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1. My approach is "foundational". On the one hand, I am motivated by the problem of the

foundations of mathematics (an unsolved problem as far as I am concerned). On the other hand

-- and this is more relevant here --, I start "from scratch", and thus what I say can be

understood with little technical knowledge. I only assume a modest amount of category theory

as background.

I will talk informally about technical matters that are written down formally elsewhere, where

they can be studied further.

[The text in square brackets [-] is either some technical explanation, or a digression.]

2. Terminology

First, some terminological conventions. I will use the word "category" in its most general

sense: weak ω-category. This is completely inclusive: all sorts of "categories" are categories

now.

There are two extensions of the original meaning: "weak", and "omega-dimensional".

"Weak" signifies an indeterminate notion; there are several different specific versions of weak

category. It can also be used as a vague notion, when one is merely looking at what one would

like to have. There are specific kinds of category, such as "Batanin category" [B1], "multitopic

category" [HMP1,2,3,4,5], [M8]. When one wants to talk about the "ordinary, strict" version of

the notion, one says "strict". Thus, "strict category" is my term for an ordinary, strict

ω-category.

The main reason for the terminology is the desire to banish the word "weak".

n-categories, for finite n , are "truncated" categories; they are particular kinds of, possibly

weak, categories (namely, ω-categories) in fact.
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One slightly unpleasant thing with this convention is that one should say "let C be a

1-category" in place of "let C be a category". On the other hand, "the category of groups" is a

perfectly good name for the (ordinary) category of groups.

It can safely be assumed that all versions of 1-category are essentially the same; thus

" 1-category" is specific. But, " 2-category" is an indeterminate notion; "strict 2-category" is

one specific version; "bicategory" (which can also be called "Benabou 2-category"),

"Baez-Dolan, or opetopic, 2-category" [BD2], "Batanin 2-category" [B1], "multitopic

2-category" (see below) are further specific concepts.

The best thing about this terminology is that it makes good sense of talking about "the

category of all categories"; see below.

3. Virtual vs honest operations

I want to make a distinction in the typology of the existing concepts of "category", one

that is basic for the present purposes. I cannot make it entirely precise in general; but it will

get gradually more and more precise.

Some existing concepts are honest-algebraic: they are made up of honest, univalued, algebraic

operations. Some others are virtual-algebraic: they are made up of virtual operations. And

then there are ones that mix the two types of operation.

Of course, the honest-algebraic type is the well-known one: it is in fact the one that one

automatically expects when a new concept of "category" is brought up. For instance,

"bicategory" is pure-algebraic; it is a concept that is (even) monadic over the category of

2-graphs ( 2-dimensional globular sets). Of course, a morphism of algebras of the monad is

not the same as the intended notion of morphism (homomorphism of bicategories); the former

is a special case, the strict case, of the latter. The Gordon/Power/Street "tricategory" [GPS] is

also honest-algebraic, and so is Michael Batanin's concept of category [B1].

Virtual operations, an expression that I learned from John Baez and James Dolan [BD2], are in

fact almost as well-known to category theorists as algebraic operations, even if the expression

may be new. The operations defined by universal properties are virtual. There will be virtual

operations here that are not given via universal properties, but universal properties will remain
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the main and preferred source for them.

[My work [M1,2,3,4,5,7] on "virtual operations" predates [BD2], even the famous

announcement [BD1]; of course, I will say more about the work below.]

A definition of a (virtual) operation via a universal property is good because an equivalence of

categories automatically respects/preserves the operation. For instance, a (standard)

equivalence of 1-categories takes a product diagram into a product diagram; there is no need

for a separate notion of equivalence of 1-categories-with-products; 1-category equivalence will

do.

Since we are interested here in the concept of equivalence (which, of course, is something

vague in the context of arbitrary categories), this is important: if we have defined a concept of

category in such a way that a certain ingredient is defined by a universal property in a basic

structure, the notion of equivalence for the whole concept can be taken to be identical to that

of the basic structure. We will see how this will become operative in the definition of

multitopic category, for instance.

A general feature of virtual operations is that any such determines its value, at each legitimate

argument-complex, up to "isomorphism" only. I have put "isomorphism" in quotes because it

may have to be replaced by something else, such as "equivalence", in a higher dimensional

context. This is what happens with the operation of binary product in a 1-category having

binary products, to take an example.

Another example for virtual operation is in the notion of (Grothendieck) fibration.

[Here, we have two categories B and E , the base category and the total category,

E urespectively, plus a functor �p between them; we require, for each X���Y in B and each
B

B in E over Y (meaning p(B)=Y ), the existence of some A over X , together with an

farrow A���B over u , with the universal property of a so-called Cartesian arrow. A here is

* Bdenoted by u (B) (and f as c ), indicating that we are looking at A as the result of anu
operation (on u and B ), when in fact, A is only determined up to isomorphism (in the part

*of E over X ): (u, B)���u (B) is a virtual operation. ]
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This latter example is significant because it comes with a parallel honest-algebraic concept,

that of pseudofunctor; and a good occasion arises to relate the two types (virtual-algebraic and

honest-algebraic).

We (I mean: category theorists commonly, if not universally) consider the two notions

(fibration and pseudofunctor) as two forms of essentially the same concept. One can pass from

a fibration to the corresponding pseudofunctor and vice versa; and there is no loss of

information in the process. Having said that, we must point out the asymmetry in this process.

Let's use the letter p for a fibration (because of the notation above); and F for a

pseudofunctor.

op[The latter is a "non-strict" (pseudo) version of a functor B ���Cat , into the category of

opall (small) categories (I use B because of the B in p ). Because of the 2-dimensional

opstructure of Cat , one can make preservation of composites in B to hold up to specified

isomorphisms (only); the latter are to satisfy coherence conditions (which are the "bad guys"

of our story); this is what takes place in the notion of "pseudofunctor".]

! #Let's write p����p , F����F for the two transitions in question. I will call the first

cleavage, the second saturation.

[Cleavage starts by making simultaneous choices of the object/arrow pairs

* B *(u B, c :u B���B) , one for each B in Ob(B) . The rest of the construction of theu
! #pseudofunctor p is canonical. The process F����F is known as the Grothendieck

construction; it is entirely canonical.]

The asymmetry lies in the fact that cleavage is non-canonical, involves arbitrary choices;

!whereas saturation is canonical. In fact, the notation p is an abuse; it is the same kind of

abuse, only worse, as when we write A×B for "the" product of objects A , B .

It is pretty clear that I am heading to a conclusion to the effect that "fibration is good,

pseudofunctor is bad", and more generally, "virtual-algebraic concepts are good, pure-algebraic

ones are bad".
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What I really want to say is that every time you relate a fibration/pseudofunctor to the larger

world around it, you should use the fibration form; when you work inside the thing

(fibration/pseudofunctor), you may be better off using the pseudofunctor form. Since now I am

more interested in the global "super-"structures "relating everything" than in the practicalities

of computing in individual structures, I now prefer the fibration form.

Whether or not we prefer one form to the other, the question of the equivalence of the two

forms remains interesting.

The fact that the two forms of the fibration/pseudofunctor concept are equivalent (and now, we

are coming to Tom Leinster's Mork and Mindy in his [L]) is that we have equivalences

! # � # ! �ξ:(p ) �����p , ζ:(F ) �����F , and in fact, ξ canonically depends on (explicitly

! # !defined in terms of) p and p , ζ on F and (F ) .

As Tom Leinster says, we need a notion of morphism of fibrations, another one of

pseudofunctors, and more in the way of "natural transformations", to be able to say what these

equivalences ξ and ζ are. These notions are all available. For instance, one has

"pseudonatural transformations", etc.

Without going into detail, let me say that those notions for fibrations are simpler than the

corresponding ones for pseudofunctors. The ones for pseudofunctors involve (further)

coherence structures and conditions; the ones for fibrations do not. In particular, ξ is simpler

than ζ .

4. New virtual operations

I want to mention certain further, and lesser-known, virtual-algebraic concepts. For these, the

"equivalent" pure-algebraic versions are very well known indeed (unlike "pseudofunctor").

The first is the virtual-algebraic counterpart of the notion of functor of (ordinary) 1-categories;

let's call it, with John Baez and James Dolan, "virtual functor"; I had called it "anafunctor", or

more fully, "saturated anafunctor", before; see [M4].

