The word problem for computads

by M. Makkai
McGill University

(Revised May 16, 2005)

Contents:

Introduction p. 1
1. Concrete presheaf categories p. 20
2. w-graphs p. 26
3. w-categories p. 27
4. Adjoining indeterminates p. 32
5. Computads p. 42
6. Multitopes and computopes p. 50
7. Words for computads p. 59
8. Another set of primitive operations for w-categories p. 66
9. A congtruction of the one-step extension X[ U] p. 75
10. Solution of the word problem p. 88
11. Proof of the existence of enough computopes p. 104
Appendix to section 1 p. 109
Appendix to section 4 p. 114
Appendix to section 5 p. 122
Appendix to section 6 p. 135
Appendix to section 8 p. 138
References p. 145

. Supported by NSERC Canada



I ntroduction

(A) Theorigins of the paper

Computads were introduced by Ross Street, for dimension 2 as early as 1976 in [S1]
and in general, in [S3]. Albert Burroni's paper [Bu] calls computads "polygraphs’. Jacques
Penon's paper [Pe] is important for us, since it contains the full syntactical definition of
computads (reproduced with small changes in section 7 below), which will be used to
formulate the problem in the title of the present paper.

My interest in computads stems from their role in the definition and theory of weak
higher-dimensional categories. This role came to be realized as an afterthought.

In [He/M/Po], the definition of "opetopic set" introduced by John Baez and James Dolan
[Bae/D] is reworked into what we called "multitopic set". In [He/M/Po], it was shown, among
other, that the category of multitopic setsis, up to equivalence, the same as the category of
presheaves on a category called the category of multitopes. In [M3], inspired by the second
part of the Baez/Dolan definition of "opetopic category", but also following my earlier work
[M1], [M2] on logic with dependent sorts, | proposed a definition of "the large multitopic
category of all small multitopic categories'; the small multitopic categories constitute the
zero-cells in said large multitopic category.

Already at the time of our joint work with Claudio Hermida and John Power, we had the
feeling that multitopic sets were related to computads, in fact, that they were essentially
identical with the "many-to-one" computads, ones whose indeterminates (free generating cells)
have codomains that are themselves indeterminates (although, | must confess, at the time | did
not really understand the notion of computad). The paper [Ha/M/Z] established this result, in
the form of a pair of adjoint functors between the category of multitopic sets on the one hand,
and the category of small w-categories on the other, under which the left adjoint functor, from
the first of the above categories to the second, being faithful and full on isomorphisms, has, as
its essential and full-on-isomorphisms image, the category of many-to-one computads.

This result represented an advance inasmuch the fairly complicated, albeit combinatorially
explicit, original definition in [He/M/Po] of multitopic sets became a conceptually simple one.
On the other hand, it is to be noted that the fact that the category of many-to-one computads is
a presheaf category, and the implied equivalent concept to the notion of multitope, do not



become obvious by merely looking at many-to-one computads. At the present stage of our
knowledge, said fact needs, for its proof, the detour via the original theory of multitopic setsin
[He/M/Po].

The basic perspective of the present paper is areversal of the above chronology. The notions
"multitopic set" and "multitope” are seen here as the result of a combinatorial/algebraic
analysis of the notion of many-to-one computad. The paper attempts to extend said analysis to
all computads.

(B) Computads as the algebraic notion of higher-dimensional diagram.

The notion of computad is, as far as| am concerned, nothing but the precise notion of
higher-dimensional categorical diagram. To explain this, | start earlier, with an informal
introduction to the notion of (strict!) w-category. (In this paper, no "weak" category theory

appears at al.)

Consider the following ordinary categorical diagram:

3 6
X3 X6 X9
g, 2 g, 4 Jg
X X X

2 1, 5 fg 8
91 1 93 3 95
X X X
1, 4= T, 7

consisting of objects Xi and arrows f o Iy in some category. The reader will agree
when we say this:

*) if the four small squares 1, 2, 3, 4 commute,
then, as a consequence, the big outside square will commute as well.

Having agreed on this, one may ask what are the general laws behind this, and countless other
similar and/or more complicated facts. The answer is: the laws codified in the definition of



notion of " w-category”.

To motivate that definition, the starting point is to adopt the position that "there is no bare
equality”: every equality is mediated by some data that we -- conveniently or not -- forget
when we simply assert the fact of an equality. (At the Minneapolis (IMA) meeting on
higher-dimensional categories in June 2004, John Baez gave, as the introductory talk to the
conference, a brilliant lecture with this theme.) That position dictates that we, abstractly and
theoretically, introduce data that are responsible for the commutativity of the four numbered
squares above, in the way of fillers, 2-dimensional cells, or 2-arrows, as follows:

X3 X6 X9
9, a° 0, 0%

X2, %51y 78 )
g S~y g g
1T a1 ST a3 5

X X X

1t a1, 0%

We think e.g. of a, as a (2-)arrow with domain ng 3 and codomain fzg4 . (We use
"geometric order"; ng 3 iswhat usually is denoted by f3<>g2 , or also gz#f 3 .) We even
have given up the symmetry in the idea of the equality ng 3= f LR and think of ng 3
being transformed into f 29, in some general way, that way being denoted by a, .

A 2-arrow must have a domain and a codomain that are ordinary ( 1-) arrows, which are
parallel: they share their domain and their codomain, which are 0-cells. The idea here is that a
2-arrow as a transformation does not have any effect on 0-cells: it must leave them alone;

transforming O-cellsis the responsibility of 1-cells.

The "if-then" statement (*) above becomes an operation that, applied to the four arguments
a,,a,, 85,8, resultsin a transformation, say b , of 9192 3 6 into flf 49596

b: 9,95f3fg — 1174959 (2)

depicted as



X3 X6 X9
9o 96
X, E\\N Xg
91 95
X X X

1, %1, 0%

The above procedure of introducing 2-dimensional arrows into diagrams to represent
evidence, or proof, of a commutativity is closely related to the similar procedures in proof
theory, especially categorical proof theory; see for example [L/Sc], section 1.1, "Propositional
calculus as a deductive system".

The concept of w-category (" w- " here anticipates the need for passing to ever higher
dimensions after 0, 1 and 2 that have appeared so far) will have, on the one hand, some
algebraically codified primitive operations that let us obtain b out of a,a,, 85,8, by
repeatedly applying those operations, and on the other, certain laws that ensure that no matter
in what order we apply the primitive operations to the four arguments, the result is always the
same: b iswell-defined as the composite of a,, a5, 85,8, without any further
qualification.

Just as the commuitativity of 1-dimensional diagrams, that is, the equality of composite
1-arrows, has "given rise" to 2-dimensional diagrams, the contemplation of the equality of
composite 2-cells (possible 2-commutativities) givesrise to 3-arrows, and 3-dimensional
diagrams. For instance, the fact that the composite of a,, a5, 85,8, equals b ismediated
by a 3-cell

3 6 3 6
X3 X5 X9 X3 X5 X9
92 a;N 94 aZN Tga 92 96
o, %1 8 = % E\\N X3 3
9 a0 93 a " Tgs 99 95
X X X X X X
1, a1, 0% 1, %, 0%



Of course, the process does not stop at dimension 3 , and we see the need for a concept of
w-category in which there are arrows (cells) of arbitrary non-negative integer dimensions (but
none of dimension w or o).

Since the examples like the ones we considered clearly encompass a large variety, especially
when one contemplates arbitrarily high dimensions, it is a highly non-obvious fact that a
satisfactory concept of w-category is possible at all. It is not a priori clear that there is a neatly
defined set of primitive operations whose combinations account for all the desired
compositions of cells; and it is not a priori clear that there is a neat set of laws that ensure
facts like the one above of b being well-defined as the composite of a,8,,85,8, . Itis
therefore a kind of miracle that in fact we do have a good notion of w-category. It is the basic
general aim of the present paper and its projected sequels to investigate the ways and means of
this "miracle”.

There is another, perhaps even more convincing, way of approaching the concept of
w-category. This argues that the totality of (small) n-(dimensional) categories, properly
construed, isan (n+1)-category; therefore, if we want to freely form "arbitrary totalities’, we
need n-categoriesfor all n . (Let me note that the process stopsat w : the totality of (small)
w-categoriesis, in a natural way, an w-category again, not an (wt+1)-category.) However, in
this second argumentation, when carried out with proper care, we find a similar step of
replacing an equality by a transformation. In fact, this latter thinking, when followed to its
logical conclusion, gives rise to the notion of weak w-category, a concept that we do not
discuss in this paper. The present paper sticks to the formal or syntactical role of higher
dimensional diagrams, and it does not need the consideration of "totalities’".

In an w-category in which the diagram (3) lives, there are many cells (infinitely many if we
consider the identities of all dimensions required by the concept of w-category). In particular,
we have the composite 1-cell ng 3 "on the same level" as the generating arrows 95

f 3 EfC. The concept that makes the distinction between "generating cell” and "composite
cell" is the concept of computad. Thisis a conceptually very ssmple notion; it can be stated as
levelwise free w-category.

Imagine a structure, a typical computad, that can be taken to be essentially identical with the
diagram (3). We want the elements of this structure to be exactly the named items in the
diagram: the O-cells Xi (i=1,...,9),the 1-cells fj G=1,...,6) » Oy (k=1,...,6),



the 2-cells a, (=l,...,4), b,andthe 3-cell ®.However, to account for the structure
itself, we need to consider various composites of the elements. We decide to form the
composites freely.

To begin with, we take the free category X1 on the ordinary graph consisting of said 0-cells
and 1-cells. To incorporate the 2-cells and their composites, we need the operation of freely

adjoining the mentioned 2-cells as indeterminates to x1 , With the appropriate preassigned

domains and codomains given as certain (composite) 1-cellsin the category xt

This process of free adjunction is very familiar from algebra. The ring of polynomials
RIX Y,...] isobtained fromthering R, by freely adjoining the indeterminates
X, Y, . ... Thedefinition, via a universal property, istoo familiar to be quoted here. The

1

2-category X2 obtained by the free adjunction of the appropriate 2-cellsto X™ , with the

specified domains and codomains in x1 , s defined by a similar universal property. The only
additional complication is that the adjoined 2-cell a, , to have an example, is constrained to

have the specified domain ng 3 and codomain fzg4 givenin x1 already. In the section
1.5, "Polynomial categories', of [L/Sc], we find a similar situation in which an arrow with
preassigned domain and codomain is freely adjoined to Cartesian closed category. (The
definition of computad is given in section 5, based on section 4.)

When we adjoin an indeterminate u to an w-category X in which we have specified du
and cu in X,toget X u] ,weusualy assumethat du and cu are paralel: they have
the same domain and codomain. However, thisis only a "reasonability assumption”. The
definition through the appropriate universal property works without this assumption. The
canonical map F: X— X[ u] will naturally produce the equality

F(ddu) =F(dcu) :dX[ u] (u) . Thus, F can beinjective only if said parallelism condition
is satisfied. Aswe will see, in that case, F isindeed injective.

The composite of a,, a5, 85,8, will be a definite 2-arrow & in X2 Of course, thisisa

major point of the construction, and it has to be ascertained specifically. That is, we have to

define, using the primitive operations of " w-category”, a specific 2-cell that we will take, by
definition, to be the composite of a;,8,, 85,8, . This we will not do here, since we do not
have the formalism of w-category yet. However, once we have done this, the resulting 2-cell



a will have domain and codomain as b doesin (2); in other words, a will be parallel to
b.

Finally, the whole structure -- a computad -- is obtained by freely adjoining the 3-dimensional

indeterminate ® to X2 , with the stipulation that d( ®) isto be the composite a , and
c(®) isb.

We have outlined the definition of a particular w-category, in fact, a computad, that we take
to be the structure representing the pasting diagram (3). It gives a good idea of the general
notion of computad.

It turns out (see sections 4 and 5) that, when we define a computad to be an w-category
without additional data as we did in the example, we are able to recover the indeterminatesin
the computad from its w-category structure as the elements that are indecomposable in a
natural sense. Thus, it is not necessary to carry the indeterminates as data for the structure.

| consider the notion of computad as being identical to the notion of higher dimensional
diagram, or pasting diagrams.

An analysis, using combinatorial, algebraic or geometric means, may provide descriptions
amounting to equivalent definitions of smaller or larger classes of computads. In fact, such
descriptions are one of the main areas of the theory of computads. As | mentioned above, the
paper [Ha/M/Z] is part of this area.

The notion of a diagram being pastable (composable), the focus of the attention in the theory
of pasting diagrams, is implicit in the concept of computad, since a computad always carries
within itself all possible (free) compositions of the indeterminates (elements of the diagram).
Of course, this does not mean that the problem of pastability of given candidates of pasting
diagrams, given in some combinatorial or other manner, is solved automatically by using
computads. The value of computads is mainly in their ability to provide mathematically
satisfactory definitions of intuitive concepts -- such as pastability --, which then can be
analyzed in any manner that comes to mind.

The important papers [J], [Pol], [Po2], [Ste]) give with various combinatorial, algebraic and
geometric definitions of classes of pasting diagrams. They make connections to computads to



varying degrees. In ongoing and future work (e.g. [M4]), | revisit the results of the existing
theory of pasting diagrams in the spirit of computads.

(C) Concrete presheaf categories.

In part (A) above, we mentioned two results, both asserting the equivalence of certain
categories. The first said that M t Set , the category of multitopic sets, is equivalent of

A op
Mt = Set Mt , with M t the category of multitopes. The second said that M t Set

isequivalent to Conp , the category of many-to-one computads.
m 1

It turns out that in both cases, what is proved is stronger than what is stated. In both cases, we
have equivalences of concrete categories.

A concrete category is a category A together with an "underlying-set” functor

- | : A—Set . Equivalence of concrete categories (A, |- | A) , (B, |- B) IS equivalence
of categories compatibly with the underlying-set functors: we require the existence of a functor
®: A—B that is an equivalence of categories, such that the following diagram of functors:

)

A\ /B

U

-1 ~Set -Ig

commutes up to an isomorphism: there is an isomorphism ¢: |- | A% -lge®.

All three of the above-mentioned categories Mt Set , M t ’ , Oonpm | ae equipped
with canonical underlying-set functors.

A multitopic set, an object of M t Set , consists of n-cells, for each nlN ; we have an a

priori underlying-set functor |- |: M t Set — Set . ( In the notation of [He/M/Po] , Part 3,
p. 83, for the multitopicset S, 1S/ = |] Ck; the elements of Ck are caled the k-cells of
k LN

S. In[Ha/lM/Z], 81 gives an alternative, possibly more conceptual introduction to multitopic
sets. On p.51 loc.cit., it is pointed out that in dimension O , a detail in the definition in
[He/M/Po] is to be corrected.)



cOP

For any small category C, we take the presheaf category C=Set to be equipped with

the underlying-set functor |- | : C >Set definedas |Al = | | A(U)
Udn( O

We have the underlying-set functor |- | : Conp — Set which assigns to each computad X
theset |X| of al indeterminates of X. 00an 1 is a concrete category with the
underlying-set functor the restriction of that for Conp .

It turns out that both equivalences

MtSet ~Mt
Con‘prﬂletSet

are in fact concrete, that is, compatible with said underlying-set functors. As a corollary, we
have the concrete equivalence

Con‘prﬂletA.

This statement is meaningful even if we do not know the precise definitionof Mt ; it says
that 00an 1 is (concrete-equivalent to) a concrete presheaf category.

A concrete presheaf category is, of course, in particular, a presheaf category; thusit is a very
"good" category. Let us see what the "concreteness’ in the equivalence says, in addition.

The concrete equivalence of (A, |- 1) and C means that we have an equivalence functor

F: A-=5C, and anatura bijection
AD || (FA(Y . (ATA) .
Udo( ©)

Thus, up to a natural bijection, we have a classification of the elements of an object A (the
elements of theset Al ) of A into mutualy digoint classes ( FA) (U) , the classes being
labelled with a fixed set of types, the objects U of C. This classification is functorial: it is
compatible with the arrows of A . Moreover, we have arrows between the types, the



type-arrows, that account for the complete structure of the category A : an arrow Af% B,

essentially a natural transformation, is given by a system of maps

f
(FA) (V) %U( FB) (U) , one for each type U, that are jointly compatible with the
type-arrows.

It turns out that the equivalence type a concrete presheaf category C determines C up to
isomorphism; we say that C is the shape category of any concrete category that is concretely

equivalent to C.

Given a concrete category A=( A, |- |) , weidentify a category, denoted by C* [ A] , which
is the shape category of A incase A turnsout to be a concrete presheaf category. Here is the
definition.

El (A) denotes the category of elements of the functor |- | : A— Set ; its objects are pairs
(A a) = (AUA al|Al) , and they are called elements of A.

Anelement (A, a) issaidtobeprincipal if itis A isgenerated by a, in the sense that
whenever f: (B, b) >(A ,a) isanarowin El (A) suchthat f: A—>B isa
monomorphismin A, then f isanisomorphism. The element (A, a) isprimitiveifitis
principal, and for any principal (B, b) , any arrow f: (B, b) - (A, a) must bean
isomorphism.

The shape category C* [ A] has objects that are in a bijective correspondence with the
isomorphism types of primitive elements ( A, a) . Moreover, if the primitive elements

(A a) , (B, b) are (represent) objects of C*[A] ,thenanarrow (A, a) —(B, b) in
C*[A] isthe same as an arrow A— B inthe category A . Thus, thereis afull and faithful

forgetful functor C*[A] —A.

Furthermore, we can spell out a set of conditions, some of them involving the primitive
elements of A, that are jointly necessary and sufficient for A to be a concrete presheaf
category.

The first group, (i), of the conditions saysthat A issmall cocomplete, |- |: A— Set

10



preserves small colimits, and reflects isomorphisms.
The second group contains four conditions.

The first, (ii)(a), says that the set of isomorphism types of primitive elementsis (indexed by a)
small (set).

The second, (ii)(b), says that every element is the specialization of a primitive element:

for every element (A, a) of A, thereisaprimitive element (U, u) together with a
map f: (U, u) —(A a) in El (A .

Here, (U, u) issaidtobeatypefor (A ,a) , f aspecializing map for (A, a) .

The third condition, (ii)(c), says that, for any element ( A, a) , with any given primitive
(U, u) , thereisat most one specializingmap (U, u) — (A a) .

Finally, the last one, (ii)(d), says that if the primitive elements (U, u) , (V, v) areboth
typesfor (A, a) , then they are isomorphic: (U, u) IV, v) .

All the above facts concerning concrete presheaf categories are established as parts of standard
category theory; they are easy, but form a basic setting for the first of the two main lines of
inquiry in the paper, the investigation of the category Conp and certain of its full
subcategories as to which of the above conditions are satisfied in them. 00an 1 is one of
those full subcategories, and, by what we know from previous work, it satisfies every one of
said conditions.

It isrelatively easy to show that Conp itself satisfies (i) and (ii)(a); see the work leading up
to section 6. One of the main results of the paper that Conp satisfies (ii)(b) ; every element of
Conp has at least one type. The proof of this result requires the more substantial tools of the
paper developed in sections 8 , 9 and 11. An easy example shows that (ii)(c) failsin Conp
(see section 6). | do not know if (ii)(d) is satisfied or not by Conp .

Let C beasevein Conp, that isafull subcategory of Conp for whichif B isin C, and

A—B isany arrow, then A isin C’.(Oorrpml isan example for asievein Conp ). C
is regarded as a concrete category with the underlying-set functor inherited from Conp . Itis

11



then immediate that the notions of principal element, primitive element, and type for an
element for C become the direct restrictions of those for Conp . More precisely, for (A, a)
in El (C) , (A a) isprincipal resp. primitive for the concrete category C justin caseitis
principal resp. primitive for Conp . Moreover, obvioudly, for an element (A, a) of C, any
(U, u) isatypeof (A a) inthe sense of the concrete category Conp if and only if

(U, u) isatypeof (A a) inthe context of the concrete category C .

