φ⇐⇒
X

ψ ⇐⇒ [X : ψ] ≤X [X : ψ] in [T ] by the construction of [T ];

⇐⇒ for all P : [T ]→ P(Set), P [X : φ] ≤ P [X : φ] by 3.(5);

⇐⇒ for all M ² T,M ² φ⇐⇒
X

ψ

by the above description of the equivalence

ModC (T ) ' ModP(C )([T ]) ks +3 T ²Set φ ks
X

+3 ψ

by definition.
2.(6) gives a proof of the completeness theorem for intuitionistic logic. 2.(6) says

that there is a category K , namely Mod(T ) , such that T has a conservative Heyting
morphism into SetK ; changing here K into a small category, and then into a poset is an
easy matter; see [MR2], [M3].

As it is well-known, completeness for classical logic follows from that for coherent logic
directly.

In summary, it is worth emphasizing that the study of first-order logic with dependent

sorts without equality is the same as the study of “quantiticational” fibrations (C
E

↓
B
,Q)

where the base category is B = ((SetK )fin)
op for a simple category K , with Q being

the class of all epimorphisms in B . This is a remarkably simple algebraic description of
the objects of our interest, even though it is not one that is conjured up immediately by
the idea of “first-order logic with dependent sorts”.

5. Equivalence

Let L be a fixed DSV, K the full subcategory of its kinds.
We have defined what an L -structure is; even, what a C -valued L -structure is, for

any C with finite limits. In what follows, we will make the minimal assumption that
C is a regular category (which is equivalent to saying that P(C ) , with “total” Q , is a
∧∃ -fibration: just ignore f and ∨ in the definition of ∧ ∨ ∃ -fibration).

The category of C -valued L -structures, StrC (L) , has objects the C -valued L -
structures, and morphisms natural transformations; StrC (L) is a full subcategory of C L

(with L in its last occurence understood as a mere category). We write Str(L) for
StrSet(L) .

Given M ∈ StrC (L) , we have M ¹ K : K −→ C , its K -reduct, the structure of
kinds associated to M . For any R ∈ Rel(L) , we have the canonical monomorphism
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mR : M(R) ½ M [R] = (M ¹ K )[R] (see 1). For a natural transformation (f : U −→
V ) ∈ CK , we have the canonical arrow f[R] : U [R] −→ V [R] for which

U(Kp) V (Kp)hKp

//

U [R]

U(Kp)

πU
p

²²

U [R] V [R]
f[R] // V [R]

V (Kp)

πV
p

²²

◦

for all p ∈ R|L . If (h :M −→ N) ∈ Str(L) , then

(M ¹ K )[R] (N ¹ K )[R]
h[R]

//

M(R)

(M ¹ K )[R]

²²

mM
R

²²

M(R) N(R)
hR // N(R)

(N ¹ K )[R]

²²

mN
R

²²

◦

which shows that h ¹ K :M ¹ K ←→ N ¹ K determines h (if any).
We have the forgetful functor (εC ,L = ε : StrC (L) −→ CK ; ε is faithful, by the last

remark. ε is a fibration. Indeed, given f : U → V in CK , and N over V (that is,
N ¹ K = V ), then the Cartesian arrow h : M → N over f is obtained by defining M
and h such that M ¹ K = U, h ¹ K = f and, for all R ∈ Rel(L) ,

U [R] V [R]
f[R]

//

M(R)

U [R]

²²

mM
R

²²

M(R) N(R)
hR // N(R)

V [R]

²²

mN
R

²²

¤

is a pullback (it is immediate to see that h so defined is Cartesian). As usual with
fibrations, let us denote M so defined by f ∗(N) , and the Cartesian arrow h by θf :
f ∗(N)→ N .

Then E is a fibration with fibers that are preorders.
When in particular C = Set (which is the most important case), a functor U : K →

Set is called separated if U(K) ∩ U(K ′) = ∅ whenever K,K ′ are distinct objects of
K . For a separated U , we define |U | = ⋃

K∈K
U(K) ; for a general U , we would put

|U | = ⊔
K∈K

U(K) = {(K, a) : k ∈ K , a ∈ U(K)} . Of course, every functor is isomorphic

to a separated one. When f : U → V , and U is separated, for a ∈ |U | we may write
h(a) without ambiguity for hK(a) for which a ∈ U(K) . For notational simplicity, we
will restrict attention to separated functors K → Set .
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I will now isolate a property of a natural transformation f : U → V in CK . Let first
C = Set . We say that f is very surjective if whenever K ∈ K , 〈ap〉p∈K|K ∈ U [K] , the
mapping

f〈ap〉p∈K|K : UK(〈ap〉p∈K|K ) −→ V K(〈fap〉p∈K|K ) : a 7→ f(a)

(see (3) in 1) is surjective.
For a general C (assumed to be regular), f : U → V in CK is very surjective if for

every K ∈ K , the canonical map p : U(K)→ P = U [K]×V [K] V (K) from the diagram
below is surjective (a regular epimorphism):

U [K] V [K]
f[K]

//

U(K)

U [K]

πU
K

²²

U(K) V (K)
fK // V (K)

V [K]

πV
K

²²

P

p
ÂÂ?

??
??

?? ??
ÄÄÄÄÄÄÄÄ

ÄÄ

ÄÄÄÄÄÄÄÄÄ
¤

◦

◦ .

It is clear that if f is an isomorphism (in CK ), then it is very surjective. It is easy to
see (by induction on the level of K ∈ K ) that very surjective implies surjective (being a
regular epimorphism in CK ), but not necessarily conversely.

In this section, we consider logic with dependent sorts only without equality; all L -
formulas are without equality.

(1) Let f : U → V in CK be very surjective, and any N ∈ StrC (L) over V . Let
h = θf :M = f ∗(N)→ N .

(a) Let first C = Set . h is elementary with respect to logic without equaility in
the sense that for any context X and L -formula φ (in logic with dependent sorts and
without equality) with Var(φ) ⊂ X , and any 〈ax〉x∈X ∈M [X ] ,

M ² φ[〈ax〉x∈X ]⇐⇒ N ² φ[〈hax〉x∈X ].
(b) For a general C which is a Heyting category (to interpret all L -formulas), for

any φ and X as above, there is a pullback

U [X ] V [X ]
fX

//

M [X : φ]

U [X ]

²²

²²

M [X : φ] N [X : φ]// N [X : φ]

V [X ]

²²

²²

¤
(1b)

(the vertical monomorphisms are representatives for the subobjects M [X : φ] ∈ S(U [X ]),
N [X : φ] ∈ S(V [X ]) ; in other words, (1b) says M [X : φ] = (fX )∗N [X : φ]) . Here, fX is
the canonical map determined through by the definition of U [X ], V [X ] as limits in C .



43

Obviously, (b) generalizes (a).
The proof for (a) can be given as a straightforward induction on the complexity of φ .

The clause for atomic formulas is essentially the definition of M . For the propositional
connectives, the induction step is automatic. By the duality in Set between ∃ and ∀ ,
it is enough to handle the inductive step involving ∃ , which is done using the “very
surjective” assumption. In Appendix B, I will take a “fibrational” view of the notion of
equivalence, and give a detailed proof of the more general form (b).

Let M,N be C -valued L -structures. We say that they are L -equivalent, and we
write M ∼L N , if there is a diagram

M N

P

M

m

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
P

N

n

ÂÂ?
??

??
??

??
??

??

in StrC (L) such that m ¹ K , n ¹ K are very surjective, and m and n are Cartesian
arrows in the fibration εC ,L . Paraphrased, this means that there exists a functor W ∈ CK

and very surjective maps m : W →M ¹ K , n : W → N ¹ K such that m∗(M) = n∗(N) ,
that is, for all R ∈ Rel(L) ,

M [R] W [R]m[R]

//

M(R)

M [R]
²²

M(R) M(R)×M [R] W [R] = N(R)×N [R] W [R]// M(R)×M [R] W [R] = N(R)×N [R] W [R]

W [R]
²²

W [R] N [R]n[R]

//

M(R)×M [R] W [R] = N(R)×N [R] W [R]

W [R]

M(R)×M [R] W [R] = N(R)×N [R] W [R] N(R)// N(R)

N [R]
²²

¤ ¤

(where the equality means equality of subobjects of W [R] ). In case C = Set , (1 ′ )
means that if R ∈ Rel(L), 〈cp〉p∈R|K ∈ W [R] , then

〈mcp〉p∈R|K ∈M(R)⇐⇒ 〈ncp〉p∈R|K ∈ N(R). (1′′)

The data (W,m, n) are said to form an L -equivalence of M and N ; in notation,
(W,m, n) :M←→

L
N .

It is easy to see that the relation ∼L is an equivalence relation (for a proof, see
Appendix B). It is also clear that isomorphism of L -structures implies L -equivalence.

Let us write M ≡L N for: M ² σ ⇐⇒ N ² σ for all L -sentences in logic with
dependent sorts and without equality. We have

(2)(a) M ∼L N =⇒M ≡L N.

This immediately follows from (2)(a).
The word “equivalence” is used in “L -equivalence” because of the relationship to the

various notions of “equivalence” used in category theory; see later.
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At this point, the reader may want to look at Appendix C, which may help understand
the concept of L -equivalence.

We now will exploit the fact that we have specified variables “with arbitrary parame-
ters”. In what follows, a context is a, not necessarily finite, set Y of variables such that
y ∈ Y , x ∈ Dep(y) imply that x ∈ Y . When we want to refer to the previous sense
of “context”, we will say “finite context”. A specialization is a map of contexts whose
restriction to all finite subcontexts of the domain is a specialization in the original sense.
Just as in case of finite contexts, there is a correspondence between contexts and functors
F : K → Set which is an equivalence of the categories SetK and Con∞[K ] , the category
of all (small) contexts and specializations.

Given a context Y and an K -structure M , the set M [Y ] is defined by the formula
(1), §1 (which was the definition of M [Y ] for finite Y ). Given a formula φ with Var(φ) ⊂
Y ,M [Y : φ] is the subset of M [Y ] for which, for any 〈ay〉y∈Y ∈M [Y ] ,

〈ay〉y∈Y ∈M [Y : φ]⇐⇒ 〈ay〉y∈Y ′ ∈M [Y ′ : φ]

for any (equivalently, some) finite context Y ′ with Var(φ) ⊂ Y ′ ⊂ Y . As before, we
write also M ² φ[〈ay〉y∈Y ] for 〈ay〉y∈Y ∈M [Y : φ] .

Suppose X is a context, M,NL -structures, −→a = 〈ax〉x∈X ∈ M [X ],−→b = 〈bx〉x∈X ∈
N [X ] . We write

(W,m, n) : (M,−→a )←→
L

(N,
−→
b ) (3)

if (W,m, n) :M←→
L

N and there is 〈sx〉x∈X ∈W [X ] such that msx = ax and nsx = bx

for all x ∈ X . We write M,−→a ) ∼L (N,
−→
b ) if there is (W,m, n) such that (3) holds.

With M,N,X ,−→a ,−→b as above, we write (M,−→a ) ≡L (N,
−→
b ) for: for all L -formulas

φ with Var(φ) ⊂ X , we have M ² φ[〈ax〉x∈X ]⇐⇒ N ² φ[〈bx〉x∈X ] .
We have the following generalization of (2)(a):

(2)(b) (M,−→a ) ∼L (N,
−→
b ) =⇒ (M,−→a ) ≡L (N,

−→
b );

this also follows immediately from (1).
Let Y be a context, x a variable such that x /∈ Y but Y .∪{x} is a context (thus,

xx,p ∈ Y for all p ∈ Kx|K ) , and let Φ be a set of formulas in logic with dependent

sorts over L such that Var(Φ) =
⋃
φ∈Φ Var(φ) ⊂ Y .∪{x} ; such that Φ is called a Y -set

(of formulas; with x any variable as described with respect to Y . Let M be an L -
structure, and −→a = 〈ay〉y∈Y ∈M [Y ] . We say that Φ is satisfiable in (M,−→a ) if there is
a ∈ |M | (more precisely, a ∈ MKx[〈axx,p〉p∈Kx|K ] ) such that M ² φ[−→a , a/x] (of course,
−→a , a/x stands for 〈a′y〉y∈Y .∪{x} for which a′y = ay for y ∈ Y , and a′x = a ). Φ is finitely

satisfiable in (M,−→a ) if every finite subset of Φ is satisfiable in (M,−→a ) . M is said to
be Y -L -saturated if for every −→a ∈M [Y ] and every Y -set Φ , if Φ is finitely satisfiable
in (M,−→a ) , then Φ is satisfiable in (M,−→a ) .

Let κ be an infinite cardinal. We say that M is κ , L -saturated if it is Y -L -saturated
for every context Y with cardinality smaller than κ .
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For saturated models for ordinary first order logic, see [CK]. In [MR2], one can find
a detailed introduction to saturated and special models for multisorted logic; the basic
facts and their proofs in the multisorted context do not essentially differ from the original
one-sorted versions.

κ,L -saturation is κ -saturation with respect to L -formulas. Since L -formulas form
a part of the multisorted formulas over |L| , it is clear that if M , an L -structure, is
κ -saturated as a structure for the similarity type |L| , then M is κ,L -saturated. More
generally, suppose that we have “interpreted” L in a theory S in ordinary multisorted
first-order logic; that is, we have a C -valued L -structure I : L −→ C , for C the
Lindenbaum-Tarski category [S] of S (see [MR]; [S] is a Boolean category). Then if
M is a model of S , or equivalently, M : C → Set is a coherent functor, and M is
κ -saturated in the ordinary sense, then the L -structure M ¹ L = MI : L → Set is
κ,L -saturated.

By the cardinality of the structure M,#M , we mean the cardinality of its underlying
set |M | .

(4) Suppose the L -structures M,N are κ,L -saturated, and both are of cardinality
≤ κ . Then the converses of (2)(a) and (2)(b) hold:

M ≡L N =⇒M ∼L N ;

and more generally, if X is a context of size < κ,−→a ∈M [X ],−→b ∈ N [X ] , then
(M,−→a ) ≡L (N,

−→
b ) =⇒ (M,−→a ) ∼L (N,

−→
b ).

Proof. For a given infinite cardinal κ , and a given context X of cardinality less than
κ , let U = U [κ,X ] be a context such that #U = κ,X ⊂ U , and for every sort X with
Var(X) ⊂ U , the cardinality of the set of variables x ∈ U with x : X is equal to κ . It
is easy to see that such an U exists; we define contexts Ui by recursion on i ≤ k for
k the height of K ; let U0 = ∅ ; if Ui has been defined, pick, for every sort X whose
kind is of level i and for which Var(X) ⊂ Ui , a set VX of variables v : X such that
#VX = κ , and let Ui+1 be the union of Ui and all the VX for all such X ; if k = ω , let
Uω =

⋃
i<ω

Ui ; let U = Uk .
Next, enumerate U as a sequence 〈uα〉α<κ in such a way that for each β < κ, 〈uα〉α<β

is a context; equivalently, such that for each β < κ,Dep(uβ) ⊂ {uα : α < β} . Note
first of all that for any finite context Y , there is an enumeration Y = {yi : i < n} such
that 〈yi〉i<j is a context for all j < n ; enumerate first the level- 0 variables, next the
level- 1 ones, etc. Call such an enumeration of Y “good”. Now take first an arbitraty
enumeration 〈vα〉α<κ of U ; define the increasing sequence 〈βα〉α<κ of ordinals and the
partial enumeration 〈uγ〉γ<βα by induction on α as follows. For a limit ordinal α, βα =
limδ<α βδ For α = δ + 1 , let 〈uβδ+1〉i<n be a good enumeration of Dep(vδ) ∪ {vδ} , and
let βα = βδ + n .

For every sort X such that Var(X) ⊂ U , let 〈uαX,v
〉ν<κ be an enumeration in in-

creasing order of all uα of sort X for which uα /∈ X . Finally, for any α < κ , let ν[α]
be the ordinal ν for which αX,ν = α where X is the sort of uα .
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Assume X is a context of size < κ,#M,#N ≤ κ,−→a = 〈ax〉x∈X ∈ M [X ],−→b =

〈bx〉x∈X ∈ N [X ] , and (M,−→a ) ≡L (N,
−→
b ) . For any M -sort MK(〈cp〉p∈K|K ) =MK(−→c ) ,

let us fix an enumeration 〈eξ〉ξ<λ = 〈eK,−→c ,ξ〉ξ<λ
K,
−→c of the set MK(−→c ) ; here, λ

K,
−→c ≤ κ .

Consider U = U [κ,X ] constructed above.
We define a context Z , a subset of U , by deciding, recursively on α < κ , whether uα

belongs to Z or not; furthermore, we also define, for each uα ∈ Z , elements cα ∈ |M |
and dα ∈ |N | . Let Zα denote the set of all uβ with β < α for which uβ ∈ Z ,
and −→c [α] be the sequence 〈cz〉z∈X∪Zα ∈ M [X ∪ Zα] for which cx = ax(x ∈ X ) and

cuβ = cβ(uβ ∈ Zα) . Similarly, we have
−→
d [α] ∈ µ[X ∪ Zα] . The induction hypothesis of

the construction is that

(M,−→c [α+ 1]) ≡L (M,
−→
d [α+ 1]). (5)

Suppose α < κ , and Zα,−→c [α],−→d [α] have been defined so that, for all β < α, (M,−→c [β+
1]) ≡L (M,

−→
d [β + 1]) . Since in the definition of “≡L ”, formulas with finitely many free

variables are involved, we can conclude that

(M,−→c [α]) ≡L (M,
−→
d [α]). (6)

Look at the variable uα and its sort X . If uα ∈ X , we let uα ∈ Z, cα = auα , dα = buα .
(5) is now an automatic consequence of (6).

If not all the variables in X (which are uβ ’s for β < α ) are in Z , then uα /∈ Z , and
we are finished with the stage α .

Assume that uα /∈ X and all the variables in X are in Z . Look at the ordinal
ν = ν[α] ; write ν in the form ν = 2 · µ or ν = 2 · µ + 1 as the case may be. Let first
ν = 2 · µ . With X = K(〈uβp〉p∈K|K ) , consider the M -sort MK(〈cβp〉p∈K|K ) =MK(−→c )
and its previously fixed enumeration 〈eξ〉ξ<λ(= 〈eK,−→c ,ξ〉ξ<λ

K,
−→c ) . If µ ≥ λ , then again

uα /∈ Z . If, however, µ < λ , then uα ∈ Z . Moreover, cα =
def
eµ .

Let Φ be the X ∪ Zα -set of all formulas φ with Var(φ) ⊂ X ∪ Zα
.∪{uα} for which

M ² φ[−→c [α], eµ/uα] . I claim that Ψ is finitely satisfiable in (N,
−→
d [α]) . Let Ψ be a finite

subset of Φ . For φ =
∧

Ψ , we have M ² φ[−→c [α], eµ/u] , hence M ² (∃uαφ)[−→c [α]] (note
that ∃uαφ is well-formed, since for every z ∈ Var(φ), z 6= uα , we have z ∈ X ∪Zα , hence
Dep(z) ⊂ X ∪Zα , and uα /∈ Dep(z) ). As a consequence, by (6), N ² (∃uφ)[−→d [α]] . This
means that Φ is satisfiable in (N,

−→
d [α]) as desired.

Since #(X ∪ Zα) < κ , and N is K,L -saturated, Φ is satisfiable in (N,
−→
D [α]) , by

dα ∈ NK(〈dβp〉p∈K|K ) , say. The choice of Φ ensures that (5) holds.
In case ν = 2 ·µ+1 , we proceed similarly, with the roles of M and N interchanged.
With the construction completed, we put Z =

⋃
α<κ

Zα . We let W be the functor

FZ : K → Set associated with the context Z (see 4). m : W →M ¹ K , n : W → N ¹ K
are defined by m(uα) = cα, n(uα) = dα(uα ∈ Z) . The definition ensures that X ⊂ Z
and m(x) = ax, n(x) = bx(x ∈ X ) .
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Let us see that m is very surjective. Let K ∈ K .W [K] is the set of all tuples
〈zp〉p∈K|K for which each zp ∈ Z , and X = K(〈zp〉p∈K|K ) is a (well=formed) sort;
WK(〈zp〉p∈K|K ) is the set of all z ∈ Z such that z : X . So, assume that

X = K(〈zp〉p∈K|K ) = K(〈uβp〉p∈K|K ) is a sort, and

a ∈MK(〈mzp〉p∈K|K ) =MK(〈cβp〉p∈K|K ) =MK(−→c ).
Then a = e

K,
−→c ,µ for some µ < λ

K,
−→c , and for α = αX,2 ·µ , the construction at stage α

puts uα : X into Z ; that is, uα ∈ WK(〈zp〉p∈K|K ) , with a = cα = muα as desired.
The fact that n is very surjective is seen analogously.
We have that (W,m, n) :M←→

L
N , since (1 ′′ ) is a consequence of (5) being true for

all α < κ ; one has to apply (5) to atomic formulas.
This completes the proof of (4).
Let C be a small Boolean category. By a model of C we mean a functor M :

C → Set preserving the Boolean structure (That is, M is a coherent functor). We write
M ² C to say that M is a model of C .

There is a theory TC = (LC ,
∑

C ) in multisorted first-order logic, with LC the
underlying graph of C , such that the models of C are the same as the models of
TC (note that both the models of C and the models of TC are particular diagrams
LC → Set ). Moreover, for any subobject φ ∈ SC (A) , A ∈ C , there is a (simply defined)
LC -formula φ(x) with a single free variable x : A such that for every M ² C and
a ∈M(A),M ² (φ[a](⇐⇒M ² φ[a/x] ) iff a ∈M(φ)(⊂M(A) ). See [MR].

For σ ∈ S(1C ) , a subobject of the terminal object in C , we write M ² σ for
M(σ) = 1 in Set . We will call a subobject of 1C a sentence in C .

Let I : L → C a C -valued L -structure (in particular, I : L → C is a functor
from L as a category). When C is the Lindenbaum-Tarski category [S] of a theory
S = (LS,

∑
S) in ordinary multisorted logic (see [MR] or [M?]), then such an I is what we

should consider an interpretation of the DS vocabulary L in the theory S . An example
is obtained by taking S = (|L|,∑[L]) (for

∑
[L] , see 1), and for I : L → [S] the

[S] -structure defined by I(A) = [a : t] for A ∈ L where a : A , and for f : A → B ,
I(f) = 〈a 7→ b : fa = b〉 : [a : t] → [b : t] . I : L → [S] is the canonical interpretation
of logic with dependent types in multisorted logic. In this case, for any formula φ of
FOLDS over L , with Var(φ) ⊂ X , we have I[X : φ] = m∗[X : φ∗] ; here, m : I[X : φ] ½
{X} =

def
u
x∈X

Kx is the canonical monomorphism, m∗ denotes pulling back along m ; φ∗

was defined in 1.
For a general I : L→ C , and for an L -sentence θ , let us write I(θ) for the sentence

I[∅ : θ] of C . In case C = [S], I(θ) also stands for any one of the S -equivalent
LS -sentences which are the reprentatives of the C -subobject I(θ) .

When M ² C , the composite MI : L → Set is an L -structure. We also write
M ¹ L for MI ; M ¹ L is the L -reduct of M (via I ).

Let C and D be small Boolean categories, I : L→ C and J : L→ D . Notational
conventions introduced above for I : L→ C are valid for J : L→ D , mutatis mutandis.
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(7)(a) Assume that σ is a sentence of C , τ is a sentence of D , and for all M ²
C , N ² D ,

M ² σ & M ¹ L ∼L N ¹ L =⇒ N ² τ. (8)

Then there is an L -sentence θ in logic with dependent sorts without equality such that
for all M ² C , N ² D , we have

M ² σ =⇒M ¹ L ² θ and N ¹ L ² θ =⇒ N ² τ. (8′)

For a more general formulation, consider a finite L -context X , and the object I[X ] ∈ C .
I[X ] is defined as a finite limit in C ; see the end of 1; let π[x] : I[X ] → I(Kx) be the
limit projections (x ∈ X ) . Given any M ² C , we have similar projections ρ[x] : (M ¹
L)[X ] → MI(Kx) in Set , and a canonical isomorphism µ : (M ¹ L)[X ] ∼=−→M(I[X ])
making each diagram

(M ¹ L)[X ]

MI(Kx)

ρ[x]

ÂÂ?
??

??
??

??
??

?
(M ¹ L)[X ] M(I[X ])µ // M(I[X ])

MI(Kx)

M(π[x])

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

(M ¹ L)[X ]

MI(Kx)

ρ[x]

ÂÂ?
??

??
??

??
??

?
(M ¹ L)[X ] M(I[X ])∼=

// M(I[X ])

MI(Kx)

M(π[x])

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ◦

(7′)

commute. If −→a = 〈ax〉x∈X ∈ (M ¹ L)[X ] , we write 〈−→a 〉 for µ(−→a ) ∈ M(I[X ]) . Once
again, similar conventions apply in the context of J : L→ D .

(7)(b) Assume that X is finite L -context, σ ∈ SC (I[X ]), τ ∈ SD(J [X ]) , and for all

M ² C , N ² D ,−→a ∈ (M ¹ L)[X ],−→b ∈ (N ¹ L)[X ] ,
〈−→a 〉 ∈M(σ) & (M ¹ L,−→a ) ∼L (N ¹ L, ¹ −→b ) =⇒ 〈−→b ) ∈ N(τ), (8)

Then there is an L -formula θ in logic with dependent sorts without equality with
Var(φ) ⊂ X such that

σ ≤I[X ] I[X : θ], J [X : θ] ≤J [X ] τ. (8′)

Note that (8’) may be written equivalently as

for all M ² C , N ² D ,−→a ∈ (M ¹ L)[X ] and −→b ∈ (N ¹ L)[X ],
〈−→a 〉 ∈M(σ) =⇒M ¹ I ² θ[−→a ] and N ¹ J ² θ[−→b ] =⇒ 〈−→b ∈ N(τ).

Proof. Let us extend the vocabulary LC to LC (c) by adding a single new individual
constant c of sort A =

def
I[X ] . For any φ ∈ SC (A) , let φ(c) denote φ(c/x) , the result of

substituting c for x in φ(x) . For an L -formula θ with Var(θ) ⊂ X , let θ(c) stand for
(I[X : θ])(c) . Similarly, we introduce d : B =

def
J [X ] ; for ψ ∈ SD(B), ψ(d) and for θ as

before, θ(d) .
Let Θ be the set of all L -formulas θ with Var(θ) ⊂ X such that σ ≤A I[X : θ] .

Consider the set
∑

=
def

∑
D ∪{θ(d) : θ ∈ Θ} of LD(d) -sentences. I claim that

(
LD(d),

∑)
² τ(d). (9)
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Once the claim is proved, by compactness there are finitely many θi ∈ Θ(i < n) such that
(LD(d),

∑
D ∪{θi(d) : i < n}) ² τ(d) , which means, for θ =

∧
i<n

θi ∈ θ that (LD(d),
∑

D) ²

θ(d)→ τ(d) , that is, (LD(d),
∑

D) ² ∀x : B.(θ(x)→ τ(x)) , which means J [X : θ] ≤B τ ;
thus, it is enough to see the claim.

Assume that there is an infinite cardinal λ ≥ #LC such that λ+ = 2λ (see below
for the legitimacy of this assumption). Let κ = λ+ . According to the existence theorem
for saturated models (see [CK], [MR2]), any LD(d) -structure is elementarily equivalent
to a κ -saturated structure of cardinality ≤ κ . Therefore, to show (9), take (N, b/d) , a
κ -saturated model of cardinality ≤ κ of (LD(d),

∑
) , to show (N, b/d) ² τ(d) .

Let Φ be the set of L -formulas φ with Var(φ) ⊂ X such that b ∈ N(I[X : φ]) ⊂
NB ; for every L -formula φ with Var(φ) ⊂ X , exactly one of φ,¬φ belongs to Φ .
Since (N, b/d) is a model of (LD(d),

∑
) , with

∑
defined as it is, we have Θ ⊂ Φ . I

make the subclaim that the theory

(LC (c),
∑
C

∪{σ(c)} ∪ {φ(c) : φ ∈ Φ}) (10)

is consistent. Consider a finite subset {φi : i < n} of Φ . If (LC (c),
∑

C ∪{σ(c)} ∪
{φi(c) : i < n}) were not consistent, then we would have, for φ =

∧
i<n

φi ∈ Φ , that

σ ≤A I[X : ¬φ] , which would mean that ¬φ ∈ Θ ⊂ Φ , contradicting φ ∈ Φ . This shows
that subclaim.

Now, let (M,a/c) be a κ -saturated model of (10) of cardinality ≤ κ . Let −→a ∈ (M ¹
L)[X ] such that a = 〈−→a 〉 (see (7 ′ )) and

−→
b ∈ (N ¹ L)[X ] such that b = 〈−→b 〉 . Then,

for any L -formula θ with Var(θ) ⊂ X such that M ¹ L ² θ[−→a ] , we have ¬θ /∈ Φ ,

hence φ ∈ Φ , hence N ¹ L ² θ[
−→
b ] . This says that (M ¹ L,−→a ) ≡L (N ¹ L,

−→
b ) . By

(4), (M ¹ L,−→a ) ∼L (N ¹ L,
−→
b ) , and by the (8), the assumption of the proposition,

〈−→b 〉 ∈ N(τ) , that is N ² τ [〈−→b 〉/x] , that is, (N, b/d) ² τ(d) as promised.
The set-theoretic assumption used in the proof is redundant, by a general absoluteness

theorem (arithmetic statements are absolute with respect to the constructible universe, in
which the Generalized Continuum Hypothesis (GCH) holds; see [J]). On the other hand,
one may use “special” models in place of saturated ones, and avoid the use of GCH; see
[CK], [MR2].

(11)(a) Assume that S is a theory in multisorted logic, and I : L → [S] is an
interpretation of the DSV L in S . Suppose that the class Mod(S) of models of S is
invariant under L -equivalence in the sense that for any LS -structures M and N , M ∈
Mod(S) and M ¹ L ∼L N ¹ L imply that N ∈ Mod(S) . The S is L -axiomatizable,
that is, for a set Θ of L -sentences, ConLS({I(θ) : θ ∈ Θ}) = ConLS(

∑
S) ; here, ConL(Φ)

is the set of L -sentences that are consequences of theory (L,Φ) .
Note that the conclusion can also be expressed by saying that for any LS -structure

M , M ²
∑

S iff M ¹ L ² Θ .
(11)(b) More generally, assume, in addition to S and I : L → [S] , a theory T in a

language extending that of S(LS ⊂ LT ) such that for any M,N ∈ Mod(T ),M ¹ LS ∈
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Mod(S) and M ¹ L ∼L N ¹ L imply that N ¹ LS ∈ Mod(S).
Then, there is a set Θ of L -sentences such that, for any M ² T,m ²

∑
S iff

M ¹ L ² Θ .
(11)(a) is the special case when T = (LS, ∅).

Proof of (11)(b) For any τ ∈∑
S,M ² T and N ² T , we have

M ²
∑
S

& M ¹ L ∼L N ¹ L =⇒ N ² τ.

By appropriately coding the condition M ¹ L ∼L N ¹ L in first order logic with suitable
additional primitives, and by applying compactness, we can find σ[τ ] , a finite conjunction
of elements of

∑
S , such that for any M ² T and N ² T ,

M ² σ[τ ] & M ¹ L ∼L N ¹ L =⇒ N ² τ.

Then by (7)(a), applied to C = D = [T ] , and I = J : L
I−→[S] incl // [T ] , we can

find θ[τ ] , an L -sentence, such that T ² σ[τ ] −→ I(θ[τ ]), T ² I(θ[τ ]) −→ τ . Clearly,
Θ = {θ[τ ] : τ ∈∑

S} is then appropriate for the assertion.
We leave it to the reader to formulate a version of (11) with formulas in a given context

X instead of sentences.
The following, which is a special case of (7)(b), says that a first-order property invariant

under L -equivalence is expressible in logic with dependent types over L .
(12) Let I : L→ C be as before. Assume that X is a finite L -context, σ ∈ S(I[X ]) ,

and for all M,N ² C and −→a ∈ (M ¹ L)[X ],−→b ∈ (N ¹ L)[X ],

〈−→a 〉 ∈M(σ) & (M ¹ L,−→a ) ∼L (N ¹ L,−→b ) =⇒ {〈−→b 〉 ∈ N(σ).