How does this concept arise?
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"There is no equality of objects of a category; only isomorphism": this adage appears

repeatedly in categorical writings; and it is in fact one of the starting points for the

foundational view that I am trying to elaborate in my work (here I will (mostly) spare you the

"idle thoughts" of foundations; but you may want to see [M6], [M7]). In view of the adage, a

functor F:X���A is doing something bad: for a given X∈Ob(X) , it picks out a definite

object F(X) in A , instead of determining a value-object up to isomorphism only.

Surprisingly, this can be remedied. One can introduce a concept of "virtual functor" that

determines its value exactly up to isomorphism, and, this concept of "virtual functor" is not so

far from the ordinary concept of functor as to destroy, or even alter seriously, the usual

manipulations and uses of functors one is used to. In fact, virtual functors are better than

ordinary functors, because of the fact that we can construct them canonically in situations

when the corresponding functor needs arbitrary choices. The simplest example for this is the

product functor C×C��C , mapping (A, B) to A×B ; its virtual version is canonical;

whereas the A×B are not really there before we have made a system of simultaneous choices!

For all this, and for the relevant history as far as I know it, see [M4].

The second is "virtual monoidal category". This actually occurred to me before "anafunctor"; I

used it in [M1,2,3]. The idea is (now) obvious: one wants A⊗B to be determined up to

isomorphism only -- as it should be according to the adage. Of course, one also wants to hold

onto the original concept in its essentials. It is possible to do this.

The best thing about it is that the concept of morphism of monoidal category changes, from

the somewhat complicated (ad hoc?) original (which Saunders Mac Lane decided not to

include in the 1971 edition of his book "Categories for the Working Mathematician", although

the concept of (not necessarily strict) monoidal category is discussed in detail in the book) to

the notion which is the straight-forward notion of structure preserving mapping. You can see

the virtual monoidal categories and even the virtual bicategories (anabicategories) in [M4].

Another good thing is that the usual examples become canonical, rather than depending on

arbitrary choices as they do in their common forms. Take, for instance, tensor product of

Abelian groups. The definition depends on the arbitrary choice of a universal bilinear arrow

(A, B)��A⊗B . In the virtual concept, you do not have to make any choice!

It should be pointed out that the concepts of "virtual functor" and "functor" (of 1-categories,
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for now) on the one hand, and the concepts of "virtual monoidal category" and "monoidal

category" on the other, are equivalent, in the very same way as "fibration" and "pseudofunctor"

were described to be equivalent above.

(One should keep this in mind while weighing the relative merits of the notions. There are

some important canonical functors, such as Yoneda; if their virtual versions, their saturations,

were not canonical, things would be bad; but no, "saturation" is a canonical process, unlike

"cleavage".)

Both concepts discussed above can be improved on: we can arrange that the virtual operations

are defined by universal properties. The welcome effect is the disappearance of coherence

(structure and conditions) (which, by the way, are still there in "anafunctor" and "anamonoidal

category"). In both cases, the negative effect is the need for more entities to be included in the

structures than there were before (a kind of opposite of Occam's razor is operative here). Let

me explain.

My personal background here is my reading of the announcement [BD1] that John Baez and

James Dolan wrote to Ross Street about their n-categories at the end of 1995. This acted as a

revelation on me. Although I did not understand everything in detail at first, I right away

understood enough to see that here was, at least the essence of, the definition of n-category

( n∈� ; I was not thinking of ω-categories yet; neither were Baez and Dolan at that time,

apparently) that suited my purposes. And right away I understood two elements of the picture:

the Baez/Dolan 2-category, and the specific form that my saturated anafunctor (virtual

functor) should be presented in (resulting in the exact same notion mathematically, mind you).

Let me start with the Baez/Dolan 2-category (same as multitopic 2-category). This is a very

simple and intuitive notion; and the proof of the fact that it is equivalent to "bicategory" is

fundamental to see. A B/D 2-cat has, as you would expect, 0-, 1- and 2-cells. There is

nothing new with the 0- and 1-cells, except that we do not define composition of 1-cells. A

2-cell a has a domain da which is a composable string of 1-cells, possibly empty (in

which case the 0-cell which is both the start and the end of it is still there), and a codomain

ca which is a single 1-cell but one which that matches the domain da as far as the start-

and end-0-cells are concerned.

Next, we have identity 2-cells, and an honest (for now!) composition of 2-cells. I skip

identities. The composite c=a� b for a and b from the picture3
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g Y0 ������� b� �� � �gX � � � 1f ��� 2 �	 �1�� �	 
�� f �	� � 2 �X � X� 1 a� 3 ff � �  30� � � 
 � �
X ������������������������������� X0 h 4

is of the form

g Y0 ������� �� �gX � 1f ��� 2 � �1�� 
�� ��X a� b �c X� 1 2 3 ff � �  30� � � � �
X ������������������������������� X0 h 4

Composition is a three-argument operation; it is a placed composition of two 2-cells, the

place being 2 , picking out f , in the example.2

Formally, a� b is well-defined iff (da)(p)=cb ; d(a� b) is the string obtained byp p
replacing the single term (da)(p) at p in the string da by the string db ;

c(a� b) = ca .p

There are four laws, two of them concerning identities, the third an associative law, and the

fourth a commutative law. These might as well be called the law for serial composition, and

the law for parallel composition, respectively. I think, you will immediately see what these

laws should be. The simple idea is, of course, that when you see a "composable" diagram of

interlocking 2-cells, the composite should be independent of the order in which you perform

the compositions: the notion is purely geometric: what you see is what you get.

Incidentally, the composition structure of 2-cells is what we call a multicategory; this will

become important in the notion of general multitopic category; see below.

That's all as far as the data for the B/D 2-category are concerned. Next, there is a definition,
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and an imposed condition.

The definition is that of a universal 2-cell. We say that a (refer to the above picture) is

universal if for all c as above, there is a unique b as above such that c=a� b -- except2
that when here I say "for all c as above", I do not just mean the one particular shape of c

as in the second picture, but all possible shapes "extending" the given shape for a .

Finally, the condition: for every diagram as

X �f ��� 2 ��1�� ���� f ��� 2 �X X	 1 3
 ff � 
 30� 
� 
� �
X X0 4

(horn!) there is h and a (not necessarily unique) universal a as in

X �f ��� 2 ��1�� ���� f ��� 2 �X � X	 1 a� 3
 ff � � 
 30� � 
�  
� �
X ������������������������������� X0 h 4

Of course, all possible shapes for a are meant; the empty-domain 2-cells are especially

important: they give the virtual identity 1-cells.

That is the end of the definition of "Baez/Dolan 2-category".

The obvious thing is that, in the B/D-2-category, instead of having an ordinary algebraic

composition of 1-cells, we have a virtual such: h above is a composite of

(f , f , f , f ) , the one via a .0 1 2 3

It is a delight to see how a B/D-2-category has all the structure of a bicategory -- once you

have made a simultaneous arbitrary choice of a universal a for each horn as above (but of

course, of an arbitrary size) (cleavage). It is even better to work without cleavage, and get an

anabicategory [M4] briefly alluded to above. While doing so, one observes that one only needs
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k-ary 2-cells for k with 0≤k≤4 and no more. This of course means that there is an

essentially obvious "truncated" version of the B/D-2-cat that should be as good as the

complete notion; this turns out to be right, in a suitable, new, and precise, sense; see below.

The reader may try his/her hand at defining the multitopic 2-category of 2-sided modules over

variable base-rings. (The rings are the 0-cells, the modules are the 1-cells; the 2-cells are

multilinear maps. Composition of 1-cells should turn out to be "multi-"tensor product.

Everything is canonical. The proofs of the laws are interesting, but, of course, standard.)

It is just as nice to see how a virtual functor F:X��A should look like. This will have the

added beauty that it will be visible that the notion should straightforwardly generalize to a

concept of "functor" for n-categories X , A , for arbitrary n . But for now, let X , A be

1-categories; X, Y are objects of X ; A, B those of A .