Thus, for asieve C in Conp , to say that it is a concrete presheaf category, isto say that it
satisfies (i) -- which is ensured by assuming that C is closed under colimitsin Conp --, and
that the conditions (ii)(c) and (ii)(d) are satisfied by primitive elements of Conp that belong
to C.

An additional simplification is provided by the fact that a principal element (A, a) of Conp
is determined by the underlying computad A; a isthe unique indeterminate of maximal
dimensionin A; it is denoted by m, . We cal A acomputopeif (A, mA) is primitive. If
C isadgevein Conp , and as a concrete category is a concrete presheaf category, then its

shape category C* [ C] isthe skeletal category of the computopes that arein C .
Furthermore, it is a one-way category (all non-identity arrovws A— B have

di m( A) <di m( B) ), which makes it amenable to the manipulations of logic with dependent
sorts ((M1], [M2]).

In particular, multitopes can be identified with many-to-one computopes: an elegant, albeit
fairly abstract, definition of "multitope”.

Here is an example illustrating the role of computopes.
Consider the diagram

f h
X Y Z X al Z. (4)

g i —gi

(recall the use of geometric order in compositions). It is clear how to interpret (4) as a
computad: once again, the elements (indeterminates) of the computad are exactly the distinct
elements named by single letters in the figure. (4) is a principal computad; its main cell

(n‘t4))isa.

12



In drawing the diagram, we had the inconvenience of Y being in the way of placing the
2-cell a ; this made us repeat parts and denote some composites (the last should not be done
...). We would do better drawing the same as follows:

/\
\/

Thisrepeatsthe 0-cell Y, but thisis"all right". It seemsright to say that (5) shows the real
shape of the diagram (4). Of course, as a computad, (5) isidentical to (4). However, we have
the diagram -- computad --

()

/\
\/

"without repetition” of indeterminates; in fact, it is easy to see that (6) is a computope. We
also have the obvious computad map f: (6) —(5) that, in particular, collapses Y1 and Y2
to Y. f isaspecializing map for (5) (using the terminology introduced above), and (6) is
the type for (5). In this case, it is easy to see that the type is unique up to isomorphism
(condition (ii)(d) above), and it is obvious that the specializing map is unique (condition (ii)(c)
above). We are inclined to say that (6) isin fact the shape of (5) (and (4)). (5) is obtained from
the shape by labelling, in particular, labelling the spots Y1 , Y2 both by the same item Y .

(6)

"Computope” is the mathematical concept of shape of (principal, in particular finite)
higher-dimensional diagrams. The specializing maps are the labellings of shapes to get the
general diagrams.

| should note that the fact that 00an 1 is a concrete presheaf category does not become
obvious by what has been said above: although we know, by previous work, that conditions
(i1)(c) and (d) hold true for many-to-one computads, | do not have a direct proofs of these
facts. Despite this circumstance, | think it is be possible, by further developing the methods of

13



this paper, to show that further significant categories of computads are concrete presheaf
categories.

Perhaps it is not superfluous to state that my interest in higher-dimensional diagrams, hence, in
computads in general, stems from the view that they should constitute the language for talking
in aflexible way about matters within weak higher dimensional categories. Although the
many-to-one computads are sufficient for defining a suitable concept of higher-dimensional
weak category, a flexible language to develop mathematics in the context of a suitable weak
higher-dimensional category, in analogy to mathematics developed in a topos, one needs
higher-dimensional diagrams in general.

(D) Theword problem for computads

For a fully explicit, computationally adequate, implementation of higher-dimensional diagrams
-- that is, computads -- we need a notational system to represent, not only the indeterminates,
but also the pasting diagrams, or pd's, i.e., all composite cells, in the computad. After all, we
must input the information about the domain and the codomain (arbitrary pd's in general) of
each indeterminate.

The formalism of w-categories provides such a notational system; as usual with free
constructions, we can denote all cells of the w-category freely generated by indeterminates by
using a system of words derived directly from said formalism. This method is familiar from
algebra, for instance, in the study of free groups, or more generally, groups given by
presentations. In the case of computads, there is a new element, namely, the necessity to
consider the condition of a word being well-formed. This becomes clear on the conditional
nature of composition: one needs the precondition that a domain be equal to a codomain for
the composite to be well-formed. However, having realized that we have to talk about
well-formedness, the system of words is naturally defined. In this paper, thisis done in section
7, following Jacques Penon's system in [Pe].

Similarly to what happens in the algebra of groups, the pd's in a computad will be identified
with equivalence classes of words, rather than with words simply; the laws of w-category will
make certain pairs of words equivalent, that is, denote the same pd in the computad. The
guestion how to see if two words are equivalent naturally arises, and one wants to know if the
word problem is solvable: whether or not there is an decision method, efficient if possible, to

14



decide for any two words if they are equivalent. Only in possession of such a decision method
can we hope to have a reasonably general way of handling higher-dimensional diagrams
computationally.

One of the main results of this paper is that the word problem for computads in general is
solvable. After preparations, the main part of the work of the proof is done in section 10.

The motivation for this result also came from the situation of the many-to-one computads. In
[Ha/M/Z] and independently, in [Pa], there is a description of the w-category, in fact, a
typical many-to-one computad, generated by a multitopic set, in which the general cells of the
w-category are given as multitopic pd's of the multitopic set "with niches'. (In [Ha/M/Z], this
is given as the left-adjoint of a pair of adjoint functors between M t Set and wCat , the
right adjoint of which is a multitopic nerve functor). The construction provides a normal form
for words denoting the pd's of the many-to-one computad. Starting from any many-to-one
word, its normal form is computable, and two words are equivalent iff their normal forms are
identical; the word problem of many-to-one computads is solvable as a consequence.

The solution of the word problem for general computads starts in a similar manner, with
reducing an arbitrary well-formed word to a "pre"-normal form. The question of equivalence of
pre-normal words is still non-trivial, but it is smpler than that for raw words, and it is
eventually manageable, although the decision procedure as it stands at present uses searches
through fairly large finite sets, and therefore it is quite unfeasible.

(E)  The contents and the methods of the paper

The paper separates into two parts, one that uses, and the other that does not use, words.
Sections 7 and 10 use, and are about, words. The other sections do not mention words, or use
results based on words, at all.

The elementary theory of equivalence to a concrete presheaf category is explained in section 1.
Here, and elsewhere, the proofs that were found boring or less than easily readable were put

into appendices. On the other hand, the paper, taken as a whole, is more than usually
self-contained.
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Sections 2 and 3 contain the generally accepted definitions of w-graph and w-category.
Compare [Str2].

Sections 4 and 5 contain the concepts underlying the definition of "computad”, and the basic
results concerning these concepts. The approach is leisurely and the proofs are mostly routine.
Section 4 explores the operation of adjoining indeterminates to a general w-category, and the
iteration of this operation. Section 5 defines computad as an w-category obtained by iterated
adjunctions of indeterminates to the empty w-category. The emphasis in section 5 is on the
properties of the category Conp of all computads, and the way this category resembles
"good" categories such as presheaf categories.

The one element of section 5 that seems to be novel is the concept of the content of apdin a
computad: thisis a multiset of the indeterminates occurring in the pd, counting the multiplicity
(number of occurrences) of each indeterminate.

The definition of the content function was a non-trivial matter, and in fact, it is not entirely
successful. One of the main intuitive requirements would be that in case of a computope A,
the multiplicity of each occurring indeterminate in my isequal to 1 . Our definition of the
content function definitely does not satisfy this; and | do not know if it is possible to give such
a definition, also having the other desired properties.

Despite its drawbacks, the content function is an efficient tool for the main purposes of the
paper. One needed property is its invariance under equivalence. Its verbal description sounds
asif it is defined for words, by a direct count of occurrences. However, such a definition
would not give something that is invariant under equivalence of word, that is well-defined for
pd's. As a matter of fact, the definition of the content is not done using words at all.

Another crucial property of "content” isits "linear" behaviour under maps of computads; see
5.(12)(ix).

Section 6 was fairly completely described under (C).
Section 7 displays the system of words for computads in complete (and straight-forward)
detail.

Sections 8 and 9 contain the main mathematical novelty in the paper. | propose a kind of
normal form, the expanded form, for compound expressions (words) in the language of
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w-categories. The expanded form is constrained in two ways. The first is that it admits only
restricted instances of the w-category operations. Specifically, the operation a#kb is alowed
for cells a of dimenson m and b of dimenson n onlyif k=min(mn)-1.Since k is
determined by a and b, its notation is not necessary; we write a [b for a#kb .

The second constraint is that the expanded form allows the operations only in a certain order.

For instance, denoting a 4-cell using a single indeterminate 4-cell u , isalowed only in the
form of an atom

b3 [(b,. (by [ule,) [&,) (e,
where bi and e, are cellsof dimensions i , i =1, 2, 3. Of course, it is required that the
composites be well-defined. "Bigger" 4-cells are obtained in the form of molecules, which are

[Hcomposites of atoms.

The picture for a 3-atom b2. (b1 Cu Eel) Eez is

db,

The success of the expanded form to account for all expressions rests with certain features of
the constrained dot-operations. Section 8 shows that the operations obey laws that are of a
nature that is more familiar from agebra than the laws in the generally accepted definition of
w-category. In particular, we have an associative law involving three variables (similarly to the
usual definition), a distributive law, also involving three variables, and a "commutative law"
involving two variables. It is shown that the usual operations, with their laws, are recoverable
from the dot-operations with their postulated laws, effectively providing a new definition of
w-category, equivalent to the original one. In particular, the distributive law let's one distribute
alower dimensional cell over the composite of higher-dimensional cells asin
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al(ble) =(alb) {ale) ,

where di m(a) <di m(b) , di n(a)<di n(e) , andthe expressions are well-defined. It is
mainly this that allows to reduce an arbitrary word to the form of a molecule.

The definition of w-category through the dot-operations and the expanded form are very
natural, and they readily come to mind when one discusses examples. For instance, the
composite of the diagram in (1) has two molecular forms, both shown in

919,f 3f g
l 91857 g
9.f 59,f
a194f6 1 294°6 919,84
193947 6 917> 596
f,0,a a.f-g
19374 f1939596 1 576
| F12396
f1f 4959

as the two equal composites from top to bottom.

The expanded form is used in section 9, the heart of the paper. This provides a reduction of the
structure of an (n+1)-dimensional computad to that of a "collapsed” n-dimensional one,
whereby the only thing, beyond the n-computad, left to discuss for the description of the
(n+1)-computad is the effect of the commutative law on interchanging (n+1)-dimensiona
atoms.

| note that the results of section 8 and 9 are stated without referring to words. They have
immediate variants involving words, which are stated and used as the main tools for the
solution of the word problem in section 9. The same results, without reference to words, are
used to establish certain finiteness lemmas, which are needed, in a natural fashion, to limit
certain searches to finite sets, and to establish the decision procedure for the equivalence of
words in section 10. In both sections 9 and 10, the content function of section 5 is crucial.
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1. Concrete presheaf categories

A concrete category is a category A with small hom-sets, together with a (forgetful) functor
=A™ -1 A— Set . Usudly, the forgetful functor |- | has various good properties such
as faithfulness, etc., but at this point we make no additional assumptions.

El (A) denotes the category of elements of the functor |- | : A—Set : its objects are the
pairs (AOCb(A), ald|Al) ,anarow (A a) ~>(B,b) is f: A~>B suchthat
fi(a)=b.

Let A=(A, I-| A) , B=(B, |- | B) be concrete categories. We say that they are equivalent
if thereisafunctor ®:A—B that is an equivalence of categories such that the following
diagram of functors:

)

\Sgt )

“Ia '

A B
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commutes up to an isomorphism: there is an isomorphism ¢: |-| A% |- BodJ.

If the concrete categories A, B are equivalent, by the equivalence ( @, ¢) , then the ordinary
categories El (A) , El (B) are also equivalent, by the equivalence functor

B (A — 5 EB(B)

(A a) ——— (%A ¢,(a))

A (full) subcategory of a concrete category is a (full) subcategory in the usual sense, with the
forgetful functor the restriction of the given one.

We wish to regard presheaf categories as concrete categories.

cOp

Let C be asmall category, let C=Set , the corresponding presheaf category. U, V, ...

denote objectsof C; A, B, ... objects of C.

Weview C asa concrete category, with |- [ = |- | cC C > Set , the forgetful functor,
defined by A= || A(V) ,and, for F: A~ B, [FI daf | | Fyl @ 1AL 1Bl .
udcC uicC

It is obvious that the construction Ci— ( é, |- | C) respects isomorphism of categories, but it
is equally obvious that it does not respect equivalence of categories. In fact, we have

Q) Proposition If C and D are equivalent as concrete categories, then C and
D are necessarily isomorphic.

For the (elementary) proof, see the Appendix.

This is to be contrasted with the corresponding situation of the ordinary equivalence of

presheaf categories C, D, which happens if and only if the Cauchy (idempotent splitting)
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completionsof C and D are equivalent.

Our interest is in questions of the form whether or not a certain specific concrete category A

is equivalent to some concrete presheaf category C. If the answer is "yes', we say, somewhat
abbreviatedly, that A is a concrete presheaf category. Further, if the answer is"yes', we call
the category C in question, which we know to be determined up to isomorphism, the shape
category of A.

Starting with any concrete category A, we will construct two particular categories, C[ Al
and C* [ A] , suchthat, if A isaconcrete presheaf category, then the shape category of A is

isomorphic to both C[ A] and C*[A] . The second one, C*[A] , Isthe more "concrete"
construction.

Consider the concrete category A=C ,with |- | : A—>Set defined above. The Yoneda
lemma tranglates into the statement that El ( A) is the digoint union (coproduct) of full

subcategories E,;, one for each UDOb( Q) , and the object (U, 1) DU(U)) isan initial
object of E - Here, we have used the notation U:C(-,U) DOo(é) :

Let £ be any category. A partial initial object (PIO) of £ isan object that isinitial in the
connected component of £ (regarded as a full subcategory of £ ) to which it belongs.
Obvioudy, the property being a PIO is invariant under isomorphism inside &£, and is
preserved by an equivalence of categories.

For the concrete category C , the objects ( O, 1U) are PIO's; these we call the standard
PIO's. Further, the standard PIO's form a precise set of representatives of the isomorphic
classes of PIO's. every PIO isisomorphic to exactly one standard one.

Let A be aconcrete category. We construct the category C=C[ A] asfollows. We pick a
precise class % of representatives of PIO'sin El (A) : every PIO of El (A) isisomorphic
to exactly one member of % . Welet Gb(C) be the class (in good cases, a set) # . For
(Uuw, (V,v) in Z,anarow (U, u) —(V,v) in Cisanarow U—V in A
(without any reference to the elements u and v ). C hasthe forgetful functor (U, u) U
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to A, and this functor is full and faithful.

(2 Proposition Let A=(A, I-| A A—Set) be aconcrete category. Assume
that A iscocomplete, |- | A A—Set preservesal (small) colimits, and reflects
isomorphisms. (It followsthat |- | isfaithful and reflects colimits). Assume, moreover, that

*) El (A) isthedigoint union of a small set of full subcategories, each of which
has an initial object.

Then A isaconcrete presheaf category, with shape category isomorphicto C[ A] .

For the proof, which is elementary category theory, see the Appendix.

Let (A, I-1) beaconcrete category. An element of A, that is, an object of El (A) ,
(A a) ,isprincipal if a generates A:iff forany f:(B,a) >(A a) ,if f:B—>A isa
monomorphism, f isanisomorphism. (A, a) isprimitiveif itis principal, and for all
principal ( B, b) , any arrow (in El (A) ) (B, b) — (A, a) isnecessarily an
isomorphism.

Of course, "principal” and "primitive" are isomorphism-invariant properties of objects of

El (A) . Notice that any morphism between primitive elements of A is necessarily an
isomorphism.

3 Proposition Suppose that the concrete category (A, |- 1) satisfies condition
(*) in (1). Then an element (A, a) of A isprimitiveif anonly if itisaPIO.

Proof. Assumefirstthat (U, u) isinitia inthe component E of El (A) .

(U, u) isprincipa: suppose f: (A a) —>(U, u) ,with f: A—~B amonomorphism. Since
thereis an arrow between (U, u) and (A ,a) , (A, a) mustbelongto E. Since (U, u)

isinitial in E, thereisarightinverse r: (U, u) —>(A,a) to f , fr:1U.Since f is
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mono, f isan isomorphism.

Next, (U, u) isprimitive: assume (A, a) isprincipal and f: (A a) —> (U, u) . Again,
we have aright inverse r: (U, u) > (A, a) of f .Butthen r isasplit mono, and thus,
since (A, a) isprincipal, r isanisomorphism. It followsthat f isan isomorphism.

Conversely, assume (A, a) isprimitive. Let (U, u) beaninitia object of the component
of El (A) containing (A a) .Wehave f: (U ,u) >(A a) . Since (U, u) isprincipal
(see above), it follows that f isanisomorphism. ( A, a) , being isomorphic to the partial
initial (U, u) ,isitself partia initial. This completes the proof.

In view of (3), we modify the construction C[ A] above to C* [ A] , by changing the
references to PIO's to references to primitive elements. Of course, if A isa concrete presheaf

category, then, by (3), [ A] and C*[A] are isomorphic.

The following is a summary.

4 Theorem Let (A, [-1) beaconcrete category. The following conditions are
jointly necessary and sufficient for (A, |-|) to be aconcrete presheaf category.

() A iscocomplete, |-|: A—Set preservesall (small) colimits, and reflects
isomorphisms.

(i) (@  Thecollection of the isomorphism classes of primitive elementsof A is
small.
(b) For every element (A, a) of A, thereisaprimitive element (U, u)
with a morphism (U, u) —(A a) .
f

(A a)

g

(©) Whenever (U, u) isprimitive, and (U, u) in

El (A) ,wehave f=g.
(d)  Whenever (U, u) and (V,v) areprimitive, and there are arrows
(Uu) ——(Aa)«—(V,v) in EI(A) ,wehave (U u) (V,vV) .

If A isaconcrete presheaf category, then its shape category is isomorphic to C* [A] .

24



In this paper, | will show that the concrete category Conp of small computads satisfies
conditions (4)(i), (ii)(a), (ii)(b) , and does not satisfy condition (ii)(c). | do not know whether
or not (ii)(d) holdsin Conp .

By [H/M/P] , the concrete category of many-to-one computads satisfies all conditionsin (4). In
future work, | hope to isolate significant other concrete full subcategories of Conp that
satisfy al conditionsin (4).

In section 6, after the basics concerning computads have been established, we return to the
subject of this section, specialized to full subcategorieson Conp .
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2. wgraphs.
An w-graph X isgiven by a sequence of sets Xn , NONO{ - 1} , together with maps

d
Xn — Xn- 1
(we have abbreviated dn to d, c,toc ) for each n=0 , such that always X 1 isa
singleton, X 1:{ *} , and such that we have the following "globularity” conditions satisfied:
dd=dc , cd=cc (where, again, subscripts have been suppressed; they are to be restored in all
meaningful ways to obtain an infinity of commutativity conditions; this kind of abbreviation in
the notation of arrows will be practiced in other contexts as well). Elements of X, are the

n-cellsof X.

Morphisms of w-graphs are defined in the natural way. The thus-obtained category of small
| (gph )P

w-graphs, wG aph , is, clearly, the presheaf category Set , With gphw the

category generated by the (ordinary) graph

X

X1 n-

X5
OV

vy My

subject to the relations 6d=yd, dy=yy.

For convenience, for an w-graph X, we assume that the sets Xn are pairwise digoint, and

wite [IX|[= || X = % X_ . This assumption entails no serious loss of
nOND{ - 1} nOND{ - 1}
generality, since, obvioudly, every w-graph isisomorphic to one with said property.

We write di m(x) =n for xDXn .
The notation ||X|| is avoided whenever possible; e.g., we write xOX for xO||X|| .