Then there is an L -formula θ in logic with dependent sorts without equality with
Var(θ) ⊂ X such that σ =I[X ] I[X : θ] .

The notion of L -equivalence as defined is relevant to FOLDS without equality. How-
ever, frequently we deal with FOLDS with restricted equality. As explained 1, when M is
an L -structure, it can be considered as an Leq -structure, with the additional relations EK
interpreted as true equality; let us write M for the resulting “standard” Leq -structure as
well. What does it mean to have an equivalence (W,m, n) : M←→

Leq
N for L -structures

M,N ?
Clearly, this is to say that (W,m, n) : M←→

L
N and, for any maximal kind K , and

−→c ∈ W [K], c1, c2 ∈ WK(m−→c ) , we have that mc1 = mc2 iff nc1 = nc2 . Let us write

(W,m, n) :M
≈←→
L

N for (W,m, n) :M←→
Leq

N , and let us call such (W,m, n) an L,≈ -

equivalence; also write M ≈L N for M ∼Leq N ; note that throughout, M and N are
L -structures.

Let us define M ≡L= N as we did M ≡L N above, except that we refer to logic
with equality. Then, using the translation φ 7→ φ̂ mentioned in 1, we obviously have
M ≡L= N ⇐⇒M ≡Leq N . Thus, by (2)(a) we have
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(13) For L -structures M and N , M ≈L N =⇒M ≡L= N.
L,≈ -equivalences can be “normalized” in a certain way, which will be useful for us

later.
Let U, V ∈ SetK . A very surjective morphism f : U → V is normal if for any

maximal kind K , and any −→a ∈ U [K] , “ f is 1-1 in the fiber over −→a ”, that is, if
b, c ∈ UK(−→a ) , then f(b) = f(c) implies b = c . Together with the very surjective

condition, this says that f induces a bijection UK(−→a ) ∼=−→V K(f−→a ) .
Let M,N be L -structures. A normal L,≈ -equivalence (W,m, n) : M

≈←→
L

N is an

L,≈ -equivalence in which both m and n are normal. We have the fact
(14) For any L -structures M,N , if M ≈L N , then there is a normal L,≈ -equivalence

(W,m, n) :M
≈←→
L

N .

The argument is as follows. Start with any L,≈ -equivalence (W,m, n) : M
≈←→
L

N .

Define W ′ ∈ SetK by setting W ′K = WK for all K ∈ K except the maximal ones; for
a maximal K,W ′K =

def
WK/∼ , where ∼ is the equivalence relation on WK for which

b ∼ c iff b and c are over the same −→a ∈ W [K] , and m(b) = m(c) . When in this
definition, we replace m by n , the result is the same; this is because (W,m, n) being
an L,≈ -equivalence, m(b) = m(c) iff n(b) = n(c) for b, c over the same element in
W [K] . For an arrow p : K → Kp , W

′(p) = W (p) when K is not maximal (in which
case Kp is not maximal either); and for K maximal, (W ′p)(b/∼) = (Wp)(b) ; the latter
is well-defined, since by the definition of ∼ , if b ∼ c , then (Wp)(b) = (Wp)(c) . Clearly,
W ′ : K → Set is well-defined, and we have obvious maps p : W → W ′,m′ : W ′ → M ¹
K , n′ : W ′ → N ¹ K such that

M ¹ K

W ′

__

m′
??

??
??

??
??

??

W

M ¹ K

m

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
W

W ′

p

²²

N ¹ K

W ′

??

n′

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

W

N ¹ K

n

ÂÂ?
??

??
??

??
??

??
W

W ′
²²

◦ ◦

I claim that (W ′,m′, n′) :M ≈←→
L

N ; the normality condition is clearly satisfied. Consider

a relation R in L . In the commutative diagram

W [R] W ′[R]p[R]

//

(m∗M)R

W [R]

²²

²²

(m∗M)R (m′∗M)R
q // (m′∗M)R

W ′[R]

²²

²²
W ′[R] M [R]

m′
[R]

//

(m′∗M)R

W ′[R]

(m′∗M)R MR// MR

M [R]

²²

²²
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the outside rectangle and the right-hand square are pullbacks. It follows that the left-
hand square is a pullback too. Obviously, p[R] is surjective. It follows that q is surjective.
This determines the subobject (m′∗M)R ½ W ′[R] as the image of (m∗M)R ½ W [R]
under p[R] . Switching to N from M, (n′∗N)R ½ W ′[R] is the image of n∗N)R ½ W [R]
under p[R] . Since (m∗M)R =W [R] (n

∗N)R , it follows that (m′∗M)R =W ′[R] (n
′∗N)R as

desired. The additional condition concerning equality is clearly satisfied.
Notice that the above proof works for an essentially arbitrary C in place of Set .
Note that if m : W → M ¹ K is normal, the m∗M formed from M as a standard

Leq -structure is a standard Leq -structure too. Put in another way, the standard fiber-
wise equality relations on the maximal kinds in m∗M are formed by the same pullback
operation from the corresponding relation on M as any primitive L -relation.

We have the following variant of (12).
(15) Let C be a small Boolean category, I : L → C . Assume that X is a finite

L -context, σ ∈ S(I[X ]) , and for all M,N ² C and −→a ∈ (M ¹ L)[X ],−→b ∈ (N ¹ L)[X ] .
〈−→a 〉 ∈M(σ) & (M ¹ L,−→a ) =L (N ¹ L,−→b =⇒ 〈−→b 〉 ∈ N(σ).

Then there is an L -formula θ in logic with dependent sorts with equality with Var(θ) ⊂
X such that σ =I[X ] I[X : θ] .

Proof. By definition, for each maximal K, I[EK ] = I(K) ×I[K] I(K) . Let us form
Ieq : Leq −→ C extending I : L → C by specifying that, Ieq(EK) = I[EK ] , with
Ieq(eK0) = Ieq(eK1) = 1I[EK ] . We apply (12) to Ieq : Leq → C . For M ² C ,M ¹ Leq =
M ◦ Ieq is, clearly, the same as M ¹ L as a standard Leq -structure. Thus

(M ¹ Leq,−→a ∼Leq (N ¹ Leq,
−→
b ⇐⇒ (M ¹ L,−→a ) =L (N ¹ L,−→b ).

Thus from the hypothesis of (15), that of (12) follows. By (12), we have some θ in
FOLDS without equality over Leq such that σ =I[X ] I

eq[X : θ] ; but clearly, for θ′ in

FOLDS with equality over L such that θ̂′ = θ , we have I[X : θ′] = Ieq[X : θ] ; thus
σ =I[X ] I[X : θ′] as required.

6. Equivalence of categories, and of diagrams of categories

The simplest application of the results of the last section is to invariance under equivalence
of categories of first order properties of diagrams of objects and arrows in a category. In
what follows, until further notice, L stands for Lcat , the DSV for categories introduced
in 1; a category A may be regarded an L -structure. A context of variables for L is
essentially a functor K = Lgraph → Set , that is, a graph; we are mainly interested in
finite contexts, although for the notions to be introduced next, there is no need to confine
attention to finite contexts.

For a context X , an augmented category of type X is a pair (A,−→a ) , with A a
category, and −→a ∈ A[X ] (that is, −→a a diagram of type the graph X ). Until further no-

tice, notations such as (A,−→a ), (B ,−→b ) denote augmented categories. Mere categories are
considered special cases of augmented categories of type ∅;A,B etc. denote categories.
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For augmented categories (A,−→a ), (B ,−→b ) of the same type, we write

(A,−→a ) ∼−→(B ,
−→
b )

if there is an equivalence functor F : A
'−→B (F is full and faithful, and essentially

surjective on objects) that maps −→a to
−→
b ; we may also write (B ,

−→
b )

∼←−(A,−→a ) for
the same. Note that the relation

∼−→ is reflexive and transitive but not symmetric (an

equivalence functor A
'−→B may take two different objects A 6= A′ in A to the same B

in B ; then (A, 〈A,A′〉) '−→(B , 〈B,B〉) but not vice versa). The special case when the

type X is ∅ , is however, symmetric; A
∼−→B implies A

'←−B since every equivalence
functor has a quasi-inverse (by the Axiom of Choice); A

'−→B is the same as equivalence
of categories, A ' B .

The equivalence relation generated by the relation
∼−→ is only “one step away” from

∼−→ ; it is
∼←→ defined as

(A,−→a ) '←→(B ,
−→
b )⇐⇒

def
there is (C ,−→c ) such that (A,−→a ) ∼←−(C ,−→c ) ∼−→(B ,

−→
b ).

(1−)
To see the transitivity of the relation

∼←→ , assume (A,−→a ) ∼←−(D ,
−→
d )

∼−→(B ,
−→
b ) and

(B ,
−→
b )

∼←−(E ,−→e ) ∼−→(C ,−→c ) , and consider the diagram

A

D

ÄÄ
ÄÄÄÄÄ

B

D

ÂÂ
φ?????

B

E

ÄÄ
ψ ÄÄÄÄÄ

C

E

ÂÂ

?????

D

F

ÄÄ
σ ÄÄÄÄÄ

E

F

ÂÂ
τ

?????

where the quadrangle has F the “isomorphism-comma” category, with objects (D,E, φD
≡−→ψE) , and arrows the usual commutative squares, with σ : F → D , τ : F → E the

forgetful functors. Since φ, ψ are equivalence functors, so are σ, τ . Let
−→
f = 〈fx〉x∈X ∈

F [X ] be defined as follows. For x ∈ X , x : O , let fx = (dx, ex, id : φdx
∼=−→ψex) ;

note that φdx = ψex by assumption. For x ∈ X , x : A(y, z) , let fx = (dx : dy →
dz, ex : ey → ez) : fy → fz ; note that φdx = ψex by assumption. We have that

(F ,
−→
f )

∼−→(D ,
−→
d ), (F ,

−→
f )

∼−→(E ,−→e ) . Using the composites F → A,F → C , we

obtain (A,→ a)
∼←→(B ,

−→
b ) as desired.

Recall the relation ≈L of the last section; ≈L is, in particular, a relation between
augmented categories. We have that ≈L is the same as

∼←→ .

(1) (a) (A,−→a ) ∼←→(B ,
−→
b )⇐⇒ (A,−→a ) ≈L (B ,

−→
b );

(b) A ' B ⇐⇒ A ≈L B
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Proof.Assume (A,−→a ) ≈L (B ,
−→
b ) . By 5, there is a normal L,≈ -equivalence (W,u, v) :

(A,−→a ) '←→
L

(B ,
−→
b ) . Then, C = u∗(A) = v∗(B) is a category, since by 5.1(1), as a

standard L -structure, C satisfies all the axioms of category which are formulated in
FOLDS (see 5.(2)(a)). Furthermore, clearly, θu : C −→ A, θv : C −→ B are surjective
equivalence functors. This shows the right-to-left direction in (a). For the proof of the
other direction, we prove the implication

(A,−→a ) ∼−→(B ,
−→
b ) =⇒ (A,−→a ) ∼L (B ,

−→
b ) ;

to this end, we “saturate” the given equivalence appropriate; we will do this proof in a
more general situation below.

Knowing the transitivity of the relation ∼L , the transitivity of
∼←→ also follows from

(1)(a). (b) is a special case of (a).
Recall the translation φ 7→ φ∗ in 1; this is just to say that any formula φ of FOLDS

over L may be regarded a formula (φ∗) over |L| in ordinary multisorted logic.
Let Tcat = (|L|,∑cat) the theory of categories in ordinary multisorted logic (

∑
cat

can be taken to be
∑

[Lcat] ∪ {θ∗ : θ ∈ Θ};∑[L] for any DSV L was defined in 1; Θ is
the set of axioms in FOLDS for categories as given in 1.). When T is a theory extending
Tcat(|L| ⊂ LT ,

∑
cat ⊂

∑
T ) , and M ² T , we write |M | for M ¹ L , the underlying

category of M .
(2)(a) Let T be a theory extending Tcat . Let X be a finite context over Lcat, σ

an LT -formula such that Var(σ) ⊂ X . If for any M,N ² T and diagrams −→a ∈
|M |[X ],−→b ∈ |N |[X ],M ² σ[−→a ] and (|M |,−→a ) ∼←→(|N |,−→b ) imply N ² σ[−→b ] , then there
is θ in FOLDS with restricted equality over Lcat with Var(θ) ⊂ X such that for all
M ² T and diagrams −→a ∈ |M |[X ] , we have M ² σ[−→a ] iff M ² θ∗[−→a ] .

(b) In particular, if σ is a sentence over LT , and for any M,N ² T , M ² σ and
|M | ' |N | imply N ² σ , then there is a sentence θ of FOLDS over Lcat such that for
any M ² T,M ² σ iff M ² θ∗ .

Proof. We apply (5)(11) to C = [T ] , with I : L→ C the composite of I : L→ [Tcat]
defined in §5 before (7)(a) and the inclusion [Tcat]→ [T ] ; moreover, we take σ in (5)(11)
to be m∗([X : σ]) 7→ I[X ](m : I[X ] ½ X ; see §5 before (5)(7a)). By (1)(a), the
assumption implies that

M ² σ[−→a ] & (|M |,−→a ) ≈L (|N |,−→b ) =⇒ N ² σ[−→b ].

The conclusion of (5)(11) is what we want. (b) is a special case of (a).
We say that a theory T extending Tcat is normal if for any M ² T and any category

A , if A ' |M | , then there is a model N ² T such that A = |N | . In other words,
normality T says that the property of being the Lcat -reduct of a model of T is invariant
under equivalence of categories. Most theories of categories (possibly) with additional
structure are normal. E.g., so is the theory of monoidal categories, or the theory of
categories with specified finite limits. Of course, Tcat itself is normal.
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Let X be a finite context, and σ be a formula over LT with Var(σ) ⊂ X . Let
us say that σ is preserved along equivalence functors between models of T if the fol-
lowing holds: whenever M,N ² T,−→a ∈ M [X ],−→b ∈ N [X ] , then M ² σ[−→a ] and

(|M |,−→a ) ∼−→(N,
−→
b ) imply N ² σ[−→b ] . When in this definition, (|M |,−→a ) ∼−→(|N |,−→b ) is

replaced by (|M |,−→a ) ∼←→(|N |,−→b ) , we obtain the notion of being reflected along equiv-
alence functor. Now, notice that for T a normal theory, the hypothesis of (2)(a) holds
iff σ is preserved and reflected along equivalence functors of models of T (the point is
that, in case T is normal, in (1 − ), when A (and B ) are reducts of models of T , C
can also be expanded to a model of T ). Thus we obtain the following variant of (5)(2a):

(3) Let T be a normal theory of categories (possibly) with additional structure. Let
X be a finite context over Lcat . Suppose that the first-order formula σ over LT with free
variables all in X is preserved and reflected along equivalence functors of models of T .
Then there is a formula θ in FOLDS with restricted equality over Lcat with Var(φ) ⊂ X
such that σ is equivalent to φ∗ in models of T .

Freyd’s and Blanc’s characterization (see [F], [FS], [B]) of first order properties of finite
diagrams invariant under equivalence is (3) for T = Tcat . In fact, the general result (3)
can also be obtained by their methods, which is very different from the methods of this
paper (we will comment on this in Appendix C). It seems however that the more general
result (2), in particular, (5)(2b), cannot be obtained by the Freyd’s and Blanc’s methods
(although I should concede that the added generality in (5)(2b) consisting in a reference
to not-necessarily normal theories does not seem very important).

The results of §5 that are more general than (5)(11) (e.g., the “interpolation-style”
result (5)(7b)) will also have consequences for equivalences of categories; we leave their
formulation to the reader.

Extending the Freyd-Blanc result to more complex categorical structures will involve
a new element. For instance, in the case of structures consisting of two catagories and
a functor between them (an example of which is a fibration), the first-order properties
invariant under equivalence (in the appropriate standard sense; see also) are not those
expressible in FOLDS directly, but rather, those that are expressible in FOLDS in the
language of the so-called saturated anafunctor associated with the given functor. Ana-
functors are treated in [M2]; explanations will be given presently.

We now proceed to giving the framework for dealing with structures consisting of
several (possibly infinitely many) categories, functors between them, and natural trans-
formations between the latter. We will return to the simplest special case of two catagories
and a functor between them afterwards.

Let I be a small 2-graph; I : L2-graph → Set . We associate the graph Ldiag[I ] with
I ; Ldiag[I ] serves as a similarity type for diagrams I → Cat of (small) categories, functors
and natural transformations. The objects of Ldiag[I ] are as follows:

OI,AI, II,TI (I ∈ Ob(I ))
OI,Ai (i ∈ Arr(I ))
Oα (α ∈ 2-Cell(X ))
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The arrows of Ldiag[I ] are shown in the following three diagrams:

TI

AI

tI2

ÂÂ?
??

??
??

??TI

AI

tI0
ÂÂ?

??
??

??
??

TI

AI

tI1

??
?

ÂÂ?
??

II

AI

iI
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

AI

OI

dI

²²

AI

OI

cI

²²

displaying the arrows associated with an object I ;

OI

AI

²²

cI

OI

AI

²²

dI

oo
oi0

oo ai0

OI

AI

²²

cI

OI

AI

²²

dI

oi1
//

ai1 //

OJ

AJ

²²

cJ

OJ

AJ

²²

dJ

which displays the arrows associated with an arrow i : I → J in I ; and

OI

Oi

¨¨

oi0

²²²²²²²
OI

Oj

ww
oj0

ooooooooooooooooo

Oi

OJ

oi1

''OOOOOOOOOOOOOOOOO Oj

OJ

oj1
ºº/

//
//

//
Oj

Oι

ÂÂ

oι1
??????

Oi

Oι

ÄÄ

oι0 ÄÄÄÄÄÄ

Oι AJ
oι2 // AJ

OJ

dJ

©©´´
´´
´´
´´
´´
´´
´´
´
AJ

OJ

cJ

©©´´
´´
´´
´´
´´
´´
´´
´

which displays the ones associated with the 2- cell ι : i→ j( I J
i //

I J
j

//↓ ι ).

Given a I -diagram

D : I → Cat :


〈CI〉I∈I , 〈Fi : CI → CJ〉i:I→J , 〈hι : Fi → Fj〉

I J
i //

I J
j

//↓ ι


 (4)

of categories, functors and natural transformations, we construe D as an Ldiag[I ] -structure
as follows. (3) is interpreted as the category CI . When i : I → J,Oi is the set of

pairs (X,FiX) with X ∈ Ob(CI) , with (X,FiX)
oi07−→X, (X,FiX)

oi17−→FiX.Ai is the

set of pairs (f, Fif) = (X
f→Y, FiX

Fif−→FiY ) , with (f, Fif)
di7−→(X,FiX) , (f, Fif)

ci7−→
(Y, FiY ) , (f, Fif)

ai07−→ f , (f, Fif)
ai17−→Fif . For I J

i //
I J

j
//↓ ι , Oι is the set of pairs
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(X,FiX
hιX−→FjX) . The effect of the remaining arrows, as well as the corresponding

commutativities, are shown by the following picture:

X

(X,FiX)

¨¨

oi0
²²²²²²²

(X,FiX)

(X,FiX

¨¨

oι0
²²²²²²²

(X,FiX)

FiX

oi1

**TTTTTTTTTTTTTTTTTTTTTT

(X,FiX FjX)
hιX // FjX)

(X,FjX)

oι1
ºº/

//
//

//
FjX) FiX

Â
oι2

// FiX FjX
hιX //

cj

²²

FiX

dJ

{{wwwwwwwwwwwwwwwwwwwwwwwww

(X,FjX)

X

oj0
ttjjjjjjjjjjjjjjjjjjjjjjj

(X,FjX)

FjX

oj1

**TTTTTTTTTTTTTTTTTTTTTT

Let Lanadiag[I ] be the DSV defined as follows. The underlying simple category of Lanadiag[I ]
is generated by the graph Ldiag[I ] , subject to the following equalities between arrows: the
ones ensuring that (3) generates a copy of Lcat (see §1);

oi0di = dIai0, oi1di = dJai1, oi0ci = cIai0, oi1ci = cJai1,

oi0oι0 = oj0oι1, dJoι2 = oi10ι0, cJoι2 = oj10ι1
(5)

The relations of L are exactly its top-level objects; that is, TI , II ,Ai,Oι , for I, i and ι
ranging over the 0 -cells, 1 -cells and 2 -cells of I , respectively.

The equalities on arrows are suggested by what is true for I -diagrams as structures.
In fact, every I -diagram is a functor D : Lanadiag[I ] −→ Set , that is, the equalities
listed are true in it (as identities). Also, the relations of Lanadiag[I ] are interpreted in D
relationally (the corresponding family of functions is monomorphic). In summary, every
I -diagram is an Lanadiag[I ] -structure.

Lanadiag[I ] is the similarity type of what we call the “anadiagrams” of type I . An

anadiagram M : I
a→Cat is an Lanadiag[I ] -structure satisfying the following axioms (A0)

to (A6) in FOLDS with equality ( I J
i //

I J
j

//↓ ι range over objects, arrows and 2- cells

in I as shown; the unique existential quantifiers in (A2) and (A5) are abbreviations in
the usual way, and they refer to equality on the sorts AJ(·, ·) ).

(A0): axioms expressing that for each I ∈ Ob(I ) , the part of M referring to I is
a category.

(A1) ∀X : OI .∃A : OJ .∃s : Oi(X,A).t.

(A2) ∀X, Y : OI .∀A,B : OJ∀s : Oi(X,A).∀t : Oi(Y,B).∀f : AI(X,Y ).
∃!g : AJ(A,B).Ai(s

di
, t
ci
, f
ai0

, g
ai1
).

(A3) ∀X : OI .∀A : OJ .∀s : Oi(X,A).∀α : AI(X,X).∀α : AJ(A,A)

[Ai(s, s, α, α) −→ (II
(

X
dI iI

, α
iI

)
↔ IJ(A, α))].
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(A4) ∀X, Y, Z : OI .∀A,B,C : OJ .∀s : Oi(X,A).∀t : Oi(Y,B).∀u : Oi(Z,C)
∀f : AI(X, Y ).∀g : AI(Y, Z).∀h : AI(X,Z)
∀f : AI(A,B).∀g : AI(B,C).∀]h : AI(A,C)
[((Ai(s, t, f, f) ∧ ai(t, u, g, g) ∧ Ai(s, u, hh))→
(TI(f, g, h)→ TJf, g,H))].

(A5) ∀X : OI .∀A : OJ .∀B : OJ .∀s : Oi(X,A).∀t : Oj(X,B)
∃!f : AJ(A,B).Oι( s

oι0
, t
tι1
, f
fι2

)

(A6) ∀X, Y : OI .∀A,B,C,G : OJ

∀s : Oi(X,A)∀t : Oi(Y,B).∀u : Oj(X,C).∀v : Oj(Y,G)
∀f : AI(X, Y ).∀g : AJ(A,B).∀k : AJ(C.G)
∀` : AJ(A,C).∀m : AJ(B,G)
[(Oi(s, t, f, g) ∧ Oj(u, v, f, k) ∧ Oι(s, u, `) ∧ Oι(t, v,m))→
∃n : AJ(B,C).(TJ(g,m, n) ∧ TJ(`, k, n))].

For a less formal explanation of the notion of anadiagram, I refer to [M2]. In that
paper, I introduce the notion of anafunctor between categories, a generalization of the
notion of functor. An anafunctor defines its values on objects only up to isomorphism.
Formally the definition of anafunctor is obtained by specializing the definition of “anadi-

agram” to the case when I is the (2-)graph 0
〈0,1〉 // 1 (without 2-cells). Anadiagrams

have anafunctors instead of functors as 1-cells, and natural transformations of anafunctors
as 2-cells.

Note that any I -diagram D : I → Cat is an anadiagram; all the axioms for “anadia-
gram” are satisfied in D (as an Lanadiag[I ] -structure). In fact, the diagrams are essentially
the same as those anadiagrams M in which the sorts Oi(i ∈ Arr(I ) ) are interpreted re-
lationally, that is, the family 〈Mp〉p:Oi

→ Kp is jointly monomorphic.

On the other hand, any anadiagram gives rise to a diagram, obtained by making
some non-canonical choices. Let M be an anadiagram M : I −→A Cat ; we construct
D : I −→ Cat ; we use the notation (4) for the ingredients of D . For I ∈ Ob(I ) , the
category CI is given directly by the data in M corresponding to I (see (A0)). By (A1),
for any i : I → J in I and X ∈ Ob(CI) =MOI , we make a choice of AiX = AX ∈MOJ

and six = sX ∈ MOi(X,A) ; we put FiX = AX . Starting with f : X → Y , and using
(A2) with A = AX , B = Ay, s = sX , t = sy , we let Fif = g whose unique existence (A2)
states. (A3) and (A4) assure that Fi so defined is a functor Fi : CI → CJ . Using (A5)
with A = AiX , B =j

X , s = siX , t = sjX , we put hιX = f for the f whose existence (5)
asserts. (A6) ensures that hι is a natural transformation hι : Fi → Fj . Let us refer D
as the diagram obtained from M by cleavage (in analogy to the terminology used with
fibration); of course, it is not uniquely determined.

Next, we describe the saturation D# of a diagram D : I → Cat , an anadiagram
canonically associated with D . (As a matter of fact, the components corresponding to
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the 1-cells i : I → J will be the “saturated anafunctors” F#
i associated with the given

functors Fi , in the sense of [M2].)
In D# , the interpretation of each part of Lanadiag[I ] as in (3) is the same as in D .

For i : I → J , a 1-cell in I , D#Oi is the set of triples µ = (X,A, FiX
∼=−→
µ
A) with

X ∈ CI , A ∈ CJ and µ an isomorphism as shown; µ
oi07−→X , µ

oi17−→A . D#Ai is the set
of all entities 


Y

X

²²
f Fif

∼=
µ //

Fif
v
∼=

//
◦

B

A

²²
g




with the displayed entity mapped to (X,A, µ) by di , to (Y,B, ν) by ci , to f by ai0 ,

and to g by ai1 . For I J
i //

I J
j

//↓ ι , D#Oι consists of all


X,

FjX Bρ
//

FiX

FjX

hιX

²²

FiX A
µ // A

B

g

²²
◦
∼=

∼=


 ,

and the displayed item is mapped to (X,A, µ) by ◦ι0 , to (X,B, ρ) by ◦ι1 , and to g by
◦ι2 .

We leave it to the reader to verify that D# so defined is an anadiagram.
D# satisfies a property that distinguishes it from diagrams; it is saturated, by which

we mean that it satisfies, for each i : I → J in I , the FOLDS sentence

(A7) ∀X : OI .∀A,B : OJ .∀s : Oi(X,A).∀f : AJ(A,B)
(Iso(f) −→ ∃!t : Oi(X,B).∃g : AI(X,X).(II(g) ∧ Ai(s, t, g, f));

here, Iso(f) abbreviates

∃h : AJ(B,A)∃k : AJ(A,A)∃` : AJ(B,B).(IJ(k) ∧ IJ(`) ∧ TJ(f, h, k) ∧ TJ(h, f, `)).

In fact, it can be proved (although we will not need this result) that, up to isomorphism
as Lanadiag[I ] -structures, the saturated I -anadiagrams are precisely the ones of the form
D# , for some diagram D .

Given D as in (5), and another I -type diagram

D̂ : I→ Cat :


〈ĈI〉I∈I , 〈F̂i : ĈI → ĈJ〉i:I→J , 〈ĥι : F̂i → F̂j〉

I J
i //

I J
j

//↓ ι


 . (6)
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we say that D and D̂ are equivalent, and write D ' D̂ , if there exist a family 〈EI :

CI
'→ ĈI〉I∈I of equivalence functors, and a family 〈ei〉i:I→J of natural isomorphisms as

in

CJ ĈJEJ

//

CI

CJ

Fi

²²

CI ĈI
EI // ĈI

ĈJ

F̂i

²²eiwwooooo
∼= ei : F̂i ◦ EI

∼= // EJ ◦ Fi,

satisfying the additional naturality condition:

EJ ◦Fj F̂j ◦EIoo
ej

EJ ◦Fi

EJ ◦Fj

EJ ◦hι

²²

EJ ◦Fi F̂i ◦EIoo ei F̂i ◦EI

F̂j ◦EI

ĥι ◦EI

²²

◦

for every I J
i //

I J
j

//↓ ι in I . The data E = (〈EI〉I∈I , 〈ei〉i∈Arr(I ) ) form an equivalence

of D and D̂ , in notation,

E = (〈EI〉I∈I , 〈ei〉i∈Arr(I )) : D
' // D̂. (7)

This notion of equivalence is a “bicategorical” notion; it is the equivalence in the inter-
nal sense of the bicategory (actually, 2-category) Hom(〈I 〉,Cat) of homomorphisms of
bicategories, pseudo-natural transformations and modifications, with 〈I 〉 the 2-category
generated by the 2-graph I . (The main part of the fact that the “one-way” formulation
of equivalence given above as the definition, and the “internal” concept just mentioned
coincide, is the symmetry of the relation ' ; an outline of the proof of the symmetry of '
is given below.) It is the “good” notion of equivalence, the one that comes up in practice.
For instance, in Chapter 4 of [MP], diagrams of sketches, and diagrams of accessible cate-
gories are dealt with, and the present notion of equivalence is the one which is operative.
Specifically, the Uniform Sketchability Theorem, one of the main results of [MP] (4.4.1
in [MP]) says that a small diagram of accessible categories is equivalent to one obtained
from a diagram of sketches by taking he categories of models of the sketches involved.

Although the fact is well-known, I outline the proof that the relation D ' D̂ is
symmetric. Since it is easily seen to be transitive and reflexive, ' is an equivalence
relation.

Assume data as in (7); see also (4) and (6). We define Ê : D̂
'−→D . With I ∈

Ob(I ), A ∈ Ob(ĈI) , choose XI
A = XA ∈ Ob(CI) and εIA = εA : EIXA

∼=−→A ∈ Arr(ĈI) .
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Put ÊIA = XA . For f : A→ B ∈ Arr(ĈI), ÊIf is the arrow that makes the square

EIXB BεB
//

EIXA

EIXB

ÊIf

²²

EIXA A
εA // A

B

f

²²

∼=
◦
∼=

commute. ÊI : so defined is a functor ÊI : ĈI → CI ; it is an equivalence functor;

it is a quasi-inverse of EI : we have εI : EIÊI
∼=−→ 1ĈI

with components the εIA , and

ηI : 1CI

∼=−→ ÊIEI with components ηI,X for which EI(ηI,X) = (εIEIX
)−1 . For i : I → J

in I , we define êi : FiÊJ
∼=−→ ÊJ F̂i as the composite

FiÊJ
ηJFiÊJ

∼=
// ÊJEJFiÊJ

ÊJe
−1
i ÊI

∼=
// ÊJ F̂iEIÊJ

ÊJFiεI
∼=

// ÊJ F̂i.

〈êi〉i∈Arr(I ) will be compatible with the hι , and give Ê : D̂
'−→D as desired.

Let K0 be the full subcategory of Lanadiag[I ] consisting of the objects OI and AI for
all I ∈ Ob(I ) . A restricted context is a context over K0 . We have D ¹ K0 = D# ¹ K0 ,
and hence, for a restricted context X , D[X ] = D#[X ] .

With X a restricted context, an augmented I -diagram of type X is a pair (D,−→a )
where D : I → Cat , and −→a ∈ D[X ] ; notations such as (D,−→a ), (D̂,−→b ) denote aug-

mented I -diagrams. We write E : (D,−→a ) '−→(D̂,
−→
b ) for the following: E : D

'−→ D̂

with E as in (7) such that E(−→a ) =
−→
b in the obvious sense that EI(ax) = bx . The

notation
∼−→ between augmented diagrams is defined thus:

(D,−→a ) ∼−→(D̂,
−→
b )⇐⇒ there exists E : (D,−→a ) '−→(D̂,

−→
b ).

We write (D,−→a ) ∼←→(D̂,
−→
b ) for: there exists (

∼
D,−→c ) such that (D,−→a ) ∼←−(∼D,−→c ) ∼−→

(D̂,
−→
b ) . The relation

∼←→ is the equivalence relation generated by
∼−→ ; this can be seen

directly, but it also follows from (8) below. In particular, when X = ∅ , the relation ∼←→
coincides with ' for I -diagrams (since ' is an equivalence relation).

For augmented I -diagrams (D,−→a ), (D̂,−→b ) of the same type, we have

(D,−→a ) ∼←→(D̂,
−→
b )⇐⇒ (D#,−→a ) ≈L (D̂#,

−→
b );

here, L = Lanadiag[I ] .