F is a 1-category (!) whose 0-cells are those for X and those of A (disjoint union). F has

three distinct types of 1-cell: type-(0, 0), which is of the form X��Y , type-(0, 1): A��B

and type-(1, 1): X��A . There is no arrow of type-(1, 0) , i.e. A��X . The (0, 0)-arrows

are exactly those of X , the (1, 1)'s those of A . Definition: a (0, 1)-arrow u:X��A is

universal if for all x:X��B ( type-(0, 1) ), there is a unique [this uniqueness is removed for

higher dimensions!] a:A��B ( type-(1, 1) ) such that x=a�u . Requirement: for all X ,

there are at least one A and a universal u:X��A . End of definition of virtual functor.

5. The general concept of equivalence for virtual–algebraic structures

In the Summer of 1995 I presented my then-new theory of First Order Logic with Dependent

Sorts (FOLDS) at two conferences, and I submitted a text of it, [M5], for publication in the

Springer Lecture Notes in Logic (there is such a thing) in the Fall of the same year. In 1996, it

was accepted for publication. However, I withheld it, pending revisions, not because of the

errors (I think, there are only minor ones), but rather because I wanted to do some things in a

more elegant manner. It is still unpublished. A detailed announcement is contained in [M7].

One of the two main ingredients of this theory is the thing in the title of the present section; it

is called FOLDS-equivalence. This notion, in itself, has nothing to do with logic, although I

will keep calling it FOLDS-equivalence, for its relation to logic that will be explained later.

Here is the definition.
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First of all, there is a concept of FOLDS signature. This is any 1-category L with the

following properties: for all K∈Ob(L) ,

(i) end(K) (= hom(K, K) )= {1 } ;K
(ii) the set {f∈Arr(L):dom(f)=K} is finite;

(iii) L is skeletal.

⋅A FOLDS signature L has its object-set graded: Ob(L)=���L such that K∈L iff for alln nn∈�
f ⋅K���K’ , f≠1 , we have K’∈���L . An object in L has dimension n .K k nk<n

An L-structure is a Set-valued functor M:L��Set .

� opAn example is the category that I denote by (Δ ) ; it is the subcategory of the simplicial

opcategory Δ ( Δ being the skeletal category of non-empty finite orders) with all the objects

of Δ , but with arrows only the injective ones of Δ . That is: from the simplicial category,

keep the face operators, throw away all degeneracies. Thus, every simplicial set

op � op �S:Δ ��Set has an underlying (Δ ) -structure that I will denote by S . (Peter May

� optold me that (Δ ) -structures are called Δ-sets, and they have an extended literature;

unfortunately, I am not familiar with that literature yet.)

LLet L be a FOLDS signature. We place ourselves into the category A = Set of all

L-structures. M , N , P are objects of A .

A morphism (in A ) is fiberwise surjective (fs) if it has the Right Lifting Property (familiar

from D. Quillen's model categories) with respect to all injective morphisms. Thus, fs is like

"trivial fibration", except that we are not contemplating any other ingredient of a Quillen

model category. One gets an equivalent definition (as expected) when one takes the class of

� ι � �arrows K���K , for all K∈Ob(L) , in place of all injective arrows; here K=hom (K, -)L
� � �and K is the subfunctor of K that misses just one element, 1 , of K ; ι is the inclusion.K

m nAn equivalence E:M�N is a span (P, m, n) : M	��
P����N of fs morphisms m and n .

M and N are equivalent, M�N , if there is E:M�N . For emphasis, we may write M� N inL
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place of M�N .

Here is a fact, which should be well-known (is it?). For simplicial sets S and T satisfying

the Kan condition ( S and T are fibrant), S and T are homotopically equivalent iff

� �S � T . A slightly unfamiliar feature of this fact might be that, having started with

simplicial sets, we drop degeneracies, and compare the face-structures only.

A large part of the monograph [M5] is devoted to showing that the FOLDS equivalence

captures the various existing notions of "equivalence" in category theory. One has to present

the category, or categorical structure (possibly consisting of two categories and a functor

between them, for instance), call it C , as an L-structure, for a suitable FOLDS signature L .

This invariably means taking the "natural" virtual-algebraic version, or saturation, written

# #C , of the given C , and see that there is an "obvious" FOLDS-signature L for which C

is (naturally) an L-structure. We obtain that C�D (meaning the operative categorical

# #equivalence) iff C � D . To see this, one has to make some calculations that are sometimesL
quite extensive -- still, the facts are natural enough.

#For ordinary 1-categories C , C is just C , essentially; but, one has to see what L is the

right one. Here it is, L , given by generators and relations:1-cat

T dt =ct , dt =ct ,t � �t �t 1 0 2 10� � 1� 2e � � � dt =dt ,0 2 0�������� iE A ���������� I�������� di =ci ,e1 � �d� �c de =de , ce =ce .� � 0 1 0 1� �
O

# #When C is regarded as being an L -structure C , C (O) is the set of all objects of1-cat
# # #C , C (A) is the set of arrows, C (T) is the set of commutative triangles, C (I) is the

# ����� #set of identity arrows, C (E) C (A) is the equality relation on arrows. Notice that�����
L is 2-dimensional (the largest dimension of an object in it is 2 ). Not all1-cat
L -structures are, or come from, 1-categories; appropriate additional conditions are1-cat
needed for this. Thus, L -equivalence is something more primitive than the ordinary1-cat
notion of category equivalence. To repeat, for 1-categories C , D , we have C�D iff
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# #C � D .L1-cat

When we talk about bicategories and their equivalence, � , which is called biequivalence, for

#a bicategory C , C may be taken to be an associated anabicategory. There is a suitable,

3-dimensional, finite FOLDS-signature L for anabicategories, and we have C�Danabicat
# #iff C �D .

#Let me describe the simplest, and most important, element of the definition of C in this last

hcase. In an anabicategory, instead of having a straight composite X�����Z of a pair of

f garrows X���Y���Z , we have, for any f, g and h with domains and codomains as

shown, a set T(f, g, h) of specifications "for h being the composite of f and g in a

definite way". Formally, there is a part of L which looks just like a correspondinganabicat
part of L :1-cat

T
t � �t �t0� � 1� 2� � � dt =ct , dt =ct ,1 0 2 1A dt =dt ,2 0� �d� �c .� �� �

O

#Now, for an ordinary bicategory C , C (T) will be the set of all diagrams

Y���� 	
f�� 	
 g�� ≅�a 	
� � �X���������������� Zh

with a an arbitrary isomorphism 2-cell. (Recall that in the 1-category example, in this place

we had the set of commutative triangles. )

#Speaking now generally, recall that C is obtained canonically/uniformly from C . Usually,

���the categorical equivalence C�D involves morphisms C D and further ingredients. We����
again have the contrasting facts that from the data of a categorical equivalence, one gets those
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for the FOLDS-equivalence in a canonical manner, whereas in the other direction there is a

process of cleavage.

There are other examples, examples of composite "categories", such as fibrations, that are

worked out in [M5] to show that a suitable FOLDS equivalence gives the accepted notion of

equivalence.

But we are mainly interested in the situations when we do not have an established notion of

equivalence, or if we do, it is too complicated, as for instance it is in the case of "tricategory"

[GPS]. What evidence do we have the FOLDS-equivalence will serve well?

This is where logic proper comes in. The work on FOLDS [M5], [M7] develops the syntax

and the semantics of a new logical language, which is described quite well by its name "First

Order Logic with Dependent Sorts" (the dependent sorts are like the dependent types in Per

Martin-Lof's higher order theory [M-L]). It is shown to have close ties with what we called

FOLDS equivalence above, in the following sense: for any given FOLDS signature L , we

have, first, that every statement written down in FOLDS using the vocabulary L is invariant

under FOLDS-L-equivalence; and second, for any general first order statement Φ that is

formulated in some language possibly extending L , if Φ is (universally) invariant under

FOLDS-L-equivalence, then there is a statement Ψ written down in FOLDS using the

vocabulary L which is equivalent, for all structures under consideration, to the original Φ .

I think the formulations I just gave are descriptive enough to convey the idea so that I may

skip a formal statement of this Invariance Theorem. In fact, it is important that we have a

more complete statement that is relative to the models of a given first order theory. See [M5],

[M7].

If one can say with some confidence that the FOLDS language is the "right" one to express

relevant properties of a given kind of structure, and of diagrams of elements in such a

structure, then one is supported in the view that the FOLDS equivalence is the "right" one for

the given kind of structure.