Compared to the usual formulation, we have "formally” added acell * of dimension -1 and
declared that dX=cX=* for al XOXy - We say that a and b are parallel, in notation
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a||b , if da=db and ca=cb ; any two O-cells are paralel.

it X If d or c isappliedto *OX_ , ,itshould

We use the notation X <n to mean
- 1<nmen

mean * : d(*):c(*)_:* :

For alOX_ and k<n , we write d(k)a for dn'k(a) =d... d(a) ;smilarly for c in
" T
1 n- k

place of d . Notethat di n(d(®¥) a) =dim( (K a) =k .

ankxn denotes the pullback in

m
X X Xt X
oy ld( k)
0

In other words, ankxn ={(a, b) DanXn: c( K) a:d( K) b} . When c( k) a:d( k) b,
we say that an, b iswell-defined (abbreviated as an, b ) and equals ¢(*)a=d(K) b .

An n-graph, for nON , islike an w-graph except it only has mcellsfor m=-1,0,...,n

only. Every n-graph, for nD[Nﬂ w} , has, for every nxn , its mtruncation, an mgraph.

3. w-eategories

An w-category isan w-graph X, together with the partial -- or better: conditional --
operations:

1(_) : Xn%Xn_‘_1 (n=0)
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#k ; ankxn %Xn (n>k=0)

(a, b) Ha#kb
aAkbi

satisfying the conditions given below.

. . (n) - (k) _ :
Let us write, recursively, 1a for 1 for aDXk and n>k , with la daf @

1
("D

we have 1gn) OX,, - Any cell of the form 1gn) with allX isa k-to-n identity cell.

(Thus, #k is composition in the "geometric" order of arguments, we may write b °1@ for
a#kb . However, the "geometric" #, notation is preferred, and when below the juxtaposition

ab , or theform a b occurs, it will stand for 1gn) #klgn) with
n=max((dima),dimb)) and k=m n(dima),dimb))-1 )

The axioms on the operations are as follows; throughout, n>k>=0 and a, b, e, f OX, are
arbitrary.

Domain/codomain laws;

d(la) :c(la) =a;

da if k=n-1
d(a#kb) =

(da) #k(db) if k<n-1

ch if k=n-1
c(a#kb) =

(ca)#k(cb) if k<n-1
(Remark: note that if an b (a, bOX ) iswell-defined, that is, c(*) a=d(¥) b , and

k<n-1, then c(¥) da=d(®) db , by the laws of wgraphs;i.e, (da) o (db) is
well-defined and equals aAkb )
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L eft unit law:

I
(o

1(M -y
40K b
Right unit law:

(n)
# 1
a (k) g

I
QD

Two-sided unit law:
La#lp = 1a#kb

provided that a#kb is well-defined.

Associative law:
( a#kb) #ke = a#k( b#ke)

provided that a#kb and b#ke are well-defined.

(Remark: note that if a#kb and b#ke are well-defined, then

(k) (ab) =c(Kp=a(Ke=
and

(K a=d(Kp=dlk) by e,

thus both sides of the associativity identity are well-defined. In other words, under the
conditions for the associative law,
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(a#kb) € = bAke and aAk(b#ke) = aAkb :

Note, moreover, that, even before we know that they are equal, the two sides are seen to be
parallel.)

(Middle Four) Interchange law:
(a#kb)#z(e#kf) = (a#ze)#k(b#gf)

provided that k#{ , and the four "simple composites’ involved are well-defined.

(Remark: we assume that aAkb, eAkf , an e, b/\zf are well-defined; in other words,

(K a=g(Kp (K e=g(K)¢ (1)
C(Z) a:d( Z)e, C(Z) b:d( z)f : 2

Because of the obvious symmetry in the interchange identity, we may assume that, e.g., k</{ .
It then follows that

(0 a2 c(K (D2 g(Demc(Kg
and similarly, d(%) (b) =d(K) (f) . Thus

(K a=c(Kg=glk) (py =gk 5y 3

Since k<{ , we have

(O (anb) = (D (ayscl D (b,

d( 9 (ey#,dl D (1)

d( 9 (en, 1)

which are equal by (2), hence, the left-hand side of the interchange identity is well-defined.
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Since

(M at o) = (M (a) = d® (b) = d(X) (bi 1)
(by (3)), the right-hand side of the interchange identity is well-defined.

For future reference, let us record some facts just verified. Under the conditions of the
interchange law, when k</{ , we have

(Adéf ) aAkb = eAkf = (a#ze) /\k( b#zf)

and
with ¢d5f an,e , ¥ 45+ b/\zf , we have
(a#kb)Az(e#kf) = ¢#k(,u.

We can show by induction that, assuming interchange in lower dimensions, the two sides of
the interchange identity are parallel.)

The notion of n-category is the obvious truncated version of that of w-category. An
n-category X has mcellsfor m up to and including n ; the operation of identity awla IS
defined for aDX<n-{*} . Every n( <w) -category hasits mtruncation for any nxn .

A morphismof n( <w) -categories is a morphism of the underlying n-graphs that preserve, in
the direct and strict sense, all the n-category operations. Given n<w, we have the (ordinary)
category nCat of small n-categories. We have the truncation functors

(-) Pm nCat —nCat (nmen).

Inspecting the definition of "w-category”, we see that it is given by a finite-limit sketch

Sa} cat & that an w-category is, in essence (up to isomorphism), the same asa Set -model
of S . The morphisms of w-cats are the same as morphisms of models of S

w- cat w-cat -
) of modelsof S

Therefore, wCat , asthe category Nbd(Sa} cat > cat isan
essentially algebraic, that is, locally finitely presentable, category [A/R]. It also follows that
(small) limits and filtered colimitsin wCat are computed "pointwise". That is, limits and
filtered colimits in wCat are created jointly by the functors ( -) K: wCat — Set for

k[N .
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Analogous statements can be made for nCat (nON ).

The functor (-) M'n: wCat —nCat hasaleft adjoint (for the smple reason that it is a
limit-preserving functor between essentially algebraic categories), call it

(-)(®: ncat — secat , whichis easy to describe. For XoncCat , X(® hasits

n-truncation equal to X ; for all k>n , the k-cells of X( @) areal n-to-k identity cells;
their composition law is the only possible one.

Because of the innocence of the functor ( -) (@) :nCat — wCat , itisoften the case that

we regard the n-category X asidentical to the corresponding w-category X( @) .

For any nmxnlN , we have the truncation functor (-) 'm nCat —ntCat , and its left adjoint

(-) (n) , With properties analogous to the the above.

4. Adjoining indeter minates

Let X bean wcategory. Let U beaset, and ui>du, uj>cu two functions U— ||X||
such that, for each uOU, dul|cu . The elements of U are regarded as "indeterminate’
elements, each uJU of dimension n+1 if di n( du) =di n( cu) =n , waiting to be adjoined
to X asanew element, fitted into the dlot given by du and cu as u: du-—cu . The pair
(d, c) of functionsis sometimes referred to as the attachment of U to X.

Suppose X and U=(U, d, c) aregiven asabove.

Let's say that the triple (Y, X "> Y, U ||Y|]) , with an arbitrary e-category Y, morphism

I and set-map A as shown, also satisfying the commutativity

A

U Y

d, ch o l[d, cO
X[ [X[] s Y

[Pl
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isan extension of X by U. Inan extenson of X by U, we have the elements of U
"realized" as real cells, with domain and codomain that are given by what the (d, c)-data on
U and the "injection” of X into the extension say they should be.

Extensionsof X by U form anatural category Ext ( X; U) : an arrow

o, Xy, u M v o x ey u A

isamorphism Y— Y that makes the followi ng two diagrams commute:

r .y A Y
| o
ry A ||

A free extenson X by U isaninitial object of Ext ( X; U) . It easy to seethat Ext ( X; U)
is an essentially algebraic category. Therefore, the free extension of X by U existsand is
determined up to isomorphism. It is denoted

(UL x-Bxpa, u S Ixeal)

Extensions in our present sense may be regarded in a dightly different way. The data ( X; U)
-- meaning (X; U, d, c) asabove -- form, with all parameters varying, a category F of
"(extension) frames": an arrow

(XU —— (Y, V)

IS meant to be a pair (XLY, U@V) making the diagram
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U Vv

d, ch o l[d, cO
[IXI X[ s Y

[Pl

commute; composition in F isthe evident one. Note that every YOwCat givesrise to the
“tautological" frame r(Y)dgf(Y;(||Y||-{*}, d, c)) , withthe d and ¢ maps those

given by the w-category Y . We see that an extension (Y, XLY, UQ 'Y|) of X by U

to Y isthesameasamap ( X; U — 1(Y) . All thisamounts to saying that "free extension
is left adjoint to tautological frame":

T
DA

F T wCat
E

(XU +— XU

the pair (X— X[ U] , U@HX[ Ul ||) being the component at ( X; U) of the unit of the
adjunction &4t . Thisis useful: we see that, for any map (I, A): (X; U) —>(Y; V) of
frames, we have the corresponding "canonical” map &(TI, A): XU —Y[ V] . Thus, for
instance, if we have two sets UV of indeterminates for X, withthe d and c functionson
U the restrictions of those for V, we have the canonical map X[ U — X[ V] , given as
E(I dX’ i ncl UDV) :

We collect some plausible, and mostly easy, facts about free extensions.

Suppose we have frames ( X; U) and ( X; V) , with the same underlying w-category X.We
can do two things. On the one hand, we can consider X[ U] , and consider V as
indeterminatesin X[ U] , by using, for d: V—|[X{ U || , the composite

d r

% |IX]] XUl ||, and similarly for ¢ . This givesrise to the free extension

XU [V] .On the other hand, we may look at Uy (assuming, of course, that U and V
are digoint) , with the obvious d and ¢ on this set, as a new set of indeterminates for X;

thisgivesriseto X[ Uﬁﬂ . The claim is that



(1) XUV ad X{U™] are canonicaly isomorphic,

For instance, one way of seeing thisisto see that X[ Uﬂ/] has the universal property of
X[ U [V] . More precisely, we have the canonical arrow F: X[ U —— X[ Uﬂﬂ as

explained above; and we have Aoi - V!> UDV- ||X[ UM ||, with i the inclusion; we
can show that

(XLUBY], XU —Foxpuig, vt i x ubdg |y

isinitia in Ext (X[ U], V) .

(2 The canonical morphism I': X— X[ U] isan injection, and the imagesof ' and
A:U—||X[ U] || are digoint. Moreover, a composite of two elementsin X[ U] belong to
theimage of I only if both factors belong to theimage of T .

(Later well seethat A: U—||X[ U] || isinjective too.)

For the proof, see the appendix.

A subwcategory of an w-cat Y isan w-cat S for which ||S||0||Y|| , and the inclusion
mapping i : ||S|| > ||Y|| induces a (unique) morphism of w-cats. The subwcategories of Y
are in a bijective correspondence with subsets S of ||Y|| which are closed, that is closed
under the operations of domain, codomain, identity, and (well-defined) compositionsin Y .

For amorphism F: X—Y of w-catswhich isamonomorphism (equivalently (1), injective on
al cells), the concept of image of F is well-defined: we can take the subset

S={Fa: a0 |X|} of ||Y||,and define the w-cat operations domain, codomain, identity and
compositionson S compatibly with both X and Y, makingup S, asubcategory of Y .

We have that, for any monomorphism F: X—Y of w-categories, thereis a unique
factorization F=j oi suchthat j isanisomorphism, and i isaninclusionof a
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subacategory.

We can combine assertions (1) and (2) into

3 Given w-category X, and sets U and V of indeterminates attached to X, the
attachment of U being the restriction of that for V, the canonical map X[ U —— X[ V] is
an injection.

Thereasonisthat X[ V] =X[ UJ(V-U)] is, by (1),thesame X[ U] [ V- U] , and
XU —X U ][V-U is by (2), aninjection.

We also have the following corollary of (1) and (2), which is something one really cannot do
without:

(49 Thecanonica map A: U—||X[ U] || isan injection.

Proof. Let u be any fixed element of U. By (2), we may regard X[ U] as

X[ U-{u}][{u}] . We have the canonical maps Al:{u} —X[U-{u}][{u}] and

L XU {u}] —XU{u}][{u}] .By (2), the images of A and My aredigoint. It is
clear A(u) :Al( u) and AM U {u}) factorsthrough the map \rl\ . It follows that
A(u) OA(U-{u}) (direct image). Since uU was arbitrary, the assertion follows.

It isimportant that Y=X[ U] , initially given by an "externally attached" set U, can in fact be
written as X[ V] where V=A(U) , thedirect imageof U under A: V isaset of cellsin
Y , and its attachment to X -- which is, or rather, may assumed to be, a subwcategory of Y
(see (2)) -- isgiven by the "internal” domain and codomain functions of Y . Thisis true
because of (4).

Next, | am going to reformulate (3) as the statement saying that if, in agiven w-cat of the
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form X[ V] , | takeasubset U of V, and form the subcategory X[UO generated by XOU,
then X[UDO isinfact X[ U] , the extension of X by U. However, | will do it carefully.

Let Y bean w-category, X asubwcategory of Y ,and U asetof cellsin Y. Let X[UO
the least subset of ||Y|| that contains ||X||0U and closed under the operations of taking
identities and well-defined composites. Note that, for any fixed n , XEUE}1 isthe least set

def
Z suchthat X 0z, U 0Z (U "="UnY,) , bOXIUL, 4 = 1,0Z, and &, b0Z,

a#kbi — a#kb O0Z. Ifitisthe casethat for all udU, we have du, cullX, thenitis
easy to see that X[UL becomes also closed under "domain" and "codomain”, and thus, it isa
subawcategory of Y .

This last situation takes place when Y isthe free extenson Y=X[ V] , with V aset of
indeterminates internally attached to X (in particular, ||X||,VO||Y||) and U is a subset of
V. What we just said applies, and X[UO is a subwcategory of Y .| claim that, in fact,
XIUGX[ U] , meaning that the incluson X— X[UO has the universal property of the free
extension N X—>X U] .

Consider an abstract instance of the free extension I': X— X[ U] . The universal property of
[ givesusamap [ X[U] >X[V] that istheidentity ontheset ||X||0U. By (3), T is
injective. Itsimage is clearly the same as X[UO. Therefore, [ induces an isomorphism

r: X[ U] %XEUD. We have shown that X[ U] [X[UO as promised.

We have shown:

5) Given afree extension Y=X[ V] , with internal indeterminates V , then for any subset
U of V, X[UO isthefreeextenson X[ U of X by U.Moreover,

XV =X[U V-1 .

We now consider finite iterations X[ Ul] C. [Un] , and infinite iterations

X fﬂ =X Ul] - [Un] ... Of the operation of forming free extensions.
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Let X bean w-cat, and assume we have the following (in what follows, superscripts such as

in X' do not mean exponentiation):

the w-categories X" for nON , with XO:X;

for nON- {0} , the set U" of indeterminates attached to Xn'l (by "parallel” maps
d

n—-—jn-1 n_yn-1, n

U _ X' || ) such that X" = X"~ [ U] .

We then have the injective maps (see (2) and (4)) rn. xN- 1%Xn AU \Xn\ :

We can form the directed colimit

X[Cﬂ = col i mx" .
def nCUN
Filtered colimitsin wCat are created by the forgetful functor to Set . It follows that the
colimit coprojections ¢n: XneX[ lj] are injective.
n

For convenience, we assume that the sets U are pairwise digoint. Welet U= \9 U
nCON- { 0}

By iterating (4), we get that the induced map ¢ U ||X[ U] || isinjective. Let V=g(U) , the
direct image of . Thus, we have that Y=X[ lj] can also be written as Y=X| CJ] =X[ \7] ,

with the obvious meaning for V=0" O o- {0} ; the attachment of V isinternal to Y (that
is, the attachment values dv and cv arethesameas dv and cv inthesenseof Y).

Let Y bean wcat, X asubacat. Consider asubset U" of ||Y||, foreach n=1, such

that uOU" implies that du,cudxUs" 1n (where usn-1- U U™): in this case we
men- 1
say that the system U= Eh is self-contained. If so, then we have that, with U= | J ! ,
n

X[UD isasubacat of Y ; also, X(WO= || X0US" O (directed union).
n

Note that if Y=X] \7] , an internal iterated free extension, then we have that V is

self-contained and  Y=X[V[J; moreover the system Vs digoint: VThW'=0 for men (see
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(2)).

(6) Let Y:X[\7] be an internal iterated free extension, V= | J v , U adigoint
n
self-contained system of elementsin Y with total set U= | J U=V . Then Y isthe iterated
n

free extension X[ Lj] of X.

Proof. Using (5), by induction on n , we prove that xUs" C=X[ Ul] — Un] , With the
obvious canonical inclusions. Passing to the colimit makes the assertion clear.

Note that (6) allows usto write X[ V] as X[ V] , with V thetotal set of V,since X[ V]
dependsrealy only on V and X.

We have the following generalization of (5):

@) Let Y=X] \7] =X[ V] , aninternal iterated free extension as explained above,
V= J V' and let, for each nz1, U0V, and assumethat U= Eunq1 isdigoint and
n

self-contained. For the total st U of U, XUO isthe iterated free extension X U] =X[ U]
of X by U.Moreover, X{V]=X[U[V-U] .

Note that we did not assume U'DV" | only Uov.

Proof. First, we show the assertion under the stronger assumption UV foral n.
Secondly, we reduce the general case to said special case as follows. Given the data asin (6),

we construct a digoint self-contained system W ( \/\An\I\(n:D for n#zm) with total set WtV

such that, for each n, U"OW . This construction is left as an exercise. By (6), Y=X[ \7\] :
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and we have made the promised reduction.

We will need the operation of freely adjoining n-dimensional indeterminatesinaset U to
an (n-1)-category X, to obtainthe n-category X[ U] . Thisis essentially a special case of

our construction above, since X may be regarded to be an w-category, namely X( @) .In

fact, it is not necessary to bring in the object X( @) , Since everything we want has an
obvious, direct expression in terms of ( n- 1) -categories and n-categories.

We want to state a result to the effect that, from X[ U asamere w-category, under certain
conditions we can recover X and U.

Let Y beany <w-category.

Recall the notation 121”) . Fora k-cell a, k<n , we say that 1gn) isa k-to-n identity
cell.

Let nON . We consider the following condition (Cn) on Y:
(Cn) Whenever /<n, k<n, X, yoY, , and x#zy is well-defined, if x#zy isa
k-to-n identity, then both x and y are k-to-n identities.
Condition(Cn) saysthat Y isthe "opposite” to being an n-groupoid.
Let nON and XDYn . Let ussay that x isindecomposable if the following hold:

(i) x=#1 foral yov, and

n-l;

(i)  whenever v, zOY,, k<n and X=y#, .z , we have that either y or z isa
k-to-n identity (and x=z , respectively, x=y ).

(8) Proposition For any (n-1)-category X satisfying (Cn_ 1) , and any set
U of n-indeterminates attached to X, we have the following:
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(8.2) X[ U satisfies (Cn) :
(8.2 The canonical map A: U—( X[ U]) n IS one-to-one.

(8.3 The image of A consists exactly of the indecomposable n-cells of
X[ .
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(8.9 The canonical inclusion I': X— X[ U] isan isomorphism onto the
(n-1) -truncation of X[ U] .

(The conclusions (8.2) and (8.4) are already known, under more general conditions.)
For the proof, which is similar to that of (2) but more complicated, see the appendix.

Let us note that without assuming ( Ch- 1) for X, even when we drop (8.1) from the
assertion, (8) becomes false: take the example when n=2 , and X isagroupoid.
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5. Computads

A computad isan w-category of the form 0] Lj] , that is, an iterated free extension of the
empty (initial) w-category O (which till has * 00 1 ).

An alternative definition, equivalent to the first one, is as follows.

n-computads, for nlN , are defined recursively; each n-computad is, in particular, an
n-category.

A 0- computad isa 0O- category: a set.

An n-computad is any n-category isomorphic to one of the form X[ U] , where X isan
(n-1)-computad, and U isaset of n-indeterminates attached to X .