As a special case, for (mere) I -diagrams D and D̂ ,

D ' D̂ ⇐⇒ D# ≈L D̂
#.

Proof.(A)(⇐=: )Let (R, r0, r1) : (D#,−→a )←→
L

(D̂#,
−→
B ) be a normal L,≈ -equivalence

(see 5.(2 ′′ )). Let −→c ∈ R[X ] (X the type of (D#,−→a ), (D̂#,
−→
b ) ) for which ro(−→c ) =

−→a , r1(−→C ) =
−→
b .
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Let M = r∗0(D
#) = r∗1(D̂

#) , a standard L -structure. Since D# is an anadiagram,
and the concept of “anadiagram” is elementary in FOLDS over L , by 5.(1)(a), M is

an anadiagram. Let
∼
D be obtained from M by cleavage. We show that there is an

equivalence E :
∼
D

'−→D which extends

m ¹ K0 = θm ¹ K0 :M ¹ K0 =
∼
D ¹ K0 → D# ¹ K0 = D ¹ K0

(that is, EI = (θm)I for all I ∈ Ob(I ) ; here, we used the notation (7) for E ), and

similarly, there is Ê :
∼
D

'−→ D̂ extending n ¹ K0 . In particular, it will follow that

E(−→c ) = −→a , Ê(−→c ) = −→b and (D,−→a ) ∼−→(
∼
D,−→c ) ∼−→(D̂,

−→
b ) as desired.

We use a notation for
∼
D that is analogous to (6). The functor EI :

∼
C I −→ CI is

defined by the effect mOI
and mAI

; since θm : M → D preserves the relations II and
TI ,EI is a functor. By the normality of r0, EI induces bijections on hom -sets, and by
the surjectivity of r0 on OI ,EI is a surjective equivalence.

Let i : I → J . Looking back at how the cleavage
∼
D was defined, we see that

∼
F iX =

AX , with sX ∈MOi(X,AX) . Then m(sX) ∈ D#Oi(mX,mAX) = D#Oi(EIX,EJ
∼
F iX) .

By the definition of D# , this means that msX : FiEIX
∼=−→EJ

∼
F iX . We put eiX = msX .

To see that ei = 〈eiX〉X∈]Ob(CI) is a natural transformation ei : FIEI
∼=−→EJ

∼
F i , let

f : X → Y ∈ ∼
C I . We see that

∼
F if is defined by the property that M(Ai)(sX , sY , f,

∼
F if)

should hold. But θm preserves Ai ; hence, D
#(Ai)(eiX , eiY , EIf, EJ

∼
F if) , which, by the

definition of D# , means

FiEIY EJFiYeiY
//

FiEIX

FiEIY

FiEIf

²²

FiEIX EJ
∼
F iX

eiX // EJ
∼
F iX

EJFiY

EJ

∼
F If

²²

◦ ,

which is the naturality of ei .

Let I J
i //

I J
j

//↓ ι be given. The naturality condition on (ei, ej with respect to ι :

i→ j is seen as follows. Let X ∈ Ob(
∼
C I) . The definition of the component

∼
hιX :

∼
F iX →∼

F jX is defined (in the process of cleavage) by the condition MOι(s
i
X , s

j
X ,

∼
hιX) . The map

θm :M → D# preserves the relation Oι . It follows that D
#Oι(ms

i
X ,ms

j
X ,m

∼
hιX) holds;
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that is, D#Oι(eiX , ejX , EJ
∼
hιX) holds. Considering the definition of D#Oι , this says that

EJ
∼
F jX FjEIXejX

//

EJ
∼
F iX

EJ
∼
F jX

EJ

∼
hιX

²²

EJ
∼
F iX FiEIX

eiX // FiEIX

FjEIX

hιEIX

²²

◦

which is what we wanted.
(B)(“only if”)We show that (D,−→a ) ∼−→(D̂,

−→
b ) implies (D,−→a ) ≈L (D̂,

−→
b ) . Since

≈L is an equivalence relation, the desired assertion will follow.
Suppose that E : (D,−→a ) '−→(D̂,

−→
b ) ; E is taken in the notation in (7); we construt

(R, r0, r1) : (D#,−→a ) ≈←→
L

(D̂#,
−→
b ) . The kinds of L are as in

OI

AI

²²

dI

OI

AI

²²

cI

OJ

AJ

²²

dJ

OJ

AJ

²²

cJ

OiOI oi0
oo Oi OJoi1

//

with i : I → J in I ; we have to define R on these kinds.

We put ROI = {(X, X̂, σ) : X ∈ DOI , X̂ ∈ D̂OI , σ : E1X
∼=−→ X̂} , with (X, X̂, σ)

r07−→X ,
(X, X̂, σ)

r17−→ X̂ . The “very surjective” condition on r0, r1 at OI holds by the essential
surjectivity of EI .

RAI =
def
{(X, X̂, σ), (Y, Ŷ , τ), f

X

↓
Y
, f̂

X̂

↓̂
Y

) :

(X, X̂, σ), (Y, Ŷ , τ) ∈ ROI ,

EIY Ŷτ
//

EIX

EIY

EIf

²²

EIX X̂
σ // X̂

Ŷ

f̂

²²

◦ }

with the displayed item being mapped to (X, X̂, σ) by RdI , to (Y, Ŷ , τ) by RcI , to f
by r0 , and to f̂ by r1 . The mapping

f 7−→ f̂ : D#A(X,Y )→ D̂#A(X̂, Ŷ )

so defined, with fixed (X, X̂, σ), (Y, Ŷ , τ) ∈ ROI , is a bijection; this holds since EI is an
equivalence of categories. This shows the “very surjective” condition for ro, r1 at AI , as
well as the preservation of ĖAI

.
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ROi =
def
{(X, X̂, σ), (A, Â, α), µ) : (X, X̂, σ) ∈ ROI , (A, Â, α) ∈ ROJ , µ : FiX

∼=−→A},
with the displayed item being mapped to (X, X̂, σ) by Roi0 to (A, Â, α) by Roi1 , to
(X,A, µ) ∈ DOi by r0 , and to (X̂, Â, µ̂) ∈ D̂Oi by r1 where µ̂ is determined by the
following commutativity:

EJA

EJFiX

²²
EJµ

EJFiX

F̂iEIX

²²

eiX

EJA Âα
// Â

F̂iX̂

²²

µ̂

F̂iEIX F̂iX̂
σ //

◦

∼=

∼=

(9)

Note that since all given arrows are isomorphisms, µ̂ is uniquely determined, and it is an
isomorphism. Moreover, since EJ is an equivalence of categories, the mapping

µ 7→ µ̂ : D#Oi(X,A) −→ D̂#Oi(X̂, Â)

so defined (with the rest of the data fixed) is a bijection, which shows the “very surjective”
condition at Oi , and the preservation of ĖOi

.
This completes the data for (R, r0, r1) ; it remains to verify the necessary properties.
Let us consider the perservation of the relation Ai by R, r0, r1) . What we have to do

is this. We take four items

xdi ∈ ROi, xcI ∈ ROi, xai0 ∈ RAI , xAi1
∈ RAJ

such that (xdi , xcI , xai0 , xai1) ∈ R[Ai] , that is,

(10)4

Roi0(xdi) = RdI(xai0),Roi1(xdi) = RdJ(xai1),
Roi0(xci) = RcI(xai0),Roi1(xci) = RcJ(xai1);

we consider their r0 and r1 -projections; and we have to show that

(r0xdi , r0xci〉, r0xai0 , r0xai1) ∈ D#Ai (11)

if and only if
(r1xdi , r1xci , r1xai0 , r1xai1) ∈ D̂#Ai. (12)

Let xdi = ((X, X̂, σ), (A, Â, α), µ)

with σ : EIX
∼=−→ X̂, α : EJA

∼=−→ Â, µ : FiX
∼=−→A ;

xci = ((Y, Ŷ , τ), (B, B̂, β), ν)

with τ : EIY
∼=−→ Ŷ , β : EJB

∼=−→ B̂, ν : FiY
∼=−→B ;

note that xdi
oi07−→σ, xdi

oi17−→α, xci
oi07−→ τ, xci

oi17−→ β.
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The first and third of the above conditions (10) force the first two components of xai0 to
be (X, X̂, σ and (Y, Ŷ , τ) , respectively. Let

xai0 = ((X, X̂, σ), (Y, Ŷ , τ), f : X → Y, f̂ : X̂ → Y ;

we have

EIY Yτ
//

EIX

EIY

EIf

²²

EIX X̂
σ // X̂

Y

f

²²
◦ .

Similarly,

xai1 = ((A, Â, α), (B, B̂, β), g : A→ B, ĝ : Â→ B)

with

EJB B̂
β

//

EJA

EJB

EJg

²²

EJA Âα // Â

B̂

g

²²

◦ . (14)

(11) means

FiY Bµ
//

FiX

FiY
²²

FiX A
µ // A

B

g

²²

Fif ◦ . (15)

whereas (12) means

F̂iŶ B̂
ν̂

//

F̂iX̂

F̂iŶ
²²

F̂iX̂ Â
µ̂ // Â

B̂

ĝ

²²

F̂if̂ ◦

where µ̂ and ν̂ are defined as µ̂ is in (9); we want to see that (15) iff (16). Consider the
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following diagram:

F̂iŶ B̂
ν̂

//F̂iŶ

F̂iX̂

²²

F̂if̂

F̂iX̂ Â
µ̂ // Â

B̂

ĝ

²²

F̂iŶ

F̂iEIY

ÄÄ
F̂iτ

ÄÄÄÄÄÄÄÄÄÄÄÄ

F̂iX̂

F̂iEIX

__

F̂iσ

??
??

??
??

??
??

B̂

EJB

ÂÂ
β

?????????????

Â

EJA

??

α

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

F̂iEIX

F̂iEIY

F̂iEIf

²²

EJA

EJB

EJg

²²

EJFiX

EJFiY

EJFif

²²
F̂iEIY EJFiYeiY

//

F̂iEIX EJFiX
eiX //

EJFiY EJBEJν
//

EJFiX EJA
EJµ //

2 5

1

6

3 4 .

The cells 1 and 6 commute, by the definitions of µ̂ and ν̂ (see (9)). 2 commutes by
13. 3 by the naturality of ei , and 5 by 14. Note that all arrows except the vertical ones
are isomorphisms. If (15) commutes, then so does 4 ; the resulting commutativity of the
outside square is (16) as desired. Conversely, if (16) commutes, then so does 4 (using the
isomorphisms in the diagram), and since EJ is faithful, so does (15).

Let us look at the similar verification of preservation of Oι; I J
i //

I J
j

//↓ ι . We take

(xoι0 , xoι1 , xoι2 ∈ R[Oι] , that is

xoι0 = ((X, X̂, σ), (A, Â, α), µ) ∈ ROi

with σ : EIX
∼=−→ X̂, α : EJA

∼=−→ Â, µ : FiX
∼=−→A ;

xoι1 = ((X, X̂, σ), (B, B̂, β), ρ) ∈ ROj

with the same σ as above, and β : EJB
∼=−→ B̂, ρ : FiX

∼=−→B

(since we must have Roi0(xoι0) = Roj0(xoι1) (see the first equation in (4)), the first
components of xoι0 and xoι1 have to agree);

xoι2 = ((A, Â, α), (B, B̂, β), g : A→ B, ĝ : Â→ B̂)

with (9) holding (see the other two equations in (4)). Looking at the definition of
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D#Oι, D̂
#Oι , what we have to see is that

FjX Bρ
//

FiX

FjX

hιX

²²

FiX A
µ // A

B

g

²²

◦

∼=

∼=
iff

F̂jX̂ B̂ρ
//

F̂iX̂

F̂jX̂

ĥιX̂

²²

F̂iX̂ Â
µ̂ // Â

B̂

ĝ

²²

◦

Consider

F̂iX̂ B̂
ρ̂

//F̂iX̂

F̂iX̂

²²

ĥιX̂

F̂iX̂ Â
µ̂ // Â

B̂

ĝ

²²

F̂iX̂

F̂jEIX

ÄÄ
F̂jτ

ÄÄÄÄÄÄÄÄÄÄÄ

F̂iX̂

F̂iEIX

__

F̂iσ

??
??

??
??

??
??

B̂

EJB

ÂÂ
β

?????????????

Â

EJA

??

α

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

F̂iEIX

F̂jEIX

ĥιEIX

²²

EJA

EJB

EJg

²²

EJFiX

EJFjX

EJhιX

²²
F̂jEIX EJFjXeiX

//

F̂iEIX EJFiX
eiX //

EJFjX EJBEJρ
//

EJFiX EJA
EJµ //

2 5

1

6

3 4

The cells 1 and 6 commute for reasons as before. 2 commutes because of the naturality
of ĥι, 3 because of the naturality of (ei, ej) with respect to ι : i→ j , 5 because of (14).
4 is the antecedent of (17) with EJ applied to it, the outer square is the succedent of
(17). The assertion in (17) follows.

The remaining properties are the preservation of the TI , II , and of the equalities on
the AI ,Oi . These are immediately seen.

We need that (R, r0, r1) “relates −→a to
−→
b ”. For X the restricted context involved,

−→a = 〈ax〉x∈X ,−→b = 〈bx〉x∈X ; we want −→c = 〈cx〉x∈X ∈
∼
D[X ] such that r0(−→c ) = −→a ,

r1(−→c ) =
−→
b . For x ∈ X , Kx = OI , define cx = 1EIax : EIax

∼=−→ bX ∈ ROI ; we have
r0cx = ax, r1cx = bx . For x ∈ X , x : AI(y, z) , define cx = (cy, cz, ax, bx) ∈ RAI ; cx ∈ RAI
indeed holds since this means

EI(az) bzcz
//

EI(ay)

EI(az)

EI(ax)

²²

EI(ay) by
cy // by

bz

bx

²²

◦
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and this holds since EI(ax) = bx ; also, r0(cx) = ax, r1(cx) = bx .
This completes the proof of (8).
Let Tdiag[I ] = (Ddiag[I ],

∑
diag[I ]) be the theory of I -diagram of categories, functors,

and natural transformation. Tdiag[I ] is a theory in ordinary multisorted logic with equal-
ity. The models of Tdiag[I ] are those Ldiag[I ] -structures that are isomorphic to some
D : I → Cat as an Ldiag[I ] -structure (see above). Indeed, we can easily write down a
set of axioms

∑
diag[I ] over Ldiag[I ] whose models are, up to isomorphism, precisely the

D ’s. Now, the construction D 7→ D# is related to an interpretation

Φ : Lanadiag[I ] // [Tdiag[I ]] (19)

of the DSV Lanadiag[I ] in the theory Tdiag[I ] ; namely, D# ∼= D◦Φ ; here, D : [Tdiag[I ]] −→
Set is the coherent functor indeed by D : Ldiag[I ]→ Set .

To describe Φ , I first introduce certain specific formulas over the language Ldiag[I ] .

We refer to the (arbitrary) objects, arrows and 2-cell I J
i //

I J
j

//↓ ι in I .

I(κ) =
def
∃x ∈ II .iI(x) = κ (κ : AI)

İI(X, κ) =
def

II(κ) ∧ dI(κ) = X (X : OI , κ : AI)

TI(f, g, h) =
def
∃x ∈ TI .tI0(x) = f ∧ tI1(x) = g ∧ tI0(x) = h (f, g, h : AI)

ṪI(X, Y, Z, f, g, h) =
def

dI(f) = X ∧ cI(f) = Y ∧ dI(g) = Y ∧ cI(g) = Z ∧ dI(h) = X ∧ cI(h) = Z ∧ TI(f, g, h)

(X, Y, Z : OI ; f, g, h : AI)
5

IsoI(µ) =
def
∃ν, κ, λ ∈ AI .II(κ) ∧ II(λ) ∧ TI(µ, ν, κ) ∧ TI(ν, µ, λ) (µ : AI)

Ȯi(X,A, µ) =
def

IsoJ(µ) ∧ cJ(x) = A ∧ ∃x ∈ Oi.oi0(x) = X ∧ dJ(µ) = oi1(x).

(X : OI , A : OJ , µ : AJ)

CommJ(µ, g, h, ν) =
def
∃k ∈ AJ .TJ(µ, g, k) ∧ TJ(h, ν, k) (µ, g, h, ν : AJ)

ȦI(X,Y,A,B, µ, ν, f, g) =
def

Ȯi(X,A, µ) ∧ Ȯi(Y,B, ν)

∧ ∃x ∈ Ai.ai0(x) = f ∧ CommJ(µ, g, ai1(x), ν).

(X, Y : OI , A,B : OJ , f : AI , µ, ν, g : AJ)

Ȯι(X,A,B, µ, ν, h) =
def

5 O or O ?
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Ȯi(X,A < µ) ∧ Ȯj(X,B, ν) ∧ ∃x ∈ Oι.oi0oι0(x) = X ∧ CommJ(µ, h, oι2(x), ν).

(X : OI , A,B : OJ , µ, ν : AJ)

This is the description of the effect of Φ on objects:

Φ(OI) = [X ∈ OI : t]

Φ(AI) = [X ∈ AI : t]

Φ(II) = [X ∈ OI , κ ∈ AI : İI(X, κ)]

Φ(TI) = [X,Y, Z ∈ OI ; f, g, h ∈ AI : ṪI(X, Y, Z, f, g, h)]

Φ(Oi) = [X ∈ OI , A ∈ OJ , µ ∈ AJ : Ȯi(X,A, µ)]

Φ(Ai) = [X,Y ∈ OI ;A,B ∈ OJ ; f ∈ AI ;µ, ν, g ∈ AJ : Ȧi(X,Y,A,B, µ nu, f, g)]

Φ(Oι) = [X ∈ OI ;A,B ∈ OJ ;µ, ν, h ∈ AJ : Ȯι(X,A,B, µ, ν, h)]

The complete the definition of Φ as in (10), we should also specify the effect of Φ on
arrows; this is done in the way straightforwardly suggested by our intentions with Φ .

The fact mentioned above that D# ∼= D ◦Φ holds will be seen directly. In fact, if we
define D in the standard way (among the possibilities that differ by isomorphisms only),
we obtain an equality D# = D ◦ Φ .

Next, we explain a translation of formulas to formulas induced by Φ . Temporarily,
let us call a FOLDS variable µ special if µ : Oi(X,A) for (unique) suitable i : I → J ∈
Arr(I ) and X : OI , A : OJ . Let us fix a 1-1 mapping µ 7→ µ∗ of special variables µ to
variables µ∗ in ordinary multisorted logic over Ldiag[I ] such that, when µ is as above,
µ∗ : AJ . The non-special variables over Lanadiag[I ] are considered variables over Ldiag[I ] ;
if x : OI , x : OI in the sense of multisorted logic, and if x : AI(y, z) , then x : AI in the
sense of multisorted logic.

For a special variable µ as above, we have the formula φ[µ] =
def

Ȯi(X,A, µ
∗) , with

the latter formula introduced above. For a finite context X , we let X ∗ = X − {µ ∈
X : µ special} ∪ {µ∗ ∈ X : µ special} (exchange every special variable µ for µ∗ ), and
consider the formula φ[X ] =

def

∧{φ[µ] : µ ∈ X special} ; Var(φ[X ]) = X ∗ . For a finite set Y
of variables over Ldiag[I ] , we write {Y} for the product-object [Y : t] = u

y∈Y
[y ∈ Ky : t]

in [Tdiag[I ]] , where y : Ky .
Recall that, with Φ as in (19), for any finite context X , we have the object Φ[X ]

defined as a certain pullback. Inspection shows that Φ[X ] can be taken to be |[X ∗ : φ[X ]]| ,
the domain of the subobject [X ∗ : φ[X ]] of {X ∗} ; we have a canonical monomorphism
m : Φ[X ] ½ {X} . Thus, for any θ in FOLDS with restricted equality, with Var(θ) ⊂ X ,

Φ[X : θ] ½ Φ[X ] may be regarded a subobject Φ[X : θ] ½ Φ[X ] m½{X ∗} of {X∗} . We
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can produce a formula θ∗ such that Var(θ∗) = Var(θ)∗ and

Φ[X : θ] ={X ∗} [X ∗ : θ∗]

(equality of subobjects of {X ∗} ) as follows. We have, for atomic formulas

(II(X, κ))
∗ ≡ İI(X, κ)

(X : OI , κ : AI)

(TI(X,Y, Z, f, g, h))
∗ ≡ ṪI(X,Y, Z, f, g, h)

(X,Y, Z : OI ; f : AI(X, Y ); g : AI(Y, Z);h : AI(X,Z))

(Ai(X, Y,A,B, µ, ν, f, g))
∗ ≡ Ȧi(X, Y,A,B, µ

∗, ν∗, f, g)

(X,Y : OI ;A,B : OJ ;µ : Oi(X,A), ν : Oi(Y,B), f : AI(X,Y ), g : AJ(A,B))

(Oι(X,A,B, µ, ν, h))
∗ ≡ Ȯι(X,A,B, µ

∗, ν∗, h)

(X : OI , A,B : OJ ;µ : Oi(X,A), ν : Oi(Y,B), h : AJ(A,B))

(f =AI(X,Y ) g)
∗ ≡ dI(f) = dI(g) = X ∧ cI(f) = cI(g) = Y ∧ f =AI

g

(X,Y : OI ; f : AI(X,Y ), g : AI(X, Y ))

(µ =Oi(X,A) ν)
∗ ≡ Ȯi(X,A, µ) ∧ Ȯi(X,A, ν) ∧ µ∗ =AJ

ν∗

(X : OI ;A : OJ ;µ, ν : Oi(X,A));

for connectives

t∗ ≡ t

f∗ ≡ f

(θ ∧ ρ)∗ ≡ θ∗ ∧ ρ∗

(θ ∨ ρ)∗ ≡ θ∗ ∨ ρ∗

(θ → ρ)∗ ≡ φ[X ] ∧ (θ∗ → ρ∗) (X = Var(θ → ρ))

and for quantifiers

(∀xθ)∗ ≡ ∀x ∈ OI .θ
∗ (x : OI)

(∀xθ)∗ ≡ ∀x ∈ AI .((dI(x) = y ∧ cI(x) = z) −→ θ∗) (x : AI(y, z))

(∀xθ)∗ ≡ ∀x∗ ∈ AJ .(Ȯi(y, z, x
∗) −→ θ∗) (i : I → J, x : Oi(y, z));

the existential quantifier is dealt with correspondingly.
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Notice that if Var(θ) is a restricted context, then Var(θ∗) = Var(θ) .
The upshot of all this as follows. For an I -diagram D : I → Cat , and its saturation

D# , if X is a finite restricted context over Lanadiag[I ] , θ is a FOLDS formula with
Var(θ) ⊂ X , and −→a ∈ D[X ] , then

D# ² θ[−→a ]⇐⇒ D ² θ∗[−→a ].

For a structure M over a language extending Ldiag[I ] , |M | denotes its reduct to Ldiag[I ] ;
|M | is the underlying I -diagram of M .

(20)(a)Tdiag[I ] . Let X be a finite restricted context over Lanadiag[I ] , σ an LT -
formula such that Var(σ) ⊂ X . The following two conditions (i), (ii) are equivalent.

(i) For any M,N ² T and tuples −→a ∈ |M |[X ] , −→b ∈ |N |[X ] , M ² σ[−→a ] and

(|M |,−→a ∼←→(|N |,−→b ) imply N ² σ[−→b ] .
(ii) There is θ in FOLDS over Lanadiag[I ] with Var(θ) ⊂ X such that for all M ² T

and tuples −→a ∈ |M |[X ] , we have M ² σ[−→a ] iff M ² θ∗[−→a ] .
(b) In particular, if σ is a sentence over LT , and for any M,N ² T , M ² σ and

|M | ' |N | imply N ² σ , then there is a sentence θ of FOLDS over Lanadiag[I ] such that
for any M ² T , M ² σ iff M ² θ∗ .

Proof.((ii)−→ (i)) Given θ as (ii), we have

M ² σ[−→a ]⇐⇒M ² θ∗[−→a ]⇐⇒ |M | ² θ∗[−→a ]⇐⇒ |M |# ² θ[−→a ]

and similarly,
N ² σ[−→b ]⇐⇒ |N |# ² θ[−→b ].

Assume the hypotheses of (i), in particular, (|M |,−→a ) ∼←→(|N |,−→b ) . By (8), for L =

Lanadiag[I ], (|M |#,−→a ) ≈L (|N |#,−→b ) , hence, by 5.(2)(b), |M |# ² θ[−→a ]⇐⇒ |N |# ² θ[−→b ] .
By what we saw above, this means M ² σ[−→a ]⇐⇒ N ² σ[−→b ] as desired.

((i)−→ (ii)) Assume (i). We apply 5.(15) with σ = m∗([X : σ] ∈ S(Φ[X ]) in place of
σ ; m : Φ[X ] ½ {X} as above. The condition M ² σ[−→a ] translates into 〈−→a 〉 ∈ M [σ] ;
now, 〈−→a 〉 = −→a . Recall that M ¹ L =M ◦ Φ = |M |# . Thus, also using (8), we have

for all M,N ² T,−→a ∈ (M ¹ L)[X ],−→b ∈ (N ¹ L[X ],

〈−→a 〉 ∈M [σ], (M ¹ L,−→a ) ≈ (N ¹ L,−→b ) =⇒ 〈−→b 〉 ∈ N [σ].

Since every P ² C is isomorphic to one of the form M , with M ² T , we have the
hypothesis of 5.(12). The conclusion gives θ in FOLDS over L such that σ =Φ[X ] Φ[X :
θ] , which suffices.

The results of (20) can be paraphrased by saying that a first-order property of a
diagram of categories, functors and natural transformations is invariant under equivalence
iff the property is expressible in FOLDS with restricted equality as a property of the
saturated anadiagram canonically associated with the diagram.

It is left to the reader to formulate stronger versions of (20), based on results of 5.
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A normal theory for I -diagrams is a theory T extending Tdiag[I ] such that if M ² T
and D ' |M | , then there is N ² T such that |N | = D . For a restricted context X , and
formula σ of Ldiag[I ] with Var(σ) ⊂ X , we define the concepts “ σ is preserved/reflected
along equivalences of models of T ” in the obvious way, in analogy to the case of a single
category (see above). We have the following analog of (3).

(20 ′ ) Let T be a normal theory of I -diagrams of categories, functors and natural
transformations. Let X be a finite restricted context over Lanadiag[I ] . Suppose that the
first-order formula σ over Ldiag[I ] with free variables all in X is preserved and reflected
along equivalences of models of T . Then there is a formula φ in FOLDS over Lanadiag[I ]
such that σ is equivalent to φ∗ (defined above) in models of T .

Let us discuss the special case of I = (0
〈0,1〉 //1) consisting of two objects and an ar-

row between them; there are no 2-cells. The intended structures for Lfun = Ldiag[(0
〈0,1〉 //1)]

are functors ; more precisely, structures consisting of two categories connected by a func-
tor. Fibrations are such structures. There are many first-order conditions on fibrations
and on objects and morphism in fibrations that are of interest. On the other hand,
in [MR2], several elementary (first-order definable) classes of Lfun -structures were intro-
duced as categorical formulations of model logic; these “modal categories” are not in
general fibrations.

Let me restate the basic concepts for Lfun.Lfun is the following graph:
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Lanafun = Lanadiag[(0
〈0,1〉 // 1)] is generated by Lfun , subject to appropriate equalities of

composite arrows. A functor F : X −→ A is regarded an Lfun -structure in such a way
that the interpretation of the relations O and A are the graphs of the object-function
and of the arrow-function of F , respectively.

Given functors F : X −→ A and G : Y −→ B , an equivalence between them is a
triple (E0, E1, e) as in

Y B
G

//

X

Y

E0

²²

X AF // A

B

E1

²²ww
e ooooo

: e : E1F
∼=−→GE0
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in which E0 and E1 are equivalence functors. This notion of equivalence of functors
can be motivated by saying that it is the combination of two simpler notions: one is the
isomorphism of two parallel functors

X A
F //

X A
G

//
∼=↓ e ,

and the other is the relation between X
F−→A and the composites Y

E0−→X
F−→A ,

X
F−→A

E1−→B where E0, E1 are equivalence functors. Since the second notion only
involves changing a category to an equivalent one, the change affected on the functor
should be an “inessential” one; the resulting composites should be “equivalent” to F ;
they are, according to our definition. It is clear that the equivalence relation generated
by the two special cases of “equivalence” is the full notion of “equivalence”.

For F : X → A as an Lfun -structure, F# , the saturation of F , and Lanafun -
structure, has, among others,

F#O = {(X,A, µ) : X ∈ X , A ∈ A, µ : FX
∼=−→A},

and

F#A = {(X,A, µ, Y,B, ν, f, g) : (X f−→Y ) ∈ X , (A
g−→B) ∈ A,

µ : FX
∼=−→A, ν : FY

∼=−→B such that

FY Bν
//

FX

FY

Ff

²²

FX A
µ // A

B

g

²²





.

In the spirit of [M2], within the notation for F#A , the object A is also written as
F#
µ (X) , and g = F#

µ,ν(f) .

The various kinds of modal categories of [MR2] are each defined by a finite set of
first-order axioms, and each kind of modal category is invariant under equivalence: if
F : X → A belongs to the given kind, and G : Y → B is equivalent to F : X → A ,
then so does G : Y → B . It follows by our invariance theorem (15) that the axioms
can be formulated in FOLDS, although not as statements about the functor itself, but
as statements about its saturation. However, it is not necessary to use the invariance
theorem (which is anyway proved in a non-constructive way) to obtain the individual
FOLDS-statements; in each case, one can find them directly, rather easily. I will give an
example of an axiom thus reformulated in FOLDS.

Suppose the functor F : X → A preserves monomorphisms, and consider the follow-
ing condition on F :

(21) For any X ∈ X , the induced map FX : SX (X) −→ SA(FX) of posets has a
right adjoint (denoted Y 7→ ¤Y , the necessity operator).
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I want to show that the (21) can be equivalently written as a statement about F# .

The simple observation is that if (21) holds, and µ : FX
∼=−→A , then the map φ = φ[µ] :

SX (X) −→ SA(A) defined by φ([Z // r // X]) = [FZ // µ◦Fr // A] also has a right adjoint

([Z // r //X] is the subobject of X given by r ); it is this latter, more general, statement
that we can (almost) directly formulate in FOLDS about F# .

For variables U, V : O0 , u : A0(U, V ) , let M0(U, V, u) , abbreviated as M0(u) , and
intended to say that u is a monomorphism, be the Lanafun -formula

∀W : O0.∀v, w : A0(W,U)(∃z ∈ A0(W,V ).T0(v, u, z) ∧ T0(w, u, z).→ v =A0(W,U) w).

Changing all subscripts 0 to 1 , we get the formula M1(u) . Here is the sentence θ for
which F# ² θ is equivalent to (21):

∀X : O0∀A : O1∀µ : O(X,A)∀B : O1∀m : A1(B,A){M1(m) −→
∃Y : O0∃n : A0(Y,X)[M0(n) ∧ ∀Z : O0∀C : O1∀ν : O(Z,C)∀r : A0(Z,X)∀s : A1(C,A)

(M0(r) ∧M0(s) ∧ A(ν
d
, µ
c
, r
a0
, s
a1
)→

∃t : A0(Z, Y ).T0(Z, Y,X, t, n, r)←→ ∃u : A1(C,B).T1(C,B,A, u,m, s))]}.
To help reading the sentence interpreted in F# , here is a display of the data involved:

Y

Z

__

t ??
??

??
?Y X// n // X

Z

??

rÄÄ
ÄÄ

ÄÄ
Ä

◦
B

C = FνZ

__

u ??
??

??
B A = FµX// m // A = FµX

C = FνZ

??

s=Fνµ(r)ÄÄ
ÄÄ

Ä◦

FX
∼=−→
µ
A

FZ
∼=−→
ν
C

FZ Cν
//

FX

FZ

OO
Fr

FX A
µ // A

C

OO
s

[FZ // µ◦FR // A] =A [C // s // A].

◦∼=

∼=

X A

Let us discuss fibrations. The first thing to say is that the concept of fibration is not
invariant under equivalence of functors. An equivalence functor is, clearly, not necessarily
a fibration; an identity functor is one, however, it follows that the concept of fibration is
not invariant under equivalences of the form (E0, Id, id) .