Let's take the case of (simple) 1-categories. One feature of FOLDS in general is that, unlike in

classical first order logic, there is no equality as a logical primitive at all. This is all right for

objects (remember the "adage") -- but what about arrows? There is a kind E of entities (see

the FOLDS signature L above) that serves, because of the axioms that I have not1-cat
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shown, as a surrogate for equality, but only of arrows already assumed to be parallel. In other

words, one can ask of two arrows if they are equal only if they are already assumed to be

parallel. Now, I say, this is a reasonable restriction on the use of equality of arrows, one that a

category theorist instinctively follows. Note that the usual statements of the form "there is a

unique arrow of such and such description" do obey said restriction.

There are several further restrictions in FOLDS on logical manipulation, the most important

one being the restriction on quantification. The important discovery is that all these restrictions

can be summarized succinctly in the uniform definition of the FOLDS language; and that this

uniform syntax seems to "work", that is, give the right results, for all the categorical concepts

that come up. Of course, the close links between the syntax of FOLDS and the concept of

FOLDS equivalence help support both.

The vague claim here that FOLDS equivalence is the right notion has two aspects: first, the

notion is not too weak, and second, it is not too strong. If I took some n-category, considered

its 1-collapse, or "homotopy category", in which the 1-arrows are appropriate equivalence

classes of the original 1-arrows, and then I said that equivalence means the 1-equivalence of

1-collapses, this would be too weak. If on the other hand, I took ordinary isomorphism for

equivalence, the notion would be too strong. How do I recognize these facts? In the first case,

certain cherished higher dimensional properties will get lost: they will not be preserved by the

proposed "equivalences". In the second case, there will be properties (such as the cardinality of

the set of 0-cells) that will be preserved, and which we do not care for. The Invariance

Theorem clarifies exactly what (first order) properties are respected by FOLDS equivalence.

Now, we can examine whether these, the ones written in FOLDS, are the ones we really want,

no more and no less; and the answer seems to be "yes".

Remember that everything is relative to a given signature.

There is an interesting example to consider in this context.

Fibrations are structures consisting two 1-categories and a functor between them. There are

other categorical structures consisting of two categories and a functor between them; in [MR],

such were used to do categorical modal logic; for instance, we had so-called S4-categories in

there. Now, the point is that the natural signatures for fibrations on the one hand and for

E
S4-categories on the other, are different. The difference lies in the fact that in a fibration �p ,

B
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"one should not talk about an object A in E without first having introduced the object X in

B over which A is". This adage is enforced by the signature for fibrations; the kind (object of

the signature category) for the objects of B is of dimension 0 , the one for objects of E of

dimension 1 . On the other hand, the signature for S4-categories does not introduce

dependence of objects of one category on objects of the other; both kinds of objects are of

dimension 0 .

This difference in the logics of fibrations and S4-categories is reflected in the difference of

their respective notions of equivalence. This is a case where we have both the FOLDS

equivalence and a classical notion; so we can confirm our intuition by ascertaining that the

concepts that should coincide do coincide.
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6. Equivalence of two virtual concepts of category.

I want to elaborate on the natural consequence of the presence of FOLDS equivalence for an

arbitrary FOLDS signature regarding the comparison of two concepts specified in distinct

FOLDS signatures. The basic idea is very simple, and Tom Leinster already sketched it out in

his recent contribution [L] to this discussion -- except that he expressed a skepticism about the

ingredient we now have: the equivalence of structures of one and the same kind.

Suppose that we have two kinds, K (Mork's) and K (Mindy's), of categories, and we have1 2
the respective equivalences � , � for categories of these kinds. To see that K andL L 11 2

*K are "equivalent", we should have constructions K ����K :X���X and2 1 2
# *K ����K :A���A , giving the K -type category X from any X of type K , and vice2 1 2 1

#versa for A from A . Moreover, we should have that doing these constructions twice, we

should get back to the original -- up to equivalence, to be reasonable. That is, we should have

*# #*X � X , A � A .L L1 2

* #It seems reasonable to insist that the maps X���X , A���A be "canonical" in some sense.

But then, thinking of the fact that the equivalences � , � are ascertained by theL L1 2
presence of certain data, it seems reasonable to insist that these data should also be canonically

available, that is, explicitly definable, from the data for X in one case, from those for A in

the other.

I want to propose a definite way of codifying a notion of equivalence of kinds of categories

that conforms to the requirements set out above. I want to write this down in detail, since this

is the point where I am making my most direct contribution to the subject at hand: comparing

different definitions of "category".

The first time I talked about this was the 1998 June CMS meeting in St John, New Brunswick.

I had occasions to talk about it at other times too, but I have not published anything about it.

The first ingredient is a concept called regular FOLDS specification. The word "regular" refers

to the fact that the "regular" fragment of (categorical) logic is involved here -- but we do not

have to worry about this since the description will be purely categorical.
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Given a FOLDS signature L (remember, a special kind of 1-category), we pass to

L op L opB[L]=B=(Set ) , the subcategory of (Set ) consisting of the finite functors,fin
where F:L��Set being finite means that the set � F(K) is finite. Because of the

K∈Ob(L)
L opassumed properties of L , the Yoneda functor L���(Set ) lands in B ; moreover, B

is, via the resulting functor y:L���B , the lex completion of L : B has all finite limits

(terminal object and pullbacks), and for any category S with finite limits (and we are mainly,

but not exclusively, thinking of S=Set ), the functors L���S are in a natural

up-to-isomorphism bijective correspondence with the lex (finite-limit-preserving) functors

lex lexB������S . In fact, I will use the same letter M in M:L���S and M:B������S when

referring to the corresponding entities.

We put ourselves into the category B . Let Q be any set of epimorphisms of B (an0
epimorphism in B is the same thing as a monomorphism of finite functors). Q denotes the

closure of Q under composition, pullback along an arbitrary morphism, and under the0
conditions: fg∈Q implies f∈Q , and Q is to contain all isomorphism. ( Q is essentially the

same as the Grothendieck topology generated by the single-arrow covering sieves {q} for

q∈Q ).0

The pair T=(L, Q ) is a typical regular FOLDS specification. For S any 1-category with0
finite limits in which a reasonable notion of "surjective arrow" is present -- a regular category

will do, in which case "surjective arrow" is "regular epi" -- , we have the notion of an

lexS-valued model of T : it is any M:B������S for which M(q) is a surjective arrow in S

for any q∈Q (equivalently, for any q∈Q ). Of course, the main example for S is Set .0

It would be nice to be able to spend some time with pointing out the regular FOLDS

specifications for all of the concepts discussed earlier. The first example would be that of

" 1-category". The signature L , of course, is now L=L given above. The present1-cat
point is that the category axioms can all be written down by the surjectivity of specific epis

q∈Q , for an appropriate (small finite) set Q ⊂Epi(B) . More precisely, an L-structure M0 0
#is a model of (L,Q ) iff M is L-equivalent to C , where C is a 1-category in the0

#ordinary sense, and C is obtained from C in the way we saw above.
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The general idea is that we take our selected concept of "category" to be the Set-valued

models of a particular regular FOLDS specification.

Note that we have a good notion of a morphism F:(L, Q )���(L’, Q’) of regular FOLDS0 0
specifications. This is a lex functor F:B��B’ that takes any Q -arrow (equivalently, any0
Q-arrow) into a Q’-arrow ( Q’ is the (Grothendieck) closure of Q ' as Q is of Q ).0 0

The second ingredient of our proposed notion is an extension of L-equivalence for S-valued

functors models L���S , for S more general than Set .

� �Let us fix the FOLDS signature L . Recall the functors K , K for any K∈Ob(L) from

M�����above. Suppose L S and m:P���M . Pick any K∈Ob(L) , and form, in S , the�����P
commutative diagram

� P ι �PK�������������PK�� �	� �� �
 �m�� � � �m�K� �S � K� �
 �� �
 � �� �MP�������������MKM ι

in which the quadrangle marked with � is a pullback. We say that m is fiberwise surjective

�(fs) if for every K∈Ob(L) , the arrow PK���S in the above diagram is surjective. It will

be seen immediately that this definition is equivalent to the earlier one when S=Set .

Note that this definition makes sense when we take, for S , the category B’=B[L’] , for a

regular FOLDS specification (L’, Q’) , and we understand by "surjective arrow" to be an0
element of Q’=Q[Q ] .0

For M, N:L���S , the concept of L-equivalence (P, m, n):M�N is now defined as before.

lexOf course, this is now meaningful when M, N:B�����S .