A computad isan w-category whose n-truncation isan n-computad, for each nCN .

It is important to realize that the indeterminates are not "lost" in the wording of the definition.
Indeed, as a consequence of 4.(8), the indeterminates of a computad are exactly the
indecomposable cells.

To emphasize what we just said, we rephrase the definition as follows.

Let X bean w-category. Let Xtn the n-truncation of X, and let U, denote the set of all
n-indecomposablesin X, attached to Xn internally. Then X isacomputad iff, for al
nzl, (X, X, 1—>X, AU = [X [) with I, A denoting inclusions, is a free
extension of X by U, -

A corollary is

Q) If X isacomputad, and X' isan w-category isomorphicto X, then X isa

computad as well. Moreover, any isomorphism f: XAX’ of w-categories between

computads X, X' takes any indeterminate in X to an indeterminatein X .
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A morphism F: X—Y of computads X, Y isamorphism of w-categories that maps
indeterminates to indeterminates. We obtain the category Conp of small computads, with a
non-full inclusion ®: Conp — wCat . By (2), @ isfull with respect to isomorphisms: the

restriction @ Oorrp* ewCat* isafull inclusion (for a category C, C isits underlying
groupoid).

For acomputad X, [X| denotes the set of itsindeterminates: (X = || XI =1/ IX|
nLUN nUN

where [X] n isthe set of n-indeterminates (indecomposables of dimension n ). We have the

forgetful functor |- | : Conp — Set .

A special case of 4.(8) is

2 Let X beacomputad, UO |X| ; write U,=Un IXI . Assume that uty, implies
that du,cull DJn_ 1 O (for this, we say that U is a down-closed set of indeterminates).
Then 0[UO, the subwcat of X generated by U, isacomputad, and |0[UO =U.

(2) tells us how to generate some of the subobjects of an object of the category Conp . To
show that we obtain all subobjectsin thisway requires more work. To anticipate that result,
for any computad X, we call an subwcat of X of the form 0[UO with U a down-closed
subset of |X| asubcomputad of X . By (2), any subcomputad is a computad on its own
right.

3 The category is small-cocomplete, and the functors ®: Conp — wCat ,
- |: Conp—Set preserve all small colimits.

Thisis essentially clear from the definitions; for details see the appendix.

4) The functor |- | : Conp — Set isfaithful and reflects isomorphisms.
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Proof: see appendix.

In what follows, we let X be acomputad; a, b, . .. are arbitrary elements of X,
u, ..., X, ..areindeterminates of X.

The following is an important tool.

5) Lemma There is a unique function

suppy =supp @ [ X[ ——P( IX)

satisfying the equations
supp(*) =0
supp(x) ={x} Osupp(dx) Osupp(cx) (xO [XI)
supp(1,) = supp(a) (a0Xx)
supp(a#kb) =supp(a) Osupp(b) (a, bOX)

Moreover, for all alX,

supp(da) , supp(ca) aresubsetsof supp(a) ;

supp(a) O X _y; ma)
supp(a) O X <di m(a) - 1 — azlb for some b .
supp(a) isafinite set.

Proof: see the appendix.

We think of supp(a) , the support of a , asthe set of indeterminates "occurring” in a .

Before we proceed, let us make a general remark. The fact that X=0[/X| O trandates into
the following "computad induction” principle. Assume P is a property of elementsof X,
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PO|X| . Suppose we have the following four conditions satisfied:

(i) *0OP;

(i) foral xO [X| : X<O|i () P —— x0P;

(iii) for al bDX>0: bP — 1,0P;

(iv) forall b,e and k: (b#kei&bDP&eDP) — b#ke OpP.
Then P=|X| .

Skeptics may see the appendix.

(6) (1) supp(a) isadown-closed subset of [X| and alU[supp(a) .
(i) Given F: X—Y in Conp, let al0X. Then the direct image of supr( a)
under F is suppY( Fa) . In other words, F induces a surjective map

suppy(a) —>suppy(Fa) .

Proof: straight-forward computad induction; see the appendix.

(7)  Suppose X isasubcomputad of Y .

(1) For alX, supr( a) :suppY( a) .

(i) If alX, then suppY( a) O [X| . Hence, suppY( a) istheleast
down-closed subset U of |Y| for which all [UL.

(iii) A subset U of |Y| isdown-closed iff for al uOU, we have
suppY(u) Ou.

vy Whenever a, bOY, a#kb is well-defined and a#kb 00X, then a

and b both belongto X.

Proof. (i) isaspecial case of 6.(ii). (ii) and (iii) follow from (i) . To prove (iv), assume the
assumptions. suppx( a#kb) :suppY( a#kb) :suppY( a) O suppY( b) , hence,
suppY( a) O suppx( a#kb) 0 IX| . Since alll E‘suppY( a) O, we have ald (X O=
X. Similarly, bOX.
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(8) Let F: X——Y be amap of computads.

0] F( IX) , thedirect image of |X| under F,isadown-closed set of
indeterminates of Y .

(i)  For any down-closed subset V of |Y| ,theinverseimageof V,

f- 1(\/) ={x0 Xl : f(x) 0OV} isdown-closedin X. (In (10)(ii) below, we'll see that, in
fact, 1f 1 Y(w)=f"1(v) )

(ilf)  Pullbacks of diagramsin Conp in which one of the arrows is a monomorphism
are preserved by the forgetful functor |- | : Conp —> Set .
(iv)  Small colimitsin Conp are stable under pullbacks along monomorphisms.

Proof. (i) and (ii) follow from (6) and (7); (iii) follows from (ii). (iv) follows from (iii) and (3)
and (4).

9 Let F: X——Y be amap of computads.

(i) F isfactored in the category Conp uniquely as F=i «P where i is
the inclusion map of a subcomputad of Y ,and [P| issurjective.

(i) F isamonomorphismin Conp iff it (that is, ®( F) for the inclusion
O: Conp > wCat )isamonoin wCat iff [F| isinjective.

(i) F isan epimorphismin Conp iff |F| issurjective.

(iv) The subobjects of a computad X, in the sense of the category Conp ,

are the same as (are in a bijective correspondence with) the subcomputads of X .

Proof: see the appendix.

(10) Let F: X—Y be amorphism of computads, nCN , alX, . Then

(1) a= 1da ~— Fa= 1Fda
(i) a isanindeterminate < Fa isan indeterminate.
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Proof. The left-to-right implications are clear.

For < in(i): If Fa=1lc,, . then supp(Fa) O Y] n-1° by (7), it follows that
supp(a) 0 X n-1 hence, by (5), the third "moreover" statement, azlda .

For (ii), first of all notethat by (i), if b=Fa, and b=1{") , a k-ton identity, then

azl((an) , for asuitable e , and Fe=f . Assume a isnot an indeterminate. We use 4.(8):
we have that a is not indecomposable, i.e., a:alqtrfka2 where neither a, nor a, isa
k-to-n identity. Then, by what we just said, neither Fa1 nor Fa2 isa k-to-n identity,
and Fa:Fal#kFa2 Is not indecomposable, i.e., not an indeterminate.

Let uscal acomputad X finiteif |X| isafinite set.

Let aldX . Since supp(a) isdown-closed, Supp( a) d5f OCsupp(a) Oisa
subcomputad of X . Since [Supp(a) | =supp(a) , Supp(a) isafinite computad.

Given two finite subcomputads 0 [UO, OOV, defined by the finite down-closed sets

U, VO X , UV isfinite and down-closed (obviously, any union of down-closed sets of
indets is down-closed). We can form the finite subcomputad U [UJV . This shows that the
Set Sfi n( X) of finite subcomputads of X ordered by inclusion is directed.

The union of all the elements of St n( X) is X, and thisunion is a colimit (see (3)). We
have shown that every computad is a filtered colimit of finite computads.

It is easy to see that a finite computad is finitely presentable (fp) object of Conp . In fact,
since aretract, in fact, any subcomputad, of a finite computad is finite, the finite computads
are exactly the fp ones.

Since, by (3), Conp has all small filtered colimits, we have shown that Conp isan

Do-acc ble category. Since it is small-cocomplete ((3)), it isalocally finite presentable (I1fp)
category. In particular, Conp issmall-complete.
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Unlike in most of the Ifp categories appearing in practice, in Conp , it is not the limit
structure, but the colimit structure, that is familiar. The limit structure is complicated, and, to a
large extent, "unknown". The terminal computad is "large"; its set of indeterminates is
countably infinite. Although, as we later show, it is a structure with a recursively solvable
word problem, it is "very complicated”.

(11) Arbitrary intersections and unions of down-closed sets of indets are again down-closed.

The down-closed sets of the form supp(x) , x anindet are join irreducible:

supp(x)=1J Ui , each Ui down-closed, imply that thereis i suchthat supp( x) :Ui .
[

All down-closed sets are unions of ones of the form supp(x) , X anindet. The subobject
lattice of X isacompletely distributive lattice.

We like to call arbitrary elements (cells) of a computad pasting diagrams (pd's).

Next, we introduce a concept of "multiplicity” of anindetinapd a.Let X be acomputad.

The elements of 7 X are the multisets of indeterminates. The elements of the subset

| X] . - > .
X I of I are the vectors (functions) me Eh;( E&D X ( nl(—n( x) ) for which
only finitely many m, is non-zero; these are the finite multisets of indets. Multisets form an
Abelian group under componentwise addition + ; finite multisets form a subgroup.

Obvioudy, the Abelian group X| LI isthe free Abelian group generated by the elements of

| XI| ; accordingly, we may write DT;( q(D N x% x m, X . Still, we prefer the

functional notation ()rfr? to mix .

The multiset m is non-negative if m, =0 for all x . We also use the partial order

> —

MEN < Nn- m is non-negative.

In the next proposition, we define the content [a] of apd a inacomputad X.[a] is
intended to be the multiset of all the indeterminatesin a , with each indet counted with the
proper multiplicity. The definition given here does not have a certain expected property:
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(*?) When X isacomputope, [rrk] X( u) =1 foral ul X

(computopes will be explained in the next section). | do not know if there is a content function
with (*) and all the properties (v) to (x) in the next proposition.

(12) Proposition

There is a unique function

[-]:[-]X: Xz-l% X[ I

satisfying the following equalities:

(i)

(i)
(iii)
(iv)

Moreover, we have

(v)
(Vi)
(vii)
(viii)
(ix)

)

[*] =0
[x] =(7) +[dx] +[cx] (xOIXI)

[1,] =[a] ((alXyq)

[a#, b] =[a] +[b] - [anb] ((a bOX,,, a#b )
[a] =0

[da] ,[ca] <[a]
[a], [ b] s[a#kb]
[a] (x) >0 —— x0supp(a)

Forany F: X—Y in Conp and any alX,_ . yoivr,
[Fa] \(y) = [a] (x)
Y o L
Fx=y
xOsupp(a) = [x]<[a] .

Proof: see the appendix.
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6. Multitopes and computopes

As an application of 1.(4), we discuss multitopes and multitopic sets.

Let X beacomputad. An indeterminate x0 |X| ismany-to-oneif cx isan indeterminate.
X itself is many-to-one if al indeterminatesin X are so.

The full subcategory of Conp on the many-to-one computads is denoted 00an 1- As
usual with subcategories of Conp , we regard Oorrpm 1 @saconcrete category, with  [X]
the set of all indets of X (XDOorrpm 1 ).

Our starting point is aresult that is a consequence of theorems proved in the papers [H/M/P]
and [H/M/Z].

Q) Theorem 00an 1 iS a concrete presheaf category.

The shape category of Corrpm 1 is called the category of multitopes; itisdenotedby Mt .

In some detail, the reasons for the truth of the last theorem are as follows.

In [H/M/P], the concept of multitopic set is introduced. The category M t Set of multitopic
sets is defined, the category Mt of multitopesis defined, and it is proved that M t Set is

Mt OP

equivalent to M t = Set . Although it is not stated explicitly, it isimplicit in

[H/M/P] that, in fact, M t Set isequivalent as a concrete category to M { , Where the
forgetful functor |- |: Mt Set — Set isdefined as explained in the Introduction, part (C).

On the other hand, in [H/M/Z] it is shown, among others, that M t Set isequivalent to
00an 1- Again, it is not explicitly stated, but it isimplicit that M t Set and Oorrpm 1
are equivalent as concrete categories, with the same forgetful functors as before.
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Combining the two facts, we get that 00an 1 and Mt are equivalent as concrete
categories.

In section 1, we gave a characterization of concrete categories equivalent to a concrete
presheaf category (see 1.(4)); thiswill give a characterization of the multitopes mentioned
above. Keeping that characterization in mind, let us call a (not necessarily many-to-one)
computad X acomputope if thereis xU |X| suchthat (X, X) isaprimitive element (see
section 1) of Conp .

Note that the element ( X, x) of Conp isprincipal (see section 1) iff X:Suppx( X) .

Suchan x in |X| asinthelast sentence, if it exists, is unique, since, for any computad X
and x0O X/ , Suppx(x) has a single indeterminate of the dimension equal to that of
Suppx(x) , hamely x itself; hence, Supr(x) :Suppx(y) for x, yO IX| implies

x=y . Theindet x suchthat (X, x) isprincipa iscalled the mainindet of X, and denoted
m . We are justified in using the adjective "principal” in referring to a computad, rather than a
pointed computad (an element of Conp ). Every computope is principal.

For X acomputope, any self-map X— X (in Conp ) is necessarily an isomorphism: we
know that any map ( X, nk) — (X, nk) in El (Conp) isaniso, and we just saw that for
any f:X->X,wemusthave [f | (my)=m,.

Obvioudy, a principal computad is finite as a computad. For any finite computad X,
di m X) isdefinedas max{di m(x): x0O[X } . Foraprincipal computad X,
di m( X) =di m( nk) :

It isclear that if X—Y isany map of finite computads, then di n( X) <di n(Y) .

Note the obvious facts that a computad map f: A—B of principal computads A, B isan
epi iff f issurjective (on indets) iff f(mA) =g iff di m(A)=di m(B) .

Computopes can be equivalently described as those computads X which are principal, and
for which any epimorphism Y —X from aprincipal Y to X isnecessarily an isomorphism.
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We let Cont ope be the full subcategory of Conp whose objects are the computopes.
Cont ope* is defined to be the skeleton of Cont ope : any skeletal full subcategory of

Cont ope for which the inclusion Cont ope* — Cont ope isan equivalence.

We isolate four properties of a variable full subcategory C of Conp ; we will point out that
each property isshared by C = 00an 1-

€)] C isasevein Conp ;if X—Y isamap of computads, and Y isin C, then
sois X.

(b)  C isclosed under small colimitsin Conp .

(©) If f: A—B in Conp issurjective, and ALC , then BOC .

(d)  C isaconcrete presheaf category.

Note that (d) implies (b), by the (obvious) necessity condition (i) in 1.(4), and the same
condition holding for Conp .

5.(10) immediately implies that (a) is satisfied by Oorrpm 1 -

If F: X—>Y isamap of computads, and xU |X| ismany-to-one, then F(x) O Y| isaso
many-to-one. Therefore, if {Fi : X eY}i 0l isajointly surjective (on indets) family of
morphisms of computads, and each X IS many-to-one, then Y is many-to-one. It follows
that 00an 1 satisfies (b) and (c).

Let C be an, otherwise arbitrary, full subcategory of Conp satisfying (a) above. We observe
that

(1.0 for X in C,and xO |X| ,tosay that (X, x) isaprincipal, resp. primitive,
element of C isequivalent to saying that ( X, X) isaprincipal, resp. primitive, element of
Conmp , i.e, that X isaprincipal computad and x=m, respectively that X isacomputope

and x=m, .
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We have noted that, for principal computads, in particular computopes, X and Y, XOY in
Comp iff (X, ”5() a(y, n\() in El (Conp) . This means that the category C*[Corrp] ,

*
constructed in section 1, isisomorphic to Cont ope .

For any sieve C in Conp , welet Cont ope*C, be the intersection Cont ope* nC,aseve

(in particular, a full subcategory) in Comnt ope* .

A one-way category L isacategory in which there are no "descending” infinite chains

consisting entirely of non-identity arrows. It follows that L is skeletal, and we can define a
dimension-function di m on objects, taking values that are natural numbers, such that the
presence of a non-identity arrow f: A—B impliesthat di n{ A) <di n(B) .

A category L issaid (here) to be finitary if, for each object B, the sieve
{fOArr(L):cod(f)=B} isafiniteset. In section 11, we will prove

2 The skeletal category Cont ope* of computopes is finitary.

The quality of being both one-way and finitary is that makes M t P aFOLDSs gnature, in
the sense of [M1]. [M2]. This property of Mt was evident on its definition already, but here
we see that thisis a "necessary quality” of Mt .

One of the main results of this paper is that the condition 1.(4)(ii)(b) holds in the category
A=Conp .

(3) Theorem If X isany computad, x[ [X| , then there exist a computope X and a
morphism f: X—A in Conp suchthat [f | (m)=x .
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The proof will be given in section 11.

The following theorem is a summary, obtained from 1.(4) when we take into account what we
have said in this section so far.

4) Theorem Suppose that the full subcategory C of Conp isasievein Conp
(satisfies (@)). Then C isaconcrete presheaf category if and only if C satisfies conditions
(0), (i) and (ii) below.

(0) C isclosed under small colimitsin Conp (satisfies (b)).
(i) For any computad Z in C:

(i)Z if X isacomputope, and Xf:Z aremapsin Conp such that
it (nk) =g/ (nk) , then f=g . In particular, every sehg-map of acomputopein C isthe
identity.

(i) For any computad Z in C:

(ii)Z whenever X and Y are computopes, and XLZ&Y are

mapsin Conp suchthat If | (my)=Igl(m,) , then XOTY.

If so, the shape category of C isisomorphic to Cont ope*c ,and Cont ope*c isa
finitary, one-way category.
When C is Oorrpm 1 we have al of (a), (b), (c) and (d) satisfied. We conclude that

the category M t of multitopes, the shape category of Oonpm 1 is isomorphic to
the skeletal category of all many-to-one computopes.

The theorem offers some hope for a new and softer proof of the fact that Corrpm 1 isa
concrete presheaf category.

Inspired by the example of Oorrpm 1 »Weuse the following terminology. Let Z be a
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computad, z anindeterminatein Z . If X isacomputope, and f: ( X, nk) —(Z,z) (in
El (Conp) ), wesay that X isatypefor z, z isaspecialization of nk,and f isa
specializing map for z (or, for Z if Z isprincipal). The condition (4)(i)Z says that, once the
type is fixed, the specializing map of any z[ |Z| isunique. (4)(ii)Z says that the type of any
zO|Z| isunique up to isomorphism (which, of course, is the most we can expect). We know
(see (3)) that every indet in every computad has at least one type.

One might wish to talk about a type of an arbitrary pd in a computad, not just that of an indet.
However, thisis not really more general. Let Z , X be computads, a apdin Z, a apdin
X', both of dimension n ; assume Z:Suppz( a) ,X:Suppx( a) .Let x, & be"new"
indeterminates, both of dimension n+1 , x attachedto Z by dx=cx=a, & to X by
dé=cé=a . Then we have a bijection of maps, depicted as

X[ &] ———Z[x]

X——>Z7Z :: d~>a

This says that talking about a type for a isthe same as talking about a type for the "new"
indeterminate x: a—a .

In particular,

every hereditarily many-to-one indeterminate (an indet in a many-to-one computad) has
a unique type, and a unique specializing map.

In the logical language of FOLDS (see [M1], [M2]), corresponding to many-to-one computads,

we have structures of a fixed FOLDS signature, namely M t op ; corresponding to the
indeterminates in a computad, we have the elements of the structure; corresponding to the type
of an indeterminate, we have the kind of the element; corresponding to the type together with
the specializing map, we have the dependent sort of the element.

Coming to the example when C ischosen to be Conp itself, (4)(i) fals; in particular,
Conp isnot a concrete presheaf category. To show this, first we make some remarks of an
elementary nature.