On the other hand, once we know that F : X → A and G : Y → B are fibrations,
then the usually considered additional properties of F , and of diagrams in the fibration
F , are inherited along arbitrary equivalences F

'−→G . The reason is that any equivalence
F

'−→G gives rise to a “strong” equivalence from F to G ; and the usually considered
properties are invariant under the strong equivalences. In fact, the notion of strong
equivalence is related to looking at a fibration as a structure for a new DS vocabulary
Lfib . Let me explain.
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Consider the following DSV Lfib :
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;

here, besides the two obvious copies of Lcat , we have the equalities

od0a0 = d1a1, oc0a0 = c1a1.

(The simpler version that has an arrow A0 → A1 in place of A0 ←− A −→ A1 is not
suitable; we need equality on A1 to express fully the properties of the arrows of the base
category; with the version indicated, A1 would not be a top kind, therefore would not be
eligible for carrying an equality predicate in the language.)

Among the Lfib -structures, we find the functors; given F : X → A , it is understood
as an Lfib -structure in the natural way in which the 0 -copy of Lcat is X , the 1 -copy
A , o is the object-function of F , and the relation A is the graph of the arrow-function
of F . Note that whereas Lfib is a simplification of Lfun , its height is 4, and that of Lfun
is 3. Here is an axiom in FOLDS over Lfib that formulates the existence of (strongly)
Cartesian arrows:

∀A : O1∀B : O1∀f : A1(A,B)∀Y : O0(B)∃u : A0(A,B,X, Y ){Ȧ(u, f)∧
∀C : O1∀g : A1(C,A)∃h : A1(C,B)[Ṫ1(g, f, h) ∧ ∀Z : O0∀v : A0(C,A, Z, Y )(Ȧ(v, h)→
∃!w : A0(C,A,Z,X)(Ȧ(w, g) ∧ Ṫ0(w, u, v)))]}.

Here is a diagram to accompany the sentence:

C

A
g

??ÄÄÄÄÄÄÄ
C

B

h

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

A
f //

Z

X

w ÂÂ?
??

??
?Z

Y

v

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

X
u //

We have employed the usual abbreviations in writing the atomic formulas; the unique
existential quantifier ∃! may be expanded in the expected way. Adding further axioms
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that are easily obtained, we get a sentence in FOLDS over Lfib that axiomatizes the
notion of fibration. This would not be possible to do over Lanafun .

Let us call functors F : X → A and G : Y → B strongly equivalent, F 's G , if
there is an equivalence (E0, E1, id) : F ' G (in the previous sense), with an identity in
the third component

Y B
G

//

X

Y

E0

²²

X AF // A

B

E1

²²

◦ (22)

(23) For functors F and G,F 's G iff F ≈Lfib G . As a consequence, a first order
property of objects and arrows in a prefibration (functor), in particular, in a fibration, is
invariant under strong equivalence iff the property is expressible in FOLDS over Lfib .

I only outline the proof. Of course, the second statement is obtained as a consequence
of the first by 5. Given (R, r, s) : F oo

Lfib
// G , for any A ∈ FO1 = Ob(A) , let us pick

A ∈ RO1 by the Axiom of Choice such that r(A) = A , and put E1(A) = s(A) . For
X ∈ Ob(X ) , let A = F (X) ; thus, X ∈ FO0(A) . By the very surjectivity of r , there is
X ∈ RO0(A) such that r(X) = X ; we let E0(X) = s(X) . We have defined the object-
functions of equivalence functors E1 : A→ B , E0 : X → Y , and note (the main point)
that, at least as far as the effect on objects is concerned, the diagram (22) commutes (and
not just up to an isomorphism). The rest of the verification is left to the reader.

Note that the treatment of fibrations did not require a passage to an “anafunctor”.
The usually considered properties of fibrations are invariant under strong equivalence. On
the other hand, there is a simple, and well-known, “transfer property” for morphisms of
fibrations which ensures that for fibrations F and G , F ' G iff F 's G ; in fact if
(E0, E1, e) : F ' G , there is E ′

0 : X → Y such that E ′
0
∼= E0 and (E ′

0, E1, id) : F ' G .

7. Equivalence of bicategories

For 2-categories and bicategories, see [M L], [Be], [S].

In this section, I discuss invariance of properties of bicategories, and of diagrams
in bicategories, under biequivalence (however, I will call “biequivalence” “equivalence of
categories”). To mention just two examples, the property of a bicategory having finite
weighted (indexed) limits (see [S]) is a first-order property invariant under (bi) equivalence;
but the property of a 2-category having finite 2-limits is not so invariant. The main result
of this section (see the Corollary at the end) implies that the first-mentioned property
can be expressed in FOLDS, although not quite in the language of the bicategory itself,
but in a modification of it. In fact, the formulation of the said property in FOLDS can
be done directly, quite easily.
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One possible choice of a similarity type for 2-categories is the following graph L2−cat :
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The following explains the meaning of these symbols in the case of a 2-category:

C0: (the set of all) objects (0-cells),
C1: arrows (1-cells),
C2: 2-cells;

c10, C20: domain,
c11, c21: codomain,

T1: commutative triangles

τ =

t12τ
//

??

t10τ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

t11τ

ÂÂ?
??

??
??

??
??

??
??

of 1-cells,
T2 : commutative (for vertical composition) triangles

θ =

//

//

//²²
t21θ

²²
t20θ

²²
t22θ

of 2-cells,
H : commutative (for horizontal composition) triangles

t12h1η //

h4η

OO

t12h0η
//

t10h0η

99ssssssssssssssssssssss
t10h1η

99sssssssssss

h2η
//

%%

t11h0η

KKKKKKKKKKKKKKKKKKKKKK%%
t11h1η

KKKKKKKKKKK

h3η
oo

c11t10h0η

η = c10t10h0η c11t10h0η
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of 2-cells;
I1: identity 1-cells,
I2: identity 2-cells.
A 2-category is the same as a structure for L2−cat satisfying certain axioms

∑
2−cat

in multisorted first order logic with equality(ies) over L2−cat .
For the concept of bicategory we need, in addition, the sorts A , L and R , accomo-

dating associativity isomorphisms, and left and right identity isomorphisms, respectively.
More precisely, we introduce, besides these three new objects, the arrows

AT1

a0oo
AT1

a1oo AT1 a2oo AT1

a3
oo

A C2
a4 // ,

LT1
`0oo L I1

`1 //L

C2

`2

OO

,

RT1
r0oo R I1

r1 //R

C2

r2

OO

with these additions to L2−cat , we obtain Lbicat .
In a bicategory, the symbols of L2−cat are interpreted as expected (as in a 2-category).

A stands for the set of 5-tuples α = (a0α, a1α, a2α, a3α, a4α) where the aiα ( i = 0, 1, 2, 3)
are commutative triangles of 1-cells (elements of T1) , and a4α is a 2-cell, fitting together
as in

f=00=30

OO

32 //

12
//

a4α
OO

g=01=20 // 55kkkkkkkkkkkkkkkkkk ))SSSSSSSSSSSSSSSSSS

²²
h=11=21

02=10

22=31

a0α =

//
OO ??ÄÄÄÄ a1α =

??ÄÄÄÄ // ²²

a2α =

//

ÂÂ?
??

?
²² a3α = //

OO
ÂÂ?

??
?

with ij standing for t1j(aIα) , and a4α is the associativity isomorphism αf,g,h : h(gf)
∼=−→(hg)f.

L is the set of triples λ = (`0λ, `1λ, `2λ) as in

B = c10`1λ B = c10`1λ1B=i1`1λ=t11`0λ
//

c10t10`0λ

B = c10`1λ

f=t10`0λ

²²

c10t10`0λ

B = c10`1λ

t12`0λ

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

f=t10`0λ

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

`2λ //

and `2λ is the identity isomorphism λf : 1B ◦ f
∼=−→ f . R is similar, mutatis mutandis.
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Bicategories are Lbicat -structures satisfying a set
∑

bicat of axioms, in multisorted
first-order logic with equality over Lbicat . Of course, 2-categories are those bicategories for
which each αf,g,h, λf , ρf are identity 2-cells. We write Tbicat for the theory (Lbicat,

∑
bicat) .

Now, we introduce the DSV Lanabicat . The underlying simple category is generated by
the graph Lbicat , subject to the following equalities:

c10c20 = c10c21, c11c20 = c11c21,

c11t10 = c10t11, c10t10 = c10t12, c11t11 = c11t12,

c10i1 = c11i1,

c21t20 = c20t21, c20t20 = c20t22, c21t21 = c21t22,

c20i2 = c21i2,

t10h0 = c20h2, t10h1 = c21h2, t11h0 = c20h3, t11h1 = c21h3,

t12h0 = c20h4, t12h1 = c21h4.

t10a0 = t10a3, t11a0 = t10a2, t12a2 = t11a3, t12a0 = t10a1,

t11a1 = t11a2,

c20a4 = t12a1, c21a4 = t12a3,

i1`1 = t11`0, c20`2 = t12`0, c21`2 = t10`0,

i1r1 = t10r0, c20r2 = t12r0, c21r2 = t11r0.

The relations of Lanabicat are exactly its maximal objects, that is, its level-3 objects,
İ2, Ṫ2, Ḣ, Ȧ, L̇ and Ṙ .

The equalities between composites arise naturally; they hold in a bicategory (as a
Lbicat -structure); also, the relations of Lanabicat are interpreted in a bicategory “relation-
ally”; in brief, every bicategory is an Lanabicat -structure.

In [M2], the concepts of anabicategory, and saturated anabicategory were introduced.
Although these concepts implicitly underlie all that follows, they will not be relied on
explicitly.

An anabicategory is an Lanabicat -structure satisfying certain axioms
∑

anabicat in FOLDS
(with restricted equality) over Lanabicat ; a saturated anabicategory is one that satisfies a
larger set

∑
sanabicat of axioms in FOLDS over Lanabicat (these facts will be seen upon

inspecting the definitions in [M2]). An anabicategory is like a bicategory, with the com-
position functors replaced by composition anafunctors.

For the reader who has a copy of [M2], I now point out some details, which, however,
are not needed later.
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Let A be an anabicategory as in [M2]. In explaining in what way A is an Lanabicat -
structure, we will write T1 for AT1 , etc. For a diagram

A C
h

//

B

A

??

f

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
B

C

g

ÂÂ?
??

??
??

??
??

??

, (1)

T1(f, g, h) (short for T1(A,B,C, f, g, h) ) is the set | ◦A,B,C |((f, g), h) , the set of spec-
ifications s for h being the composite of f and g , h = g ◦s f (see 3.1.(iv) in [M2]).
For f : A → A ∈ C1 , I1(A, f) is |1A|(∗, f) , the set of specifications i for f being the
identity 1-cell on A , f = 1A,i (see 3.1.(iii) in [M2]). For

B C
g //

A D
` //

A D
j

//
α

OO
A

B

f

OO

D

C

²²

h

A

C

i

<<yyyyyyyyyyyyyyyyyyyyyyyyyyy

B

EEEEEEEEEEEE

D
""

k

EEEEEEEEEEE

(2)

in A , and

a ∈ T1(f, g, i), b ∈ T1(i, h, j), c ∈ T1(g, h, k), d ∈ T1(f, j, `), (3)

and α : j → ` , we have

A(a, b, c, d;α)⇐⇒ α = αa,b,c,d

(see 3.1.(vi) in [M2]). (According to our conventions in logic with dependent sorts,
A(a, b, c, d;α) is short for A(A,B,C,D; f, g, h, i, j, k, `; a, b, c, d;α) ).

Every bicategory (as an Lanabicat -structure) is an anabicategory, although not neces-
sarily saturated.

Whereas the interpretation of T1 in a bicategory, the notion of “commutative triangle
of 1-cells”, is a relation on triangles of 1-cells (where a triangle of 1-cells is three objects
and three arrows (1-cells) appropriately related via the domain/codomain functions),
in an anabicategory, we have a sort of entity that may be called “specification for a
commutative triangle of 1-cells”. Such a specification does specify a unique triangle (via
the maps t1i ); however, the property “commutative” does not figure separately. You may
say that a triangle is commutative if there is a specification for it to be commutative,
but in the concept of anabicategory, we do not work with this notion, we only work with
the specifications. In an anabicategory, the expression “commutative triangle (of 1-cells)”
should always be interpreted as “specification for a commutative triangle”.
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Next, we define a tranglation of the language Lanabicat into the theory Tbicat ; that is a
[Tbicat] -bicat structure I : Lanabicat // [Tbicat] . Via this translation, every bicategory A
gives rise to A# = A◦I , an Lanabicat -structure. A# is in fact a saturated anabicategory;
however, for the main result, we will not need this fact; we will use the actual construction
of A# as an Lanabicat -structure only. (In [M2], A# was defined for the special case of
a monoidal category (one-object bicategory) A only.) We define the passage A 7→ A# ;
this will describe the said interpretation as well.

In A# , the interpretation of the part

C0
oo c10
oo

c11
C1

oo c20
oo

c21
C2

I2

OOC2 T2

oo t20

C2 T2

oo
t21C2 T2oo
t22

of Lanabicat is the same as in A .

Under (1)(0-cells and 1-cells in A as well as in A# ),

A#T1(f, g, h) =
def

IsoA(gf, h)

= the set of all isomorphism 2-cells gf
∼=−→h . If

k //
ε

OO

j
//

f

99ssssssssssssssssssssss
g

99sssssssssss

β
//

%%

h

KKKKKKKKKKKKKKKKKKKKKK%%
i

KKKKKKKKKKK

δ
oo

B

A C

and s ∈ A#T1(f, h, j) , t ∈ A#T1(g, i, k) , then

A#Ḣ(s, t; β, δ, ε)⇐⇒
def

ig k
t

//

hf

ig

δ·β
²²

hf j
s // j

k

ε
²²

◦ .
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Under (2) and (3) in A# ,

A#Ȧ(a, b, c, d;α)⇐⇒
def

j `α //

h(gf) (hg)f
αf,g,h //

hi

j

b

²²

hi

h(gf)

²²

ha

kf

`

d

²²

kf

(hg)f

²²

cf

◦ ; (4)

here a reference is made to the associativity isomorphism αf,g,h given with A .
For a 1-cell f : A→ A , A#I1(A; f) = Iso(1A, f) .
For

B Bg
//

A

B

f

²²

A

B

h

ÂÂ?
??

??
??

??
??

??

,

a ∈ A#T1(A,B,B; f, g, h) , i ∈ I1(B; g) , λ : C2(h, f) ,

A#L̇(a, i, λ)⇐⇒
def

f hoo
λ

1Bf

f

λf

²²

1Bf gf
if // gf

h

a

²²

◦ ,

where a reference is made to the identity isomorphism λf given with A . The definition
of A#Ṙ is a straightforward variant.

In a bicategory A , a 1-cell f : B → A is an equivalence if there is f ′ : A→ B such
that f ◦ f ′ ∼= 1A , f

′ ◦ f ∼= 1B ; this is equivalent to saying that for any C ∈ A , the
induced functor f ∗ : A(C,B)→ A(C,A) is an equivalence of categories.

We have the notion of functor of bicategories ; this is just a different expression for
“homomorphism of bicategories” (see [Be], [S]). A functor F : X −→ A of bicategories is

an equivalence (of bicategories) [instead of “biequivalence”], in notation F : X '−→A , if

(i) for every A ∈ A , there is X ∈ X and an equivalence f : FX
'−→A ; and

(ii) for X, Y ∈ X , F induces an equivalence of categories X (X, Y ) −→ A(FX,FY ) .
See [S].
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We say that bicategories X ,A are equivalent [instead of “biequivalent”] if there is an

equivalence X '−→A . Equivalence of bicategories is an equivalence relation (this requires
the Axiom of Choice; the fact is well-known, but it also follows from (5) below).

Let L = Lanabicat .

(5) For any bicategories X ,A,X ' A iff X ≈L A .

Proof.(A)(“if”) Let (R, r0, r1) : X# ≈↔
L
A# . We construct F : X '−→A .

We write 〈ε〉 for r0(ε) , and [ε] for r1(ε) . We will write R for r∗0X# = r∗1A# too.

Given any X ∈ XC0 , we pick (by Choice) X ∈ RC0 such that 〈X〉 = X . We
put FX =

def
[X] . For any f : X → Y in X , pick (by Choice) f ∈ RC1(X, Y ) such that

〈f〉 = f , and for X Y
f //

X Y
g

//↓ β , β ∈ C2(f, g) with 〈β〉 = β ( β is uniquely determined);

define Ff = [f ] , Fβ = [β] .

For X
f→Y

g→Z in X , a =
def

1gf ∈ X#T1(f, g, gf) ; let a ∈ RT1(f, g, gf) such that

〈a〉 = a ; then [a] ∈ AT1(Ff, Fg, F (gf)) , that is, [a] : Fg ◦ Ff ∼=−→F (gf) . Therefore,
we may define Ff,g,=

def
[a] .

The coherence condition that the Ff,g have to satisfy (the sense in which F preserves
the associativity isomorphisms) reads as follows: given

X
f−→Y

g−→Z
h−→W,

we have

F (h(gf)) F ((hg)f)
F (αf,g,h)

//

Fh(FgFf) (FhFg)Ff
αFf,Fg,Fh //

FhF (gf)

F (h(gf))

Fgf,h

²²

FhF (gf)

Fh(FgFf)

²²

FhFf,g

F (hg)Ff

F ((hg)f)

Ff,hg

²²

F (hg)Ff

(FhFg)Ff

²²

Fg,hFf

◦? .
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Writing a = 1gf , b = 1h(gf), c = 1hg, d = 1hg)f , this amounts to the same as

[h(gf)] [hg][f ]
[αf,g,h]

//

[h]([g][f ]) ([h][g])[f ]
α[f ],[g],[h] //

[h][gf ]

[h(gf)]

[b]

²²

[h][gf ]

[h]([g][f ])

²²

[h][a]

[hg][f ]

[hg][f ]

[d]

²²

[hg][f ]

([h][g])[f ]

²²

[c][f ]

◦? .

but by (4), the last commutativity is equivalent to saying that A#A([a], [b], [c], [d]; [αf,g,h])
holds. The latter is a consequence of RA(a, b, c, d;αf,g,h) , which in turn follows from
X#A(a, b, c, d;αf,g,h) , which, finally, holds by (4) since a, b, c and d are identities.

The preservation by F of identity isomorphisms, and that of horizontal composition
(see [MP], 4.1, (2)(v) and (2)(iv)) are similar, and use L , R and H , respectively.

The facts that F preserves identity 2-cells and vertical composition of 2-cells are
immediate.

We claim that for any A ∈ AC0 , there is X ∈ XC0 such that FX ' A . Given A ,
pick X̂ ∈ RC0 with [X̂] = A , and let X = 〈X̂〉 . (Picture:

X
3

X 4

¨¨

²²²²²²²²²²²²²²²²²
X
3

X̂ 2

ÄÄ

ÄÄÄÄÄÄÄÄÄ

X 4

F X
5

ÀÀ;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;

X̂ 2

A
1

ÂÂ?
??

??
??

??
?

Consider 1x ∈ XC1(X,X) , and let i ∈ RC1(X, X̂) , j ∈ RC1(X̂,X) such that 〈i〉 =
〈j〉 = 1x . We have

[i] : FX −→ A, [j] : A −→ FX

in A . Let f = 1X ◦ 1X ∈ XC1(X,X) , and f ∈ RC1(X,X) , f̂ ∈ RC1(X̂, X̂) such that
〈f〉 = 〈f̂〉 = f . Consider 1f ∈ XC2(1X ◦ 1X , f) ; then 1f ∈ X#T1(X,X,X; 1X , 1X , f) .

Let ι ∈ T1(X, X̂,X; i, j, f) , ι′ ∈ T1(X̂,X, X̂j, i, f̂) such that 〈ι〉 = 〈ι′〉 = 1f . Then
[ι] ∈ A#T1(FX,A, FX; [i], [j], [f ]) , and thus

[ι] : [j] ◦ [i] ∼=−→[f ]; (6)

similarly,

[ι′] : [i] ◦ [j] ∼=−→[f̂ ].
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But, φ =
def
λ1X : f

∼=−→ 1X , that is, φ ∈ X#I1(X, f) . Thus, there is φ ∈ RI1(X, f) (such

that 〈φ〉 = φ ). Then, [φ] ∈ A#I1(FX, [f ] ), i.e., [φ] : 1FX
∼=−→[f ] . Combined with (6),

we get [j] ◦ [i] ∼= 1FX . Similarly, [i] ◦ [j] ∼= 1A . The data [i], [j] provide an equivalence
of FX and A as claimed.

Let us see that FX,Y : X (X, Y )→ A(FX,FY ) is an equivalence of categories. That
it is a bijection on hom -sets is a consequence of the fact that (R, r0, r1) respects the
equalities on C2 -sorts. To see essential surjectivity on objects, let g : FX → FY , that
is, g ∈ A#C1([X], [Y ] ). There is f̂ ∈ RC1(X, Y ) such that [f̂ ] = g ; let f = 〈f̂〉 .
We now have f, f̂ both in RC1(X, Y ) , and both “over” f . There are i ∈ RC2(f, f̂) ,
j ∈ RC2(f̂ , f) , ` ∈ RC2(f, f) , ˆ̀∈ RC2(f̂ , f̂) , such that 〈i〉 = 〈j〉 = 〈`〉 = 〈ˆ̀〉 = 1f . We

have X#I2(f ; 1f ) , hence, RI2(f ; `) and A#I2(Ff ; [`]) ; that is, [`] = 1Ff . Similarly, [ˆ̀] =

1g . Since X#T2(f, f, f ; 1f , 1f , 1f ) , we have RT2f, f̂ , f ; i, j, ` and RT2(f̂ , F , f̂ ; j, i, ˆ̀) ,
and as a consequence, A#T2(Ff, g, Ff ; [i], [j], 1Ff ) and A#T2(g, Ff, g; [j], [i], 1g) ; that
is, [j][i] = 1Ff , [i][j] = 1g . This shows that g ∼= Ff as desired.

(B)(“only if”) Let F : X '−→A , we construct (R, r0, r1) : X#←→
L
A# . We will

again write 〈ε〉 for r0(ε) , [ε] for r1(ε) .

We put RC0 =
def
{(X,A, x) : X ∈ XC0, A ∈ AC0, x is an equivalence x : FX

'→A] ;

〈(X,A, x)〉 =
def
X, [(X,A, x)] =

def
A .

Let us introduce a helpful notation. For any object D of Lanabicat , any d1 ∈ XD and
d2 ∈ AD , RD[d1, d2] stands for {d ∈ RD : 〈d〉 = d1, [d] = d2} , “the fiber of RD over
(d1, d2) ”. We extend this definition to any sort RD(e, e′, . . .) in R , in place of RD ;

RD(e, e′, . . .)[d1, d2] = {d ∈ RD(e, e′, . . .) : 〈d〉 = d1, [d] = d2};

here, it is assumed that d1 ∈ X#D(〈e〉, 〈e′〉, . . .), d2 ∈ A#D([e], [e′], . . .) .
The definition of RC0 together with effect of r1, r2 on it, can be put, more succinctly,

as
RC0[X,A] = Equiv(FX,A) = {x : x : FX

'→A}.
Continuing, we define, for f : X → Y, f : A→ B, x = (X,A, x), y = (Y,B, y) ∈ RC0,

RC1(x, y)[f, f ] = Iso(y ◦ Ff, f ◦ x),

the set of all 2-cell-isomorphisms φ as in

FY By
//

FX

FY

Ff

²²

FX A
x // A

B

f

²²φ

∼= 77ooooo
.

RC2 is relational, meaning that its fibers are either {∗} , or ∅ . Instead of “ ∗ ∈
RC2(x, y;φ, γ)[µ, ν] ”, we just write “RC2(x, y;φ, γ)[µ, ν] ”.
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For X Y
f //

X Y
g

//↓ µ in X , A B
f //

A B
g

//↓ ν in A, x, y and φ as before, and γ ∈

RC1(x, y)[g, g] ,

RC2(x, y, φ, γ)[µ, ν]⇐⇒
def

FY

FX

²²

Ff

FY

FX

²²

Fg
Fµ //

FY By
//

FX A
x //

B

A

²²

f

B

A

²²

g

ν //

φ
55kkkkkkkkkk γ

55kkkkkkkkkk

“ ◦ ”

⇐⇒
def

f ◦ x g ◦ xν◦x //

y ◦ Ff

f ◦ x

φ

²²

y ◦ Ff y ◦ Fgy◦Fµ // y ◦ Fg

g ◦ x

γ

²²

◦ .

Using that x, y are equivalences, and that F is an equivalence of bicategories, we see that,
for fixed x, y, φ, γ , the relation RC2(x, y;φ, γ)[µ, ν] of the variables µ, ν is a bijection

µ 7→ ν : XC2(f, g)
∼=−→AC2(f, g).

This implies that (R, r0, r1) preserves the equality relation ĖC2 . Also, with reference to

X ξ

f

X ξ
g

X ξ

h

ξ Y
//

ξ Y//ξ Y
//²² ρ

²² µ

²²
, A B

f //

A B

h

//
A Bg //

²² σ
²² ν

²² ζ
, and η ∈ RC1[h, h] , we easily see that

RC2(x, y;φ, γ)[ν, µ],RC2(y, z; γ, η)[ρ, σ], ρµ = ξ, σν = ζ =⇒RC2(x, z; γ, η)[ξ, ζ],

from which it follows (by the above bijection µ 7→ ν) that

RC2(x, y;φ, γ)[µ, ν],RC2(y, z; γ, η)[ρ, σ],RC2(x, z; γ, η)[ξ, ζ] =⇒ ρµ = ξ ⇐⇒ σν = ζ.

This means that r−1
0 (X#T2) = r−1

1 (A#T2) ; that is, (R, r0, r1) preserves T2 .

Given

(x : FX
'−→A) ∈ RC0[X,A], f : X → X in X , f : A→ A in A, φ ∈ RC1(x, x)[f, f ],
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that is,

FX Ax
//

FX

FX

Ff

²²

FX Ax // A

A

f

²²

77ooooo

∼=
φ

,

and a : 1X
∼=−→ f, a : 1A

∼=−→ f , we have

RI1
(

x

c10i1
, φ

)
[a, a]⇐⇒

def

x1FX xρx

∼= //

xFf fx∼=
φ //

x1FX

xF (1X)

²²

∼=xFX

xF (1X)

xFf

∼=xFa

OO

x

1Ax

²²

∼= λx

1Ax

fx

∼= ax

OO

◦

Given

(∗)
(x : FX

'−→A) ∈ RC0[X,A], (y : FY
'−→B) ∈ RC0[Y,B],

(z : FZ
'−→C) ∈ RC0[Z,C],

X Z
i

//

Y

X

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
Y

Z

g

ÂÂ?
??

??
??

??
??

??

in X ,

A C
i

//

B

A

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
B

C

g

ÂÂ?
??

??
??

??
??

??

in A,

(a : gf
∼=−→ i) ∈ X#T1(f, g, i), (a : gf

∼=−→ i) ∈ A#T1(f, g, i),

φ ∈ RC1(x, y)[f, f ], γ ∈ RC1(y, z)[g, g], ι ∈ RC1(x, z)[i, i],
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we have

RT1(φ, γ, ι)[a, a]⇐⇒
def

(zFg)Ff z(FgFf)oo
∼=
α(zFg)Ff

(gy)Ff

γFf

²²

z(FgFf) zF i
zFaFf,g // zF i

ix

ι

²²
ix

(gf)x

??

ax

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

(gy)Ff g(yFf)oo
∼=
α g(yFf)

g(fx)

gφ

ÂÂ?
??

??
??

??
??

?

g(fx) (gf)x
∼=
α

//

(right) (bottom)

(left) (back)

(front)

(we have referred to the following diagram of 1-cells, and its “faces”:

FX

FY

Ff

FF°°°°°°°°°
FX FZ

Fi
//

FY

FZ

Fg

»»1
11

11
11

11
A

B

f

FF°°°°°°°°°
A C

i //

B

C

g

»»1
11

11
11

11

FZ

C

z

44jjjjjjjjjjjjjjjjjjj

FY

B
y

44jjjjjjjjjjjjjjjjjjj

FX

A

x jjjjjjj

44jjjjjjjjjj

).

The facts that ĖI1 , ĖT1 are preserved are shown through the facts that the definitions of
RI1,RT1 give bijections a 7→ a .

The proof that (R, r0, r1) so defined preserves Ȧ and Ḣ is put into Appendix D.
We have an “augmented” version of (5), similarly to 6. I will state this without proof;

for the proof the details of the notion of anafunctor would be needed, together with a
concept of cleavage; the proof is, in outline, quite similar to the proof of 5.(8).

Let K0 be the full subcategory of L = Lanabicat consisting of the objects C0, C1 and
C2 . A restricted context is a context of K0 . For a bicategory A and its saturation
A#,A ¹ K0 = A# ¹ K0;A[X ] = A#[X ] whenever X is restricted.

Let X be a restricted context. An augmented bicategory of type X is a pair (A,−→a )
of a bicategory A and a tuple −→a ∈ A[X ] ; symbols such as (A,−→a ) , (X ,−→x ) stand for

augmented bicategories. The notation E : (X ,−→x ) '−→(A,−→a ) signifies that E : X '−→A
and E(−→x ) = −→a . The relations

∼−→ and
∼←→ are now defined in the same way as for

I -diagrams in 6. For bicategories, that is type- ∅ augmented bicategories, the relations
∼−→ ,

∼←→ coincide with equivalence ' . Generalizing (5), we have
(7) For augmented bicategories (X ,−→x ), (A,−→a ), (X#,−→x ) ≈L (A#,−→a ) iff (X ,−→x ∼←→

(A,−→a ) .
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We can, analogously to 6, define a recursive translation θ 7→ θ∗ from FOLDS formulas
θ over L to formulas θ∗ in ordinary multisorted logic over Lbicat such that, if X = Var(θ)
is a restricted context, then Var(θ∗) = X , and for any bicategory A,−→a ∈ A[X ],A# ²
θ[−→a ] iff A ² θ∗[−→a ] . We obtain the following analogs of 5.(20) and 5.(20’).

(8)(a) Let T be a theory extending Tbicat . Let X be a finite restricted context over
Lanabicat, σ and LT -formula such that Var(σ) ⊂ X . The following two conditions (i), (ii)
are equivalent.

(i) For any M,N ² T and tuples −→a ∈ |M |[X ],−→b ∈ |N |[X ],M ² σ[−→a ] and

(|M |,−→a ) '←→(|N |,−→b ) imply N ² σ[−→b ] .
(ii) There is θ in FOLDS over Lanabicat with Var(θ) ⊂ X such that for all M ² T

and tuples −→a ∈ |M |[X ] , we have M ² σ[−→a ] iff M ² σ∗[−→a ] .
(b) In particular, if σ is a sentence over LT , and for any M,N ² T,M ² σ and

|M | ' |N | imply N ² σ , then there is a sentence θ of FOLDS over Lanabicat such that
for any M ² T,M ² σ iff M ² θ∗ .

(9) Let T be a normal theory of bicategories. Let X be a finite restricted context
over Lanabicat . Suppose that the first-order formula σ over Lbicat with free variables all in
X is preserved and reflected along equivalences of models of T . Then there is a formula
φ in FOLDS over Lanabicat such that σ is equivalent to φ∗ in models of T .

(8)(b) follows from (5) (proved in detail above) and 5. As was mentioned, the proofs
of (8)(a) and (9) require a more detailed look at anabicategories, similarly to what we did
in 5 on anadiagrams in the proof of (20)(a); this work is omitted here.

A paraphrase of (8) can be stated as follows. A first-order property of a bicategory, or
of a diagram of 0-cells, 1-cells and 2-cells in a bicategory, is invariant under (bi)equivalence
of bicategories if and only if it can be expressed in FOLDS as a statement about the
saturation of the bicategory.
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Appendix A: An alternative introduction of logic with dependent sorts.

The way we defined the basic concepts of FOLDS in 1 may look somewhat ad hoc
because of the a priori role of the one-way (simple) categories as vocabularies. There is
a more direct definition of FOLDS which does not start with assuming simple categories
as vacabularies. The notion of “vocabulary” that arises naturally in the direct approach
does, nevertheless, turn out to be equivalent to the one we started with in 1. More fully,
the direct approach and the original approach turn out to be equivalent in all essential
respects. This Appendix describes this state of affairs.