We are ready to make the main definition.

We say that the regular FOLDS specifications T=(L, Q ) , T’=(L’, Q’) are equivalent if0 0
there are morphisms F:T���T’ and G:T’���T such that GF � Id , FG � Id .L B L’ B'
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The latter expressions are meaningful since, e.g., both GF and Id are functors B���B ;B
that is, we take S to be B itself, with Q as the concept of surjectivity.

The full data for an equivalence of two specifications T and T’ consist of F and G as

above, and some (P, m, n):GF � Id , (P’, m’, n’):FG � Id .L B L’ B'

*It is immediate that for any model M of T , and N of T’ , when writing M for M�G ,

# * * *#N for N�F , we have that M is a model of T’ , N is a model of T , and M � M ,L
#*N � N , with equivalence-spans induced by the given (P, m, n) and (P’, m’, n’) .L’

The just-described concept is, in fact, just a pedantic formulation of something that one would

immediately think of when the question of the equivalence of any two specific concepts of

"category" arose -- except for one thing: only canonical constructions fit into the framework;

cleavage does not.

Take, for instance, the three concepts of 2-category we encountered above: anabicategory,

B/D-2-category, and truncated B/D-2-category. Each one will be seen to be specifiable by a

regular FOLDS specification, with suitable signatures. The assertion is that all three

specifications are equivalent in the technical sense described above. The way one starts

thinking about this does not use, consciously at least, the formal definition; one thinks of how

one gets a structure of one type from another one of another type. A "natural" way of doing

this ends up giving the data for an equivalence of the FOLDS specifications in question.

There is an implicit vague claim here; namely, that the notion of equivalence of FOLDS

specifications is the right one. (One has to keep in mind, however, that the notion is something

for concepts with virtual operations only.) The claim is based on two things: one is that the

concept of equivalence of structures of the same signature is right (another vague claim that

was discussed in the previous section); the other is the purely internal or canonical nature the

definition.

7. Multitopic sets and cellular sets

As I said before, the Baez/Dolan announcement [BD1] made a great impression on me. In

1996, having seen the basic ideas of [BD1], we (C. Hermida, J.Power and myself) put [BD1]

20



aside, and worked out a new formulation of "weak n-category" (at first, for n∈� ) that I will

call "multitopic".

Although the concept of multitopic category was inspired by the Baez/Dolan opetopic

category, as a matter of fact, the exact relationship of the two concepts is still obscure to me

(despite Eugenia Cheng's work [C]). I believe that the multitopic concept is now worked out in

sufficient detail (see also below) to stand on its own feet, and therefore I am not actively

trying to relate it to the opetopic approach -- although, of course, I am still interested in what

the connections are.

The Baez/Dolan concept, published in [BD2], has two main ingredients: opetopic sets, and

universal arrows. The multitopic concept has its own versions of these: the notion of

multitopic set, and a particular notion of virtual composition in a multitopic set. The latter

ingredient will be discussed in the next section.

The three of us came up, in 1997, with the paper [HMP4] whose first two parts have appeared

as [HMP1,2] (the third and final part had its proofs returned to the publisher some time ago; so

it should appear soon). This work deals with multitopic sets; it does not contain the part on

virtual composition.

At this point of time, we have a simple definition of "multitopic set", thanks to [HMZ] (results

of this paper were announced at the Toronto meeting of the AMS in September 2000); the

papers just mentioned contain a complicated one; you'll see that the complicated definition is

not at all superfluous though.

The simple definition in [HMZ] relies on Ross Street's notion of computad [S1], [S2].

I will now use " ω-category" for what I may call "strict category"; this is ordinary strict

ω-category. (Small) ω-categories form a nice 1-category ωCat . Given A∈ωCat , and a

family X={x :d ���c } of indeterminates x with prescribed domain d andi i i i∈I i i
codomain c which are given cells of X , required to be parallel, we have B = A[X] , thei
result of simultaneously and freely adjoining all x , i∈I , to A . There is a canonicali
injection ι :A��B , in terms of which one can write down a familiar-looking universal

property defining B . A computad is any ω-category X of the form
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ι ι ι ι0 1 n-1 ncolim (A �����A �����...������A �����...)0 1 nn∈�

where A =∅ (empty ω-category) , A =A [X ] for suitable sets X of indeterminates,0 n+1 n n n
and the ι are the corresponding canonical injections. It is an easy fact that then

⋅indeterminates, that is, the elements of X=���ϕ X , with ϕ :A ���X the colimitn n n nn∈�
coprojections, can be recaptured from the computad as an ω-category; this is important, since

we want to refer to the indeterminates when talking about the computad.

A morphism of computads X���Y is an arrow in ωCat which also takes indeterminates in

X to indeterminates in Y . Comp is the resulting 1-category of computads; Comp is a

non-full subcategory of ωCat .

A many-to-one computad is one in which the codomain of every indeterminate of positive

dimension is again an indeterminate. Comp is the full subcategory of Comp on them/1
many-to-one computads as objects.

Multitopic sets, whatever they are, form a category MltSet which is equivalent to

Comp . Thus, this is one possible definition of "multitopic set": it is a many-to-onem/1
computad.

I remember that we (Hermida, Power and me) were speculating about some such result; but we

did not, with good reason, want to adopt the above as a definition. The "good reason" is that

the above definition is "very non-constructive". Of course, it is good to know a simple,

conceptual, non-combinatorial description like this one, but you need something constructive

that you can really work with for the rest of the definition of "multitopic category". Just think

of the two-dimensional case. In this case, we should end up with something that looks like the

Baez/Dolan 2-category described in section 4, take-away the universals. In the final analysis,

we do get that with the abstract definition too; but it takes some thought to see that we do.

The "constructive" definition of [HMP1,2,3,4] is a recursive one -- just as the definition of

computad is recursive (essentially), but more complicated.

The main ingredient is the concept of multicategory. Multicategories are closely related to

operads; but there is a difference. The main difference can perhaps be expressed by saying that
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in multicategories, there are permutations (therefore, they are akin to operads with

permutations), but, there is no action of arbitrary permutations; there is a fixed permutation

called up in each instance of a composition. A less important, because essentially only formal,

difference is that in a multicategory, composition is a binary-plus operation. One composes

two multiarrows at a time; however, one can choose any "fitting" place in the source of the

multiarrow into which the composition takes place.

The definition of multicategory is almost fully present in the definition of "Baez/Dolan

2-category" (which, by the way, is so called here to honor these two gentlemen whose ideas

began it all; they did not themselves promulgate (as far as I know) this particular, already

heavily "multicategorical", definition) in section 4, except for the role of the permutations in

the "possibly non-standard amalgamation", which becomes essential in higher dimensions.

The main theorem of [HMP1,2,3,4] is that MltSet is a presheaf category; in fact, there is a

op LFOLDS signature L=Mlt , for which MltSet � Set . (In the published sources, we

opwrote Mlt for what I would now like to write as Mlt .) Mlt is called the category of

multitopes. If one wants to define it directly, the definition does not get simpler than the

definition of "multitopic set" itself. In fact, we derive Mlt from the terminal multitopic set

T ; the objects of Mlt are the cells of T .

Although the definition is definitely "combinatorial" and complicated, one can get used to it, I

think, because the intuitions are natural. The difficulty is to put these intuitions in a

mathematically meaningful, "closed" form, valid in all dimensions.

Multitopes are the "shapes of cells" of all dimensions in a many-to-one computad. Ross Street

pointed out that the elements of the terminal computad are the shapes of cells.

By the way, once we know (as we do) that Comp is a presheaf category, and in fact, thatm/1
the exponent category is one-way (first part of the definition of "FOLDS signature"), we can

op Lrecover L such that Comp �Set as a subcategory of Comp by an abstractm/1 m/1
condition on the objects (this is easy). Thus, we do have a conceptual definition for multitopes

too.

Looking at the above, we see the corollary that
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opMltthere is a one-way category Mlt such that Comp �Set .m/1

I do not know how to prove this result, even with "one-way" removed, in a way that avoids

talking about multitopic sets in the original, constructive, sense. In [B2], Michael Batanin

stated a general result in this connection; but the proof, as he himself pointed out to Marek

Zawadowski, is incorrect. As a matter of fact, the total category Comp is not a presheaf

category.