55



We remind the reader of the Eckmann-Hilton identity. Suppose that, in an w-category, X isa
O-cell,and u and v are 2-cells, both of the form 1y— 1X.Then al of u#ov , v#ou ,
u#lv : v#lu are well-defined, and they are all equal. Thus, hont 1X, 1X) , the set of all
2-cells of the form 1Xe 1X , IS a commutative monoid, and both compositions, #0 and
#1 for 2-cellsin hom( Iy 1X) coincide with the monoid operation.

Conversely, any commutative monoid M can be turned into a 2-category Z with asingle
0-cell, asingle 1-cell (the identity), and 2-cells the elements of M, with both compositions
of 2-cells given by the monoid operation.

Let now Y beacomputad suchthat Y hasno 1-indet: Y| L followsthat all 1-pd's
(= 1-cells)in Y areidentities, every 2-pd (= 2-cell) in Y isof the form 1Xe 1X , and
hom( 1X,1X) Is the free commutative monoid on the set of indetsin hon{ 1X,1X) asfree
generators. (The universal property of the computad Y played against the 2-category derived
from the appropriate free commutative monoid will give that hon( 1X,1X) isfreeasa
commutative monoid).

Let X be the computad generated by the O-indet X, the distinct 2-indets u, v and w, al

of the form 1y— 1X,and the 3-indet u D/ﬂw. | claim X isacomputope. First, it is
clearly principal, X=Supp( ¢) .

To show that ( X,¢) isprimitive, let Y be aprincipal computad, Y=Supp( cf)) with a

2-cell $,and|et F: Y— X beamorphism; F( $) =¢ . Thereisno 1-indetin Y, since
thereisnonein X ; what we said above about such computads Y applies. In particular, for

some O-cell )A(, chb and d:f) are elements of the free commutative monoid

Mehon(1,,1.) . F inducesamonoid map F: M->M for Mehom( 1y, 1,) in X, which,
X X

in addition, maps free generators to free generators. Therefore, since F( ¢ $) =c¢=w and

N

F(d¢) =d¢=u [V , we must have that c$=w, d¢=U ¥ forindets W, U, VOM.
We see that supp.( $)={X, U,V, W, ¢) andthat F induces an isomorphism

SuppY( $) %X.Since Y isprincipal, Y:SuppY( (f)) ,and F: Y—>X isan
isomorphism as needed for the claim. We've proved that ( X,¢) is primitive.
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There is the non-trivial automorphism a: X— X that switches u and v , and leaves all other
indets the same: this works precisely because of the Eckmann-Hilton identity. We have found
a computope with a non-trivial automorphism, as promised.

In fact, the same computope X can be used to show that Conp isnot equivalent, even in the
"abstract”, non-concrete sense, to any presheaf category. To make the argument below more
interesting, we again make some general observations concerning when a full subcategory of
Conp s, abstractly, a presheaf category.

In any category C , we call small the objects A of C for which C(A, -): C—C commutes
with colimits. The small objects of C , under the assumption C ~ C, are the ones that

correspond under the equivalence to retracts of the representable functors C(-, X) in C.
We also have that every object in C isa colimit of small objects; thisisinherited from the

presheaf category C.

Recall (1.1) above, about the use of the words "principal” and "primitive".

5) Let C be afull subcategory of Conp . Assumethat C isasevein Conp (satisfies
(@), C isclosed under colimitsin Comp ((b)), and, on itsown right, C is a presheaf
category. Then

() Every C-small object of C isprincipal, in particular, small in the sense of
Conp ;

(i)  Every primitive object of C is C-small.
If, in addition, C satisfies (c) above, then

(i)  Anobjectin C is C-smal if and only if itis Conp-small.

For the proof, see the appendix.
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Let us return to our particular computad X introduced above. X isnot small in Conp , asit
IS shown now.

Let Y be the computad, avariant of X, which is generated by the O-indet X, the distinct

2-indets u and w, both of the form 1Xelx,and the 3-indet u mﬂw. Let Z be
Suppx(u) . We have the diagram of Conp-morphisms

F
z?; x—H.y 6)

where F, G H aredetermined by F(u)=u, G(u)=v, H(u)=H(v)=u . (6) isa colimit

diagram in Conp , since upon applying |-| to it resultsin the diagram
u—u
— ub>u, Viu
{X, u} v {X, u, v, w WSW {X u, w

which is a coegqualizer diagram in Set . When we "hom" into (6) from X, that is, consider
the diagram

hon( X, F
hor( X, 2) om % B hom( X, X) —POMXH) onix, vy |
hom( X, ©

we get
0 {

BN 1)(’ a} —{H

(here, a isthe non-trivial automorphism of X found above), which, of course, is not a
colimit diagram.

X isnot small, but it is primitivein Conp as we saw before. Therefore, by (5)(ii) applied to

C=Conp , Conp cannot be a presheaf category. More generaly, no C satisfying the
hypotheses of (5) can contain X as an object.
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7. Wordsfor computads

This section is devoted to a precise formulation of the word problem for computads. It is the
natural formulation, following directly the definition of w-category given in section 2.

The definition here is but an inessential variant of Jacques Penon's word-oriented, syntactical,
definition of computads (polygraphs) in [Pe].

At the end of the section we give the precise statement of the theorem saying that the word
problem for computads is solvable. The definition of the word-problem for computads is given
here in its most direct manner in order to make the statement of that theorem as natural as
possible. As a matter of fact, in the course of the proof of the theorem later in the paper, we
will have to reformulate the word problem itself into a different, albeit equivalent, form.

The syntax for the word problem for computads is more complicated than the analogous
syntax for free groups, and free constructions in general for algebraic structures of the usual
kind, since the condition of being well-defined for a formal expression denoting a cell of a
higher-dimensional category is non-trivial: it is defined in parallel with the essential
equivalence of expressions.

First, we give "global" definitions for words, their well-definedness and essential equivalence.
The relevant concepts for particular computads will be obtained by taking appropriate
restrictions of the global ones.

Let us mention one important choice made in the definition that may not be a priori the
obvious one. This s that the operations of domain and codomain do not have direct symbolic

representations; rather, "domain” and "codomain™ become operations on words (this feature is
also present in Penon's approach).

In this section, no proofs of assertions are given. With the exception of the proof of the
theorem at the end of the section, to be given later, they are al routine.

Words with prescribed dimensions are defined "absolutely freely” in the following inductive
definition. We write W, for the set of words of dimension m; here, niNO{ - 1} .

W]_:{*}-
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For nON :

= 5
f
vvi

with

{(0,n, & a,b): &0V, a, bDVY1-1} ,
0 if n=0

{(1,n,a): aDVY]_ 1} if n>1
{(2,n,k,a,b): O<sk<n, a, bDVY]}

v

(In other words, We \9 W, isthe least class for which the above equalities hold. The

nme-1
parentheses indicate ordered tuples (quintuples, triples, quintuples, respectively) in the

set-theoretic sense. V isthe universe of all sets. )

The elements of V\2 are the pre-indeterminates, or pre-indets, of dimension n . The "pre-" is
there because in order for a pre-indet to be areal indet it will have to be well-defined,
according to the definition given below. The tuple x=( 0, n, &, a, b) contains the reference
to the fact that we now are talking about an indeterminate (the zero up front); n givesthe
dimension; next it has an arbitrary name ¢ , to ensure that we have an unlimited supply of
indets, a isto bethe domain of x , b the codomain. Of course, the "problem"” is that,
eventualy, a and b will have to be well-formed and parallel for x to be a (real) indet.

We write \/\9 = @V\Z For xDV\? , we denote the ingredients of x in the following
def AN
way: x = (0, di mx), IxI,dx,cx) .When di m x)=0,wehave dx=cx=* .

Theelement (1, n,a) of V% (n=1) will be written as 1a , intended as the word standing
for the identity cell with domain and codomain a .

The element (2, n, k, a, b) of Vﬁ (n=1) will be written as a#kb , Since it stands for the
appropriate composite cell. There is a "problem” with this in the same way as with pre-indets,
since the composite a#kb isdefined only if a and b "match" each other in a prescribed
manner.
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Thewords da (domainof a)and ca (codomain of a) are defined recursively, for all
alW,, asfollows, always, allWy, implies da, calVy,_, .

For allVy) , da=ca=* .
For xDV\P ,dx and ca were defined above.

For 1,0W ,d(1,) =c(1y) =a;

For n=1, a#kaV\(z] :

da if k=n-1
d(a#kb) =

(da) #k(db) if k<n-1

ch if k=n-1
c(a#kb) =

(ca) #k(cb) if k<n-1

We have the words d(*) a, c(K)

way.

a whenever aDV\(] and O<k<n defined in the expected

The subset W, of W (read allW, as " a iswell-formed") and the binary relation = on W
(read a=b as "a and b are well-formed and define the same element”) are defined
inductively and ssimultaneously as the least pair of relations on W satisfying the following
clauses (\/\lLn is V\MV\Q ):

) FOW_ .
(i) n=0 & a, bDV\[Ln_ 1 & 0V &da=db & ca=cb =— (0, n, &, a, b) DWLn :
(iii) aDV\[Ln = 1aDWLn+1 :
(iv) n>k=0 & a, bDWLn &c( k) a= d( k) b — (a#kb) O V\[Ln :
(v) = restricted to W, isan equivalence relation: for a, b, eOW, ,
a=a,

a=b = b=a,
a=b & b=e — a=e.
(vi) = restricted to W, isacongruence: for a, b, e, f OW, ,
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nz0 &a, b, e, fIW _; &&0V&da=db &ca=cb &de=df &ce=cf &a=e &
b=f —— (0,n,¢&,a,b) =(0,n, ¢ e, f);

ah — 1a=1b;
c(k)azd(k)b&c(k)ezd(k)f & a=e & b=f —— a#kbze#kf )

(vii) therelation = restricted to W, obeys the five laws of identity and
composition for w-categories: for a, b, e, f O(W,) n

(n) ~
1d(k)b#kb =b,
(n -

#, 1 =~ a,
a k C(k)a a

(k) 5 =~ 4(k) N
C a=d b — 1a#k1b~1a#kb’

c(k) azd(k)b & c(k) bzd(k)e —_— (a#kb)#ke = a#k(b#ke) :

c(k) azd(k)b&c(k) ezd(k)f &c( 4 azd( z)e&c( z)dzd( z)f
—_— (a#kb)#z(e#kf) = (a#ze)#k(b#zf) .

D Lemma. (i) n=0 &aDV\an — da, caDV\an_ 1-
(i) n=1 &aD\/\lLn —— dda=dca &cda=cca .
(i) aDW& bOW& a=b —— allW & bOW, .
(iv) aDV\leo&bDV\lLZo&a:b —— da=db &ca=ch .

Part (iii) is the result of having made sure that an instance a=<b of therelation = is
generated by the clauses only if it has been ensured that a and b are well-formed. Note that,
to some extent, this is an optional feature: in a different treatment, we may have arranged, for
instance, that = be reflexive on the whole of W.
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By an indeterminate (indet) we mean an element of the class WLO d5f WLnV\? anindet isa
well-formed pre-indet.

Next, we give the versions of the definitions that are restricted to a fixed but arbitrary set of
(pre-)indets.

Let | beany class of pre-indets, | DV\? . WI] denotesthe class of words that involve
only the (pre-)indetsfrom | . W 1] isdefined by the following inductive definition:

w11 ={*} .

For n20, W11 =W[11 W11 B,

{xO0 : dx, exOW,_1[11},
] if n=0

{1, aOw ,[11} if n21
W11 = {a#b: Osk<n, a bOw)

with

F 5o

The change is in the clause for V\ﬁ[ '] where we have insisted that the pre-indet has to
belong to the pre-assigned class | , and aso, that its domain and codomain should be "defined
from | ™.

Let 1 OW .

We define W[1] as W.nWI] .W[I] isthe class of well-formed words defined from
indetsin | . The definition of W/[ | ] , together with the restriction of the relation = to
W[ ] , may be given equivaently by repeating the simultaneous definition of W, and =,
with clause (ii) replaced by the variant

(0,n, & a,b) 01 & a,bDV\zL[I]n_1 & da=db & ca=ch —
(0,n, ¢ a,b) DV\[I]in.

and. of course, by replacing W, everywhereby W[ 1] .
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wedefine 1 @ = 1 aWIT and 1] g5 1 awli] =vPawi]. 1 @isthe
subclass of | consisting of those pre-indets that refer, in their domain and codomain, to

(lower dimensional) pre-indetsin | only. | | , the class of (well-formed) indetsin W[ 1] ,
isasubclassof | @ Wehave W11 =W19Q and W[1] =W[I ] ,and, as
consequences, | @@:I @, I @lzl R IRUR =1 B

Note that | | isnot necessarily the same as | nV\lLO : the former may be a proper subclass of
the latter, since if x0Ol has adomain or codomain notin W 1] ,then xOWI] .

| isseparated if for any x, yOl ,if [x| =1yl ,then x=y (ordinary equality of words). As
a consequence, for a separated | , for any x, yOl , x=y implies x=y : no two formally
different indeterminatesin | get identified. Of course, if | is separated, then so is any
subset of it, and in particular, | | is separated too.

(2) Proposition For any subset | of \/\9 , theset <I > d5f WI[I]/= ofal
equivalence classes of the relation = restrictedto W/[ 1] form an w-category under the
evident operations. <I > isa computad, with indeterminates the equivalence classes [ x] _
for elements x of | | . If | isseparated, then the indets of <I > arein abijective
correspondence with the elementsof | | . O Oisidentical to 0O | O.

Conversely, every computad is isomorphic to <I > for some | W , Which can be chosen to
be separated.

For the purposes of questions of decidability, we restrict words to ones in which the names of

indeterminates are natural numbers. Let W ("e" for "effective”) be the subset of W given by
the definition of W modified by replacing the clause " {0V " with " 0N ". We have

W | =W, € |, expressing the obvious fact that the set W,€=W,n\WW can also be obtained by
repeating the definition of W, with W replacing W.



Theset W is obviously adecidable (recursive) subset of HF , the set of hereditarily finite

l

sets. It is aso clear that V\?L and the relation = restricted to V\?L are semi-recursive
(recursively enumerable). We will prove that, in fact,

(3) Theorem. W | and the relation = restricted to W are decidable (recursive). Asa

consequence, for any decidable subset | of (V\?) 0 , therelation = restricted to the set
W[ 1] isdecidable.

The last fact is the precise expression of the solvability of the word problem for the computad
00 [, for any decidable set | of indeterminates.

Let, in particular, | be the set of preindets that use, in the hereditary sense, the single name
0 only. Formally, we define WV 50F as W was defined at the outset, but with

" €20 " replacing " €0V, and define | 3, VIP . Clearly, I is adecidable subset of
(V\?) 0 It iseasy to see that that [ O is the terminal computad.

(4) Corollary The word problem for the terminal computad is solvable.

Let us make some comments on the supp and content ([ -] ) functions defined on words.

Having defined these functions on pd's in a computad, (2) can be used to define them for
words, by supp(a) =supp([a]_) ,andsmilarly for the content function. Alternatively,
one can copy the recursive definitions of these functions, and apply them to words; one can
prove directly that the functions are invariant under =, i.e., well-defined on equivalence
classes.

The supp function on words is the direct notion of occurrence: xOsupp(a) iff x occurs,

in the usual syntactical sense, in the word a . However, the content [ a] does not have such
a direct meaning. For instance, [ a] (x) isnot the same as the number of occurences of x
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in a . The reason is that the number of occurences of afixed x isnotinvariant under = .
Thisis most obvioudy seen on the two sides of the distributive law, explained in the next
section.

8. Another set of primitive operations for w-categories

Inan w-category, let a bean mcell, b an n-cell. Let us denote the number
mn(mn)-1 by k[a, b] ,now k for short. Let'swrite N=max(m n) .
Assume that O<k and

(K a=q(Kp (1)

Then the composite
1M g 1N @

is well-defined since c( k) a= c( k) 1;N) , and similarly for the other factor. Note that at
least one of the two "identities" is just the corresponding original cell a or b . since either
N=nen or N=n=m. We denote the composite (2) by a[b , or even just ab . The main thing
isthat there isno need to carry k inthe notation since k isgivenby a and b :

k=k(a, b) .

The "new primitive" operation we are proposing is the -- conditional (partial) -- binary
operation (a, b) ——alb .

According to the new definition (which will be seen to be equivalent to the original), an
w-category isan w-graph X with an identity operation awla as before, and the
conditional binary operation

(a, b) [subjectto O<k=k(a,b) and (1)] +— alb ,

required to satisfy the conditions below. To simplify writing, we agreetouse m n, p and
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for the dimensions of the cells a, b, e and f , respectively. I'll write anb for

c(K) a=d(K) b with k=k(a, b)] , assuming that the equality does indeed hold. We may
even write anb | (" anb iswell-defined") for the condition (1).

Dimension:
() di n(la) = a
(i) dimalb) = max(mn)

\Assumption: anb | .)

Domain/codomain laws;

() d(la) = c(la) =a
(da) b if nPn
(i) d(alb) = al{db) if nxn
da if meEn
(ca) b if men
c(alb) = al{ch) if men
cb if meEn

\Assumption: asb | .

(Remark: the left-hand sides being assumed defined, so are the (various) right-hand sides: for
each of the four composites, call it e [ , we have eAf |&= alb under the suitable
precondition. )

Unit laws:
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0) 1, =

\Assumption: 1a/\b 1.

(Remark: 1a/\b =a if n2m-1, and

a if
(i) aDLb =

1a[b if

\Assumption: aAlb 1.

(Remark: aAlb =b if nen+l, and

Associative law:

1a/\b =anb if n<mtl )

nmen+1

nmKn+1

anly = anb if nkn+1 )

al{ble) =(al) [& (3
\Assumptions: either nF¥n<p , or men=p , or mMFP<n 4)
and: bnae and asb are well-defined. )

(Remarks: Assuming (5), (4) is equivalent to saying that

k(a, be) =k(a, b) =k(ab, e) =k(b, e) .
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(4) and (5) together ensure that an(be) =aab and (ab) ne = bae (thus, both sides of (3)
are well-defined), and, before we know that (3) is true, the two sides of (3) are parallel.)

Distributive laws:

(i) al{ble) = (alb) [{ale) (6)
\Assumptions: nkn, nmKp @)

and
bre, anb, ane arewell-defined. (8)

(Remark: (7) isequivalent to saying that k(a, b) <k(b, e) . Also, (7) implies that
k(a, b)=k(a, e)=m1.Assuming both (7) and (8), we havethat ar(be) =ansb =ane
and (ab) An(ae) &= a{bae) (!) (thus, both sides of (6) are well-defined), and, before we
know the equality in (6), the fact that the two sides are parallel. It is also good to know that,
aternatively, if (7) and

bare and an(b &) arewell-defined (8)

hold, we again have the distributive identity, since (7)&(8") implies (8).

(i) (alb) & = (al®) (ble)

\Assumption: p<n, p<m

and anb, ane, bae arewell-defined.

Commutative law:

(al{db)) {(ca) (b) = ((da) b) {alch))
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\Notation: for k=k(a, b) , d=d(K)  c=c(K)
\Assumption: k=1 (< mn=2) and c(k-1) g = glk-1)

(Remark: Assume the assumption. Let's write a*b ;3¢ c(K-Da=dq(k- Dy Then
an(db) = (ca) ab = (da) Ab = ar(ch) = candb = dasch = a*b,
and

aldb .

O

(al{db)) A ((ca) ) |&

((da) b) An(al{cbh)) & dalEb ,
Thus, all composites in the identity exist.
Moreover, the two sides of the identity are parallel, even before we know the truth of the
identity itself. Thisis seen directly when, for = max(mn)-mn(mn) ,wehave r=1;
and by induction on r in general; in the induction, lower dimensional instances of the
commutative law itself are used.)

(End of the new definition of w-category.)