We first define the classes of entities called kinds, sorts, variables, contexts and spe-
cializations, and certain relation between these entities. Each kind, sort, variable, context
and specialization has a certain level, which is a natural number; the definition of the said
entities is by a simultaneous induction, proceeding by the level.

For the present purpose, we use the set-theoretic notion of function as a set of ordered
pairs with the usual condition; the point is that we do not make the “categorical” specifi-
cation of the codomain as part of the data for a function. Given functions s and t , t ◦ s
is always defined and is a function; dom(t ◦ s) = {x ∈ dom(s) : s(x) ∈ dom(t)} , and for
x ∈ dom(t ◦ s), (t ◦ s)(x) = t(s(x)) .

The kinds of level 0 are the entities of the form 〈0, ∅, a〉 , with a any set. We say that
the kind K = 〈0, ∅, a〉 is of arity ∅ , and we write K◦

◦∅ . The sorts of level 0 are the
entities 〈1, K, ∅〉 , with K a kind of level 0; we put Var(K) = ∅ . A variable of level 0
is any entity of the form 〈2, X, a〉 with X a sort of level 0, a any set; we say that the
variable x = 〈2, X, a〉 is of sort X , and we write x : X . (The definition ensure that
every variable of level 0 has a unique sort of level 0.) A context of level 0 is a finite set of
variables of level 0. A specialization of level 0 is a function s whose domain is a context
of level 0, and for each x ∈ dom(s), s(x) is a variable of the same sort as x .

Suppose n is a natural number, n > 0 , and we have defined what the kinds, sorts,
variables, contexts and specialization of level k are, for each k < n , such that each
context of level < n is a finite set of variables of level < n , and each specialization
of level < n is a function whose domain and range are sets of variables of level < n .
Suppose moreover that we have defined the concept of a variable x being of sort X , for
variables x and sorts X of level < n .

A kind of level n is an entity 〈0,Y , a〉 , where Y is a context of level n − 1 , and a
is an arbitrary set; we say that Y is the arity of K = 〈0,Y , a〉 , and we write K◦

◦Y .

[Kinds are to form sorts (see below); kinds are incomplete sorts, with places for vari-
ables to fill; when these places are filled in a correct manner, then we have a sort. In our
formulation, we did not introduce “places” as distinct from variables, although we could
have done so; we used variables to denote “places”; this is the same as the “nameforms”
in [K]. Our procedure may be compared to the one when, in odinary first-order logic with
several sorts, a relation symbol R is introduced in the form R(x0, x1, . . . xn−1) , with dis-
tinct specific variables xi of definite sorts; the arity of R then may be identified with the
set X = {x0, x1, . . . xn−1} ; the atomic formula R(y0, y1, . . . yn−1) ( yi of the same sort
as xi ) using R can then be identified with the pair (R, s) (=“R(s) ”) where s is the
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function with domain X for which s(xi) = yi .]
A sort of level n is any X = 〈1, K, s〉 , written more simply as K(s) , where K is a

kind of level n, s is a specialization of level n− 1 , and K◦
◦dom(s) ; Var(X) =

def
range(s) .

For a sort X , a variable of sort X is any x = 〈2, X, a〉 ; we write x : X .
A context of level n is any set of the form Y ∪X where Y is a context of level n−1 ,

X is a (non-empty, for having level exactly = n ) finite set, and each x ∈ X is a variable
of level n such that if x : X , then Var(X) ⊂ Y .

If X = K(s)(= 〈1, K, s〉) , then X|t denotes K(t ◦ s)(= 〈1, K, t ◦ s〉).[X|t is the
sort obtained “by substituting t(x) simultaneously for each x ∈ Var(X) in X ”.] t is
a specialization (of level n ) if t is a function whose domain is a context, and for every
x ∈ dom(t) , if x : X , then X|t is a sort (of level ≤ n ), and t(x) is a variable (of level
≤ n ) of sort X|t (and there is at least one x ∈ dom(t) of level n ).

The above may be put in a more compact manner, without talking about levels, as
follows. We define classes

KIND,CONTEXT, SORT, SPEC,VARIABLE

such that

X ∈ CONTEXT =⇒ X is a finite subset of VARIABLE,

s ∈ SPEC =⇒ s is a function, dom(s) and range(s) ⊂ CONTEXT;

predicates

◦
◦ ⊂ KIND× CONTEXT (read K◦

◦Y as “K is a kind of arity Y”)
:⊂ VARIABLE× SORT (read x : X as “x is a variable of sort X”)

and the function
Var : SORT −→ Pfin(VARIABLE),

by the closure conditions:
1 X ∈ CONTEXT =⇒ 〈0,X , a〉 ∈ KIND and 〈0,X , a〉◦◦X ;
2 ∅ ∈ CONTEXT;
3 X ∈ CONTEXT, X ∈ SORT, x : X,Var(X) ⊂ X =⇒ X ∪ {x} ∈ CONTEXT;
4 s ∈ SPEC, K ∈ KIND, K◦

◦dom(s) =⇒ 〈1, K, s〉 ∈ SORT and Var(〈1, K, s〉) = range(s);
5 ∅ ∈ SPEC;
6 X ∈ CONTEXT, s ∈ SPEC, X ∈ SORT, X|s ∈ SORT,

x : X, x /∈ dom(s),Var(X) ⊂ X , y : X|s =⇒ s ∪ {(x, y)} ∈ SPEC
(〈1, K, s〉|t =

def
〈1, K, t ◦ s〉)

7 X ∈ SORT =⇒ 〈2, X, a〉 ∈ VARIABLE and 〈2, X, a〉 : X.
By definition, the intended system (KIND, . . .) is the minimal one satisfying the given
closure conditions.

Let us give some examples. Let O,A,A1, U, V , u, v be arbitrary entities, U 6= V , u 6=
v . Here are specific kinds, variables, sorts and contexts, introduced by the above rules;
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at the start of the line, the number of the clause used is shown:
2 ∅ ∈ CONTEXT,

1 O =
def
〈∅, ∅,O〉 ∈ KIND,O◦

◦∅.
5 s0 =

def
(∅ : ∅ → ∅) ∈ SPEC

4 O =
def
〈1,O, s0〉 ∈ SORT,Var(O) = ∅

7 U =
def
〈2,O, U〉 ∈ VARIABLE, U : O

V =
def
〈2,O, V 〉 ∈ VARIABLE, V : O

3 twice {U, V } ∈ CONTEXT
1 A =

def
〈0, {U, V },A〉 ∈ KIND,A◦

◦{U, V }
6 twice s1 =

def
id{U,V } : {U, V } → {U, V } ∈ SPEC

4 A(U, V ) =
def
〈1,A, s1〉 ∈ SORT

7 u =
def
〈2,A(U, V ), u〉 ∈ VARIABLE, u : A(U, V )

v =
def
〈2,A(U, V ), v〉 ∈ VARIABLE, v : A(U, V )

3. . . {U, V, u, v} ∈ CONTEXT
1 A1 =

def
〈0, {U, V, u, v},A1〉 ∈ KIND

For a variable x , we have a unique sort Xx for which x : Xx;Xx = Kx(sx) for a uniquely
determined kind Kx and specialization sx . For a kind K,XK is the context for which
K◦

◦XK .

A pre-vocabulary is a set K of kinds such that K ∈ K , x ∈ XK imply that Kx ∈ K .
(I am talking about pre-vocabularies because relations are not yet contemplated.)

We compare the present approach to the one in 1. Let K be a pre-vocabulary. We
make K into a category with objects the elements of K . Arrows of K are the identity
arrows, and the pKx : K → Kx , one for each pair K ∈ K , x ∈ XK . Composition is
defined thus. Given

K
pKx // Kx

pKxy // Ky (x ∈ XK , y ∈ XKx),

Xx = Kx(sx), with sx : XKx
// // Var(Xx).z =

def
sx(y) ∈ Var(Xx) ⊂ XK ; also,

Kz = Ky; therefore, K
pKz // Ky. We define pKx

y ◦ pKx = pKz .

This composition is associative as is seen by using the equality s(sy(u)) = ss(y)(u) , which
in turn is part of the definition of s being a specialization.

The category K so defined is clearly a simple category; the levels of kinds as given
in the definition above are the same as their levels in K .

Let us use K as a category of kinds in the way done in 1. I claim that the resulting
notions of variable 1 , sort 1 , and context 1 are essentially the same as those of variableK ,
sortK and contextK in the sense of the present Appendix, with the only kinds allowed
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the ones in K . More precisely, we define, by a simultaneous recursion, functions

X 7→ X : SortK −→ Sort1 (1)

x 7→ x : VariableK −→ Variable1; (2)

by putting 〈2, X, a〉 = 〈2, X, a〉 , and 〈1, K, s〉 = 〈1, K, 〈xp〉p∈K|K 〉 , where xp = s(y) for
the unique y for which p = pKy . I leave it to the reader to check that (1) and (2) are

bijections, and x : X ⇔ x : X . Moreover, we have that the bijection (2) induces a
bijection between Context1 and ContextK .

Let us return to the development started in this Appendix. A relation-symbol is an
entity of the form 〈3,X , a〉 where X is a context; X is the arity of the relation-symbol
R = 〈3,X , a〉; r◦◦X . A vocabulary is a set L of kinds and relation-symbols such that the
set K of kinds in L is a pre-vocabulary, and if R is a relation-symbol in L , R◦

◦X ,
x ∈ X , then Kx ∈ K .

Our comparison above of pre-vocabularies and simple categories of 1 clearly extends
to an essential bijection between vocabularies as defined here, and DSV’s of 1.

An atomic formula (in logic without equality) is any 〈4, R, s〉 where R is a relation-
symbol, s is a specialization, and R◦

◦dom(s) .
I leave the rest of the development of FOLDS in the style of this Appendix, and its

comparison to the main body of the paper, to the reader.
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Appendix B: A fibrational theory of L -equivalence

Consider fibrations C
EC↓
BC

, D
ED↓
BD

, and the category Fib[C,D] of all maps

M = (M1,M2) : C → D ::

BC BDM1

//

EC

BC

C
²²

EC ED
M2 // ED

BD

D
²²

◦ (1)

of fibrations; Fib[C,D] is a full subcategory of [C,D] ; see [M3]. Fib[C,D] is the to-
tal category of a fibration denoted Fib〈C,D〉 ; its base-category is the functor-category
[BC,BD] , and the fiber over U : BC → BD has objects all the M as in (1) with the
fixed U = M1 , and arrows as in 〈C,D〉 defined in [M3]; the fiber of Fib〈C,D〉 over U
is a full subcategory of the fiber of 〈C,D〉 over U . Given (f : U → V ) ∈ [BC,BD] ,

and N : C → D over V , the Cartesian arrow M = f ∗(N)
h=θf // N is obtained by

the stipulation that for all A ∈ BC , X ∈ CA , M(X)
hX //X is a Cartesian arrow over

fA : U(A) → V (A) ; the definition of M on arrows is the obvious one; see also below.
The fact that M so defined is a map of fibrations is shown by the diagram:

V A V B
V q

//V A

UA

##fA

GGGGGGGG

UA UB
Uq

// UB

V B

fB

##GGG
GGG

GG

NX NY
Nθq //NX

MX

##hX

GGGGGGGG

MX MY
Mθq // MY

NY

hY

##GGG
GGG

GG

.

Here, θq : X → Y is a Cartesian arrow over q : A → B ; the issue is to show that Mθq
is Cartesian (over Uq ). The definition of M on arrows makes Mθq an arrow over Uq
making the upper quadrangle commute (unique such Mθq exists by hY being Cartesian).
As a composite of Cartesian arrows, (Nθq) ◦ hX is Cartesian; as a left factor of the last,
Mθq is Cartesian.

In what follows, the base categories BC,BC will have finite limits. Fiblex〈C,D〉 is
the subfibration of Fib〈C,D〉 with base-cateogry Lex(BC,BD) , a full subcategory of
[BC,BD] , with fibers unchanged from Fib〈C,D〉 .

Next, assume that C and D are ∧∃ -fibrations. We have the prefibration ∧∃−〈C,D〉 ,
with base category Lex(BC,BD) , and total category ∧∃(C,D) . The fiber over U ∈
Lex(BC,BD) is the full subcategory of the fiber of Fiblex〈C,D〉 over U with objects the
maps of ∧∃ -fibrations M : C → D . ∧∃ − 〈C,D〉 is not a fibration; however for certain
maps f : U → V, f ∗(N) calculated in Fiblex〈C,D〉 does belong to ∧∃ − 〈C,D〉 , as we
proceed to point out (from which it will of course follow that over such f , Cartesian
arrows do exist in ∧∃ − 〈C,D〉 ).
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Assume that D is a ∧∃ -fibration, with QD = Arr(BD) . Let us call q ∈ Arr(BD)
surjective if ∃qtA = tB . If q is surjective, then for any Y ∈ DB,∃qq∗Y = ∃q(tA∧ q∗Y ) =
∃qtA ∧ Y = Y (where the second equality is Frobenius reciprocity). It is clear that a
pullback of a surjective arrow is surjective, and the composite of two surjective arrows is
surjective. It is also clear that if qr is surjective, then so is q .

Let us call a commutative square in BD

A′ B′
g′

//

A

A′

OO

a

A B
g // B

B′

OO

b (1′)

a quasi-pullback if the canonical arrow p : A′ → A×B B′ = P is surjective.

Using the stated properties of surjective maps, we easily see that if in the quasi-
pullback (1 ′ ), g is surjective, then so is g′ .

Consider two adjoining squares and their composite:

A′ B′//

A

A′

OOA B// B

B′

OO

B′ C ′//

B

B′

OOB C// C

C ′

OO

1 2

A′ C ′//

A

A′

OOA C// C

C ′

OO

3 (1′′)

(2) The “composite” of two quasi-pullbacks is again a quasi-pullback: if both 1 and 2 are
quasi-pullbacks, then so is 3.

The verification uses both the pullback and composition properties of surjective arrows
noted above.

(3) In (1 ′′ ), if 3 is a quasi-pullback, 2 is a pullback, and 1 commutes, then 1 is a
quasi-pullback.

(3’) If a commutative diagram

A B//A

A′

OO

A′ B′//

B

B′

OO

A′ B′//A′

AOOA B//

B′

BOO
A′

A′

ll

YYYYYYYYYYYYYYYYYYYYY

A

A

ll

YYYYYYYYYYYYYYYYYYYYY B

B

ll

YYYYYYYYYYYYYYYYYYYYY

B′

B′

ll

YYYYYYYYYYYYYYYYYYYYY

the two quadrangles AA′AA′ and BB′BB′ are pullbacks, and the square AA′BB′ is a
quasi-pullback, then AA′BB′ is a quasi-pullback too.

This follows from (2) and (3).

(3 ′′ ) If in (1 ′′ ), 3 is a quasi-pullback, and AB is surjective, then 2 is a quasi-
pullback.

To see this, let P = B×CC ′ for 2 , and R = A×CC ′ for 3 . We have the commutative
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diagram

A′ B′//

R

A′

OOR P// P

B′

OOR P//

A

R

OOA B// B

P

OO

P C ′//

B

P

OOB C// C

C ′

OO

B′

C ′
??ÄÄÄÄÄÄ

¤ ¤

with two pullbacks as indicated. Since AB is surjective, so is RP . The assumption gives
that A′R is surjective. Now, the composite A′P is surjective, and so is its left factor
B′P , which is what we want.

(4) The Beck-Chevalley condition for ∃ holds (not just with pullback squares, but
also) with quasi-pullback squares.

Indeed, consider the diagram

A′ B′
g′

//

A

A′

OO

a

A B
g // B

B′

OO

b

A

P

bb
r
DD

DD
DD

B′

P

""
s

DDDDD

A′

P
p <<zzzzzz

,

and calculate: ∃g, a∗X = ∃s∃pa∗X = ∃s∃pq∗r∗X = ∃sr∗X = b∗∃gX ; the third equality is
the “quasi-pullback” property, the last ordinary B-C.

Let us continue to assume that D is a “full” ∧∃ -fibration (QD contains all arrows),
let C be an arbitrary ∧∃ -fibration, (q : A → B)∃BC . We call a map (f : U →
V )∃Lex(BC,BD) very surjective with respect to q if the square

V A V B
V q

//V A

UA

##fA

GGGGGGGG

UA UB
Uq

// UB

V B

fB

##GGG
GGG

GG

is a quasi-pullback. (The concept of “very surjective” is relative to the fibration D ,
although it does not depend on the fibration C except for its base-category.)

(5) If f is very surjective with respect to an arrow q , then so it is with respect to
any pullback of q ; if f is very surjective with respect to a pair composable arrows, then
so it is with respect to their composite.

This follows by (3) and (2).
We say that f is very surjective if it is very surjective with respect to every q ∈ QC ;

by (5), it is enough to require the condition for a “generating set” of q ’s.
(6) The composite of very surjective arrows (in Lex(BC,BD) ) is very surjective; the

pullback of a very surjective arrow is very surjective.
This follows by using (2) and (3).
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Let K be a simple category, B = Con(K )op ; Lex(B ,BD) can be identified with
Fun(K ,BD) ; this is the kind of base-category for the fibrations we are interested in. In
4, we made two different choices for the class Q of quantifiable arrows in B . The choice
for the purposes of the main body of 5 is Q 6= ; this, is in the version that is closed under
composition, is simply the class of epimorphisms of B . When we make the choice of Q=

for Q , we get as the very surjective maps in the sense of this section the ones we called
normal ones in 5; we leave it to the reader to verify this.

(6 ′ ) Let (f : U → V ) ∈ Fun(K ,BD) be very surjective (with respect to Q 6= ). For
every finite context X over K , f[X ] : U [X ] → V [X ] is surjective. For any K ∈ K ,
fK : U(K)→ V (K) is surjective.

The first assertion is shown by induction on the cardinality of X . If X is of positive
size, we can write X as Y∪̇{x} such that Y is a context too. By the paragraph after
(4) in 4, for K = Kx , we have a pushout diagram.

Y X//

XK

Y
²²

XK X ∗
K

// X ∗
K

X
²²

in Con(K ) , which, with V = XK ,U = X ∗
K , gives rise to

U [V ] V [V ]//U [V ]

U [U ]

OO

U [U ] V [U ]//

V [V ]

V [U ]

OO

U [X ] V [X ]//U [X ]

U [Y ]
OO

U [Y ] V [Y ]//

V [X ]

V [Y ]
OO

U [U ]

U [X ]

ll

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

U [V ]

U [Y ]

ll

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY V [V ]

V [Y ]

ll

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

V [U ]

V [X ]

ll

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

1

2

to which (3’) is applicable. The square 1 is a quasi-pullback (by f being very surjective),
hence, so is 2 . Since by the induction hypothesis, U [Y ] → V [Y ] is surjective, so is
U [X ]→ V [X ] .

The second assertion follows immediately from the first by the quasi-pullback

V (K) V [K]
πU
K

//

U(K)

V (K)

fK

²²

U(K) U [K]
πU
K // U [K]

V [K]

f[K]

²²

;
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note that U [K] = U [XK ] , etc.
Assume now that C and D are ∧ ∨ ∃ -fibrations, D a “full” one.
(7) If f : U → V is very surjective, and N ∈ ∧∨∃(C,D) , the M = f ∗(N) calculated

in Fib(C,D) is in fact in ∧ ∨ ∃(C,D) .
First of all, using that for each g ∈ Arr(BD), g∗ is a morphism of lattices, we imme-

diately see that M preserves the fiberwise operations.
Consider

V A V B
V q

//V A

UA

##fA

GGGGGGGG

UA UB
Uq

// UB

V B

fB

##GGG
GGG

GG

MX

NX

θfA

##GGG
GGG

GG
M∃qX

N∃qX

θfB

##GGGGGG

M∃qX = f ∗
BN∃qX = f ∗

B∃NqNX = ∃Mqf
∗
ANX = ∃MqMX;

here, the first equality is the definition of M ; the second the quality of N being a
morphism of ∃ -fibrations; the third f being very surjective; and the last again the
definition of M .

Now, assume in addition that both C and D are ∧∨ → ∃∀ -fibrations, again with
QD = Arr(BD) . I claim that

(8) If f : U → V is very surjective, then N ∈ ∧∨ → ∃∀(C,D) implies that M =
f ∗(N) ∈ ∧∨ → ∃∀(C,D) .

The additional fiber-wise operation, Heyting implication, is dealt with as before. Let
(q : A → B) ∈ QC , X ∈ CA ; we want to show that M∀qX = ∀MqMX ; that is, for
any Φ ∈ DUB , Φ ≤UB M∀qX ⇔ (Uq)∗Φ ≤UA MX . The left-to-right implication is
automatic. Assume

(Uq)∗Φ ≤UA MX (9)

and consider

V A V B
V q

//V A

UA

##fA

GGGGGGGG

UA UB
Uq

// UB

V B

fB

##GGG
GGG

GG

(V q)∗(∃fBΦ)
?≤NX ∃fBΦ

(Uq)∗Φ ≤MX = f ∗
AUX Φ

.

As indicated, we consider the object ∃fBΦ over V B , and claim that the inequality marked
? is true.

(V q)∗(∃fBΦ) = ∃fA(Uq)∗Φ (10)
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by the (generalized) B-C property for ∃ with quasi-pullbacks. (9) implies that

∃fA(Uq)∗Φ ≤UA ∃fAMX = ∃fAf ∗
ANX ≤ NX. (11)

(10) and (11) imply what we wanted. Now, from this, ∃fBΦ ≤ ∀V qNX = N(∀qX) , and
Φ ≤ f ∗

B∃fBΦ ≤ f ∗
BN(∀qX) =M(∀qX) as desired.

M,N ∈ ∧∨ → ∃∀(C,D) are said to be equivalent, M ∼ N , if there is a diagram

P
M

m
ttjjjj P

N
n

**TTTTT

such that m,n are Cartesian in Fiblex(C,D) , and m1 : P1 →M1, n1 : P1 → N1 are very
surjective. Equivalence is clearly reflexive and symmetric; it is transitive too; given

Q
M

m
ttjjjj Q

N
n

**TTTTT R
N

n′
ttjjjjj

R
P

p
**TTTTT

with the relevant properties, one forms the pullback

Q1

S1

ww
q1 ooooooo

Q1

N1

n1

''OOO
OOO

O

S1

R1

r1

''OOOOOOO

N1

R1

ww
n′
1 ooooooo

in Lex(BC,BD) , and defines S as (n′′
1)

∗(N1) , for n
′′
1 = n1q1 = n′

1r1 ; let n
′′ : S → N be

the Cartesian arrow over n′′
1 . Then n being Cartesian implies that there is a (unique)

q over q1 such that nq = n′′ ; similarly for r over r1 . Since n′′ is Cartesian, so are q
and r . Since q1, r1 are pullbacks of very surjective arrows, they are very surjective. We
conclude that mq and pr are Cartesian arrows over very surjective ones, which proves
what we want.

Let us take T = (L, ∅) , the “empty theory” over the DSV L , and let C = [T ] , a
∧∨ → ∃∀ -fibration with base-category B = (Con[K ])op and class of quantifiable arrows
Q = Q 6= . Recall the canonical i : K → B induced by Yoneda. ModC (T ) = StrC (L) ,
and we have the fibration E : ModC (T ) → CK as explained in 5. We also have the
fibration

D = Fiblex〈C,P(C )〉 : Fiblex[C,P(C )] −→ Lex(B ,C ).

We have a “forgetful” morphism ()− : D → E ; ()−1 is the equivalence

U 7→ U ◦ i : Lex(B ,C )
'→CK ;

and ()−2 is defined as P 7→ P− was defined in 4 (see (5)) for the special case when
P ∈ ModP(C )(C ) ⊂ Fiblex[C ,P(C )] . It is easy to verify that ()− is a morphism of
fibrations.

We have the quasi-inverse

U 7→ [U ] : CK '→Lex(B ,C ) (12)
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specified so that [U ]([X ]) = U [X ] ; we have the canonical isomorphism jU : [U ]− ∼= U
natural in U . ()− : D → E restricts to an equivalence

()− : Modiso
P(C )(C ) // Modiso

C (T ), (13)

whose quasi-inverse is

M 7→ [M ] : Modiso
C (T ) // Modiso

P(C )(C) ⊂ Fiblex[C,P(C )]

constructed in 4, with the canonical isomorphism jM : [M ]− ∼= M natural in M . These
are connected to (12) by [M ]1 = [M ¹ K ], (jM)1 = jM¹K .

Let us deduce (1)(b) of 5 from (8); let’s use the notation and hypotheses of 5.(1)(b).
Consider the following diagram in the fibration E :

[U ]− [V ]−
[f ]−

//[U ]−

U
jU

22ffffffffffffffffffffffffffffff

U V
f //

[V ]−

V

jV

22ffffffffffffffffffffffffffffff

[M ]− [N ]−
[θf ]

−
//[M ]−

M
jM

22fffffffffffffffffffffffffffff

M N
θf //

[N ]−

N

jN

22fffffffffffffffffffffffffffff

∼= ∼=

∼= ∼=

The two quadrangles commute, by the naturality of j . It follows that [θf ]
− : [M ]− →

[N ]− is Cartesian over [f ]− : [U ]− → [V ]− . Consider the Cartesian arrow θ[f ] : [f ]
∗[N ]→

[N ] over [f ] : [U ]→ [V ] in D . Since ()− is a morphism of fibrations,

(θ[f ])
− : ([f ]∗[N ])− → [N ]−

is Cartesian over the same [f ]− : [U ]− → [V ]− . It follows that there is an isomorphism

([f ]∗[N ])−
∼=−→M over 1[U ]− . But then, since (13) is full and faithful, it follows that

[f ]∗[N ] =M . Hence,

M [X : φ] = ([f ]∗[N ])[X : φ] = f ∗
X ([N ][X : φ]) = f ∗

X (N [X : φ]),

where the second equality is the description of Cartesian arrows in D , the last is the
definition of [N ] ; and this is what was to be proved.

Continuing in this manner, we see that, for M,N ∈ ModC (T ) , M ∼L N in the sense
of 4 iff [M ] ∼ [N ] in the sense of this Appendix.
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Appendix C: More on L -equivalence and equality
Ordinary multisorted first-order logic without equality and without operation symbols

(only relations are allowed) is a special case of FOLDS as follows. Let L be a multisorted,
purely relation vacabulary. We associated a DSV L with L . The kinds of L are the sorts
of L ; the relations of L are the relation symbols of L . For R is sorted “R ⊂ u

i<n
Xi ”, we

have proper arrows pRi : R → Xi(i < n) . This completes the description of L . Clearly,
the L -structures are essentially the same as the L -structures.

L just constructed is a very simple DSV; its category of kinds has height 1 .
Now, a natural motion of “isomorphism” for L -structures “without equality” is the

ordinary notion of isomorphism modified by dropping single-valuedness and 1-1-ness. Let
M , N be L -structures. By definition, h : M

∼↔
L
N means a family of relations hX :

MX − | → NX(X ∈ Sort(L) ) such that dom(hX) = MX , range(hX) = NX , and

for any “R ⊂ u
i<n

Xi ” in L,−→a = 〈ai〉i<n ∈ u
i<n

MXi,
−→
b = 〈bi〉i<n ∈ u

i<n
NXi , we have

that aihXi
bi for all i < n (briefly, −→a h−→b ) implies that −→a ∈ MR ⇔ −→b ∈ NR . It

is pretty clear that h : M
∼↔
L
N preserves the meaning of L -formulas without equality :

−→a h−→b =⇒ (M ² φ[−→a ] ⇐⇒ N ² φ[−→a ]) ; this would hold good for infinitary logic, and
other extended notions of “formula”. It is also clear that if for each sort X of L , there is
a relation “EX ⊂ X ×X ” whose interpretation in both M and N is ordinary equality

on X , then h :M
∼↔
L
N is the same as an ordinary isomorphism M

∼=→N .

The last-mentioned notion of “relational isomorphism” coincides with the relational
version of L -equivalence, for L the DSV constructed for L as above, defined as follows.
For a general DSV L , we call the L -equivalence (W,m, n) :M↔

L
N relational if m and

n are jointly monomorphic; we indicate the said quality by the letter r in (W,m, n) :

M
r↔
L
N . This means that for every kind K in L , the pair (mK , nK) of functions is

jointly monomorphic, that is, the span MK oo mK WK
nK // NK is a relation.

For simplicity, we deal with Set -valued structures in what follows. Suppose (W,m, n) :

M
r↔
L
N . For each kind K , define the relation ρK ⊂ MK × NK by aρKb ⇔ ∃c ∈

WK.mKc = a∧nKc = b . For X a finite context, −→a = 〈ax〉x∈X ∈M [X ] , −→b = 〈bx〉x∈X ∈
N [X ] , we write −→a ρX−→b ⇔ ∃−→c ∈ W [K].m−→c = −→a ∧n−→c =

−→
b . It turns out however that

−→a ρX−→b ⇔ ∀x ∈ X .axρKxbx . Indeed, the left-to-right direction is obvious. Conversely, let
cx ∈ WKx such that mKxcx = ax ∧ nKxcx = bx . I claim that −→c = 〈cx〉x∈X ∈ W [K] . For
this, we need that if y ∈ X , p ∈ Ky|K , then

cxy,p = (Wp)(cy). (1)

But m(Wp)(cy) = (Mp)(mcy) = (Mp)(ay) = axy,p , and similarly n(Wp)(cy) = bxy,p ;
since c = cxy,p ∈ WKxy,p is uniquely determined by the property m(c) = axy,p&n(c) =
bxy,p , (1) follows.

As a consequence, a relational equivalence can be described in terms of the relations
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ρK as follows. A relational equivalence ρ : M
r↔
L
N is a family ρ〈ρK〉K∈K of relations

ρK ⊂MK ×NK such that, with

−→a ρX−→b ⇔
def
∀x ∈ X .axρKxbx, (2)

the following hold:
(3) For any p : K → Kp, a ∈MK, b ∈ NK

aρKb =⇒ (Mp)(a)ρKp(Np)(b).

(4) For any K ∈ K ,−→a ∈M [K] =M [XK ],−→b ∈ N [K] = N [XK ],−→a ρXK

−→
b &a ∈MK(−→a ) =⇒ ∃b ∈ NK(

−→
b ).−→a aρX ∗

K

−→
b b.

−→a ρXK

−→
b &b ∈ NK(

−→
b ) =⇒ ∃a ∈MK(−→a ).−→a aρX ∗

K

−→
b b.

(5) For any relation R in L, and −→a ∈M [R] =M [XR],−→b ∈ N [R] = N [XR],−→a ρXR

−→
b =⇒ (−→a ∈MR⇐⇒ −→b ∈ NR).

(the notations XK ,X ∗
K ,XR are from 4; −→a a denotes 〈dx〉x∈X ∗

K
∈M [X ∗

K ] for which dx = ax
when x ∈ XK , and dxK = a) .

By what we said above, every (W,m, n) :M
r↔
L
N gives rise to a ρ :M

r↔
L
N ((3) is nat-

urality, (4) is the very surjective condition, (5) is the preservation of relations). Conversely,
given ρ :M

r↔
L
N , putting WK = {〈K, a, b〉 : aρKb},mK(〈K, a, b〉) = a, nK(〈K, a, b〉) = b

gives (W,m, n) :M
r↔
L
N .

We can make some steps towards Infinitary First Order Logic with Dependent Types.
(We refer to [Ba] as a basic reference on infinitary logic and back-and-forth systems.) Let
us fix the DSV L as before. The syntax of the logic L∞,ω of FOLDS over L with arbitrary
(set) size conjunction and disjunction, and finite quantification should be obvious; as
usual, we only allow formulas that have finitely many free variables. To fix ideas, we
consider logic without equality. M ≡L∞,ω N means that M and N satisfy the same
L∞,ω -sentences without equality. We have the following “back-and-forth” characterization

of the relation ≡L∞,ω . A weak relational L -equivalence ρ : M
r←→

L∞,ω
N is a system ρ =

〈ρX 〉X of relations ρX ⊂ M [X ] × N [X ] , indexed by all finite contexts, satisfying the
following conditions (6)-(9):

(6) for any specialization s : X → Y ,−→a ∈M [Y ],−→b ∈ N [Y ],
−→a ρY−→b =⇒ (−→a ◦ s)ρX (−→b ◦ s);

here, if −→a = 〈ay〉y∈Y , then −→a ◦ s = 〈as(x)〉x∈X .