The work [HMZ] by Victor Harnik, Marek Zawadowski and myself, proving the equivalence

of the two definitions of "multitopic set", proceeds by setting up a pair of adjoint functors

[-]
��������MltSet � ωCat ; (*)
��������〈- 〉

[-] , the multitopic nerve functor, is the right adjoint to � 〈- 〉 , the "realization" functor,

giving the free ω-category 〈M 〉 on any multitopic set M . We show that 〈- 〉 is faithful and

full on isomorphisms, and its image is equivalent to Comp .m/1

Let us point out that if we replace MltSet with the equivalent category Comp , thesem/1
functors become easily described: 〈- 〉 is just inclusion (because of the way we defined

computads); also, [-] can be given by a formula familiar from other "nerves". However, we

found that proving that MltSet was equivalent to Comp took, essentially, all the workm/1
that goes into establishing the adjunction (*) directly.

The nerve functor [-]:ωCat���MltSet is important because it tells us how a strict

category A "is" a multitopic category: it "is" the multitopic set [A] which is in fact a

multitopic category.

Let me mention that the paper [HMZ] clarifies a point that has seemed to cause

misunderstandings concerning the notion of multicategory. In [HMP1,2,3,4], the places in the

source of a multiarrow were defined to be a finite initial segment of the positive natural

numbers, thereby causing the impression that the implied linear order of the places was

important, or in other words, that the multicategory linearizes places that may have been

without such a linear order in their natural state.
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As a matter of fact, the linear order of the integers plays no role whatsoever in the definition

of multicategory, which fact will be clear by a careful inspection of the definitions in

[HMP1,2,3,4]. In [HMZ], any such misunderstanding is removed by allowing completely

arbitrary places instead of just the integers. The axioms in [HMP1,2,3,4] governing the

so-called "non-standard amalgamation" simply become the natural conditions for a calculus of

abstract places. Thus, we may say that the notion of multicategory in [HMP1,2,3,4] in

essence, and in [HMP] explicitly, is the concept of multicategory with abstract places, as

opposed to J. Lambek's original notion (quoted in [HMP2]) which is the notion of

multicategory with concrete places and with standard amalgamation. I may add that the change

to explicitly abstract places is no real change: any multicategory in the sense of [HMZ] is

isomorphic to one according to [HMP1,2,3,4].

In [J], dating from the Fall of 1997, Andre Joyal defined "theta category" as a proposal for

(weak, omega-)category.

In many, maybe even most, ways, theta categories may be the best of the competing notions

(except that I am not really familiar with the Simpson/Tamsamani proposal, and possibly with

other important ones). First of all, the full definition is simple ("multitopic category" still has

its second ingredient undescribed so far -- but see below). But also, several further elements of

the theory are simpler than the corresponding parts for multitopic categories. And simply, theta

categories are nice. (Although, multitopic categories are nice too.)

Furthermore, there is a conceptual relatedness of the two notions. For instance, both are based

on a concept of a kind of "set", a concept embodied by a presheaf category: multitopic sets in

one case, and the so-called cellular sets in the other. And both concepts use a set of

horn-filling type conditions, although in the multitopic case these are not so easy to state

directly.

Then, why bother with the multitopics?

The short, and somewhat imprecise, answer is this. In a multitopic category, we have an

explicit framework for all possible (virtual) compositions; in a theta category, we have a (very)

judiciously chosen few of the possible (mostly virtual, but sometimes honest) compositions

that should be sufficient -- and by the last few words hangs the tale.

25



If we are at all serious, we should ask ourselves what it should mean that we have enough

compositions accounted for in a theta category. And a reasonable way to approach this is to try

and see (1) what a sufficiently general idea of composition precisely is, and (2) that this

general idea is de facto (although not per definitionem) incorporated in the concept of theta

category.

This is the same thought that dictates that it is not enough to define the notion of monoidal

category as it is in fact being defined, but, also, one has to prove a coherence theorem for it,

one of the kind that Saunders Mac Lane did in fact prove.

I am proposing that the multitopic concept is a kind of "complete" standard to which others

should be compared to, and be found satisfactory or wanting as the case may be. Of course,

"satisfactory" here means "satisfactory as a general notion of category"; a special notion that is

not at all equivalent to the multitopic concept may very well be "satisfactory" for the special

purpose at hand. I am proposing that one should, if at all possible, prove that any given

proposal for a general concept of "category" is equivalent to the multitopic notion.

Of course, this is a proposal for a research program, not an ideological statement. I am giving

my motivations and hunches which may or may not be born out eventually by the results of a

careful scrutiny. As a research program, these ideas seem, in view of the available evidence,

quite reasonable to me.

Let me give some idea of the evidence -- and of the difficulties. I will start with the

difficulties.

To illustrate a point, I now return to the concept of virtual functor (of 1-categories; this phrase

will be suppressed, but understood, below); this was discussed in section 4.

As I mentioned, I originally named "virtual functor" as "saturated anafunctor". There is a

notion of "anafunctor", and "saturated" is a property of anafunctors. Saturation of the

anafunctor F:X��A is a property that ensures that if A∈Ob(A) is a virtual value of F at

X∈Ob(X) , then any other B∈Ob(A) which is isomorphic to A is also a virtual value of F

at the same X (however, saturation is not the same as the consequence just described);

without saturation, this does not necessarily hold.

An ordinary functor is, essentially as it is, an anafunctor, albeit (usually) not a saturated one.
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Since "saturated" is a property definable in FOLDS, it is preserved by the concept of

FOLDS-equivalence of anafunctors; the concept of FOLDS-equivalence for saturated

#anafunctors is identical to the one for anafunctors is general. The correspondences F���F ,

!F���F of saturation, respectively, cleavage, extend to arbitrary anafunctors F , from being

defined for ordinary functors F , respectively, for saturated anafunctors F .

Now, let's take an ordinary functor F , and regard it as an anafunctor, and compare it to its

#saturation, F . They are both anafunctors, but they are not FOLDS-equivalent, despite the

fact that they both give the same cleavage, namely F itself. Is there something wrong with

the notion of FOLDS equivalence?

Yes and no. "No", I think, because the concept of anafunctor, without the requirement of being

saturated, is not really the notion I want; it is an incomplete notion; and the FOLDS

equivalence detects this incompleteness. "Yes" because, complete or incomplete, "anafunctor"

in general is a good notion (actually, very useful for the work in [M4]), and it is a good notion

of equivalence to say that two (general) anafunctors give the same (equivalent) ordinary

functors.

It may very well be that it is here that Daniel Quillen's model categories should enter the

picture, and the equivalence of "anafunctors" (or, mutatis mutandis, of theta categories, etc) in

the more general sense will be provided for by the existence of suitable weak-equivalence

maps. But I do not want to speculate more about this, since I believe that the FOLDS

equivalence is perfectly good as long as one sticks to the saturated entities; moreover,

saturation is a canonical process.

Now, to return to multitopic versus theta, all multitopic categories and other multitopic things

are automatically saturated, but theta categories are not.

Recall my description of the multitopic virtual functor at the end of section 4. This is

automatically saturated; it is in fact completely equivalent to the notion of saturated

anafunctor.

On the other hand, in the case of a theta category, the lack of saturation can be seen, for

instance, in the "lack of (automatic) communication" between cells of the two respective forms
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Y�f ��� �� g�� �� i�� � a �� ��������	
 � �X���������������	 Z and U �b v�h ��������	j

(both forms are legitimate types of 2-cell in a theta category).

To see this, consider the fact that, for any strict category A , there are two different natural

cellular nerves [A] , [A] . In both, the 2-cells of the second kind (as b ) are the same,1 2
namely, the 2-cells of A . However, in [A] , for any given X, Y, Z, f, g, h , there is at1
most one a as shown: there is one just in case gf=h ; but in [A] , a may be an2
arbitrary isomorphism 2-cell from gf to h . This shows that, in a theta category, cells of

type b do not always give rise to their natural counterparts of the form a .

While we are on the "negatives" concerning "theta category", let me "complain" that this

concept is a hybrid, in as much its compositions are mostly virtual, but its identities are given

by honest operations. The composition of f and g as in the first diagram above is a virtual

operation, and it is provided for by the Kan-condition that says that for any f and g as

shown, there is at least one pair (h, a) filling the first diagram; h is the virtual composite

of f and g . On the other hand, we have an identity arrow

i��������	�U �1 v� i��������	i

by a suitable degeneracy-operation i��	1 , an honest operation.i

This is only a problem when I would like to use my framework for comparing FOLDS

specified concepts -- but then, it is a problem.