Let X bean w-category in the new sense. We define operations to show that we have an
w-category in the original sense.

Let aDXm, bDXn ; as before, k=k(a, b)=m n(mn)-1. Assume 0</<k and

c{Da=dl Db (wewrite an b for thejoint valueif the equality holds). We define
a#zb for 0</<k by recursionon k- / asfollows. Simultaneously with the recursion, we
prove inductively the generalized commutativity law saying that

(al{db))#,((ca) b) = ((da) b)# ,(a{(ch)) ; )

with the notation d=d{ £) |, ¢=c( ) | provided c( - Da=gl( &y
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When {=k , we put a#zb d5f alb ; (9) isthe (smple) commutativity law. When {<k ,
writing d=d( {+1) , c=c( 1) :

Pz (aldo)#,,,((ca) b) = ((da) D)#,,,(alleh))

a#

where the the equality marked with (1) istrue by the induction hypothesis.

(10) Proposition (1) The definition provided gives an w-category in the
original sense.

(i)  Conversely, every w-category in the original sense is one in the new sense, with
the definition of a b given by (2) above.

(ilf) The processes of passing from an w-category in the old sense to one in the new
sense and vice versa are inverses of each other.

For some details of the (straight-forward) proof, see the Appendix.

Next, we explain the pre-normal form mentioned in the introduction. We will call it the
expanded form. The expanded form isfor cellsin an w-category, relative to a given strongly
generating set of cells ("strongly generating” means, roughly speaking: "generating, without the
use of the domain and codomain operations’; see also below.)

We repeat a definition from section 4.

Let X bean w-category, G aset of cellsof X (of various dimensions). We say that G
strongly generates X if ||X|| equalstheleast subset S of ||X|| suchthat (a) S contains
G, (b) alS implies 1aDS,and (c) a, bOS and a#kb is well-defined imply that

a#kb 0 S. In the notation of section 3, this means that X=0 [G[. As the main example, we
know that if X isacomputad, |X|, the set of indeterminates of X, strongly generates X.

Note that, using the new primitive operation [, we can replace (c) by the equivalent
condition
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(c)* a, b0S and alb iswell-defined imply that alb OS.

Let n=0 . By a Gatom of dimension n+1 we mean a well-defined element of the form

b {b,. ... (byley)...) R, ) [B, (12)

where bi ;€ 0 Xi (i=1,...,n-1,n),and uDGnJr1 . A Gmolecule of dimension

n+1 iseither an identity cell, or of form ¢1 Dpz a.. Dpz where /=1, and each ¢i isa
G-atom of dimension n+1 (because of the associative law, no bracketing is required in

writing ¢1 E¢2 a.. DPZ ).

(12) Proposition. Assume that G strongly generates X . Then, for every nlN , every
(n+1)-cell in X isa Gmolecule.

Pr oof It suffices to show that the set S:X<nD'Vh+1 , Where M isthe set of all
G (n+1) - molecules, satisfies (a), (b) and (c)* . Since every “DGn+1 isa Gatom, and thus

a Gmolecule itself, (a) is clear. (b) is taken care of explicitly. It remains to see (c)* .

For (c)* , there are the four cases. 1) a, bDX<n ; 2) aDX<n , bDl\/th1 ;
3) alM,, 1 » bOX_ ;4 & bOM, 4 -

The cases 1) and 4) are clear. 2) and 3) are similar; we deal with 2).

Assume 2). When b isan identity, b:1C , cOX, . we have aEb:laEd: , which belongs to
S . When b:qlepZD o Dpz , then alb :(aDpl) E(a[¢2) 0.. E(a[&pz) by the
distributive law (together with the associative law). Therefore, it suffices to show that if ¢ is
a G (n+1) - atom, aDXSn ,and alp iswell-defined, then al$ isagaina

G (n+1) - atom. In fact, if ¢ isgiven by (10), then, again by the distributive and associative
laws,
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alp = b b, ,...(b mE,)...) R ) B,

where Bi :aElbi for i=n,...k;
b, =b, for i=k-1,...,1;
e

:ej for j=1,...Kk;

®> ¢

J:aEej for j=k+1,...n .

Next, we introduce a construction that makes an (n+1)-category Z into an n-category, Z ,
called the collapse of Z , without losing any cells, by "demoting” (n+1)-cellsto n-cells.
This peculiar construction will be used in the next section.

Let Z bean (n+1)-category. We define the n-category Z . The (n- 1)-truncation of Z
agrees with that of Z.Z_ 45f Zn%n +1 - Writing d and ¢ for "domain” and "codomain”
in Z,andleaving d and ¢ for "domain" and "codomain”" in Z , we define, for aDZn+1,
ja = ("D, cq = o(n-1) i

da daf d a,ca z C a . Thusfar, we have an n-graph.

We define the dot-operation for Z , denoted [, as follows (the plain dot is the operation in

Z). alb isto be defined under the assumption
c(K) a=q(K)p (13)

where k=mi n(dim (a),dim (b)) - 1.
z z

Note that k=k=ni n( di mZ( a), di mZ( b)) - 1 unlessboth a and b belong to Zn+1’

in which case k=n-1 and k=n . Thus, unless a, b0Z alb istobedefined iff alb

n+1’
is defined, and when a, b0z, ,, , ab istobedefinediff ¢(""Ha=a(N"yp.
Accordingly, under the assumption (13), we can make the following definition:
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~am qb if a bz,
alb =
alb ot herw se
(14)  Proposition Z isan n-category.

Proof. The proof is a short calculation, if we apply the present section's definition of
n-category (which is the obvious one, implied by the statement of the definition for
"w-category").

The associative law has one new case, not directly contained in Z being an (n+1)-category,
the case when all three variables are "new", i.e., elements of Zn+1 ; and in this case, the law
is the associative law for the operation #n- 1 applied to n-cells.

The distributive law again has one new case, the one when b, e arenew, and a isold; the
required equality is the "generalized distributivity" (see Appendix, the proof of 8.(10)) for Z ,
for the operation #__, .
The commutative law will be reduced to "generalized commutativity”, 8.(9),in Z,for a, b
of dimension n+1 ,and /=n-1 in 8.(9).

The collapseisafunctor (-): (n+1) Cat —>nCat , and it has the flavor of being a
forgetful functor. But it does not preserve products, for instance.
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9. A construction of the one-step free extension X[ U] .

In this section, n isafixed but arbitrary non-negative integer, and X isafixed but arbitrary
n-category. Further, U isaset of (n+1) -indets attached to X : with uU, we have
du,cuDXn , du||cu . We give a particular construction of the free extension X[ U] (see
section 4 for the basic definitions).

Let ususe the symbol u for uU to denote a new indeterminate of dimension n attached

to X suchthat du=d("" Dy cuyzc(n-1)

u (thatis, ul[dul|cu); u, v distinct for
distinct u, v. Let U betheset of al u . We start with the n-category X[ U] , the free
extension of X by U, which we take as given. We undertake to explain the (n+1)-category

X[ U intermsof the n-category X[ U with areasonably simple additional structure. In
brief, what we will learn is that, to obtain X[ U] , the only thing that needs to be added to

X[ U] isthe effect of the commutativity law in the highest dimension.

As explained in section 4, X is asub-n-category of X[ U] : we take the canonical map

X——>X[ U to bean inclusion. Also, the canonical map U |[X[ U] || isaninclusion.

An atom with nucleus u0U is, by definition, a (well-defined) n-cell in X[ U] of the form

b {b,. {0...(byiey)...) B, ) B, ()

where bi ;€ DXi (i=1,...,n).

Note the dight-looking but essential difference to "atom™ in the previous section. Whereas in

the last section, in 8.(11), u wasacell of dimension n+1 , in (1) now u isdimension n
itself. Our intention is that, via the construction to be given in this section, the element (1)
should stand for the element 8.(11), with u the indeterminate of dimension n+1 giving rise

formally to u .
Of course, two atoms obtained from different coefficients bi . € could very well be equal,
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but at least an atom determines its nucleus u . Calling the atom (1) ¢ , by section 4, we can
characterize u asthe unique element v of U for which ¢ belongsto X[/ 0. We write
@[ u] toindicate that the nucleus of the atom ¢ is u .

Let ¢ betheatomin (1). Note that for any nen and any aDXm suchthat al$ is
well-defined, a [$ isagain an atom with the same nucleus; this is seen as the analogous

statement was seen in the proof of 8.(12).

Similarly, under the appropriate conditions, ¢ [f isan atom .

Givenany ulU, andany rOX[U] = suchthat r||u, the universal property of X[ U]
gives us a unique self-map h: X[ U —— X[ U] , amap of w-categories, suchthat h isthe
identity on X, also the identity on U-{u} , and h(u) =r . With any element ¢ of X[ U]
suchthat ¢||u, wewrite ¢[r/u] for h(¢) withthis h (which h we may refer to as
hr/u ). Indeed, ¢[ r/ u] should be imagined as the result of substituting r for u in ¢.

When ¢[ u] isanatom, wewrite ¢[r] for ¢[r/u] .

Let ¢=¢[ u] be an atom, and assume the substitution ¢[ r] iswell-defined. We have that
(al®d)[r] =al®[r] since, for h:hr/u’

(al)[r] =h(aly) =halhp=alpr] .

because h istheidentity on X. Similarly,

(¢f@)[r] =¢[r] [a .

As a consequence, we have, for ¢ asin (1), that

lr] =b b (O...(byOC)...)° ;) [B ; )

but also notice that we could not, with good conscience, give the last formula as a definition,
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since it is not obvious -- athough true as we now know -- that two different expressions for ¢
of the form (1) give the same valuefor ¢[r] via(2).

(2) showsthat if rOX,then ¢[r] OX aswell.
We aso have d(¢[r]) =d¢, since
d(¢lr]) =d(h(¢)) =h(d¢) =d¢

because h istheidentity on X. Similarly, c(¢[r]) =c¢.

Let ¢=¢[ u] beanatom. Snce du and cu (DXn) are parallel to u , the n-cells
D¢d5f ¢[ du] ’C‘l’déf ¢[ cu] are well-defined and they belongto X. D¢ and C¢ are
going to be the domain and codomain of ¢ when we understand ¢ asan (n+1)-cell of
XY .
The direct formulasfor D¢ and C¢ are

D¢ = bn(bn-l(' ..(blmlu[el)...)en_l)en :

Cop = bn(bn-l(' ..(bltd:uEel)...)en_l)en :
Note the equalities

dDg=dCé=d¢ , cDp=cCp=c¢ ;

and for allX, provided the composites involved are well-defined,

D(aly) =alDp, ((aly) =alCh, D(¢a) =Dpla, ((¢a) =Cola. (3

Below, a,B,p,0,¢,¢ will denote atoms.

Wesay p matches o (not a symmetric relation) if we have Cp = Do .
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Suppose a=a[ u] and B=p[ v] areatoms; assumethat ca=df . We derive four further

atoms, p[u] , av], ¢[v] , Yy[u] from a and B:

p=alDB ; o=(Ca) LB ; ¢ =(Da) (B ; Y=al(CP) .

Since d(DB) =dpB, p iswell-defined; smilarly the three remaining atoms. ¢ matches ¢,
since

Cp = C((Da) [B) = ((Da) () [cu] =Dal{plcu]) =DallP,
and similarly

Dy = Da [CB,
thus C¢=Dy . We similarly seethat Dp=Dp and Cy=Co .
Let us define the quaternary relation L( p, g, ¢, ¢) on atoms as follows:

L(p, o, 0, ) et there areatoms a and  with ca=df such that
p,0,¢, are each the so-named atom derived from (a, ) above.

We write R(p, g, ¢, ) for L( ¢, ¢, p, 0) ,and E(p, g, ¢, ¢) for
L(p, 0, ¢, ¥) vR(p, 0, ¢, ) .

The motivation for the above definitions is as follows. As we said before, we want the atom

¢[ u] , an n-cell of the n-category X[ U] ,tostand for ¢[ u] , an (n+1)-cell of the
(n+1)-category X[ U] . Therelation L( p, 0, ¢, ) isthe description of what it means, in

terms of the atoms p[u], o[ v], ¢[Vv], ¢[u] in n-category X[ U] , for the equality

plu] Oolv] = ¢[v] Oy u]
to be an instance of the commutative law in the (n+1)-category X[ U] . R( p, o, ¢, ¢)

means that we have an instance with the sides reversed; E( p, g, ¢, {) that we have one or
the other.
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A molecule is either the symbol 1a with a any element of Xn , or, for any positive integer

{,a l-tuple$:(¢1,...,¢£) of atoms ¢i such that, foreach i =1, ..., {-1, ¢i

matches ¢ ¢ isthelengthof ¢, £=£(¢) . Thelengthof 1_ is 0.

i+1°

The set of al molecules is denoted /.
For molecules $ and Lf/ let us write E( 5 LTJ) meaning that the following conditions hold:

the lengths of $ and Lf/ are the same, say / , and
andfor j O{1,..., }-{i,i+1}, wj:¢j :

E isasymmetric relation on molecules. We define = to be the reflexive and transitive
closure of E ontheset # of all molecules. For length-O and length-1 molecules, the
equivalence = isthe same as equality.

The fact that E( $ (fl) holds means that a pair of consecutive atoms in 5 , p:¢i , O=¢
have been replaced by another pair, ¢( = ), W = +1) , the second pair being in the
relation E with the first pair: E( p. g, ¢, ¢) . Note that, by what we said above, any

i +1

transformation as described here produces a well-formed molecule LTJ from a well-formed

molecule $ :

Note also that if L( p, g, ¢, ¢) , andthenuclel of p and o are u and v , in this order,
than the nuclei in ¢ and ¢ are v and u in thisorder. Therefore, one effect of passing

from ¢ to @ when E($, ) isto switch the order of the i thand (i +1)st nuclei in ¢ .
Thus if $=Lf/ , the indets of 5 undergo a permutation when passing to tfr In particular, the

multiset of the occurrences of indets of the form u , uU, in amolecule is invariant under the
equivalence = .

The equivalence class of = containing the molecule $ is denoted by [ $] :
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We define an (n+1)-category Y asfollows. The n-truncation of Y isdefined to be X.

Y_,, isdefined asthe set M/ = of all equivalence classes [ ¢] ( ¢0M).

n+1

To avoid confusion in dealing with the domain/codomain operationsin X[ Ul and Y, we
write D and C for "domain”, respectively "codomain®, in Y .

Weput D([1,]) =C([1,]) =a.

For amolecule ¢ of length ¢>1, weput D([$]) = D¢, , ([ 4]) =Cp, . By what we
saw above, it isclear that D and C are well-defined on equivalence classes. From the facts
that, for anatom p, Dp||Cp||p, and that Cp; = D¢, ., , wehavethat D¢, isparallel to
C¢>z e, D 5] and C (ﬁ] are parallel. This ensures that our definitions so far give an
(n+1) -graph.

To define the (n+1) -category operations, we need to define 1a for aDXn ,and al] 5] ,

[$] (A and [ ¢] O ¢] for aDXSn and ¢,y0M under the appropriate composability
conditions.

The identity element 1a , alX_, is, of course, defined as | 1a] (= 1a}) :

0o
When [ 9] =[ 1,] . we put al ¢] =[1, ] - Similarly for [1,] f .

For any molecule 5:( ¢1, ce, ¢£) and any al0X_, 1<nkn, such that

m’
c(ml)a:d(m1)$(:d(m1)¢i for any i ), we can define

alp 4z (aldy,....al) ; ©

a E$ so defined is a molecule.

In fact, we can define
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al¢] g5 2t - %)

Thisis because if the pair (a, B) dgivesriseto the quadruple ( p, o, ¢, ) asdescribed
above, i.e, L(p, 0, ¢, Y) holdsvia (a, B) ,then, clearly, (altr, al3) givesriseto
(alp, alo, alp, aliy) inthe same sense, provided a [p iswell-defined (equivaently,
alp iswell-defined). Thus, if alp iswell-defined and E( p, o, ¢, ) , then

E(alp, alo, alp, ally) . Asaconsequence, 52@ implies a[$=a[lfl.

The definition of [ 5] [¥ isanaogous.

The definition of [ ¢] [ 4] is by concatenation: for ¢=(¢,, ..., ¢ ;) and
=(0y, - W)
(6] 04l g5 [000] = [(@g - 0ty U] (6)

the assumed condition ([ (ﬁ] =0 tfr] is exactly the matching condition for ¢ / and Yy -
we have a well-formed molecule. It is obvious that the definition is correct for equivalence
classes.

We may write $ lel for the concatenation itself, and even,

6=¢,0.. p,, ™
for the molecule ¢ = (¢, . . ., 9, -

It remains to define [ $] 0 (fl] when one or both of [ $] .| LTJ] are of length O . In this
case, we treat the zero-length molecule as an empty tuple. More precisely, whenever the
products are defined,

[10 04 gz [0, [61 01,0 45 [ 4] .
[1a] E][lb] isdefined only if a=b ; thevaueis [1a] :
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Toseethat Y sodefinedisan (n+1)-category, we need to verify those instances of the
"new" laws (see section 8) that involve cells of dimension equal to n+1 ; al other instances
are, of course, true already in X . In addition, much of the remaining laws are, in essence,

inherited from X[ U] .

Leaving the verification of al but the last law to the reader, let us look at the commutative
law.

First, we take the case

?
(am g qd®age) = (0N agd) qact®g) ®)

under the condition
C(k-l)a _ D(k'1)$ ’

when one of the two variables, a , isof dimension nen , the other, [$] , With 5 a
molecule asin (7), of length £=1 , isof dimension n+1 . We have k=K[ a, $] <n , and thus

(K) j—q(K) , = 4§
D a=d adéfda,and

D(k)[$]:D(k%$:d(k)¢ :d(k)¢i 9

g =W g=dg, = oMy, (10

foral i=1,..., 7.

By (4), (5), (9) and (10), (8) reduces to the truth of
(adW o) qc®am) = (dWam) qaeWe)
for every i =1, .., £ ; but thisis an instance of commutativity in X[ U] .
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(We do not need to look at the case when $ isof length O : the commutative law is
automatic when one of the factors is an identity.)

Secondly, note that the case of the commutative law:
([lal I B]) (T a]l OB) =(Dla] QA Hlal A])

where a and B areatomsof X[ Ul (thus, [a] , [ B] are of particular types of
dimension-(n+1) cellsin Y), isdirectly built into the definition of Y, in the form

(aDP) {(Calp) = (Dalp) { alCh)

Thirdly, we make an observation. Suppose we have an " ( n+1) -category” Y in which all
the laws (in the sense of section 8) are known to hold, except commutativity in the case when
both variables a and b inthelaw are of dimension n+1 . Let's say that the pair (a, b) is

OK when both a and b are of dimension n+1 , we have c(N-1) g=g(n-1) b, and the
instance of the commutative law for a and b holds. The claim is that if (al, b) and
(a2, b) are OK, thesois (a1 @2, b) , provided a, @2 is well-defined; and the dual
statement, involving elements a, bl’ b2 in the evident way.

The proof is a simple calculation, as follows. We want to show

?
((a, @,) [b) [{c(a, [,) b) = (d(a, [@,) b) {(a, [@,) [Tbh)

under the assumption that (al, b) and (a2, b) are OK:

LHS = ((a, [a,) [©db) O(ca, [b)

=( (a1 [db) [ a, [db) ) [O( ca, [b) (distributive law)

= (a1 Cdb) O( ( a, fdb) [ ca, (b)) (associative law)

:(al [db) D((da2 [b) E{azmzb)) ((az, b) isOK)

=(( a, fab) ( ( ca; (b)) O( a, [ch)) (associativity; da2:ca1)
:((dal [b) E((almzb)) D(aZB:b) ((al, b) isOK)
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= ((day ) O((ayeb) [{a, kb))
= (d(aq[@,) ) O((a,[&,) &b) =RHS

Another observation isthat, inan " ( n+1) -category”, the pairs (1e’ b) , (a, 1f) are OK,
provided di m(a) =di m(b) =n+1,di me)=din(f)=n, e=db, ca=f .