(7) ∅ρ∅∅ holds.
(8) For any finite contexts X ,X∪̇{x},−→a ∈M [X ],−→b ∈ N [X ],

−→a ρX−→b &a ∈MK(−→a ) =⇒ ∃b ∈ NK(
−→
b ).−→a aρX∪̇{x}

−→
b b,

−→a ρX−→b &b ∈ NK(
−→
b ) =⇒ ∃a ∈MK(−→a ).−→a aρX∪̇{x}

−→
b b.

(9)=(5)

We say that M and N are weakly L -equivalent, M ∼L,w N , if there is ρ :M
r←→

L∞,ω

N .

Given ρ : M
r↔
L
N , then, with making the definitions as in (2), we also have ρ :



103

M
r←→

L∞,ω

N . The reader will see that in the case of ordinary multisorted logic, the definition

of weak relational L -equivalence reduces to the well-known concept of “back-and-forth
system” that figures in the characterization of ∞, ω -equivalence. Thus, the following
generalizes that characterization.

(10)(a) For L -structures M and N , M ≡L∞,ω N iff M ∼L,w N .

(b) For countable L -structures M and N,M ≡L∞,ω N iff M ∼L N .

(c) For any countable L , and countable L -structure M , there is a (“Scott”-)sentence
σM of Lω1,ω such that N ≡L∞,ω M iff N ² σM .

The proofs are routine variants of those of the classical cases.
There is a simple categorical restatement of the notion of weak L -equivalence. Con-

sider B = (SetK )opfin as before. An L -pseudo-structure P is a functor B → Set , together
with a subset P (R) ⊂ P ([X ]) for each relation R of L . A morphism of L -pseudo-
structures is a natural transformation of functors B → Set preserving each R in the
obvious sense. Each L -structure M can be regarded as a pseudo-structure, since any
functor K → Set has a canonical extension B → Set which is in fact finite-limit pre-
serving. Let PStr(L) be the category of psudo-structures. We have a forgetful functor
E ′ : PStr(L)→ SetB ; E ′ can be seen to be a fibration. Now, a (not-necessarily-relational)
weak L -equivalence (W,m, n) : M←→

L,w
N is, by definition, a functor W ∈ SetB , to-

gether with arrows m : W → E ′M,n : W → E ′N such that m,n are very surjective
with respect to all epimorphisms in B (according to the definition before B.(5), with
Lex(BC,BD) replaced by SetB ), and there is a pseudo-structure P , with Cartesian ar-
rows θm : P → M, θn : P → N over m and n , respectively. We write M ∼L,w N for:
there exists (W,m, n) :M←→

L,w
N .

It is not hard to show that M ∼L,w N iff there is a weak relational L -equivalence

ρ : M
r←→

L∞,ω

N ; the proof is similar to the proof below concerning non-weak relational

equivalences.
We return to ordinary (non-weak) equivalences. When M and N are Set -valued

L -structures, with any (W,m, n) :M↔
L
N , there is a relational (W ′,m′, n′ :M r↔

L
N ; in

fact W ′ can be chosen as a subfunctor of W , with m′ and n′ being restrictions of m
and n , respectively. To define W ′K ⊂ WK , we use recursion on the level of K . Fix K .
The induction hypothesis gives us the inclusion W ′[K] 7→ W [K] . Consider the pullback
P = WK ×W [K] W

′[K] as in

W ′[K] W [K]// //

P

W ′[K]
²²

P WK// i // WK

W [K]
²²

W [K] M [K]//

WK

W [K]
²²

WK MK
mK // MK

M [K]
²²

¤
,
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with i an inclusion; look at g = 〈mKi, nKi〉 : P −→ MK ×NK , and, using the Axiom
of Choice, split h : P ³ Im(g) by an inclusion k : W ′K 7→ P as in

MK ×NK

P

²²

g

MK ×NK

Im(g)

ÄÄ

ÄÄÄÄÄÄÄÄÄ

Im(g)

W ′K

ÄÄ
∼=

ÄÄÄÄÄÄÄÄÄÄ
Im(g)

P

ÂÂ

??????????

P W ′Koo

◦
◦

;

we have defined W ′K . Inspection shows that W ′ is appropriate.

For not necessarily Set -valued L -structures M,N , let us write M ∼L,r N for: there

exists W,m, n) :M
r↔
L
N .

What we saw says that the concept M ∼L N remains unchanged, at least for Set -
valued models, if we ignore all but the relational L -equivalences:

M ∼L N ⇐⇒M ∼L,R N. (11)

However, the more general notion (M,−→a ) ∼L (N,
−→
b ) goes wrong under the same alter-

ation. For one thing, the need for not-necessarily-relational L -equivalences is natural if
we look at the proof of 5.(4). Given X and the tuples −→a ∈ M [X ],−→b ∈ N [X ] as there,

the desired L -equivalence (W,m, n) : (M,−→a )↔
L
(N,
−→
b ) is constructed so as to continue

the mappings x 7→ ax, x 7→ bx ; if the latter two mappings are not jointly monomorphic,
the resulting L -equivalence will not be relational. On the other hand, the entry of non-
relational L -equivalences is not just a characteristic of the proof of 5.(4); it is in fact
unavoidable.

Consider the following example of a DSV, called L :

E1 K1
e11

//E1 K1

e10 //

E0 K0
e01

//E0 K0

e00 //
K0

K1

²²

p pe10 = pe11

A standard structure M for L is one for which, for b0, b1 ∈ M [K1] , that is, (Mp)b0 =
(Mp)b1 , we have b0(ME1)b1 ⇔ b0 = b1 , and also, ME0 is ordinary equality on MK0 .
Consider the following example for an L -equivalence (W,m, n) :M↔

L
N , for certain M
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and N :

a

b0 b1

x0 x1

y0 y1
z0 z1

c

d0 d1

Here, MK0 = {a},MK1 = {b0, b1}, NK0 = {c},MK1 = {d0, d1},WK0 = {x0, x1},WK1 =

{y0, y1, z0, z1}, y0, z0 Â Wp // x0, y1, z1
Â Wp // x1 , and

y0
m7→ b0, y1

m7→ b1, z0
m7→ b1, z1

m7→ b0,

y0
n7→ d0, y1

n7→ d0, z0
n7→ d1, z1

n7→ d1,

E0 and E1 are interpreted in M and N as equality.
This shows that, for the context X = {x0, x1 : K0; y0 : K1(x0); y1 : K1(x1)} , and

for −→a = 〈a/x0, a/x1, b0/y0, b1/y1〉 , −→c = 〈c/x0, c/x1, d0/y0, d0/y1〉 , we have (M,−→a ) ∼L

(N,−→c ) . On the other hand, there is no relational equivalence (W ′,m′, n′) : (M,−→a )↔
L

(N,−→c ) . In any such, W ′K0 is a singleton {x};x Â m′
// a , x Â n′

// c ; we have some

u0, u1 ∈W ′K1(x) such that u0
Â m′

// b0, u1
Â m′

// b1 ; and the preservation of E1 implies
n′(u0) 6= n′(u1) , contradiction.

This example also dispels the possible belief that an L -equivalence (W,m, n) :M↔
L
N

can always be reduced to a relational one by taking the image of (W,m, n) . Let U =
M ¹ K , V = N ¹ K , and consider

ΦU
φ

oo Φ V
ψ

//Φ

W

²²
r

Φ

U × V
i

²²

W

U

m

ÄÄÄÄ
ÄÄ

ÄÄ
Ä
W

V

n

ÂÂ?
??

??
??

U × V

U

π

__??????

U × V

V

π′

??ÄÄÄÄÄÄ

(12)

where r and i form the surjective/injective factorization of 〈m,n〉 : W → U × V .
In other words, when i : Φ → U × V is an inclusion, for any K ∈ K , the relation
ΦK ⊂ MK × NK is given by a(ΦK)b ⇔ ∃c ∈ WK.mc = a&nc = b . When applied in
our example, (Φ, φ, ψ) so defined does not preserve E1 .

I now turn to some remarks on equality.
Let L be an arbitrary DSV. Let us augment L to LG , another DSV, by adding a

relation ĠK to L for every K ∈ Kind(L) , with proper arrows gK0 : ĠK → K, gK1 :
ĠK → K , together with all composites pgKi : ĠK → Kp , p ∈ K|L (i = 0, 1) . We do
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not identify pgK0 with pgK1 . For an LG -structure M ,

M [ĠK ] = {(−→a , a,−→b , b) : −→a ,−→b ∈M [K], a ∈MK(−→a ), b ∈MK(
−→
b )}.

The letter G is used because we are dealing with global equality as opposed to fiberwise
equality (see below). A standard LG -structure M is one in which, for −→a ,−→b ∈M [K], a ∈
MK(−→a ), b ∈MK(

−→
b ), (−→a , a,−→b , b) ∈M(ĠK) iff a = b ; more briefly, M(ĠK) as a subset

of MK ×MK is {(a, a) : M(K)} . Any L -structure can be made into a standard LG -
structure in exactly one way. When an L -structure is used as an LG -structure, we mean
the corresponding standard LG -structure.

The effect of adding global equalities is that all L -equivalences can be canonically
replaced by relational ones, by taking the image of the given one. If (W,m, n) :M←→

LG
N ,

then for (Φ, φ, ψ) defined above, we have (Φ, φ, ψ) :M←→
LG

N .

To see this, first we show that the arrow r in (12) is very surjective; that is, for any
K ∈ K , the diagram

W [K] Φ(K)r[K]

//

W (K)

W [K]
²²

W (K) Φ(K)
rK // Φ(K)

Φ(K)
²²

(13)

is a quasi-pullback. Assume −→a ∈M [K],
−→
b ∈ N [K], a ∈MK(−→a ), b ∈ NK(

−→
b ) such that

(−→a ,−→b ) ∈ Φ[K], (a, b) ∈ ΦK(−→a ,−→b ) , and −→c ∈ W [K] with m−→c = −→a , n−→c =
−→
b (this

is, r[K](
−→c ) = (−→a ,−→b ) ); we want c ∈ WK(−→c ) such that mc = a and nc = b . By the

definition of Φ , there is d ∈ WK with md = a, nd = b . By the very surjectivity of
n , there is c ∈ WK(−→c ) such that nc = b . But by the presence of the relation GK ,
md(MGK)mc iff nd(NGK)nc ; that is, md = mc iff nd = nc ; which says that mc = a
as desired.

By B.(6’), the induced map r[X ] : W [X ] −→ Φ[X ] is surjective.
Now, looking at

W (K) Φ(K)rK
//

W [K]

W (K)

OO
W [K] Φ[K]

r[K] // Φ[K]

Φ(K)

OO

Φ(K) M(K)
φK

//

Φ[K]

Φ(K)

OO
Φ[K] M [K]

φ[K] // M [K]

M(K)

OO

W (K) M(K)mK

//

W [K]

W (K)

OO
W [K] M [K]

m[K] // M [K]

M(K)

OO

we see that B.(3 ′′ ) is applicable to yield that φ is very surjective.

Given a relation R ∈ Rel(LG) , if (−→a ,−→b ) ∈ Φ[R] , then by r[R] : W [R] −→ Φ[R] being

surjective, there is −→c ∈ W [R] with r[R](
−→c ) = (−→a ,−→b ) , that is m−→c = −→a , n−→c =

−→
b ,

and thus −→a ∈MR iff
−→
b ∈ NR . This completes showing that (Φ, φ, ψ) :M

r←→
LG

N .

We have shown something more general (and more technical), which is independent
of equality. This is that
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(14) If (W,m, n) :M↔
L
N and we have

ΦU
φ

oo Φ V
ψ

//Φ

W

²²

r

U

W

ÄÄ

m

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
V

W

ÂÂ

n

?????????????????

◦ ◦

such that r is very surjective, then (Φ, φ, ψ) :M←→
L

N ;

the relational quality of (φ, ψ) is not relevant to this.
Clearly, a relational equivalence preserving global equalities on all kinds is nothing but

an isomorphism. We have shown that M ∼LG N implies that M ∼= N , and (M,−→a ) ∼LG

(N,
−→
b ) implies (M,−→a ) ∼= (N,

−→
b ) . But, all formulas in multisorted logic over |L| are

preserved by isomorphism. By the invariance theorem 5.(12), we conclude the following.
(15) For any context X over L , and any formula σ of multisorted logic over |L|

with Var(σ) ⊂ X [remember, a variable x : X of FOLDS counts as a variable of sort Kx
in multisorted logic], there is a FOLDS formula θ over LG with Var(θ) ⊂ X such that
σ and θ∗ are logically equivalent (over X ):

² ∀X (σ ←→ θ∗) ; or in other words, M [X : σ] =M [X : θ∗] for any L -structure M .
(We apply 5.(12) to I : LG → [(|L|,Σ[L])] ; for Σ[L] , see 1, I is essentially the identity
except that all the GK ’s are interpreted as equality. In M [X : θ∗] , M is understood as
a standard LG -structure.)

Notice the small point that in the statement of (15), we are not allowed to start with
a |L| -formula σ with arbitrary free variables; the free variables have to form a context.
E.g., in the case of the language of categories, a formula with a single arrow-variable
cannot (of course) have an equivalent in FOLDS with the same free variables ; we have to
add the “domain and the codomain of the arrow-variable” as free variables.

Let us hasten to add that it is possible to show (15) directly, by a rather simple
structural induction on the formula σ .

We have an instance of what we may call expressive completeness of FOLDS: full first-
order logic over |L| can be expressed in LG . This is accompanied by a mode of deductive
completeness. We will give a deductive system for entailments over LG , extending the
standard system for LG for logic without equality by specific rules related to the G -
predicates, which is complete for semantics restricted to standard LG -structures, that is,
semantics of true equality.

The set GK |L , the arity of the relation GK , is the set

{pgK0 : p ∈ K|L} ∪ {gK0} ∪ {pgK1 : p ∈ K|L} ∪ {gK1}

Accordingly, we will write atomic formulas GK(−→z ),−→z indexed by GK |L , in the form
GK(−→x , x,−→y , y) ; here, −→x = 〈xpgK0

〉p∈K|L, x : K(−→x ),−→y = 〈ypgK0
〉p∈K|L, y : K(−→y ) .
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Here are some other pieces of notation. For any object A of L (kind or relation), and
tuples −→x = 〈xp〉p∈A|L,−→y = 〈yp〉p∈A|L for which A(−→x ) , A(−→y ) (types or atomic formulas)
are well-formed, −→x G[A]

−→y denotes the formula

∧

p∈A|L
GKp(〈xqp〉q∈Kp|L, xp, 〈yqp〉q∈Kp|L, yp).

When −→x = 〈xp〉p∈K|L, −→x p =
def
〈xqp〉q∈Kp|L.

V. Global-equality axioms.

(G 1 )
t X

+3 GK(−→x , x,−→x , x)

(G 2 )
GK(−→x , x,−→y , y) X

+3 GK(−→y , y,−→x , x)

(G 3 )
GK(−→x , x,−→y , y) ∧ GK(−→y , y,−→z , z) X

+3 GK(−→x , x,−→z , z)

(G 4 )
GK(−→x , x,−→y , y) X

+3 GK(−→y p, yp,−→x p, xp)
(p ∈ K|L)

(G 5 ) −→x G[K]
−→y X

+3 ∃y : K(−→y ).GK(−→x , x,−→y , y)
(x : K(−→x ))

(G 6 ) −→x G[R]
−→y X

+3 R(−→x )↔ R(−→y )

The proof of the said completeness is done in the traditional manner; we use completeness
for logic without equality over LG for the theory whose axioms are the (conclusion-
)entailments in the equality rules. Given any structure M for LG satisfying the equality
axioms, we construct a standard LG -structure M/∼ which is LG -elementary equivalent
to M . For a kind K , let ∼K be the relation on the set MK defined by a ∼K b ⇐⇒
MGK([a], a, [b], b) holds; here [a] = 〈(Mp)(a)〉p∈K|L , and similarly for [b] . By (G1) , (G2)
and (G3) , each ∼K is an equivalence relation; let us write a/∼ for the equivalence class
containing a . (G4) implies that if f : K → K ′ , ai ∈ MK, a′i = (Mf)(ai) ∈ MK ′ ,
then a1 ∼K a2 ⇒ a′1 ∼K , a′2 . Let U = M ¹ K . We define U/∼ : K → Set by
(U/∼)(K) = (UK)/∼(=

def
{a/∼ : a ∈ UK}) , and ((U/∼)(f))(a/∼) = ((Uf)(a))/∼ ,

which is well-defined.
For −→a = 〈ap〉p∈R|K ∈M [R] , we put −→a /∼ = 〈ap/∼〉p∈R|K ∈ (M/∼)R .
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We define M/∼ by (M/∼) ¹ K = U/∼ , and

(M/∼)R(−→a /∼)⇐⇒
def

MR(−→a );

by (G6) , this is well-defined; we have completed the definition of M/∼ .
For any finite context X , we have (M/∼)[X ] = (M [X ])/∼(=

def
{−→a /∼ : −→a ∈ M [X ]) .

Moreover, when −→a ∈M [K] , then (M/∼)K(−→a /∼) =MK(−→a )/∼(=
def
{a/∼ : a ∈MK(−→a )} .

This is not automatic; it requires (G5) . Finally, we show, by structural induction, that
for any θ over LG with Var(θ) ⊂ X , and −→a ∈M [X ] ,

M/∼ ² θ[−→a /∼]⇐⇒M ² θ[−→a ].

Having the construction M 7→M/∼ with the properties shown, the proof of the standard
completeness for LG can be completed in the expected manner.

In place of global equality, it seems natural to consider fiberwise equality for FOLDS.
Let, for any DSV L,LE denote the DSV obtained by adding to L a new relation EK for

every kind K , with EK K

eK0 //
EK K

eK1

// and peK0 = peK1(p ∈ K|K ) as for maximal kinds in

Leq . A standard LE -structure is one in which each EK is interpreted as equality; to give
a standard LE -structure is the same as to give an L -structure. In what follows, M and
N are L -structures; when they figure as LE -structures, they mean the corresponding
standard ones.

Suppose ρ :M
r←→
LE

N . I claim that each ρK ⊂MK×NK is the graph of a bijection

MK → NK . By (6’), dom(ρK) = MK, codom(ρK) = NK . Thus, it remains to show
that

ai ∈MK, bi ∈ NK, aiρKbi(i = 1, 2) =⇒ a1 = a2 ⇐⇒ b1 = b2 (16)

We show this by induction on the level of K . Assume the hypotheses of (16). Let

ai ∈ MK(−→a i), bi ∈ NK(
−→
b
i
) . Then, if −→a i = 〈aip〉p∈K|K ,

−→
b
i
= 〈bip〉p∈K|K , then aipρKpb

i
p

(by (3)).
Assume (e.g.) a1 = a2 . Then −→a 1 = −→a 2 =

def

−→a , that is, a1p = a2p for all p ∈ K|K .

By the induction hypothesis, (16) applied to Kp , we have b1p = b2p , that is,
−→
b

1
=

−→
b

2
=
def

−→
b . We have a1, a2 ∈ MK(−→a ), b1, b2 ∈ NK(

−→
b ) , and −→a aiρX ∗

K

−→
b bi . Therefore, by

(6), MEK(−→a , a1, a2)⇐⇒ NEK(
−→
b , b1, b2) ; that is, a1 = a2 ⇐⇒ b1 = b2 as desired.

Given that each ρK is a bijection, clearly, ρ is an isomorphism ρ : M
∼=−→N (of

L -structures). We conclude
M ∼LE,r N =⇒M ∼= N (17)

(the above argument did not depend essentially on the fact that we dealt with Set -valued
structures)

Applying 5.(12), we obtain
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(18) For every sentence σ in multisorted logic (with equality) over |L| there is a sentence
σ of FOLDS over LE such that for every L -structure M , M ² σ ⇐⇒ M ² σ (here,
in the first instance, M figures as an |L| -structure; in the second instance as a standard
LE -structure).
Proof. Consider the interpretation I : LE → [T ] , where T = (|L|,ΣL) , extending the
“identity” interpretation L→ [T ] , and interpreting each EK as equality. We apply 5.(12)
to I,X = ∅ and σ . Suppose M,N ² T are Set -valued models (!),

M ¹ LE ∼LE N ¹ LE (19)

and M ² σ . M and N are L -structures, and M ¹ LE, N ¹ LE are the corresponding
standard LE -structures. By (19) and (11), it follows that M ∼= N . Since “everything”
is invariant under isomorphism, N ² σ . Thus, the hypothesis of 5.(12) holds. The
conclusion is exactly what we want.

Note that the result of (18) cannot be generalized to formulas with free variables in
place of sentences. That is, the statement of (15), with LE replacing LG is not true. This
is shown by the example that we gave above; in that example, L = LE

0 for L0 consisting
of K0, K1 and p (and no relations). With X = {x0, x1, y0, y1} as in the example, if for
the formula σ ≡ y0 = y1 (whose free variables are in X ) there were θ in FOLDS over
L with Var(θ) ⊂ X such that, for every L0 -structure M (also counted as a standard
L -structure) and

−→a = 〈a0, a1 ∈MK0; b0 ∈MK1(a0); b1 ∈MK1(a1)〉,

M ² σ(−→a )⇐⇒ b0 = b1
?⇐⇒M ² σ(−→a )

then for every equivalence (W,m, n) : (M,−→a )↔
L
(N,−→c ) , where

−→c = 〈c0, c1 ∈ NK0; d0 ∈ NK1(c0); d1 ∈ NK1(c1)〉,

since it would preserve θ , we would have

b0 = b1 ⇐⇒ d0 = d1;

but the example shows that this conclusion is false.
(18) can be used to give another proof of 6.(3), the Freyd-Blanc characterization result,
at least for X = ∅ ; this proof is a variant of what is contained in [FS].

Let T be a normal theory of categories with additional structure. Assume σ is an
LT -sentence such that for M,N ² T, |M | ' |N | implies that M ² σ iff N ² σ . In
particular,

for M,N ² T, |M | ∼= |N | implies that M ² σ iff N ² σ.
By ordinary model theory (a version of Beth definability), it follows that there is a sentence
τ in multisorted logic over |Lcat| such that for models of T, σ and τ are equivalent. By
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(18), there is a sentence ψ in FOLDS over LE
cat which is equivalent to σ in all Lcat -

structures (also counted as standard LE
cat -structures). There are two E -predicates in

ψ,EO and EA . Replace each occurrence EO(X, Y ) of EO by the formula

“X ∼= Y ” ≡ ∃f ∈ A(X,Y ).∃g ∈ A(Y,X),∃h ∈ A(X,X).∃i ∈ A(Y, Y )

(I(h) ∧ I(i) ∧ T(f, g, h) ∧ T(g, f, i)));

call the result θ . Notice that θ is a FOLDS formula of Leqcat (it has only the allowable
equality predicates in Leqcat ). I claim that for all M ² T ,

M ² σ ⇐⇒M ² θ.
Let M ² T . |M | is a category; let |M |s be its skeleton. Since |M | ' |M |s , by the
normality of T , there is N ² T such that |N | = |M |s . Now
M ² σ ⇔ N ² σ since |M | ∼ |N |, and M,N ² T

⇔ N ² τ since N ² T
⇔ |N | ² τ
⇔ |N | ² ψ
⇔ |N | ² θ since |N | is skeletal (that is, for objects X,Y,X = Y iff X ∼= Y )
⇔ |M | ² θ since |M | ' |N |, and θ is a FOLDS formula with equality over Lcat

⇔ M ² θ.
This method of proof is also applicable to the “higher” cases. Let us consider the case of
bicategories; let us show that if a sentence σ in multisorted logic over Lbicat = |Lanabicat| is
invariant under equivalence of bicategories, then σ is equivalent in bicategories to θ∗ for a
FOLDS sentence θ over Lanabicat ; θ

∗ is the translate of θ such that A ² θ∗ ⇐⇒ A# ² θ .
A bicategory A is skeletal if any two equivalent objects are equal, and any two iso-

morphic parallel 1-cells are equal. For any bicategory A , there is a skeletal one, As ,
which is (bi)equivalent to A .

The first step is to use Beth definability to the interpretation Φ : Lanabicat → [Tbicat] .
Since A# ∼= B# implies that A ' B , it follows that there is a sentence τ in multisorted
logic over |Lanabicat| such that for every bicategory A,A ² σ ⇐⇒ A# ² τ . By (18), we
can find a sentence ψ in FOLDS over LE

anabicat such that, in particular, A# ² τ ⇐⇒
A# ² ψ . Now, transform ψ in the following way. Each occurrence EC0(X, Y ) of EC0 is
replaced by the formula

“X ' Y ′′ ≡ . . .

and each occurrence EC1(X
f //
g

// Y ) of EC1 is replaced by the formula

“f ∼= g” ≡ . . .

The resulting sentence θ is in Leq
anabicat . I claim that for any bicategory A,A ² σ ⇐⇒

A ² θ∗ . Indeed
A ² σ ⇐⇒ As ² σ ⇐⇒ (As)

# ² τ ⇐⇒ (As)
# ² ψ ⇐⇒ (As)

# ² θ ⇐⇒ A# ² θ ⇐⇒ A ² θ∗;
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the next-to-last last biconditional holds because As ' A , of which (As)
# ∼Leq A#

(L = Lanabicat ) is a consequence, and because θ is a FOLDS sentence over Leq .
This proof replaces the general invariance theorem 5.(12) by Beth definability, and a

special case of that invariance theorem, (18). It falls somewhat short of the results of 7,
partly because we have confined the situation to an empty context X . Also, this approach
is not available in constructive category theory; the existence of the skeleton (already in
the classical case of mere categories) depends on the Axiom of Choice. As we will see
in Appendix E, the main theory of equivalence of 5 has a constructive version involving
intuitionistic logic. Modifying the notions of equivalence to notions of “anaequivalence”
(using, and building on, [M2]), we obtain versions of the results of sections 6 and 7 for
constructive category theory.
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8. Appendix D: Calculations for 7

D1. Define the generalized DS vocabulary L2−cat as the full subcategory of Lanabicat on
the objects of L2−cat , with relations İ1, İ2, Ṫ1, Ḣ, Ṫ2 ; it is generalized since a non-maximal
object, T1 , is also made into a relation. Accordingly, an L2−cat -structure is a functor
from L2−cat in which the listed relations (including T1 ) are interpreted relationally. This
is the picture for L2−cat :

C0

oo c10

C0 oo
c11

İ1

C1OOC1

²²

t10

C1

²²

t11

C1

²²

t12

Ṫ1 Ḣ
oo h0

Ṫ1 Ḣoo
h1

c20oo

c21
oo C2

İ2

OOC2

²²

h2

C2

²²

h3

C2

²²

h4

C2 Ṫ2

oo t20

C2 Ṫ2
oo t21C2 Ṫ2oo

t22

A 2-category-sketch (2-cat-sketch) is, by definition, a structure of type L2−cat ; maps of
2-cat-sketches are natural transformations of functors. For a 2-cat-sketch S , |S| is its
underlying 2-graph, its reduct to

C0 C1

oo c10

C0 C1oo
c11

C1 C2

oo c20

C1 C2oo
c21

.

Any bicategory has an underlying 2-cat-sketch. We will look at maps S −→ A , S ∈
2− cat Sk , A a bicategory.

Let S A
M //

S A
M

// . A transformation τ :M → N is given by

(i) τX :MX → NX for each X ∈ S(C0) ;

(ii) for each (f : X → Y ) ∈ S(C1), τf : Nf ◦ τX
∼=−→ τY ◦Mf as in

MY NYτY
//

MX

MY

Mf

²²

MX NX
τX // NX

NY

Nf

²²

{{

τf
www ∼=

ww

such that



114

(a) for any X Y
f //

X Y
g

//²²φ in S ,

Ng ◦ τX τY ◦Mgτg
//

Nf ◦ τX

Ng ◦ τX

Nφ◦τX

²²

Nf ◦ τX τY ◦Mf
τf // τY ◦Mf

τY ◦Mg

τY ◦Mφ

²²

◦ ;

(b) (f : X → Y ) ∈ S(I1) =⇒ τf = 1τX ; and

(c) for every
A C

h
//

B

A

77f

ooooooooB

C

g

''OOOOOOOO
∈ S(T1) (note that MgMf =Mh , NgNf = Nh ),

NA NB
Nf

//

MA

NA

τA

²²

MA MB
Mf // MB

NB

τB

²²
ww
τf ooooo

NB NC
Ng

//

MB

NB

τB

²²

MB MC
Mg // MC

NC

τC

²²
ww
τg ooooo =

NA NC
Nh

//

MA

NA

τA

²²

MA MC
Mh // MC

NC

τC

²²
{{
τh wwwwww ,

that is,

τC(MgMf) (NgNf)τAτh
// (NgNf)τA Ng(NfτA)oo

α

(τCMg)Mf (NgτB)Mf
τgMf // (NgτB)Mf Ng(τBMf)oo α

τC(MgMf)

(τCMg)Mf

α

OO

Ng(NfτA)

Ng(τBMf)

²²
τfNg◦ .

Given S X
M //

S X
N

//²² τ and Φ : T −→ S , we have T X
MΦ //

T X
NΦ

//²² τΦ for which

(τΦ)f = τΦf for f ∈ T (C1) .

D2. Going back to the definition of RT1 in part (B) of the proof of 7.5, and using the
notation there, that definition can be put as follows. Consider the 2-cat-sketch S0 :

A

B

f

OOB C
g //

A

C

gf

<<yyyyyyyyyyyy
i

<<yyyyyyyyyyyy

a : gf
∼=−→ i

(S0(T1) = {(f, g, gf)},
S0(C2) = {a, a−1, 1i, 1gf}),



115

and the two diagrams S0

Φ //
Ψ

//A defined as

FX

FY

Φ =Ff

OOFY FZ
Fg //

FX

FZ
FgFf

<<yyyyyyyyyyy
Fi

<<yyyyyyyyyyy

Φa = FaFf,g : FgFf
∼=−→Fi

A

B

Ψ =f

OOB C
g //

A

C

gf

<<yyyyyyyyyyyy
i

<<yyyyyyyyyyyy

Ψa = a : gf
∼=−→ i

.

The RT1(φ, γ, η)[a, a] iff x, y, z, φ, γ, ι are the components of a map Φ→ Ψ .
D3. In what follows, we will consider the following 2-cat-sketch S and various of its
parts (subsketches):

↓ b
j //

↓ ha
hi //

↓ β
(hg)f2 //

↓ cf
(hg)f3 //

↓ d
kf //

` //

α

OO

B

f

OO C

²²

h

A D

B g
//B

k

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

hg TTTTTTTTT
c→

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

iiiiiiiiiiiiiiiiiiiiii

iii

gf

44iiiiiiiiiiiiiiiiiiiiii

iiiii
a→

iiiiiiiiiiiii

iii

i

44iiiiiiiiiiiiiiiiiiiii

S(T1) has six elements, (f, g, gf) , (gf, h, h(gf)) , (i, h, hi) , (g, h, hg) , (f, hg, h(gf)) ,
(f, k, kf) ; the notations showing composition are purely symbolic. The horizontal com-
positions cf and ha signify the presence of elements “ 1f ” and “ 1h ” of S(I2) , and two
corresponding elements of S(H) . S(I1) = ∅ . There are further 2-cells and elements of
S(I2) and S(T2) to the effect that a, b, c, d, α and β are isomorphisms, and α is the
composite d(cf)β(ha)−1b−1 .

In case of a general 2-cat-sketch S , for a sketch-map M : S → X and a functor
F : X → A of bicategories, the composite FM cannot be defined (think of a sketch in
which a 1-cell is a composite in two different ways); in the case of our S however, since
S is sufficiently “free”, a useful sense can be ascribed to FM . First of all, for S0 from
D2, for M : S0 → X , F : X → A , FM is defined as Φ was above: for

X

Y

f

OOY Z
g //

X

Z

gf

<<yyyyyyyyyyyy
i

<<yyyyyyyyyyyy

a : gf
∼=−→ i
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as M , we put FM to be

FX

FY

FM =Ff

OOFY FZ
Fg //

FX

FZ
FgFf

<<yyyyyyyyyyy
Fi

<<yyyyyyyyyyy

Fa = FaFf,g : FgFf
∼=−→Fi

.