Another, more vague, "complaint" is that, although theta categories look very natural from the

point of view of simplicial homotopy theory, they are less natural when we come to the

"ordinary" view of what a category should be like. Take 2-categories, for instance. The

Baez/Dolan 2-category, described in section 4, is, essentially, the multitopic notion of

2-category. The theta-version of 2-category would look less "familiar". It would, for instance,

have the strange thing that its composition of 1-cells is virtual, but identity 1-cells are given

honestly. Also, in other ways, the definition, when completely spelled out, would look more
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complicated than that of the Baez/Dolan 2-category (which we saw), despite the fact that in

the case of the theta-concept, we have a finite signature, whereas for the multitopic 2-category,

the signature is infinite.

One can also say that the two concepts are sufficiently different for their essential equivalence

to be an interesting question.

One more thing. I think that, broadly speaking, there are two application areas HDC's. One is

homotopy theory; the other is, I can almost say, the rest. The latter of course is mainly

quantum group theory ("higher dimensional algebra", if I want to use a more general term,

although it sounds too general now). But any consideration of "the category [of course, in our

general sense!] of such and such structures" is automatically in need of the concept of

"category". My feeling is that for such applications, i.e., for more or less all except homotopy

theory, the style of the multitopic definition is more appropriate than the theta. Of course, this

leaves open the possibility that there is a third one that is better than both; I am not passing

judgment on that now.

I believe that multitopic categories and theta categories are in fact essentially equivalent. This

involves a concept of "saturated theta category", which is given by a regular FOLDS

specification, and by another FOLDS specification for multitopic categories; and these two

specifications are equivalent in the technical sense described in section 6.

These assertions are, at this time, somewhat conjectural, although many relevant computations

have been made. The completion of the idea just sketched out is one of the projects of the

present research proposal.

At the June 1998 CMS conference in St John, New Brunswick, I was talking about

"protocategories". This was in ignorance of the connections with Joyal's earlier work [J]. But

these protocategories were what I above called saturated theta categories.

The Joyal concept contains a fundamental discovery: his identification of the category of

certain (so called, by us in [MZ], "simple") ω-categories with the opposite of a new, and very

nice, combinatorial object: Θ , the category of finite disks. We (with Marek Zawadowski)

rediscovered the fact of those two categories being equivalent, but only after having seen

Joyal's Θ itself. We published the proof in [MZ]. Joyal said at the time when we reported on

our proof to him that he did not have a proof, although he had suspected the result was true.
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The "simple" categories of the previous paragraph have an important connection with Michael

Batanin's and Ross Street's work in [B1], [BS], [S]. In particular, Batanin's construction in [B1]

of the free ω-category on a globular set plays an important role in [MZ].

[Digression. I would like to mention the encouraging fact that, it seems, the concept of theta

category is almost FOLDS-specified. Let me explain.

One has a natural notion of homotopy of cellular sets, in the original style for topological

spaces and then also for simplicial sets, except that we have to use (homotopy) "invertible"

1-cells, instead of arbitrary ones (since in theta categories, 1-cells are not any more

necessarily "invertible").

{Cellular sets have the structure of a simplicial set, and more. In a cellular set, a 1-simplex

a a’X���Y is invertible if there are: X����Y and 2-simplices b , b’ as in

s X0X X� ����������� Xa ��	 
�� a’ �� ���� b �� �� b’ ��� �� a �� � a’Y ������������ Y Y .s Y0

f������� ⋅For maps T S of cellular sets, a homotopy h:f���g is h:Δ[1]×T���S such�������g
(0, X)

�λthat, with Δ[1]= 〈0���1 〉 , for all X∈T(Δ ) , h(λ, s X)� is invertible, and, as0 0 ��
(1, X)

usual,

f������������������������������������� �δ ×T � �� 1 �≅ ���������T�������Δ[0]×T Δ[1]×T�������S���������� δ ×T �0 �� ��������������������������������������g

⋅commutes. f and g are homotopic, f ∼ g , if there is a homotopy h:f���g . S and
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T , assumed to be theta categories (satisfy Joyal's version of the restricted Kan condition), are

k�����homotopically equivalent, S ∼ T , if there are S T such that �k ∼ id ,����� S
�

k � ∼ id . }T

Cellular sets are functors Θ���Set , with Joyal's category Θ of finite disks. Take the

� �epimorphisms in Θ only, with all the objects of Θ , to get a non-full subcategory Θ . Θ
� �is a FOLDS signature; every cellular set S has an underlying Θ -structure, written S .

�( Θ is the face structure of Θ , with degeneracies removed.)

� �Proposition (i) For theta categories S and T , S ∼ T iff S � T .�Θ
f�����(ii) For T S , where S and T are theta categories, f ∼ g�����g

iff there f and g are FOLDS homotopic, which, by definition, means that there exists, in

�ΘSet , a commutative diagram

�S �id � � id� � �� � �� �p �	 
 �
� m n �S ������P������S� � � �� � �� � �� � � � �g � f�T

In other words, the degeneracy structure in a theta category is important only as far as its

existence is concerned. Also note that a theta category is defined as a cellular set S with the

�restricted Kan condition, which latter property is a property of S ! Digression ends]

8. The universe

In [M8], I do two things: one is the precise definition of virtual composition in multitopic sets;

the other is the description of the multitopic category of all small multitopic categories.
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Both things are very combinatorial. This, of course, will put you off. I will now try to defend

the thing.

Let us talk about composition. The great discovery of Baez and Dolan is that one can define

the composite of a composable diagram of cells by a universal property. The main

consequence is the total lack of a need for coherence conditions (it is a common categorical

experience that the coherence structure/conditions are a consequence of the definition by a

universal property: witness the tensor product of Abelian groups via the universal bilinear

map).

They expressed this by introducing the concept of universal cell. A universal cell is like a

coprojection in a colimit, or the universal bilinear map in the definition of tensor product of

Abelian groups. The complication arising here is that the universal property of a universal

k-cell involves cells of all dimensions ≥k present in the multitopic set.

What I do in [M8] is find a formulation of the universal property in the style which is the one

customarily used for the definition of adjoint functors. I mean the definition that talks about

the natural bijection between hom(FX, A) and hom(X, GA) ; this does not talk directly

about "(co)projections", that is, about the unit and the counit maps. This "adjoint" style

definition moves around a lot more entities than the "(co)projection" style definition does; but

it is also, somehow, more natural (?).

Notice the word "bijection" in the previous paragraph; I could have said "isomorphism"; and of

course, in higher dimensions, such as 2-categories, it becomes "equivalence" of

hom-categories, etc. This is what I am equipped to deal with, by using the FOLDS

equivalence. I define composition in a multitopic set by using (many) FOLDS equivalences.

This requires the use of a system of auxiliary signatures. The whole thing becomes a calculus

of signatures. Since the signatures are basically embodying shapes of diagrams, multitopes in

this case, the definitions I am talking about are using a calculus of multitopes. There is, for

instance, an operation of substitution, or insertion, of a multitope into another multitope. I find

it all very natural -- but there is no denying that the thing is very combinatorial.

Each of the FOLDS equivalences used here can be regarded as (winning) strategies in a

two-person, infinite game of perfect information; "infinite" because there is a first, second, ..

nth,... move, one for all n∈� .
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This all makes sense intuitively. Look at the case of composition of two 1-cells, the simplest

example:

Y� �� �f � � g� �� �
X�����������Z .

h "=" g�f

In a multitopic category, getting h is not an easy matter since it has to satisfy some

complicated universal property that refers to (many) cells of all dimensions. The basic idea can

be put in this way. h does qualify as g�f if " h can be replaced in any situation by the pair

(f, g) , and vice versa". This is quite imprecise though. Imagine we have the situation

hX��������� Z	
 � ��
 � �i�
 v ��
 �j �
 ��
� W

involving our h . Replacing h by (f, g) means considering the shape:

Y� �� �f � � g� � �� v ��X Z	
 � ��
 �i�
 ��
 �j �
 ��
� W

�One should have the existence of v as part of the replacebility of h by (f, g) in the

�present situation. But, not just the existence of v is what matters. Imagine now two bigger

situations each involving one place for a 3-cell, one of the new situations extending the

�situation with v , the other that with v . If one can be filled with a 3-cell, the other should

also be possible to fill.