Sinceinthe" (n+1) -category” Y, every (n+1) -cell isa Qproduct of (equivalence classes

of) X[ U] -atoms, and suitably matching pairs of atoms are OK, it follows that the
commutative law in dimenson n+1 holds generally.

This completes the proof of the fact that Y isindeed an (n+1)-category.

It remains to show that Y isthe free extension X[U] . Thisis where we use the construction
of the collapse (see the last section).

We have the incluson map I': X—Y . Note that, for uOU, the "bare indet” u isan atom,

and the equivalence class [ u] isan element of Y
du, cu givenin the attachment of U to X.

n+1 » With Dfu] =du, u] =cu , with

Define A: U5 ||Y]| by ACu)=[d] . Then (Y.X T5Y,U||Y|]) isan extension of X by
U (see section 4). We clam it is a free such extension.

To prove the claim, we let (Y,XLZ,UAHZH) be any extension of X by U.Wewant a

(unigque) morphism F: Y—Z of (n+1)-categories, with the diagrams

r .y A Yl
Sl o )
e Az

commutative.



Consider the collapse Z of Z.Theset U of n-dimensional indeterminates, attached to X
by GH(d(n' 1u, c(n-1) u) to X, givesrise to the extension

(Z,XQZ,ULHZH) , (12)
r

of X by U, where I isthe composite X%Z%Z,and A(u) =A(u) , the latter

meant as a "new" element of Zn = ZHEZM1 ,onein Zo41 - (The compatibility condition
involved in the notion of "extension" is satisfied by (12).)

Comparing with the initial extension X[ U] of X by U,wehaveamap G X[U —Z of
n-categories such that G(a) =M(a) (alX) and G(u) =A(u) ( DZn+1DZn) for uOuU.
Let uswrite r for G(r) (rO||IX{U||).

Note that every atom ¢ in X[ U gets mapped by G into a"new" element, onein Zn+1 ,

of Z (sincethe "new" elements are closed under composition). In other words, 43 isan
(n+1)-cell of Z.

We continue using the smple dot [ for composition in Z , and, if necessary, the barred dot

O for that in Z . (Of course, the effects of the two frequently coincide.) Therefore, for

X[ U] -atoms ¢, @, 43[&21 means a composite of (n+1)-cellsin Z .

We can extend the map G to molecules, and use the notation (-) for the extension too, by
the formulas

N

$=(9; ... 0, =¢,0.. %,

(by associativity in Z , there is no need to use parentheses on the right), and

(1) =1 .
a a
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| claim that the map (-A) induces the required map F: Y—>Z ,givenas [ on YIMn=X, and
by

N

F([6]) = ¢
on (n+1)-cellsof Y.

Let us show that F iswell-defined.
As before, a,B3,0,0,¢,y mean atomsin X[ U] ; 5@ are molecules.

Start by noting that p=a (DB implies p=a[{DB) ~ . Thisisbecause a,DB arein X[ U] ,
and the mapping (-): X[ U —ZMn isamap of n-categories.

The just noted fact, with three analogous ones, shows that if L( p, o, ¢, ¢) via (a, B) ,
then we have

p=adDpp) " ; o=(Ca)'(B; ¢=(Dn) [B; Y=aqcp ,
and as a consequence, by the commutative law in Z , for a and [§ as a and b, we have
po=¢0p. (13)
We have proved that L( p, o, ¢, ) implies (13). Thisimmediately gives that
¢ =y implies =g,
which shows that F iswell-defined.

Since the only part of the operationson Y beyond thosein X[ U] is given by concatenation
of atoms, itisclear that F: Y—Z isamap of (n+1) -categories. It is also obvious that the
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commuitativities (11) hold true.
The uniqueness of F: Y —Z with the stated propertiesis easily seen.

This completes the proof that our construction of X[ U] is correct.

Of course, we are interested mainly in the case when X isan n-computad. We have given a

construction of the typical (n+1)-computad X[ U] in terms of the n-computad (!) X[ U] .
The main practical conclusions about X[ U] are as follows.

Already from section 8, we know that every (n+1)-cell of X[ Ul isamolecule, that is, a
dot-product of (n+1)-dimensional U-atoms. In this section, we have learned two further
things.

Oneisthat two U-atom expressions are equal (represent the same (n+1)-pd) iff their

collapses, obtained by replacing each indet uU by the corresponding n-indet u , are equal.
Note that the collapses are n-pd's.

The other thing is a description when two molecule expressions are equal. They are equal if
one can be transformed into the other by a finite series of moves, each of which "interchanges’

a consecutive pair of atoms in the particular way described by the relation L .

In the next section, in the proof of the decidability of the word problem, we give more precise
versions of these remarks.
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10. Solution of the word problem

In this section, we prove theorem 7.(3).

The aternative definition of " w-category” of section 8 gives rise to a syntax of words, in the
same way as the original definition of section 2 gave rise to the syntax explained in section 7.
There is no need to repeat the definitions for the "new" syntax; they are straight-forward
variants of the ones in section 7. Essentially, al that happens is the replacement of the
conditional operation ( -) #( 9 (-) withanother one, (-) [(-) .

When the two syntaxes appear in the same context, we use dots to distinguish the "new" one

from the "old" one. E.g., W is the class of all words in the "new" syntax. However, when we
start dealing with the new syntax exclusively, we drop the dotting.

The proof of Proposition 8.(10) gives a trandation of the two syntaxes into each other, the
main features of which are summarized in the next statement.

Q) (1) Thereisamapping ( -') : W—>W havi ng the following properties: for all
a, bOw

di n(a) =di ma)
(da) = da
(ca) = ca
(1) = L

alW | —— aowf|

ash —— ath .

(i)  Thereisan "inverse’ map (°): W-—W, whichisaninverseto (-) upto

° U :
=: a=a (alW), B=b (bOW).
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(i) (-) restrictsto arecursive function (-): W — W .

Concerning the definition of (-) , we note that, for a pre-indeterminate uDV\P , we keep its

namefor u: |uU| 45 Ul -

(1) and the dotted version of 8.(3) Theorem imply the truth of the original version of 8.(3),
which is our goal. We proceed to the proof of the dotted version of 8.(3).

From now on, all words are dot-words; all auxiliary concepts of the syntax (see section 7) are
understood in the dotted sense; dots are suppressed (except as the operation symbol).

We single out a particular class, N, of words called normal; NOW. We are mainly interested
in the well-formed normal words, the elements of the set N/=NnW, , but it will be useful to

keep all of N around. Nedgf NnV\?; Nie d5f NnV\lLe )
N is defined recursively.

N 4

No = VY

For n=0 , the (n+1)-dimensional normal words are the words of the form

:Wl

1, (2.1)

where aDNn :and

o, 0.. B, (2.2)

where /[N- {0} , and each ¢ isof theform

b {b,. {{...(byley)...) B, ) [B, 3)
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where b, e ON (i=1,...,n), uOW,, (u isan (n+1)-dimensonal
pre-indeterminate) and du,cu [ Nn :

Note that, because of the associative law, there is no real need to use parentheses in (2),
although, if pressed to be precise, we choose associating to the left.

We are going to call words like the one in (3) pre-atoms, ones of the form (2.1) or (2.2)
pre-molecules; well-formed pre-atoms are called atoms, well-formed pre-molecules molecul es.

There is a natural connection - not an identity - between the present terminology and that of
sections 8 and 9, given by 7.(2) Proposition, or rather, its "dotted” version.

For the pre-atom ¢ asin (3), u isthenucleusof ¢ .

We can define a version, denoted -: NxN— N, of the dot-operation on normal words,
resulting in normal words again, so that,

4) For a, bON, a-b iswell-formed (CON, ) iff alb iswell-formed, and in that case,
acb=alb .

In fact, the relevant formulas were already used in the proof of 8.(12); nevertheless, here are
the details.

The definition of (-) o(-) isrecursive. Suppose we have defined a-b appropriately
whenever di n{a), di n(b) <n . Theextension of the definition to dimensions <n+1 is

done in the following six clauses (4)(i) to (4)(vi).

@) For aDN<n and ¢, an (n+1)-dimensional pre-atom asin (3), we put

N

a°¢déf bnﬂbn_lﬂ...(blmEel)...) Een_l) Een
where Bi :a<>bi for i=n,...k;
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b, =b, for i=k-1,...,1;
éj = for j=1,...k;
J:aoej for j=k+1,...n .

D>

Thus, for an (n+1)-pre-atom ¢ and alN a-¢ isan (n+1)-pre-atom again.

<n’

@ () For a asin (i), and for an (n+1)-dimensional pre-molecule asin (2),
as(910.. B)) g5 (ac9y) O.. Halp))

The result is a pre-molecule.

(@ (ii) For a asin (i), and bDNn,

1

2°lp g5t laob -
@ (iv) Dually to (ii) and (iii), we define puob for u an (n+1)-pre-molecule and
bDNSn :
4)(v) For (n+1)-pre-molecules u:(pl a.. Dj)z , V=P a.. ..,
Hov ggf MLV

(more precisely, peov isdefined to be the left-associated product
¢, 0. D, 0. Oy

(4)(vi) For a, bON , up and v asin(v),
1a°V gaf Mo Hely gar M
and

1 1

a‘la gar la-

(end of definition of o: NxN—N)
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The proof of (4) is essentially contained in the proof of 8.(12).

5) (i) The o-operation induces a "normalizing” function
(al>a): W—N,

with the properties that, for all aOW, we have aOW, iff alN/ , and if aOW, , we have

Y

a=a.

(i) (f) restricts to a recursive function (f) W N

Namely,

for aDV\/SO : ad(:af a ;

for alWq = (1) 45 1.
- a

for mn21, alw,_, bOW : (alb) Ndczaf a-b .

Note that the domain and codomain of normal words are, most of the time, not normal. The
domain of the atom ¢ in(3) is

dp = b b ... (b MHuR,)...) R, (), .

On the other hand, we can always take ( d¢) "= 5I¢ as anormal replacement for d¢ .

(5) implies that, to prove that W€ and = regrictedto W, are decidable, it suffices to

prove that NJ® and = restrictedto N/€ are decidable.
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To emphasize the dimensions occurring in what follows, we will write ~m for the relation =
restricted to the set V\le.

For proving (6), we use induction on dimension. The main tool in this proof is a "reduction”,
provided by the last section, of the relation =n+1 10 =, Tostate this reduction in rigorous
terms, we restate much of the terminology and the results of the last section in the present
contexts of words. The assertions made are routine translations of results of the last section, by

using (the dotted version of) section 2, especially Proposition 7.(2).
Let n be anon-negative natural number.

For anatom ¢ asin(3), u isthenucleusof ¢ .Let ¢ an (n+1)-atom with nucleus u ;in

symbols, ¢=¢[u] .Let u beany n-indeterminate (element of V\ng)such that u does not

occurin ¢ (udsupp( @) ), and da=d " Dy, cu=c(™1D)

n-dimensional word given as

u . Define ¢[ u] to bethe

¢[u] = b, Hb, . ..(byMuCey)...) L, ) (&, .
| cal ¢[u] "the" n-(dimensional) collapse of ¢[ u] .
Since we assumed that ¢ iswell-formed (an atom), the collapse is also well-formed.

The collapse of an (n+1)-atom is far from being an n-atom in general; nevertheless, we call

the indeterminate u the nucleus of the collapse ¢[ u] .

Although ¢[ u] depends on the choice of u , this dependence is not essential. Aslong as

al and 62 are two choices for u , including the conditions that l]l, JZDsupp(qb) , the

collapses ¢[ u 1] .l 62] are isomorphic in the sense that the two words can be obtained
by renaming from each other. Here, by "renaming” of aword a | mean setting up a bijection
r between the set of all names of indetsin a on the one hand, and another set on the other,
and replacing in a each occurrence of aname é0don(r) with r(¢) .
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(6) Reduction Theorem, Part 1 For (n+l1)-atoms ¢=¢[ u] , Y=y[v] ,
we have that ¢=n+lt,u only if u=v ;andfor ¢=¢[ u] , ¢=y¢[u] with the same nucleus
u,

b=, 0 —— #lu] =, ylu]

where ¢[ u] , Y[ u] are n-collapsesof ¢ and (¥, respectively, with the same n-indet u .

For (n+1)-atoms p,o,¢,y , we write L( p,0,¢,) to mean

there exis (n+1)-atoms a and [ such that

Ponep @0, 0=y CacB 9=, dash, Y=y, acp. (D)

Notethat aodB =, , a[Hp,andasothat aodB isan (n+1)-atom (see (4)(i) above);
similar statements can be made for the three other cases. Thus, in (7), both sides of the

= +1-re|alionsare (n+1)-atoms, and those instances of She1 A€ covered by (6).

n +

For molecules $:¢ a..,, LTJ:Lp O.. .., wewrite E( $ (fl) to mean that
1 ! 1 m

{=m and thereis i {1, ..., £- 1} such that
LCO o &g W0 W 4g) 08 LOW W40 050 05 4q)
andforal jO{1,..., -{i,i+1}, ¢j :n+1wj :

(8) Reduction Theorem, Part 2

(i) For a, bDV\an, la =n+l lb — aznb.

(i)  For (n+1)-molecules $Lf/ of positive length, $=n+1(fl if and only if there

1 - -

exists a finite sequence $1, Ce $p of (n+1)-molecules such that $:$ , Lp:qbp , and for

every i {1,...,p-1} , wehave E($i,$i +1) .
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Knowing that the relation *n is decidable (induction hypothesis), to prove that =n+l Is
decidable, we have to deal with, that is, somehow bound, the two unbounded existential
quantifiers italicized/underlined above (in (7) and (8)(ii)). This we do by using the content
function of section 5, 5.(12) Proposition. The relevant facts for words are given in the

following variant of 5.(12).

9 Define the function
[-] : %_1%WUZ

recursively by:

() [*] =0

(i) [x] = (%) +[dx] +[cx] ( xouP)

(i) [1,] =[al (amwg)

(iv) [ad] =[a] +[b] - [c{Ma] (abow,, k=k(a,b)).
We have

(V) xOsupp(a) == [a](x) =0

(vi)  Thefunction [-] redtrictsto [-] : Mz_l%\/w[ﬂ,
and a=b implies [a] =[b] ;
clause (iv) for the restriction becomes
[alb] =[a] +[b] - [an,b]

Moreover, we have, for a, b, a (bOW, :

(vii) [a] =0

(viii) [da],[ca] <[a]

(ix) [a],[b] s[alb]

(ix) [a] (X) >0 <= xUsupp(a)
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Because of (9)(v), [a] may and will be identified with the finite object
[ a] rdgf [ a] 'supp(a) . For aDNe, [ @] MIHF (HF isthe set of hereditarily finite

sets); and the function (at—>[a] ): W — SHF isrecursive (once I isunderstood as a
subset of HF in a standard way).

Let S be the (recursive) set of finite functions s whose domain is a finite subset of

( V\(Le) 0 , the set of effective indeterminates, and whose values arein 7 . We define the
(recursive) partial order s<t on S by the condition that

s(a) <t(a) for alldon{(s) ndon(t) ,
s(a) <0 for alldon{(s)-don(t) ,
O<t(a) for alddon(t)-don(s)

Wehave [a] '<[b] I < [a] <[ b] , the latter meant pointwise from 1 .

From now on, we write [ a] , but actually mean [a] I'.

A key point is the

(10) Finiteness Lemma Forany sOS, theset N/(s) of al well-formed normal
words a for which [ a] <s isfinite.

In words: if we require of a normal word a to have indeterminates in a preassigned finite set
(donm(s) intheformal context), and moreover, we bound the multiplicity of each indet x
by afixed number (s(x) intheformal context), then we only have finitely many possible
a's.

(As amatter of fact, the same is almost, but not completely, true without the qualification
"normal™ (think of words which are long composites of the same identity cell).)

Theset N/(s) isimportant; for alON/(s) wealsosaythat" a isbounded by s ".
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The proof of (10) will be contained in the proof of the main theorem, 7.(3), where we need
something stronger and more technical. However, the finiteness lemma shows the role of the
content function clearly. Note that the supp function trivially fails to have the same effect:
the computad whose indeterminates are the 0-cell X and the 1-cell f: X— X hasinfinitely

many 1-pd's, namely the powers £ (nON) of f , butall (except 1X) have the same
supp , namely {X, f} .
Proof of Theorem 7.(3).

(A)  Inessence, the proof is an induction on the dimension n , the induction statement
being

e - . e .
(11)n (NJ )sn ,and = redtrictedto (N| )Sn , are decidable.
(11)n is clearly true for n=0 .

However, it seems necessary to strengthen the induction statement.

Recall the definition of the set SOHF above. Let S<n:{ s:dom(s) D\/\ngn} ; the elements
of S<n have indets in their domain that are all of dimensions <n .

A further induction hypothesisis

(12)n There is arecursive function f<n: S<ne[H[F such that, for each sDS<n ,
f<n(s) ONL(s) ,and for al aON/(s) ,thereis bf <n(s) with a=b .

(In particular: f <n( s) isafinite set of normal words, forming a complete set of
representatives, possibly with repetitions, of the equivalence relation = <n restricted to words
that are bounded by s .)

Under the assumption (11)n&(12)n , We prove (11)n +l&(12)n +1 - (Expressed more
pedantically, our proof consists of the definition of two recursive functions,
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ch_. =ch_(n,...) and fn:f(n,...) , on HF , one of whose variablesis n ,

n
together with the proof that the first of these functions coincides with the characteristic

function of the relation = = ~n )
n

(B) Assume (11)n&(12)n .

The first observation is that (V\lLe) <n+1 is decidable: it is decidable whether an
(n+1)-dimensional word is well-formed. The reason is that the question of well-formedness of
an (n+1)-dimensional word a isanswered by answering questions of the well-formedness of
subwords of a of dimension at most n , together with questions whether certain words
(possibly repeated domains and codomains of subwords of a ) of dimensions at most n are
"equal”, i.e. in therelation = ; and all these questions are decidable by the induction
hypothasis(ll)n :

In what follows, all words are in W , In fact, most of the time. in Nie . We suppress the
superscript e .

Next, we note that (8) immediately implies that the relation =n+1 restricted to (n+1)-atoms
is decidable, since it is directly reduced to the decidability of =n - One should only point out

that, given atoms ¢=¢[ u] , ¢=y[ u] with the same nucleus u , we can choose u an
n-indet chosen outside sO:supp( ¢) Osupp( ) "canonicaly", e.g., with the least natural

number asthe name |ul of u that does not occur as a name of any indet in s 0" and then

inquire if @[ u] *n Y[ u] , adecidable question.

In fact, the same reduction gives the part of (12) for atoms. More precisely: given any

n+1
SDSSﬂ+1 , let
r =dom(s) ;
rn+1:{uDr:di m(u) =n+1} ;
Fn+1 ={u: uDrn+1} where u ischosen to be an n-indet, as usual, with
du=d{™ Dy cu=c(M™ Dy aso, themap ursu isbijective; and ulr for all
uDrn+1.

98



F=(r-roe) Orpgg s

s isdefined as the function for which s(x)=s(x) for xOr-r and

n+1l’
s(u)=s(u) for uDrn+1 . Also, themap s+>s ismade recursive ("canonical"), by

choosing each u such that the names |u| for ulr n+l e the least possible integers not
equal to the names of the indetsin r-r n+1 -

The important thing to see is that

(13) if the (n+1)-atom @[ u] isbounded by s ,then ¢=¢[ u] isbounded by s .

This must be checked by a direct look at the relevant formulas. We have

¢ =b b, (...(b,ule,)...) B ) B,

¢:bnE(bn_lE(. (b EJBE) )Ee 1)Een
By using the formulasfor [ -] , and noting that, for i =1,...,n,

by A (b (.. (by[uley)...) & _4) &) =

b oA (b ... .(byiley)...) & ) (&),

and the "dual" facts (roughly, there is no change in passing from ¢ to ¢ except in the
innermost part), we conclude that

[¢] - [¢] =[u] - [u]

On the other hand,

[u] =(7) +[du] +[cu]

[a] =(¥) +[da] +[ca] =(Y) +[ddu] +[ccu]
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Since [ddu] <[du] ,[ccu] <[cu] ,wehavethat

(Tul-[a]) v 20, and ([ul-[a]) W, =()-() .
(13) follows.