Now, there are four mappings of the form S0 → S , corresponding to the four items

a : gf
∼=−→ i, b : hi

∼=−→ j, c : hg
∼=−→ k, d : kf

∼=−→ ` . We define, for any M : S → X and
F : X → A , FM : S → A as follows. First, we make sure that for any of the four
maps σ : S0 → S , (FM)σ = F (Mσ) . This requirement determines FM as far as its
restriction to the subsketch

↓ b
j //

hi //

↓ d
kf //

` //

B

f

OO C

²²

h

A D

B g
//B

k

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

hg TTTTTTTTT
c→

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

iiiiiiiiiiiiiiiiiiiiii

iii

gf

44iiiiiiiiiiiiiiiiiiiiii

iiiii
a→

iiiiiiiiiiiii

iii

i

44iiiiiiiiiiiiiiiiiiiii

.

is concerned. But then the effect of FM is uniquely determined on the items h(gf) ,
(hg)f, cf, ha . Next, we define (FM)(β) so that the following diagram commutes; we
wrote f, g, h for M f,Mg,Mh :

Fh(FgFf) FhF (gf)
FhFf,g

// FhF (gf) F (h(gf))
Fgf,h

//

(FhFg)Ff F (hg)Ff
Fh,gFf // F (hg)Ff F ((hg)f)

Ff,hg //

Fh(FgFf)

(FhFg)Ff

(FM)(β)

OO

F (h(gf))

F ((hg)f)

F (Mβ)

OO

◦ .

Finally, the effect of FM on α in S is now uniquely determined. It is worth noting
that if Mβ = αf,g,h , then (FM)(β) = αFf,Fg,Fh ( f = Mf , etc.); the reason is that F
“preserves” α (see above).

I claim that, for FM : S → A so defined, (FM)(α) = F (M(α)) . This is demon-
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strated by the following commutative diagram:

Fh(FgFf) FhF (gf)
FhFf,g

// FhF (gf) F (h(gf))
Fgf,h

//

(FhFg)Ff F (hg)Ff
Fh,gFf // F (hg)Ff F ((hg)f)

Ff,hg

//

Fh(FgFf)

(FhFg)Ff

(FM)(β)

OO

F (h(gf))

F ((hg)f)

F (Mβ)

OO

1

F (hg)Ff

FkFf

FcFf

OO

F ((hg)f)

F (kf)

F (cf)

OO
FkFf F (kf)

Ff,k //

6

(FhFg)Ff

FkFf

(FM)(c)

77ooooooooooooooooooo

2

FkFf F`

(FM)(α)

%%
F (kf) F`

Fd
//

4

Fj

F`

F (M(α))

OO

8

Fh(FgFf)

FhFi

(FM)(a)

''OOOOOOOOOOOOOOOOOOO
FhF (gf)

FhFi

FhFa

²²

3

FhFi F (hi)
Fi,h

//

F (h(gf))

F (hi)

F (ha)

²²

7

FhFi Fj

(FM)(b)

99F (hi) Fj
Fb //

5

Here, the cell 1 commutes by the definition of (FM)(β) ; 2, 3, 4, 5 commute by the
definition of FM on the 2-cells a, b, c, d ; 6 and 7 by the naturality of F , ; and 8 by
the fact that Mα is the appropriate composite. The assertion is the commutativity of
the outside perimeter of the diagram.

D4. Let S1 be the following subsketch of S :

A D

B

A

OO

f

B C
g // C

D

h

²²
A

C

gf

<<zzzzzzzzzzzzzzz

B

D

bg

""DD
DD

DD
DD

DD
DD

DD
D

A D
(bg)f //A D
b(gf)

//

(S1(t) = ∅ for all t ∈ L2−cat , except for t = C0,C1,T1) , and let S2 be the sketch
(subsketch of S ) obtained by adding the 2-cell α : h(gh) −→ (hg)f to S1 . Suppose we
have M,N : S2 → A such that Mα = αM f,Mg,Mh and Nα = αN f,Ng,Nh (associativity
isomorphisms), and, also writing M for M ¹ S1 , we have

S1 A
M //

S1 A
N

//↓ τ (1)

Then τ is a map with respect to S2 , that is,

S2 A
M //

S2 A
N

//↓ τ .
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This fact expresses the naturality of the associativity isomorphism in a sense that is
considerably stronger than the one required in the definition of bicategory. The proof of
the assertion is contained in the diagram

h̄((ḡf̄)τA) (h̄ḡ(f̄ τA))

(h̄(ḡf̄))τA

h̄((ḡf̄)τA)

OO
(h̄(ḡf̄))τA ((h̄ḡ)f̄)τA// ((h̄ḡ)f̄)τA

(h̄ḡ(f̄ τA))

OO

h̄((ḡf̄)τA) h̄(ḡ(f̄ τA))//

h̄(ḡ(τBf)) (h̄ḡ)(τBf)//

h̄(ḡ(f̄ τA))

h̄(ḡ(τBf))

OO

h̄(ḡτf )

h̄(ḡ(f̄ τA)) (h̄ḡ(f̄ τA))// (h̄ḡ(f̄ τA))

(h̄ḡ)(τBf)

OO

(h̄ḡ)τf

(h̄ḡ)(τBf) ((h̄ḡ)τB)f//

h̄((ḡτB)f) (h̄(ḡτB))f//

h̄(ḡ(τBf))

h̄((ḡτB)f)
²²

h̄(ḡ(τBf)) ((h̄ḡ)τB)f((h̄ḡ)τB)f

(h̄(ḡτB))f

OO

h̄((τCg)f) (h̄(τCg))f//

h̄((ḡτB)f)

h̄((τCg)f)

OO

h̄(τgf)

h̄((ḡτB)f) (h̄(ḡτB))f// (h̄(ḡτB))f

(h̄(τCg))f

OO

(h̄τg)f

h̄(τC(gf)) h̄(τC(gf))

h̄((τCg)f)

h̄(τC(gf))

OO
h̄((τCg)f) (h̄(τCg))f// (h̄(τCg))f

h̄(τC(gf))

OO

h̄(τC(gf)) (h̄τC)(gf)// (h̄τC)(gf) h̄(τC(gf))//

(τDh)(gf) ((τDh)g)f//

(h̄τC)(gf)

(τDh)(gf)

OO

τh(gf)

(h̄τC)(gf) h̄(τC(gf))// h̄(τC(gf))

((τDh)g)f

OO

(τhg)f

((τDh)g)f τD(hg)foo

τD(h(gf)) τD((hg)f)oo

(τDh)(gf)

τD(h(gf))

OO
(τDh)(gf) τD(hg)fτD(hg)f

τD((hg)f)

OO
τD(hg)f

((h̄ḡ)τB)f

τhgf

ZZ

h̄(τC(gf))

h̄((ḡf̄)τA)

h̄(τgf )

PP

τD(h(gf))

(h̄(ḡf̄))τA

τh(gf)

@@

τD((hg)f)

((h̄ḡ)f̄)τA

τ(hg)f

mm
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(h̄(ḡf̄))τA ((h̄ḡ)f̄)τA//

h̄((ḡf̄)τA)

(h̄(ḡf̄))τAOO

h̄((ḡf̄)τA) h̄(ḡf̄ τA)// h̄(ḡf̄ τA) (h̄ḡ(f̄ τA))// (h̄ḡ(f̄ τA))

((h̄ḡ)f̄)τAOO

h̄(ḡ(τBf))

h̄(ḡf̄ τA)

h̄(ḡτf )

OO

h̄(ḡ(τBf)) (h̄ḡ)(τBf)// (h̄ḡ)(τBf)

(h̄ḡ(f̄ τA))

(h̄ḡ)τf

OO

(h̄ḡ)(τBf) ((h̄ḡ)τB)f//

h̄((ḡτB)f) (h̄(ḡτB))f//h̄((ḡτB)f)

h̄(ḡ(τBf))OO

(h̄(ḡτB))f

((h̄ḡ)τB)fOO

h̄((τC)g)f

h̄((ḡτB)f)

h̄(τgf)

OO

h̄((τC)g)f (h̄(τCg))f// (h̄(τCg))f

(h̄(ḡτB))f

(h̄τg)f

OO

h̄(τC(gf))

h̄((τC)g)fOO

h̄(τC(gf)) (h̄τC)(gf)// (h̄τC)(gf) h̄(τC(gf))//

(τDh)(gf)

(h̄τC)(gf)

τh(gf)

OO

(τDh)(gf) ((τD)h)g// ((τD)h)g

h̄(τC(gf))

τ(hg)f

OO

((τD)h)g (τD(hg))f//

τD(h(gf))

(τDh)(gf)OO

τD(h(gf)) τD((hg)f)// τD((hg)f)

(τD(hg))fOO
(τD(hg))f

((h̄ḡ)τB)f

τhgf

ZZ

h̄(τC(gf))

h̄((ḡf̄)τA)

h̄(τC(gf))

PP

τD((hg)f)

((h̄ḡ)f̄)τA

τhgf

mm

τD(h(gf))

(h̄(ḡf̄))τA

τh(fg)

@@

in which t is written for Mt, t for Nt , for all relevant values of t , and all unmarked
arrows are instances of associativity isomorphisms, possibly horizontally composed with
a 1-cell. The issue is the commutativity of the outside quadrangle. The four cells marked
I , II , III and IV commute by the definition of τ being a map as in (1). The
commutativity of the pentagons are the associativity coherence axioms for bicategory;
the commutativity of the small quadrangles are instances of the (ordinary) naturality
of the associativity isomorphism. Since all cells commute, the outside commutes as a
consequence, and that is what we want.

D5. Now, start with the part (subsketch) S3

A D

B

A

OO

f

B C
g // C

D

h

²²
A

C

i

<<zzzzzzzzzzzzzzz

B

D

k

""DD
DD

DD
DD

DD
DD

DD
D

A D
` //A D
j

//
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of S (S3(t) = ∅ for all t ∈ L2−cat , except for t = C0,C1 ), and a map

S3 A
M //

S3 A
N

//↓ σ (2)

It is clear that if we have any T A
P //

T A
Q

//↓ θ , and T ′ is the sketch obtained by

adding a new element “ gf = h ” to T (T1) , where f and g are already in T , but h is

new, then P , Q and θ uniquely extend to T ′ A
P //

T ′ A
Q

//↓ θ . Now, let S4 be the

part of S which is S without the 2-cells (S4(t) = S(t) for t = C0,C1,T1 and S4(t) = ∅
otherwise). Applying the above remark four times, we have, a unique extension

S4 A
M //

S4 A
N

//↓ σ

of (2).

D6. Suppose T is a sketch, T ′ is a subsketch of T missing only some 2-cells and T2 -
elements of T , and that T is generated by T ′ in the sense that T is the least subsketch
T ′′ of T such that T ′′ contains T ′ and every time when (ρ, σ.θ) ∈ T (T2) , ρ, σ ∈ T ′′(C2) ,
then θ ∈ T ′′(C2) , and every time when (ρ, σ.θ) ∈ T (H) , ρ, σ ∈ T ′′(C2) , then θ ∈ T ′′(C2) .

Then every transformation T ′ A
M //

T ′ A
N

//↓ τ is also one as in T A
M //

T A
N

//↓ τ . This

is immediate.

D7. Let us turn to the proof that R preserves A . What we need to show is this.
Assume that we have

X W

Y

X

OO

f

Y Z
g // Z

W

h

²²
X

Z

i

<<zzzzzzzzzzzzzzz

Y

W

k

""DD
DD

DD
DD

DD
DD

DD
D

X W
` //

X W
j

//

in X ,

A D

B

A

OO

f

B C
g // C

D

h

²²
A

C

i

<<zzzzzzzzzzzzzzz

B

D

k

""DD
DD

DD
DD

DD
DD

DD
D

A D
` //

A D
j

//

in A,
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the items listed under (*) in 7, the further items

(w : FW
'−→D) ∈ RC0[W,D],

(b : hi
∼=−→ j) ∈ X#T1(i, h, j), (b : hi

∼=−→ j) ∈ A#T1(i, h, j),

(c : hg
∼=−→ k) ∈ X#T1(g, h, k), (c : hg

∼=−→ k) ∈ X#T1(g, h, k),

(d : kf
∼=−→ `) ∈ X#T1(f, k, `), (d : kf

∼=−→ `) ∈ X#T1(f, k, `),

η ∈ RC1(z, w)[h, h], ψ ∈ RC1(x,w)[j, j], κ ∈ RC1(y, w)[k, k],

λ ∈ RC1(x,w)[`, `];

and assume that
RT1(φ, γ, ι)[a, a], RT1(ι, η, ψ)[b, b],

RT1(γ, η, κ)[c, c], RT1(φ, ψ, λ)[d, d]

hold. Under these conditions, we want that if RC2(x,w;ψ, λ)[α, α] , then

X#A(a, b, c, d;α)⇐⇒ A#A(a, b, c, d;α).

I claim that it suffices to show that

X#A(a, b, c, d;α) and A#A(a, b, c, d;α) imply RC2(x,w, ψ, λ)[α, α].

We use that for the given a, b, c, d , ther eis a unique α such that X#A(a, b, c, d;α)
(see (4) in 7), and similarly for a, b, c, d ; and we use that for the given x,w;ψ, λ ,
the relation RC2(x,w, ψ, λ)[α, α] of the variables α, α establishes a bijection α 7→ α :

XC2(j, `)
∼=−→AC2(j, `) . The claim now is easily seen.

Thus, we assume X#A(a, b, c, d;α) and A#A(a, b, c, d;α) .
Recall the sketch S . The data give us diagrams M0 : S // X , N : S // A ;

the effect of M0, N are given by the notation, except that M0β = αf,g,i (associativity
iso in X ) and Nβ = αf,g,i (associativity iso in A ). Composing M0 with F , we get
M = FM0 : S //A (see D3). Consider the restrictions M : S3 → A, N : S3 → A . The
data x, y, z, w, φ, γ, ι, η, ψ, κ, λ supply the components of a map

S3 A
M //

S3 A
N

//↓ τ .

By D5, we have a unique extension of τ , also denoted by τ , as in

S4 A
M //

S4 A
N

//↓ τ .
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Let S5 be the subsketch of S that consists of S4 , and the 2-cells a, b, c, d . The assump-
tions and D2 (applied to the four maps S0 → S ) tell us that we have

S5 A
M //

S5 A
N

//↓ τ .

Now, add also β back to S5 , getting S6 . Since by D3,

Mβ = (FM0)(β) = αFf,Fg,Fh = αM f,Mg,Mh,

D4 says that we have

S6 A
M //

S6 A
N

//↓ τ

and finally D6 says that

S A
M //

S A
N

//↓ τ

The fact that τ is natural with respect to α is the desired fact. RC2(x,w;φ, λ)[α, α] ,
since, by D3, Mα = F (M0α) .

D8. The proof that (R, r0, r1) preserves H is similar, and simpler. Now, the situation
is this. We have

f

EĒ
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

g

EĒ
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

X

Y

β //
i

¼¼2
22

22
22

22
22

22
22

22
22

22
22

22

h

¼¼2
22

22
22

22
22

22
22

22
22

22
22

22

oo δ

Zk //

j
//

ε

OO

in X , and

f̄

EĒ
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

ḡ

EĒ
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

A

B

β̄ //
i

¼¼2
22

22
22

22
22

22
22

22
22

22
22

22

h

¼¼2
22

22
22

22
22

22
22

22
22

22
22

22

δ̄oo

C
k̄ //

j̄
//

ε̄

OO
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in A ; we have

(x : FX
'−→A) ∈ RC0[X,A], (y : FY

'−→B) ∈ RC0[Y,B], (z : FZ
'−→C) ∈ RC0[Z,C],

φ ∈ RC1(x, y)[f, f ], η ∈ RC1(y, z)[h, h], ψ ∈ RC1(x, z)[j, j],

γ ∈ RC1(x, y)[g, g], ι ∈ RC1(y, z)[i, i], κ ∈ RC1(x, z)[k, k],

s ∈ X#T1(f, h, j), t ∈ X#T1(g, i, k), s ∈ A#T1(f, h, j), t ∈ A#T1(g, i, k)

such that
RC2(x, y;φ, γ)[β, β], RC2(y, z; η, ι)[δ, δ], (3)

RT1(φ, η, ψ)[s, s] and RT1(γ, ι, κ)[t, t]. (4)

Under these conditions, we want that

RC2(x, z, φ, κ)[ε, ε] =⇒ (X#H(s, t; β, γ, ε)⇐⇒ A#H(s, t; β, γ, ε)).

Again, it suffices to show that

X#H(s, t; β, δ, ε) and A#H(s, t, β, δ, ε) (5)

imply RC2(x, z;ψ, κ)[ε, ε]. (6)

Assume (5). Consider the 2-cat-sketch

T =

X Z
k //

X Zj //
X Z

hf //

X Z

ig //

ε

OO

s

OO

²²
δβ

t

OO

rrrrrrrrrr

f

99rrrrrrrrrrrrrrrr
rrrrrrrrrr

g

99rrrrrrrrr
β

//

%%

LLLLLLLLLL

h

LLLLLLLLLLLLLLLL

%%

LLLLLLLLLL

i

LLLLLLLLL
δ

oo

Y

We have (f, h, hf) , g, i, ig) ∈ T (T1) , (β, δ, δβ) ∈ T (H) , and
ig k

t
//

hf

ig

δβ
²²

hf js // j

k

ε
²²

◦ (the latter by

an (unmarked) 2-cell σ , and (s, ε, σ) , ( δβ, t, σ) ∈ T (T2)) .
The conditions in (5) ensure that the data we have given rise to morphisms M0 :

T → X , N : T → A . As in the case of the sketch S , we can form the composite
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M = FM0 : T → A ; we have M(s) = Fs ◦Ff,h , M(t) = Ft ◦Fg,i ; the commutativity of
the diagram

F (j) F (k)
Fε

//

F (hf)

F (j)

Fs

²²

F (hf) F (ig)
F (δβ) // F (ig)

F (k)

Ft

²²

F (hf) F (ig)
F (δβ) //

FhFf

F (hf)

Ff,h

²²

FhFf FiFg
FδFβ // FiFg

F (ig)

Fg,i

²²

◦

◦

ensures that M is indeed M : T → A . Consider the following subsketches of T :

T1 =

X Z
k //

X Zj //

rrrrrrrrrr

f

99rrrrrrrrrrrrrrrr
rrrrrrrrrr

g

99rrrrrrrrr
β

//

%%

LLLLLLLLLL

h

LLLLLLLLLLLLLLLL

%%

LLLLLLLLLL

i

LLLLLLLLL
δ

oo

Y

T2 =

X

Y

f

33

X

Y

g

<<yyyyyyyyyyyyyyyyyyyyyyyyyyy

β // δoo

Y

Z

i

""EEEEEEEEEEEEEEEEEEEEEEEEEEEY

Z

h

ºº
X Z

k

++
X Z

j //
X Z

hf //
X Z

ig

33
t

OO

s
OO

The data x, y, z, φ, γ, η, ι, ψ, κ give, via the relation (3), a map

T1 A
M //

T1 A
N

//↓ τ ,

which, by (4) and D2, uniquely extends to

T2 A
M //

T2 A
N

//↓ τ .
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By D6, this extends to

T A
M //

T A
N

//↓ τ .

The naturality of τ with respect to ε is the desired relation (6).
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Appendix E: More on equivalence and interpolation

In this section, S and T are small Heyting categories, L is a DSV, K its category
of kinds, and F : L → S , G : L → T are S− , resp. T -valued L -structures. Mod(S)
denotes the category of coherent functors S → Set , a full subcategory of SetS ; similarly
for Mod(T ) .

Primarily, we have in mind T (also, S ) obtained as the Lindenbaum-Tarski category
[T0] of a theory T0 in intuitionistic logic. We will be looking at Kripke-models of T ;
that is, Heyting functors Φ : T → SetC , with various exponent categories C ; we write
Φ ² T for “Φ is a Kripke model of T ”. “ σ is a sentence of T ”, “Φ ² σ ” and other
unexplained notation have the meanings analogous to the ones used in 5.

We have the following intuitionistic version of the interpolation theorem 5.(7)(a).

(1) Assume that σ, τ are sentence of T , and for all Kripke models Φ,Ψ ² T ,

Φ ² σ & Φ ¹ L ∼L Ψ ¹ L =⇒ Ψ ² τ.

Then there is an L -sentence θ in logic with dependent sorts without equality such that
for all Φ ² T ,

Φ ² σ =⇒ Φ ¹ L ² θ and Φ ¹ L ² θ =⇒ Φ ² τ.

In (5) below, we will reformulate (and strenghten) the theorem in a purely syntactical
fashion, by removing references to Kripke semantics.

We will imitate [M4] in the proof of (1).

When I : T → Q is a Heyting functor, and F : L→ T , we have an obvious composite
IF : L→ Q .

Recall that for L
H //
I

// Q , α : H↔
L
I (called an L -equivalence) is α = (A,α0, α1) ,

with A : K → Q and α0 : A → H ¹ K , α1 : A → I ¹ K with suitable properties.
Given also J : Q → R , we have the composite Jα =

def
(JA, Jα0, Jα1) : JH←→

L
JI ; the

requisite properties are easily checked.

Consider data as in

L T
G

//

S

L

OO

F

S QH // Q

T

OO

I α : HF
∼=←→
L

IG (2)

with H, I Heyting functors. Fixing the items L, S, T, F,G , and for Q a Heyting cat-
egory, let CQ be the groupoid whose objects are triples (H, I, α) as in (2), and whose

arrows (H, I, α)
∼=−→(H ′, I ′, α′) (where α = (A,α0, α1) , α′ = (A′, α′

0, α
′
1) ) are triples
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(φ : H
∼=−→H ′ , ψ : I

∼=−→ I ′ , γA
∼=−→A′ ) of natural isomorphisms such that

IG I ′G
ψG

//

A

IG

α1

²²

A A′γ // A′

I ′G

α′
1

²²

A A′γ //

HF

A

α0

²²

HF H ′K
φF // H ′K

A′

α′
0

²²

◦

◦
(2′)

Composition in CQ is defined in the obvious way. We may write (Q;H, I, α) for (H, I, α)
to emphasize Q .

Given an object Γ = (Q;H, I, α) of CQ , and L : Q → R , a Heyting functor, we
have the composite object LΓ = (R;LH,LI, Lα) (with Lα described above) of CR .
Moreover, we have the functor

Γ∗
R = Γ∗ : Hom(Q,R) // CR

where Hom(Q,R) is the category (groupoid) of Heyting functors Q → R with isomor-
phisms as arrows; the object-function γ∗ is L 7→ Lγ as described, the arrow-function
being similarly defined by composition.

There are Q = S +L T , a Heyting category, and Γ ∈ CQ , given by the data

L T
G

//

S

L

OO

F

S S +L T
I0 // S +L T

T

OO

I1 α : I0F
∼=←→
L

I1G, (3)

such that (Q; Γ) enjoys the universal property that for any Heyting category R , Γ∗
R is

a surjective (on objects) equivalence of categories (groupoids).
The description of Q = S +L T is as follows. Q is the Lindenbaum-Tarski category

[Q0] of a theory Q0 in intuitionistic logic. LQ0 consists of LS t LT , the disjoint union of
the underlying graphs of S and T , together with new objects AK , one for each K ∈ K ,
arrows Ap : AK → AKp , one for each K ∈ K and p ∈ K|K , and arrows α0K : AK →
FK , α1K : AK → GK . The axioms of ΣQ0 are those of S and T (formulated for the
symbols that are the images of the original symbols of S and T in LS t LT ), together
with axioms amounting to the assertion that (A,α0, α1) = (AK,α0K , α1K)K∈K is an L -
equivalence between the S -model and the T -model involved. The object Γ ∈ CQ is the
evidence one. Kripke-models of S +L T are essentially the same as triples (M ² S,N ²
T, α :M↔

L
N) ; this fact is essentially the universal property of (S +L T, γ) with respect

to R a presheaf category SetC .
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We call (3) the L -pushout of (F : L→ S,G : L→ T ) .
Next, we introduce some auximilary concepts.
Suppose that in

L T
G

//

S

L

OO

F

S Q
H // Q

T

OO

I

Q is a coherent category, H and I are coherent functors (however, S and T are still
the same Heyting categories as before). Let A : K → Q,α0 : A → HF ¹ K , α1 : A →
IG ¹ K . We write α = (A,α0, α1) : H −→∗ I if the following holds:

(3’) for every finite K -context X , and any L -formula θ of FOLDS, (α0)
∗
[X ](F [X :

θ]) ≤A[X ] (α1)
∗
[X ](G[X : θ]) .

This refers to the arrows HF [X ] oo
(α0)[X ]

A[X ] (α1)[X ] // IG[X ] induced by α0 and
α1 . We write (A,α0, α1) : H←→

∗
I if both (A,α0, α1) : H −→

∗
I and (A,α1, α0) :

I −→
∗
H ; of course, this just means an equality in place of ≤A[X ] in (3’). Finally, we write

(A,α0, α1) : H←→
#

I if α = (A,α0, α1) : H←→∗ I and α0 and α1 are very surjective.

Notice that if (A,α0, α1) : H←→
#

I , then α = (A,α0, α1) : H←→
L

I ; the latter

involves preserving atomic L -formulas only.
Let us explaint he meaning of the last-mentioned concepts when Q = Set , and H =

M ∈ Mod(S), I = N ∈ Mod(T ) .
With X and φ as above, let −→a = 〈ax〉x∈X ∈ (M ¹ K )[X ] . We write M ²w φ[−→a ] for

〈−→a 〉 ∈ M(F [X : φ])(⊂ M(F [X ])) ; here, the notation 〈−→a 〉 is used in the sense given to
it in the line after 5.(7’). The subscript w is to serve as a warning that this is a “non-
standard” meaning for truth (²) ; the coherent functor M : S → Set is not supposed to
respect the full logical structure of S , hence it does not necessarily “recognize” the full
meaning of φ ; M is a “weak model for L -formulas”. We have that for U : K → Set ,
and M

m←−U n−→N , (U,m, n) : M −→
∗
N iff for all X and φ as above, and for any

〈cx〉x∈X ∈ U [X ] ,
M ²w φ[〈mcx〉x∈X ] =⇒ N ²w φ[〈ncx〉x∈X ].

Note that when U = ∅, (∅, ∅, ∅) :M −→
∗
N means that M(F [∅ : φ]) = 1⇒ N(G[∅ : φ]) =

1 .
Let

L T
G

//

S

L

OO

F

S S +# T
I0 // S +# T

T

I1

²²

α = (A,α0, α1) : I0F ←→
#

I1G (4)
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be the entity that is “initial” among all

L T
G

//

S

L

OO

F

S QH // Q

T

OO

I α = (A,α0, α1) : HF ↔
#
IG, (4′)

in the following natural sense, amounting to a modification of the definition of S +L T .
The category C#

Q , for Q a coherent category, has objects (4’), and arrows

(φ : H → H ′, ψ : I → I ′, γ : A→ A′) : (H, I, α) −→ (H ′, I ′, α′)

(α = (A,α0, α1) , α
′ = (A′, α′

0, α
′
1) ) such that (2’) holds; it is important that here φ, ψ

and γ are not restricted to be isomorphisms. For any coherent category R , and Γ ∈ C#
Q ,

we have
Γ∗ : Coh(Q,R) // C#

R

where Coh(Q,R) is the category of coherent functors Q→ R , a full subcategory of RQ .
The universal property of S +# T is that, for Γ given by (4), for any coherent R , Γ∗ is
a surjective equivalence of categories.

The construction of S+# T is similar to that of S+L T . S+# T is the Lindenbaum-

Tarski category of a coherent theory Q#
0 ; the language of Q#

0 is the same as that for Q0

given above for S +L T . We include (coherent) axioms to ensure

(α0)
∗
[X ](F [X : θ]) =A[X ] (α1)

∗
[X ](G[X : θ])

for each X , θ as above. Note that the (ordinary, Set -valued) models of S +# T are
essentially the same as triples (M,N, u) , with M ∈ Mod(S) , N ∈ Mod(T ) and u :
M↔

#
N .

(4) may be referred to as the # -pushout of (F : L→ S,G : L→ T ) .
Notice that there is a coherent comparison functor J : S +# T −→ S +L T for which

JI0 = I0 , JI1 = I1 and Jα = α . The reason is the universal property of S +# T ,
and the fact that, for Heyting functors Φ : S → R , Ψ : T → R , α : Φ↔

L
Ψ implies

α : Φ←→
#

Ψ .

Any diagram

L T
G

//

S

L

OO

F

S Q
H // Q

T

OO

I HF oo α0
A

α1 // IG

involving (at least) coherent categories and coherent functors, is said to have the interpola-
tion property if the following holds: whenever X is a finite context for L , σ ∈ SS(F [X ]) ,
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τ ∈ ST (G[X ]) and (α0)
∗
[X ](Hσ) ≤A[X ] (α1)

∗
[X ](Iτ) , then there is an L -formula θ (of

FOLDS) such that σ ≤F [X ] F [X : θ] and G[X : θ] ≤G[X ] τ .
Using the (Kripke) completeness theorem for intuitionistic logic (for any small Heyting

category S , there is a conservative Heyting functor S → SetC ), it is easy to see that
(1) is a weakened form of saying that the L -pushout diagrams have the interpolation
property. Thus, (1) will follow from
(5) Both the # -pushout and the L -pushout of a pair (F : L → S,G : L → T ) ,
with S and T small Heyting categories, have the interpolation property. Moreover, the
comparison map J : S +# T −→ S +L T is conservative; thus, the assertion for the
L -pushout is a consequence of that for the # -L -pushout.

For the proof of (5), we will employ the method described in [M4] (and adapted there
from [G]).

Let M ∈ Mod(S).M ¹ L =
def
M ◦ F , and M ¹ K =

def
M ◦ F ◦ j , for the inclusion

j : K → L . For W ∈ SetK , an arrow m : W →M means an arrow m : W →M ¹ K .
We write LS for the underlying graph of the category S , and regard it as a vocab-

ulary for intuitionistic first-order logic. (Now, S is a general small Heyting category; in
particular, what follows will also be applied to T .) For a finite sequence −→x = 〈xi〉i<n
of distinct variables, by [−→x ] we mean a chosen product X0 × X1 × . . . × Xn−1 , where
xi : Xi . For any (first-order) formula φ over LS , with free variables in −→x , we have
[−→x : φ] , a subobject of [−→x ] , the “internal interpretation of φ in the context −→x in S ”;
see [MR1].

We will use the coherent theory Tcoh
S = (LS,Σ

coh
S ) , the internal theory of S as a

coherent category introduced in [MR1]. Mod(S) is identical to Mod(Tcoh
S ) , the category

of models of the theory Tcoh
S with ordinary homomorphisms as arrows. For a coherent

formula φ with free variables in −→x ,M([−→x : φ]) , a subset of M([−→x ]) , is identical to the
ordinary interpretation of φ, {−→a :M ² φ[−→a /−→x ]} , modulo the canonical isomorphism j :
u
i<n

Xi → M([−→x ])(−→x = 〈xi〉i<n, xi : Xi); that is, M([−→x : φ]) = j({−→a : M ² φ[−→a /−→x ]}).
For coherent formulas φ and ψ over LS , with free variables included in −→x ,

Tcoh
S ² φ=⇒−→x

ψ that is, for all M ∈ Mod(S),M ² ∀−→x (φ→ ψ)) iff [−→x : φ] ≤
[
−→x ]

[−→x : ψ];

in other words, a coherent entailment is an ordinary semantic consequence of Tcoh
S iff it is

internally true in S ; this is but a form of the (Gödel) completeness theorem for coherent
logic.

Now, we refer to F : L → S as well. Let x 7→ x a 1-1 mapping of variables fo
FOLDS over L into variables over LS so that x : F (Kx) . Let, for any finite context X
of L -variables, E(X ) denote the formula

∧{(Fp)(x) =FKp xx,p : x ∈ X , p ∈ Kx|K}.

This formula describes that the x for x ∈ X fit together via the maps Fp, p ∈ Kx|K ,
as dictated by the structure of the context X .
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Recall F [X ] defined as a certain pullback; we have a monomorphism m : F [X ] ½ [X ]
for which πx ◦ m = πx(x ∈ X ) ; here, we refer to the evident projections. In fact, m
represents the subobject [X : E(X )] of [X ] . If Φ = [n : |Φ|½ F [X ]] is any subobject
of F [X ] , then Φ =

def
[mn : |Φ| ½ [X ]] is a subobject of [X ] . We have a formula Φ(X )

with free variables in X such that [X : Φ(X )] = Φ ;

Φ(X ) =
def
∃z ∈ |Φ|

∧
x∈X

(πx ◦ n)(z) = x

(πx : F [X ] −→ FKx) . When Φ is an L -formula in FOLDS, with Var(φ) ⊂ X , and we
take Φ = F [X : Φ] ∈ S(F [X ]) , we get φ(X ) =

def
F [X : φ](X ).