�We have kept both v and v . We play a game in which the Challenger takes further and
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further cells fitting in with either h or (f, g) , and with the other cells previously chosen

in the course of the game. The Hero has to answer each move of the Challenger (they

alternate) with a cell of the same dimension -- but not of the same shape -- in the other

situation. The moves are cumulative: they do not forget anything. If Hero can keep it up

forever, he wins; otherwise he loses.

Such games are familiar in foundations, in a very different context ("axiom of determinacy" in

Set Theory; maybe the hottest thing in Set Theory nowadays). The Set Theory games do not

have the varied syntactical/combinatorial forms the FOLDS games possess here, but the two

(the set theory games and the FOLDS games) share one very important feature. This is that

strategies can be composed canonically. Let me indicate what this means.

Let us put ourselves into a multitopic set M . Let's look at the shapes that were shown in

section 4, but now from a different perspective:

g Y0 ������� b� �� � �gX � � � 1f ��� 2 �	 �1�� �	 
�� f �	� � 2 �X � X� 1 a� 3 ff � �  30� � � 
 � �
X ������������������������������� X0 h 4

and

g Y0 ������� �� �gX � 1f ��� 2 � �1�� 
�� ��X a� b �c X� 1 2 3 ff � �  30� � � � �
X ������������������������������� X0 h 4

Now, we have 0- and 1-cells in M ; but here, a , b and c signify not 2-cells, but

strategies: a is the strategy, that is, FOLDS equivalence (in a suitably fancy auxiliary

signature), that exhibits h as a (virtual) composite of (f , f , f , f ) . Similarly for b0 1 2 3
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as well as for c . Now, the thing is that there is a canonical, honest, composition of strategies

that, once we have a and b , gives a� b as one particular suitable c .2

There is no such composition, directly at least, of "universal arrows", although there is a

virtual composition for them: if in the above, a and b signify universal 2-cells, then no

matter how, but virtually, we compose them into a� b , we get another universal 2-cell.2

One can sense that this (the honest composability of strategies) should be right. a tells us

completely why h is a composite of the f 's. b tells us completely why f is a compositei 2
of the g 's. Therefore, I should be able to exhibit directly a complete reason why h is aj
composite of (f , f , g , g , f ) . And in fact, I can: the resulting complete reason is0 1 0 1 3
a� b .2

This phenomenon of canonical composites of strategies goes further. Imagine, for instance,

that we are looking at the "associativity isomorphism". This involves four 1-cells, and several

compositions of them. The "associativity isomorphism" α appears as a higher order strategy:

"arrow" between composites of strategies. The point is that α is canonically/honestly given

from the strategies for the compositions.

The upshot is that, having a multitopic category, which is nothing but a multitopic set in which

all compositions can be performed, we can, by a single act of a (big) simultaneous cleavage,

choosing one particular strategy for each composition, obtain a "category" in which all

operations are honest.

The latter thing is not written in [M8]: it is one of those things that still have to be put into

"closed form". But this promises to bring us closer to the equivalence of the multitopic

categories with an honest-operational concept such as Michael Batanin's one.

Next, the category MltCat of all categories.

The starting point is the description at the end of section 4 of "virtual functor". We are talking

Fabout a 1-cell X�����A in MltCat . The definition is almost completely given as at the

place in section 4; note though that there we only had the case when X and A were

1-categories; here they are arbitrary ((small) multitopic, ω-dimensional) categories. But the

definition does not really change; of course, now F is a category (!), not a 1-category.
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The remarkable thing is that one does not have to worry separately about the effect of the

"functor" F on 1- and higher-dimensional cells; the explicit dispensation about the effect on

0-cells, and the fact that F is a category (which, of course, is a lot) is enough.

I really think that this notion of 1-cell in MltCat is natural. I do not think it will be

delivered by some abstract principle or consideration. One just have to take it as it is.

The rest of the definition of MltCat : the cells of all dimensions and all shapes in MltCat ,

is a kind of guessing game, trying to generalize the idea in the 1-cell. The basis of any given

cell in MltCat is a colored multitopic set.

The first thing is to describe, for an arbitrary multitope π , what the π-colored multitopes are.

βThe colors are as many as there are cells in π . In the case of the 1-cell α���γ as π , our

only example, the colors are α=(0, 0) , β=(0, 1) and γ=(1, 1) . Of course, the colors

are an added structure on the multitopic set.

But I will not carry on.

What the definition does is the complete description of a large multitopic set MltCat . It is

a "theorem" that this multitopic set is in fact a multitopic category, i.e., "all possible

composites exist in it". This "theorem" is not proved in [M8]; and I have not completely

written out the details yet. But I have done many particular calculations, and these fall into

suggestive-enough patterns. I am fairly certain that the "theorem" is correct.

Of course, it is not enough to have this theorem. Further tests are needed.

Another "theorem" is that the 1-cells of MltCat as defined here correspond "essentially

bijectively" to the morphisms that Baez and Dolan originally suggested: these are the

morphisms of multitopic sets that preserves composites (in a sense that is analogous to the

notion of a functor preserving binary products).

Furthermore, the maps A���[A] from a strict category A to the corresponding multitopic

category (the nerve) should be extended to a map from all the cells of the strict ω-category of

all small strict ω-categories to corresponding cells in MltCat ; this has not been done yet
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(although I do not see it as a difficult thing).

Let me note that MltCat contains, for each n , the category of all small n-categories. For

a finite n , an n-category is a multitopic category which is, in a specific sense, truncated (but

not as trivially as simply throwing away all cells of dimension higher than n . I prefer to use

"truncated" as a property of a multitopic category, rather than referring to something else

obtained from the multitopic category by an act of truncation.) The n-categories form a "full

subcategory" of MltCat , called MltCat . MltCat is also truncated: it is ann n
(n+1)-category, the (n+1)-category of all small n-categories.

From my point of view, the most important thing to do, after the ones indicated above, is to

establish the exactness properties of MltCat . The underlying foundational goal is to

formulate formal axioms that talk about MltCat ; these formal axioms will be first order, in

fact FOLDS (!), statements of the exactness properties.

Of course, the original forms of the exactness properties, such as Cartesian closure, have to be

altered to fit the new, virtual, ω-dimensional, context. But that is not a problem at all. The

FOLDS equivalences, or strategies, delivering equivalences of hom-categories will be very

useful in this.

Perhaps, here I mean by "exactness property" something more general than traditionally done.

For instance, saying that the category of sets, or any Grothendieck topos, is an elementary

topos is, for me, entirely within saying things about the exactness properties of Set , or the

Grothendieck topos.

MltCat is just as "unique" an entity as Set is (assuming that I am right, and I did not

make a mistake in my guessing of what MltCat actually is!). It is worth our attention.

MltCat also has infinitary exactness properties; the Giraud definition of "Grothendieck

topos" is entirely, except for the small-generated part, infinitary exactness conditions.

We can speculate further on concepts of universes in general.

Small theta-categories should also form a theta category Theta .

Let me point out that if we knew what is the equivalence of specifications of multitopics and
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saturated theta's, without talking about any higher-than-zero dimensional cells in MltCat or

Theta , in the style of section 6, then we would know how to get Theta from MltCat ,

and vice versa.

Using the notation of section 6, assume T=(L, Q ) and T’=(L’, Q’) are the0 0
specifications of the concept of multitopic category, and of the concept of saturated theta

category (or, protocategory), respectively; and assume that these two specifications are

equivalent as in section 6, and we have F , G , (P, m, n) and (P’, m’, n’) witnessing

these facts.

lexWe have that MltCat is a functor MltCat:B�����SET into the category of large sets.

Theta can be taken to be the composite

*MltCat = MltCat�G .def

And vice versa: if Theta is given, MltCat can be taken to be

#Theta = Theta�F .def

*#We will have that MltCat is L-equivalent to MltCat , by the equivalence-span

#*(MltCat�P,MltCat�m, MltCat�n) , and similarly, that Theta is L’-equivalent to

Theta .

#If both MltCat and Theta are given in advance, then we’d better have that Theta is

*L-equivalent to MltCat , and that MltCat is L’-equivalent to Theta (either of these

two statements implies the other).
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