Note that if M ∈ Mod(S) , then for 〈ax〉x∈X ∈ F [X ] ,

M ²w φ[〈ax〉x∈X ]⇐⇒M ² φ(X )[ax/x]x∈]X . (5′)

If Var(φ) ⊂ X ⊂ X ′ , then

[X ′ : E(X ′) ∧ φ(X )] = [X ′ : φ(X ′)] (6)

as is easily seen.

Let X ⊂ Y be finite contexts over L ; assume Var(φ) ⊂ Y . Let us write ∀(Y −X )φ
for the formula ∀z1∀z2 . . . ∀znφ , where 〈zi〉ni=1 is a repetition-free enumeration of the set
Y − X such that for all j ≤ n , X ∪ {xi : i ≤ j} is a context (an enumeration in a
non-decreasing order of the level of Kz will ensure this; the formula ∀z1∀z2 . . . ∀znφ is
well-formed as a consequence. ∀(Y −X )φ is not quite uniquely determined, but it is, up
to logical equivalence). We have the equality:

[X : (∀(Y − X )φ)(X )] = [X : E(X ) ∧ ∀(Y − X )(E(Y)→ φ(Y))]; (7)

here, ∀(Y − X ) stands for ∀z1∀z2 . . . ∀zn for Y −X = {z1, . . . zn} as above. This is easy
to show by induction on the cardinality of Y − X .

Other easily seen equalities we will use are

[Y :
∧
i<m

φi(Y)] = [Y : E(Y) ∧
∧
i<m

φi(Y)], (8)

[Y :
∨
j<n

ψj(Y)] = [Y : E(Y) ∧
∨
j<n

ψj(Y)], (9)

[Y : (φ→ ψ)(Y)] = [Y : E(Y) ∧ (φ(Y)→ ψ(Y))], (10)

under the natural conditions on the parameters involved.

The following is the analog of Lemma 3 of [M4].
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(11) Suppose M ∈ Mod(S) , N ∈ Mod(T ) and (U,m, n) : −→
∗
N . Then we have

P ∈ Mod(S) , (f : M → P ) ∈ Mod(S), g : U → V and (V, r, q) : P ←→
∗
N such that q

is very surjective, and

M Uoo
m U Nn

//M

P

f

OO

U

V
g

OOV

P
r

jjTTTTTTTTTTTT
V

N

q

**TTTTTTTTTTTT

◦ ◦
(12)

Proof. We first construct

U N ¹ Kn
//U

V
g

OOV

N ¹ K

q

))SSSSSSSSSSSSSSS

◦

in SetK such that q : V ³ N ¹ K is very surjective and g is a monomorphism. We put

U0
n0 //N ¹ K = U n //N ¹ K , and by recursion on i < k , the height of K , assuming

Ui
ni //N ¹ K defined, we define Ui+1

ni+1 //N ¹ K as follows. For all K ∈ K except
when the level of K equals i , we put Ui+1K = UiK . When K ∈ Ki , we put, for
all −→a ∈ Ui[K] = Ui+1[K], Ui+1K(−→a ) = UiK(−→a )⊔(N ¹ K )K(ni(−→a )) ; here we use the
notation of 1.(3). (This means that Ui+1K =

⊔
−→a ∈Ui[K]

(UiK(−→a )⊔(N ¹ K )K(ni(−→a ))) .)

We have the map gi,i+1 : Ui → Ui+1 whose component at each K /∈ Ki is the identity, and
whose component at K ∈ Ki on the fiber over −→a ∈ Ui[K] is the coproduct coprojection
UiK(−→a ) −→ Ui+1K(−→a ) . Those component of ni+1 at each K /∈ Ki is that of ni . For
K ∈ Ki , (ni+1)K : Ui+1K → (N ¹ K )K maps the image of b ∈ UiK(−→a ) in Ui+1K(−→a )
under the first coprojection to (ni)K(b) , and the image of b ∈ (N ¹ K )K(ni(−→a )) in
Ui+1K(−→a ) under the second coprojection to b itself. We have that ni+1 ◦ gi,i+1 = ni .

Having defined all Ui
ni //N ¹ K , we let V = colim

i<k
Ui+1 (= Uk−1 when k < ω ), with

the gi,i+1 as connecting maps, and q = colimni.g is the coprojection U0 → V . It is
fairly clear that V , g and q so constructed are appropriate.

We may assume that g is an inclusion (that is, each of its components gK is an
inclusion of sets).

Consider the (infinite) contexts YU ⊂ YV associated with U and V as in 4. For
x ∈ YV −YU , let x denote a variable for ordinary multisorted logic over LS , of the sort
F (Kx) ; the mapping x 7→ x is 1-1. For any A ∈ S, a ∈ M(A) , let (A, a) , abbreviated
as a , be a variable of sort A ; assume that the a are different from the x . With

C =
def
{x : x ∈ YV − YU)∪̇{a : A ∈ S, a ∈M(A)},

by a C -formula we mean one over LS whose free variables all belong to C .
For x ∈ YU ,m(a(x)) is an element of M , thus m(a(x)) belongs to the second term

in C . When x ∈ YU , let x stand for m(a(x)) . (Recall the correspondence between

the elements of YV and those of V ; for any fixed K ∈ K , d 7→ yVK,d is a bijection
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V (K)
∼=−→{x ∈ YV : Kx = K} , with inverse x 7→ a(x) ). Now, x ∈ C is defined for all

x ∈ YV , and we have x : FKx .
We now write down a set Σ of formulas over time language LS with free variables

in the set C , Σ is the union of the following five sets of formulas in classical first order
logic:

coh∑
S

(13.1)

{o(a) =B b : (o : A→ B) ∈ S, a ∈MA, b ∈MB, (Mo)(a) = b} (13.2)

{(Fp)(x) =FKp xx,p : x ∈ YV , p ∈ Kx|K} (13.3)

{φ(X ) : Var(φ) ⊂ X ⊂ YV , N ²w φ[〈qx〉x∈X ]} (13.4)

{¬(ψ(X )) : Var(ψ) ⊂ X ⊂ YV , N ²/wψ[〈qx〉x∈X ]} (13.5)

(note that N ²/wψ[〈nx〉x∈X ] is not the same as N ²w (¬ψ)[〈nx〉x∈X ] !).
Let us understand the free variables in Σ as individual constants. Assume that

Σ is consistent (satisfiable); let (P, ĉ)c∈C be a model of Σ . Then, by (13.1), P ∈
Mod(S) . By (13.2), f = 〈fA〉A∈S for which fA(a) = â(A ∈ S, a ∈ MA) is a natural
transformation f : M → P . By (13.3), r = 〈rK〉K∈K for which rK(d) = (yVK,d)ˆ

whenever K ∈ K , d ∈ V K is a natural transformation r : V → P ¹ K . Since for
c ∈ U, yVK,c = m(a(yVK,c)) = m(c) , we have the left-hand commutativity in (12). Finally,

by (13.4) and (13.5), (V, r, q) : P ←→
∗
N (see (5’)). We have verified that the consistency

of Σ establishes (11).
Let us prove that Σ is satisfiable. Assume that a finite subset Φ of Σ is not satisfiable.

Φ involves a finite number of C -variables. There is a finite context Y ⊂ UV and a finite
set A of elements a = (A ∈ S, a ∈ MA) of M such that all formulas in Φ have free
variables from Y∪A;Y = {y : y ∈ Y},A = {a : a ∈ A} . Let Θ denote the set Φ∩ (13.2);
for all formulas θ ∈ Θ,Var(θ) ⊂ A . By increasing Φ , we may assume that it is a subset
of

Σcoh
S ∪Θ ∪ E′(Y) ∪ {φi(Ui) : i < m} ∪ {¬(ψj(Vj

j
)) : j < n} (14)

where E′(Y) is the set whose union is E(Y) , each φi(UI) belongs to (13.4), each ¬(ψj(Vj))
belongs to (13.5), and Ui ⊂ Y ,Vj ⊂ Y . Let θ =

∧
Θ .

The inconsistence of (14) is the same as saying that

Tcoh
S ² θ ∧ E(Y) ∧

∧
i<m

φi(Ui)=⇒A∪Y

∨
j<n

ψj(Vj).

By our remarks above (completeness), this is the same as

[A ∪ Y : θ ∧ E(X ) ∧
∧
i<m

φi(Ui)] ≤ [A ∪ Y :
∨
j<n

ψj(Vj)].
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By (6), this may be rewritten as

[A ∪ Y : θ ∧ E(Y) ∧
∧
i<m

φi(Y)] ≤ [A ∪ Y :
∨
j<n

ψj(Y)].

With φ =
∧
i<m

φi, ψ =
∨
j<n

ψj , we see that φ(Y) ∈ (13.4), ¬(ψ(Y)) ∈ (13.5). Also, using

(8), (9), we have
[A ∪ Y : θ ∧ E(Y) ∧ φ(Y)] ≤ [A ∪ Y : ψ(Y)]

In other words,

[A ∪ Y : θ ∧ E(Y)] ∧ [A ∪ Y : φ(Y)] ≤ [A ∪ Y : ψ(Y)],

and as a consequence, using the Heyting implication in S([A ∪ Y ]) ,

[A ∪ Y : θ ∧ E(Y)] ≤ [A ∪ Y : φ(Y)] −→ [A ∪ Y : ψ(Y ] = [A ∪ Y : φ(Y)→ ψ(Y)].

By (10), it follows that

[A ∪ Y : θ ∧ E(Y)] ≤ [A ∪ Y : (φ→ ψ)(Y)]

and
[A ∪ Y : θ] ≤ [A ∪ Y : E(Y) −→ (φ→ ψ)(Y)]. (15)

Let X = Y ∩ YU . We have that X = A ∩ A ⊂ A , and A ∪ Y = A∪̇(Y − X ) . Let
π : [A ∪ Y ] → [A] be the projection, let τ = E(Y) −→ (φ→ ψ)(Y) . As was mentioned
above, Var(θ) ⊂ A . Using π∗ a ∀π ,

π∗[A : θ] ≤ [A ∪ Y : τ ]⇐⇒ [A : θ] ≤ ∀π[A ∪ Y : τ ].

By (15), it follows that [A : θ] ≤ ∀π[A ∪ Y : τ ] . Now, ∀π[A ∪ Y : τ ] = [A : ∀(Y − X )τ ] .
We conclude

[A : θ ∧ E(X )] ≤ [A : E(X ) ∧ ∀(Y − X ).E(Y) −→ (φ→ ψ)(Y).]

and by (7),
[A : θ ∧ E(X )] ≤ [A : (∀(Y − X )(φ→ ψ)(X )]. (16)

By the definition of E(X ) , M ² E(X )(m(a(x))/xx∈X . But, for x ∈ X , x = a for
a = m(a(x)) ; thus, M ² E(X )[a/a]a∈A . By Θ ⊂ (13.4), M ² θ[a/a]a∈A . By (16), we
conclude that M ² (∀(Y − X )(φ→ ψ)(X )[a/a]a∈A , that is,

M ² (∀(Y − X )(φ→ ψ)(X )(m(a(x))/x)x∈X .

By (U,m, n) :M −→
∗
N , we conclude

N ² (∀(Y −X )(φ→ ψ)(X )[q(a(x))/x)x∈X
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( q extends n ). By the choice of φ and ψ ,

N ² φ[q(a(y))/y]y∈X ,

N ²/ψ[q(a(y))/y]y∈X .
Also,

N ² E(Y)[[q(a(y))/y]y∈X .
However,

[Y : (∀(Y − X )(φ→ ψ)(X ) ∧ φ ∧ E(Y)] ≤ [Y : ψ].

The last five displays contain a direct contradiction.
This completes the proof of (11).
The following is essentially simpler than (11); it is the analog in our context of Lemma

4 of [M4].
(17) Suppose M ∈ Mod(S) , N ∈ Mod(T ) and (U,m, n) :M←→

∗
N . Then we have

Q ∈ Mod(T ) , (h : n → Q) ∈ Mod(T ) , g : U → V and (V, r, q : M←→
∗
Q such that r

is very surjective, h is pure, and

M Uoo
mM

V

tt
r

jjjjjjjjjjjj
U

V
g

OO

U Nn
//

V

Q
q

44jjjjjjjjjjjj

N

Q

h

OO

◦ ◦
(12)

(h : N → Q being pure means that the naturality squares

QA QB//
N ′m

//

NA

QA

hA

²²

NA NB// Nm // NB

QB

hB

²²

corresponding to monomorphisms m ∈ T are pullbacks.)
Combining (11) and (17) in an “alternating chain” argument (see the proof of Lemma

2 in [M4]), we obtain
(18) Suppose M ∈ Mod(S) , N ∈ Mod(T ) and (U,m, n) : M −→

∗
. Then there

are M ′ ∈ Mod(S) , N ′ ∈ Mod(T ) , g : U → U ′ , f : M → M ′ , h : N → N ′ and
(U ′,m′, n′) : M ′←→

#
N ′ (in particular, m′ and n′ are very surjective) such that h is

pure, and

M Uoo
m

M ′

M

OO

f

M ′ U ′oo m′
U ′

U

OO

g

U Nn
//

U ′

U

OO

g

U ′ N ′n′
// N ′

N

OO

h . (18′)
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(Observe the asymmetry; (U,m, n) : M −→
∗
N , and not the other way around; h , but

not f , is required to be pure.)
Let us prove the assertion, contained in (5), that (4) has the interpolation property.

Let σ and τ be as in the interpolation property, assume the hypotheses, and also that
the conclusion fails. That is,

(19) (α0)
∗
[X ](I0σ) ≤A[X ] (α1)

∗
[X ](I1τ); however,

(20) there is no L -formula θ (of FOLDS) such that σ ≤F [X ] F [X : θ] and G[X :
θ] ≤G[X ] τ .

I claim that (20) implies that

(21) there are M ∈ Mod(S) , N ∈ Mod(T ) and (FX ,−→a ,−→b ) : M −→
∗
N such that

M ²w σ[−→a ] and N ²/wτ [
−→
b ] .

Let x 7→ x be a 1-1 map of variables x ∈ X into variables over LT , x : GKx . Let θ
range over L -formulas with Var(θ) ⊂ X , E′[X ] , θ(X ) and τ(X ) were defined before.
Consider the set

Σcoh
T ∪ E′[X ] ∪ {θ(X ) : σ ≤F [X ] F [X : θ]} ∪ {¬(τ(X ))}. (22)

If this were inconsistent, we would easily conclude that there is θ with G[X : θ] ≤G[X ] τ ,
contrary to (20). Let (N ; x/x)x∈X be a model for (19). Next, let x 7→ x

∼
be a 1-1 map of

variables x ∈ X into variables over LS, x∼
: FKx , and consider

Σcoh
S ∪ E′[X

∼
] ∪ {¬(θ(X

∼
)) : (N ; x/x)x∈X ²/wθ(X )} ∪ {σ(X∼ )}. (23)

This is easily seen to be consistent by the fact that (N ;x/x)x∈X is a model of (22). Now,

if (M ;
∼
x / x

∼
)x∈X is a model of (23), then with −→a = 〈∼x〉x∈X ,−→b = 〈x〉x∈X we have (21).

Now, apply (18) to FX ,−→a ,−→b ) :M −→∗ N as (U,m, n) :M −→
∗
N ; we obtain that

(24) there are M ′ ∈ Mod(S), N ′ ∈ Mod(T ) and (V,m, n) : M←→
#

N such that

M ²w σ[−→a ] and N ²/wτ [
−→
b ] .

(Indeed, h being pure ensures that N ²/wτ [
−→
b ] .) On the other hand, by (24) and

the universal property of (4), there is P : S +# T → Set such that PI0 = M,PI1 = N
and P (A,α0, α1) = (V,m, n) . Applying these to (19), we get m∗

[X ](Mσ) ≤V [X ] n
∗
[X ](Nτ) ,

which contradicts the conjunction of M ²w σ[−→a ] and N ²/wτ [
−→
b ] .

It remains to prove the other assertion of (4), namely that the comparison J is
conservative.

For any small coherent category R , we have the evaluation functor e : R→ SetMod(R) ,
a conservative coherent functor, and if R is Heyting, e is Heyting (Kripke-Joyal theorem;
see [M4]).

We show, in analogy to Proposition 7 of [M4], that

(25) For R = S+#T , the composites T
I1 //R

e //SetMod(R) , S
I0 //R

e //SetMod(R)

are Heyting.
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The argument is similar to that in loc.cit. We deal with the first composite; the second
is symmetric. Upon an analysis similar to that in loc.cit., we see that what we need is
this:

given k : A → B in T , X ∈ S(A),M ∈ Mod(S), N ∈ Mod(T ), u = (U,m, n) :
M←→

#
N, y ∈ NB such that y /∈ N(∀kX) ,

there are M ′ ∈ Mod(S), N ′ ∈ Mod(T ), u′ = (U ′,m, n) : M ′↔
#
N ′ and (f : M →

M ′, h : N → N ′, g : U → U ′) : (M,N, u) → (M ′, N ′, u′) , an arrow in C#
Set , and x ∈

N ′(A)−N ′(X) such that hB(y) = (N ′k)(x) .
As in loc.cit., we have N∗ ∈ Mod(T ), h∗ : N → N∗, x∗ ∈ N∗(A) − N∗(X) such that

h∗B(y) = (N∗k)(x∗) . We build a commutative diagram

M Uoo
m

M

M

OO

1M

M Uoo
m U

U

OO

1U

U Nn
//

U

U

OO

1U

U N∗
(h∗¹K )◦n

// N∗

N

OO

h∗

M Uoo
m

M ′

M

OO

f

M ′ U ′oo m′
U ′

U

OO

g

U N∗
(h∗¹K )◦n

//

U ′

U

OO

g

U ′ N ′n′
// N ′

N∗

OO

h′

.

The lower half is already constructed. The important remark is that (U,m, n) : M↔
∗
N

implies that (U,m, (h∗ ¹ K ) ◦ n) : M −→
∗
N . Then, by (18), we have the rest such that,

in addition, (U ′,m′, n) : M ′←→
#

N ′ and h′ is pure. Taking the vertical composites, in

particular h = h′ ◦ h∗ , and x = (h′)A(x∗) , noting the purity of h∗ , we have what we
want.

Having (25), the proof of the conservativeness of J is as in loc.cit.
This completes the proof of (5) and (1).
The results proved may be applied to characterizations of formulas invariant under

equivalence of categories, of diagrams of categories, and of bicategories, in category the-
ory done in intuitionistic set-theory. However, the condition of being invariant under
equivalence cannot, in most cases, be stated by using the traditional concept of equiv-
alence. Note that in the proofs of 6.(5), 6.(23), 7.(5), one direction (passing from an
L -equivalence to a categorical equivalence) uses the Axiom of Choice, not available in
intuitionistic set-theory. [M2] introduces “ana”-versions of certain concepts, among other
functors of categories and functors of bicategories, that can be used in this context. The
condition of invariance under categorical equivalence has to be strengthened, in general,
to invariance under categorical anaequivalence, to have the characterizations analogous
to the ones we proved for classical logic.

Let us note that statement (5), being in essence of a syntactical (arithmetical) nature,
can be proved constructively, in intuitionistic set theory, by a general transfer result of
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H. Friedman [Fr]; thus, (5) is available when doing category theory intuitionistically.
However, to be able to apply (5), the assumption of invariance under equivalence has to
be available in the “provable” sense.

In the case of equivalence of categories, essentially because now there is no need to
pass to a notion of “anacategory”, we do have the direct analog of 6.(3) for intuitionistic
logic. In particular:

(25’) Let φ(X ) be a first-order formula on a finite diagram X of objects and arrows
in the language of categories. Suppose that it is provable in intuitionistic set-theory that
the property of φ(X ) being true is preserved and reflected along equivalence functors.
Then there is a formula θ(X ) in FOLDS over Lcat such that ∀X (φ←→ θ∗) is provable
in intuitionistic predicate calculus from the axioms of category. (here, θ∗ is the usual
translate of θ into ordinary multisorted logic, given in 1).

In the rest of this Appendix, we discuss (simple) Craig interpolation and Beth defin-
ability for FOLDS.

For specificity, we consider FOLDS in the sense of classical FOLDS with (restricted)
equality; theories etc. below are to be understood accordingly.

First, let us put ourselves in the context of Appendix A. Suppose L1 is a vocabulary.
Note that the set-theoretical intersection and union of any number of vocabularies are
always again vocabularies.

In terms of the terminology of 1, instead of the above notions, we would use the
following. Let L,L1 DSV’s, i : L→ L1 a functor. I call i an inclusion of DSV’s if it is
(a) 1-1 on objects, (b) for any object R of the category L, R ∈ Rel(L) iff iR ∈ Rel(L1) ,
and (c) for every A ∈ L , i induces a bijection A|L → iA|L1 . Obviously, i preserves
levels. A sub-DSV L of L1 is given by an inclusion i : L→ L1 of DSV’s for which i acts
as the identity ( i is a “real” inclusion). If we have inclusions i1 : L → L1, i2 : L → L2 ,
we may consider the pushout L1 +L L2 ; as a category, it is a pushout in the ordinary
sense; the relations of L1 +L L2 are defined in to be the images of those of L1 and L2 ;
clearly, the coprojections L1 → L1 +L L2,L2 → L1 +L L2 are inclusions too.

Let us use the terminology of Appendix A. Suppose that T1 is a theory in FOLDS
over L1 , and L ⊂ L1 . Then T1 ¹ L denotes the theory (L,CnL(T1)) , where CnL(T1)
is the set of L -consequences (in classical FOLDS) of T1 . (A small point to make here
is that an L -formula is not necessarily an L1 -formula, despite the fact that L ⊂ L1 .
The reason is that a kind K in L may be maximal in L , but not maximal in L1 , in
which case equality on K is allowed in FOLDS over L , but not in FOLDS over L1 . The
definition of CnL(T1) is that it is the set of all L -sentences which are also L1 -sentences,
and which are consequences of T1 .) If Ti is a theory over L1 (i=1,2), then T1 ∪ T2 is
the theory over L1 ∪ L2 for which σT1∪T2 = ΣT1 ∪ ΣT2 . When two theories S1 and S2

are over the same language L , then S1 ∪ S2 is also over L .

In the 1 terminology, when Ti is a theory over Li (i=1,2), we can define the “pushout”
theory T1 +L T2 in the obvious way.

We will revert to the Appendix-A terminology.

Craig Interpolation for classical FOLDS. Suppose L1,L2 are vocabularies (for
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FOLDS), L = L1 ∩ L2, Ti is a theory over Li (i = 1, 2) . Then T1 ∪ T2 is consistent if
and only if (T1 ¹ L) ∪ (T2 ¹ L) is consistent.

Of course, only the “if” part requires proof.

Let us illustrate the meaning of the above statement of the Craig interpolation theorem
for FOLDS.

Suppose σi is a sentence over Li(i = 1, 2) , and σ1 ² σ2 . Consider T1 over L1

whose single axiom is σ1 , and T2 over L2 whose single axiom is ¬σ2 . Then T1 ∪ T2 is
inconsistent; hence, so is (T1 ¹ L) ∪ (T2 ¹ L) . This means that there are sentences θ1, θ2
over L such that σ1 ² θ1 , ¬σ2 ² θ2 and {θ1, θ2} is inconsistent; but then σ1 ² θ1 and
θ1 ² σ2 ; we have the usual form of interpolation.

There is a generalization of the above statement of interpolation, obtained by allowing
individual constants in the theories. A vocabulary L with individual constants is a set of
the form L = L0∪C , where L0 is a vocabulary, and C is a (not necessarily finite) context
of variables (individual constants) such that for c ∈ C,Kc ∈ L0 . Intersection and union
of vocabularies with individual constants is again such. An L -sentence is an L0 -formula
with all free variables in C . A structure M for L is one, say M0 , for L0 , together
with an interpretation of the C -symbols: some 〈ac〉c∈C ∈ M0[C] . For an L -sentence
φ,M ² φ⇐⇒

def
M0 ² φ[〈ac〉c∈C] . A theory over L is given by any set of L -sentences; a

model of the theory is an L -structure satisfying all the axioms. Now, all the terms in the
above statement of the Craig interpolation theorem have natural meanings when L1,L2

are vocabularies with individual constants; the theorem remains correct in the generalized
form.

In the well-known manner, the Beth definability theorem can be deduced from Craig
interpolation, by using individual constants. We obtain

Beth definability theorem for FOLDS. Suppose T is a theory in FOLDS, L ⊂
LT , X is a finite context for L , and φ is an LT -formula with Var(φ) ⊂ X . Suppose
that for any two models M1,M2 of T , if M1 ¹ L =M2 ¹ L , then M1[X : φ] =M2[X : φ] .
Then there is an L -formula θ with Var(θ) ⊂ X such that M [X : φ] = M [X : θ] for all
models M of T .

For the proof, make two copies L1,L2 of the vocabulary LT , by renaming all kinds
and relations A ∈ LT − L in two distinct ways as A1 and A2 , and by putting Li =
L ∪ {Ai : A ∈ LT − L} ; L1 ∩ L2 = L . for any L ∪ {X} -sentence ψ , we have the
Li ∪ {X} -sentence ψi , with the same free variables (in X ), obtained by the appropriate
renaming. Applied to all members of ΣT , this gives Σi , a set of Li -sentences. Consider
the theories T1 = (L1 ∪ X ,Σ1 ∪ {φ1}), T2 = (L2 ∪ X ,Σ2 ∪ {¬φ2}) over vocabularies
L1 ∪ X ,L2 ∪ X with individual constants. Craig interpolation applied for T1 and T2
gives the desired conclusion.

We make some preparations for the proof of the Craig interpolation theorem.

Recall our definition of saturation in 5. We make some modifications on it.

Let us fix the DSV L;K is its category of kinds. First of all, in contrast to 5, we now
want to deal with logic with equality; formulas now may have equality. The definitions up
to “Y -L -saturated” remain the same, except for the change in what counts as a formula.
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Consider a context Y , and a Y -set Φ of formulas; all formulas in Φ have variables in
the context Y∪̇{x} . Let us say that Φ is low if Kx is low, that is, it is not a maximal
element of K . This is the same as to say that no equality predicate is allowed on Kx .

The L -structure M is said to be strictly Y -L -saturated if for every −→a ∈ M [Y ]
and every Y -set Φ , if Φ is finitely satisfiable in (M,−→a ) , then (1) Φ is satisfiable in
(M,−→a ) , and (2) if Φ is a low set, then Φ is satisfiable by an element a for which a 6= ay
for all y ∈ Y ; here, −→a = 〈ay〉y∈Y . We say that M is strictly κ − L -saturated if it is
strictly Y -saturated for all Y of cardinality < κ .

There are two issues: existence and uniqueness; let’s deal with existence first. To that
end, we give a simple general construction.

Let M,N be L -structures. We write M ≺L N if M is a subfunctor of N (note that
both M and N are functors L→ Set ), and for any X ,−→a ∈M [X ](⊂ N [X ]),M ² φ[−→a ]
iff N ² φ[−→a ] .

(26) Let M be any L -structure, K a low kind, −→a ∈M [K] , and MK(−→a ) = ∅ . We
can construct another structure N such that M ≺L N and MK(−→a )⊂

6=
NK(−→a ) .

For simplicity, we assume that M is separated (the MK are pairwise disjoint). Let
b ∈MK(−→a ) .

Let U =M ¹ K . Construct V : K → Set as follows. Say of x ∈ |U | that it is above
b if there is f : K ′ → K (possibly the identity) such that (Uf)x = b . Note that

(27) if g : K1 → K2, x1 ∈ UK1 and x2 = (Ug)(x1) , then if x2 is above b , so is x1 .
Introduce a new element x for every x above b , distinct from each other and from

the elements of U . Put V K ′ = UK ′∪̇{x : x ∈ UK ′ above b} . The effect of V on arrows
is defined so that U is a subfunctor of V , and by the following determinations. For

g : K1 → K2, x1 ∈ UK1 above b , let x2 = (Ug)(x1); x1 ∈ V K1
Â V g

def
//x2 if x2 is above b ,

x1 ∈ V K1
Â V g

def
//x2 otherwise. It is easy to see, using (27), that V is a functor, we have the

inclusion i : U → V , and we have the retraction r : V → U for which x Â r //x; ri = 1U .

I claim that r is very surjective. If −→y = 〈yp〉p∈K|K ∈ V [K],−→y Â r //−→x , x ∈ UK(−→x ) , then
if x is not above b , then no yp is above b and x ∈ V K(−→y ) , and of course x Â r // x ;

but if x is above b , then x ∈ V K(−→y ) , and of course x Â r // x .
Returning to M , using the very surjective r : V → U , define N = r∗M (see 5).

When we regard M and N as structures for Leq , with standard equality for the equality
predicates, then still N = r∗M . This amounts to the following: if K ′ is a maximal kind,
−→y ∈ V [K ′], y1, y2 ∈ V K ′(−→y ),−→y Â r // −→x , y1 Â r // x1, y2

Â r // x2 , then x1 = x2 implies
y1 = y2 . If x1 = x2 , the only way y1 6= y2 could be the case is that x1 is above b, y1 = x1
and y2 = x1 (or the other way around). However, if so, then since K ′ 6= K (K is low),
we have p : K ′ → K proper such that (Up)x1 = b , hence, (Up)x1 = b , and, since
b 6= b, y1 = x1, y2 = x1 cannot both be in V K ′(−→y ) for the same −→y , contradiction.

We have, by 5.(1), that θr is elementary (with respect to logic over Leq without
equality, i.e., with respect to logic over L with equality). Combining this with ri = 1U ,
we immediately obtain that θi : M → N is elementary, that is, M ≺L N as desired.
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This proves (26).
The usual proof of the existence of saturated models (see [CK]), using unions of ele-

mentary chains, is now easily supplemented by uses of (26) to provide
(28) For any infinite cardinal κ ≥ #L (L any vocabulary with individual constants),

any consistent theory T over L has a strictly κ+,L -saturated model of cardinality ≤ 2κ .
(29) If M,N are strictly κ,L -saturated L -structures, M ≡L N , both of cardinality

≤ κ , then they are isomorphic.
Proof. Inspecting the proof of 5.(4), we see that we can make both maps m and n

bijective. This suffices.
Proof of Craig. Suppose (T1 ¹ L) ∪ (T2 ¹ L) is consistent. Let M be a model of

it; M is an L -structure. Let Σ be the set of all sentences in FOLDS over L that are
true in M ; T = (L,Σ) . Both T1 ∪ T and T2 ∪ T are consistent; if not, we would have
(say) τ ∈ Σ such that T1 ² ¬τ ; but then, by definition, ¬τ ∈ ΣT1¹L , hence M ² ¬τ ;
contradiction to τ ∈ Σ .

Choose λ ≥ #L1,≥ #L2 such that κ = λ+ = 2λ . By (28), let Mi ² Ti∪T (i = 1, 2)
strictly κ,Li -saturated, of cardinality ≤ κ . Then Mi ¹ L is also strictly κ,Li -saturated,
of cardinality ≤ κ . By (29), there is an isomorphism f : M1 ¹ L−→∼=M2 ¹ L . There is

M ′
2 and an isomorphism g : M ′

2

∼=−→M2 such that M ′
2 ¹ L = M1 ¹ L (and g ¹ L = f) .

But then the L1 ∪ L2 -structure N for which N ¹ L1 =M1, N ¹ L2 =M ′
2 , is a model of

T1 ∪ T2 .
Finally, let us note that Craig interpolation and Beth definability hold for intuitionistic

FOLDS. Looking at the above formulation for classical FOLDS, we are led to the following
formulation:

R T// T T ′
G

//R

SOOS

S ′

F

OOS
′ S ′ +R T

′//

S S +R T//

T ′

S ′ +R T
′

OO

S +R T

S ′ +R T
′

H

<<zzzzzzzzzzzzzz

T

S +R TOO

◦

◦
F,G conservative ⇒ H conservative

This is to be understood in a suitable doctrine. Above we proved, in essence, this in
the doctrine of ∧ ∨ ¬∃ -fibrations (see 3) resctricted to fibrations obtained from simple
base-categories as described in 4, with arrows restricted to inclusions as defined above.
The claim is that the same holds when we switch to ∧∨ → ∃∀ -fibrations. The proof is
along the lines we presented in the first part of this Appendix.
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