With s asbefore, define A(s) asthe set

A(s) ={¢: ¢=¢[u] an (n+1)-atom ulr .., $[u]Of _ (S) },

where f<n IS given by (12)n . Then, clearly, by (8) and (13), the (12)n property of f<n( S)
trandates into the fact that, for (n+1)-atoms, A(s) isacomplete set of representatives of
the equivalence =n+l restricted to (n+1)-atoms bounded by s .

A(s) isarecursivefunctionof s .

Next, we show that the relation L( p,0,¢,) on (n+1)-atoms p,0,¢,¢ is decidable. Inspect
the definition of L( p,0,¢,¢) in (7). Suppose we have a and 3 asthere. By

(9)(vi)& (viii)&(ix), wehave [a] <[ p] , [Bl €[ 0] .Also, a and B can be replaced by
any o and [ suchthat a=n+1a’ , B=n+1B’ . It follows that, for the given p,o,¢,y,
we have that

L( p,0,0,y) <= thereexist (n+1)-atoms a,B in A(s) such that (7);

i.e., the quantifier "there exist a,3" in (7) can be replaced by the bounded (in the sense of
HF ) quantifier "there exist a,B in A(s) "; here s=[ p] v[ d] v[ ¢] V[ ¢] . Since the
ingredients of the line (7) are already seen to be decidable (the referenceto = being
restricted to arguments that are atoms), we have what we want.

n+1

It follows that the relation E( @, ¢) , for (n+1)-molecules ¢ and i, is decidable.

(C)  We complete the proof of (11)
(n+1)-molecules.

by considering the relation = for

n+1 n+1
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Let /[N-{O} ,andlet s be any element of Sn+1 (a"bound" for "contents"). Recall the
set N/(s) of well-formed words "bounded" by s . Let Nin+1( £, s) denote the set of al
(n+1)-molecules of length £ , bounded by s .

For 5:61 0..0m,, =1, 0. . Cr, any molecules of length £, let's write §==n+l?
for the condition that for each 1 =1, ..., £, we have Gi =n+1 T (pointwise equivalence).

Note that §==n+l? implies 6=
(£ s) .

n+1 T and, hence, that §==n+1r and 5DN¢n+1( £,8)

imply TONL_, 4

Further, note that if §DN¢n+1( £, s) , and we take the atom T, i=1,...,4¢,

independently of each other, but such that Gi =n+1Ti

T : and hence, also TONJ,

then T45f T1D.. [lrz isa

well-defined molecule, and B== {,s) .

n+1 n+1(
Let M £, s) DN¢n+1( £, s) bethe finite set of all molecules 5291 a.. [19z of length ¢
such that each atom Gi belongs to the finite set A(s) of (n+1)-atoms defined above. It
follows from the previous paragraph, by the property of A(s) , and by the coarse estimate

[6,1<[ 6] (hence, if the molecule 6 isbounded by s , then so is every atom 6. init)
that

N

(14) foreach 6ON._,,(¢,s) ,thereis TOM ¢, s) suchthat 6== . 7.

Now, assume 5 tfr are molecules; assume that $DN¢n+1( {,s) .

Further, let 51, Ce $p be a finite sequence of (n+1)-molecules such that
=61, ¢=¢P , and E(¢' . ¢' ") forevery i0{1,...,p-1}.
First off, then, for each i $i =n+1$;thuseach $i , and LTJ in particular, is also bounded

by s, and of length equal to / : each $i belongs to Nin+1( {,s) .Let, by (14),

52, e 6P 1 be moleculesin M £, s) such that $i ==, 6 (i=2,...,p-1) .For

1
uniformity, let 51:$, §p:LTJ.Since, as ingpection shows, the E(-, -) relationisinvariant
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under = and even more so under == we have

N+l n+1’
5:51, Lflzép,and E(éi,éi +1) forevery i {1, ..., p-1} .

We have demonstrated the following refinement of (8):

(15) For $UONL(LY), é=. ¥ iff thereexists pON , and 62, ..., 6P 1 in M ¢, 5)
such that, with 51:(3, §p:tfl,we have E( éi : éi +1) forevery i=1,...,p-1.

Let m( £, s) bethecardinaity of M £, s) . Then, obvioudly, by eliminating repetitionsin
the sequence 52, Ce 6P 1 , in (15) we can bound p by p<n( /,s) +2 , and get

(16) For ¢, YON| (4, 8) , ¢=_, W iff thereexist p<n( ¢,5)+2 , and

52, R Lin M £, s) such that, with 51:$, 6P=y , we have E( g : g +1) for
every i =1,...,p-1.

By what we already know, this shows that ¢=__, ¥ is decidable for positive-length

molecules (ﬁ LTJ Removing the qualification "positive-length” is trivial.

This completes the proof of (11)

n+l -
It remains to show (12)n+1 .
Note that for a molecule $:¢1 a.. Dj)z , we have £={(¢) = ) [ ] (u) .
ubsupp,,1( 9)
Therefore, for any bound sDSnJr1 , =0,

(17)  $ONI(s) ,,, impliesthat £( ) isbounded by the number

15T h+1 o3 uDdo%(s) s(u) -
di m(u) =n+1

Recall theset M £, s) defined above. We put
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f_neq(8) = f_(s) O fSMn+1M {,s)

By (14) and (17), we see that, for any aDNLnﬂ(s) , there is

bdo \J Md{s) Of (s)
KS[[S]]rH.l <n+1

such that a=b . Otherwise, if alON/(s) - Nin_l_l(s) = Nisn(s) , we have, by (12) . ,
bOf _(s) Of_,,4(s) with a=b.

This completes the proof of (12) and that of Theorem 7.(3).

n+1
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11. Proof of the existence of enough computopes.

We will prove theorem 6.(3). We are going to use section 5, especially the content function
[-] , and sections 8 and 9 -- but not section 7, nor 10: we will not use "words".

The main tool will be the identity stated in 5.(12)(ix). Note that, as a special case of said
identity, if F: XY isinjective, then for any a0||X|| and xO X ,
[ Fa] \( Fx) =[ a] y(x) .

From the content-function, we can deduce the size-functions: for any nilN , computad X, and
any pd ad||X|| , we define

- X _ -
[al g3 (@)1 g5F X% X m[ a] y(x) = X%Suppn{ 2) [a] (X) .

[a] ,, isthe total number of occurrences of mindeterminatesin a . Write [a]=0[a] [,
a vector of integers, only finitely many terms of which is non-zero.

Recall that for every xOsupp(a) , [a] (x)=1. It follows that #suppm( a)<[a] m- the
number of distinct mindetsin a isbounded by [a] .

By abound | mean a vector N= ENm%[N of integers Nm, only finitely many of which is
non-zero. di m( N) d5f max{m Nm¢0} . N'n isthebound M for which M/iNm, for all
nmen , and M,:0 foral nmen .

Bounds are partially ordered by the pointwise order, denoted <. aO||X|| isbounded by N if

[@a]] <N.

Q) First Finiteness Lemma For any given finite computad X , and any bound
N, the number of pd'sin X bounded by N isfinite.

Pr oof Thisis a consequence of 8.(12).
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The proof is by inductionon di m( X) . Let N beabound, X afinite computad of
dimension n+1 , and assume [X]<N. By loc.cit., every (n+1)-pd a in X is(case 1)
either 1b for some bDXn , Or else (case 2) of the form

a = ¢1D..E¢£,

where
¢ =b b, I(...(byo' @) ...)e )&
with bim, eimD Xrn and ui DXn+1 .Incase 1, a being bounded by N, b isaso bounded

by N, and the induction hypothesis (applied to XI'n ) says that there are only finitely many
such b's, and therefore only finitely many such a's as well.

In case 2, a somewhat longer-stated, but similarly obvious, counting tells us that there are only
afinite number of such a'sthat are bounded by N. Namely, if a in question is bounded by
N, then:

first of al, since /=[a] n+1 (1), we have that ¢ isbounded by Nn+1 ;

secondly, by 5.(12)(vii), each of the b, e isbounded by N, and hence, by the
induction hypothesis, there are only a finite number of possibilities for these;

thirdly, since X isfinite, there are a finite number ( = #Xn+1 ) of possibilities for
each u; .

The last three facts clearly add up to what we want.

Let X beafinite computad. By thesizeof X, [X]=0[X] meho ¢ | mean the vector whose
components are given by

PIm= 4 X m[[x]] |

X isbounded by N if [X]<N.
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(2 Second Finiteness Lemma Given any bound N, there is afinite computad
Y = Y(N) such that: every time X isafinite computad bounded by N, thereisa
subcomputad Z of Y isomorphicto X: XOZ.

Proof. By induction on di m( N) . Suppose the assertion for n , to show it for n+1 . Given
N of dimenson n+1 , consider NM'n .Let WEY(NMn) . Let ® be the set of al pairs

(a,b) of pds a, bOW, suchthat allb, andboth a and b arebounded by N. By the
first finitenesslemma, @ isafinite set. For each pair ( a, b) OF , let U( a, b) be a set of

cardinality equal to Nn+1 , of (n+1)-indets u attachedto W by du=a, cu=b . Let

=\ U a, by - Define Y by Y=W U I clamthat Y worksas Y(N) .
(a, by OF (&

Indeed, let X be any (n+1)-dimensional finite computad bounded by N. Consider Xtn , an
n-dimensional finite computad. By the definitions, [Xtn] = [X] I'n < NI'n . Therefore, there

exists asubcomputad V of W suchthat Xtn OV .Let F: Xtn AV be an isomorphism.

Let ubIX| ., - Let a=F(du) , b=F(cu) . Wehavethat a||b . Note (by aremark
above) that [a]=[du]] , [b]=[cu] . Now, clearly, [du], [cu]<[u]<[X]<N, hence, a
and b are bounded by N. We conclude that the pair (a, b) belongstotheset @ .

Let us set up aninjection G |X| n+1HU= Y n+1 such that, for every ull |X] n+1 ' We
have G u) DU(a b) , Wwhere a=F(du) , b=F(cu) . Thisis possible since the cardinality
of X n+1 is bounded by [X] n+1 (since each (n+1)-indet contributes at least 1 to the
sum whichis [X] n+1 ), hence, aso by Nn+l , and each U( a, b) has cardinality N
thus there is enough room for the injection G.

n+1 ;

Themap F, construed as an injection Xtn——WEY I'n , together with the map
G IX| n+1HU= Y n+1 induces, by the universal property of X=( Xtn)[ IX n+1] , a
map H: X—Y of computads which is injective on indets. Its image denoted by | m( H) , we

have our required isomorphism H: XQI m(H) of X with a subcomputad of Y .

Recall principal computads and, in particular, computopes from section 6.
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Every time we have a computad X and an indeterminate xO |X| , we have the principal
computad A=SUpp,( x) , & subcomputad of X, such that x=m, . For any ad||Al], [a] A
isthesame as [ a] x + 85 aconsequence of our remark about "injective F's".

In what follows, A, B, ... denote principal computads.

Any principal computad A is, in particular, finite; thus, [A] is defined as above. However,
in this case, another measure of size is more natural; we put [A] i d5f [ma] - Infact, it
does not really matter which one we use, because we have [A] :ns (Al = (TA] :1? 2 The
first inequality is clear; for the second, note that # Al m:#suppm( mA) <[A] :n so there are

at most [[A]]:n summands in the sum that is  [A] ; and each summand is at most

[My] = [A] . by 5.(12)(X).

We will say that A is *-bounded by N is [A] <N.Thus if A is *-bounded by N, then

A is bounded by N?=[N2(] .

*
[A] isobvioudy invariant under isomorphism. However, something much stronger is true
too.

If A and B areprincipal, f: A—B isamap of computads, then [f |: |Al — IB| is
surjective iff di n{ A) =di m( B) iff f(mA) = iff f isanepi (see5.(9)). We have that if

f:AB isanepi, then [A] =[B] .Thisisclear from 5.(12)(ix):

B * = = f : =
Bl yDZB m[ Mgl g(Y) yDXB m[ (my) 1 g(Y) yDXB m?% A m[ Ml A(X)
X=y

= (A
Do (a0 = iy

where we used the quoted fact at ! .
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(3)  Third Finiteness Lemma For any bound N, the set of isomorphism types of
principal computads *-bounded by N isfinite.

Proof. Thisis a direct consequence of the second finiteness lemma: by that lemma, every

isomorphism type of finite computads bounded by N2 , hence every principal computad
*-pounded by N, is represented by one of the finitely many principal subcomputads, each
given as Supp(x) by asngleone, x , of the finitely many indets of the finite computad

Y(N?) .

4) Theorem (=Theorem 6.(3)) Every principal computad is the specialization of a
computope. In other words, for every principal computad B, thereis at least one computope
A, with an epimorphism A—B to B.

Pr oof Let B be aprincipal computad. Call a principal computad A for which there
isan epimorphismn A—B to B aresolvent of B. Being aresolvent of B isa property that
isinvariant under isomorphism. Each resolvent A of B hasthe same *-sizeas B:

[A] "= [B] " Therefore, by the third finiteness lemma, the isomorphism types of resolvents
of B form anon-empty finite set. Let A be aresolvent such that # |A| , the number of
distinct indets of A, ismaximal: # |Al 2# |C| for all resolvents C of B. Since # |Al is
an isomorphism invariant of A, there are such A's. | claim that A is a computope.

Indeed, suppose that C is principal, and CLA is an epi. We have an epi A%B;thus,

we have an epi C%A: C isaresolventof B.Butalso, If|: [Cl — |Al isa
surjective function, and thus, # |C| = # |Al . By the maximality of # |Al , we must have
that # |IC| =# |Al . But then, the surjection [f|: |Cl — |Al must be abijection. A
morphism f: C—A which becomes a bijection on indets is an isomorphism: f isan
isomorphism. Thisis what is needed to show that A is acomputope.

The proof of 6.(2) is clear from (3).
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Appendix to section 1
Proof of 1.(1)

Genera reminders:

The Yoneda functor E—E will be denoted by (-): E—E. Ugz O(-, U) OC; similarly
for arrows.

A op A
For any category E , E=Set E , XUE , AUE , we have the (Y oneda) bijection
xf A f x (L.1)

|

XOA( X) fX(l X

)

A partial initial (Pl) object, in any category, is an object which isinitial in a connected
component (a full subcategory) of the category .

In El (E) , the objects X J5¢ (X (X 1y)) (XOOb(E) )aeP (the standard PIO'S); up
to iso, these are all the PIO's; every connected component of El ( é) has exactly one
standard PIO in it.

Suppose:

0]
C = D
O
Mol ¢ -1=1-1p
S
? 0
Want: F: C———>D(dc!) . (1)
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Reminders;

Al :UHCA(U) = {(U,u): UIC, uOA(U)} ,
P = ] P(X) = {(X x): XOD, xOP(X)} ,
Xub

(B (Q)) = {(ADC al A} = {(A U u): AOC, UIC, ulA(U)}

Ob(El (D)) = {(POC pOIPI} = {(P, X x): POD, XOD, xOP(X)}

0

$pr A= [OA] )
Definition of WV :
B (O  SE (D (3

(AU u) —— (A ¢,((U 1))
Claim: Y isan equivalence. Easy.

It followsthat ¥ sends a partial initial object to a partial initial object.

To define F (see (1)) on objects, let UTC . Take the standard PIO U in EI (C) . W(U) is

aPlOin El (15) . There is a unique standard PIO X, XOD, such that X O ‘P(U) ; denote
X by F(U) .

The mapping F: Ob(C) ——>Cb( D) isabijection.

For every U, we have a unique isomorphism ( FU) N%W(O) in El (15) , Whichiis, in

N

particular, an isomorphismin D:
. A |:| A
vy (F o) .

We define the effect of F on arrows. Let f: U >V . Wehave o(f): oU— oV . Using that
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Yonedais full and faithful, there is a unique arrow Ff : FU— FV making this commute:

A wu A
FU Y soU
O
= of
N D N
FV oV
by

Using Yoneda again, and that ¢ isfull and faithful, it follows that the induced mapping
F: (U V) —D(FU, FV)

isahbijection. It isclear that F: C—D isafunctor, and thus an isomorphisnof C and D.

Proof of Proposition 1.(2)

Let us pick an initial object (U, u) in each connected component of El (A) ; let # bethe
set of all selected elements (U, u) . Define the category C asfollows. Qb( C) daf U; an
arow (U, u) —(V,v) isthesameasanarow U—V in A, with the obvious
composition structure. We will show the assertion with C thus defined.

We have the canonical functor, a coproduct of representables,

F = y AU -): A >Set . (4)
(U, u) 0U

The main assumption of the proposition, or rather, the choice of the set % made possible by
that assumption, is precisely that F isisomorphicto |- | = |- | A In fact, we have the

natural transformation ¢: F— |- | for which ¢A: A(U A) —— |Al is
(U, u) OU

defined by ¢A( (U, u), ULA) = [f|(u) O |Al ;said assumption is precisely the fact
that ¢A isabijection for every AOCH( A) . We have the isomorphism

o F -, 5)
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We have a full and faithful functor C— A, which, however, isnot an inclusion. Let D be the
image of this functor; D isthe full subcategory of A with objectsal U such that

(U, u) O« for some u . Let'swrite E: C— D for the obvious equivalence [ (U, u) —U] ,
and (: D—A for the inclusion. Accordingly, we have the functors

C, (6)

where | maps A to A1 (remember that A=A(-, A) ),and E (X) =X-E°P ( xOD).

Their compositeis G A>C. G maps A tothefunctor [ (U, u) —A(U A ] .

Consider the triangle

(7)

\Set /

Inspection shows that the composite functor |- | , -G A-—>Set isidentical to F (see (2)) .
C
Thus, (7) commutes up isomorphism (see (5)).

It remains to show that G is an equivalence, or equivalently, that | (see (6)) isan
equivalence. The proof depends on two claims.

Claim 1 Foreach (U, u) 0%, U isanatom,in the sense that
A(U, -): A—>Set preserves (small) colimits.

As we know (see (5)), the functor F = A(U, -): A——>Set isisomorphic to the
(Y, u) 04
forgetful functor |- | A which is assumed to preserve colimits. Any coproduct of functors

UFi : A—Set preserves colimits iff each component Fi does (as a consequence of the fact
[

that a coproduct of a set of arrows fi in Set isanisomorphism iff each fi Isan
isomorphism). The claim follows.
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Claim 2 Theincluson 1: D—A isdense. That is: let AUA ; we have the dice
category C|A with the forgetful functor ®=[ (U—>A) >U] : C/A—> A, and the cocone ¢
with vertex A on @ for which ¢UﬁAd5f f:U>A .Weclamthat ¢ isacolimit

cocone.

To ward against confusion, we will use square brackets, such asin [V, f: V—>A] , when
denoting objects C|A , to distinguish them from elements (A, a) of El (A) .

By our assumptions, it is enough to show that the assertion becomes true after applying the
functor |- | . Accordingly, let Dp[v frVsAl DIV %SE{V f]10CLA be a cocone on
|®| , to show that thereisunique t: |Al —S with

to‘f‘:(,t’[v’f] (?8)
foral [V,f]OCJA.Todefine t ,let al |Al . Let (U, u) 0¥ betheinitia object of the

component of El (A) containing (A, a) ; we haveanarrow e: (U, u) (A a) in
El (A) . Define

t(a) =gy, ) (W - ©

To show (8), let xUO |V| be any element; we want

(te £ =4y 700 - (10)

Put a=If | (x) O |A|.Wehave (9) with suitable e . Because of the presence of the arrow
f:(V,x) >(A a) in El (A) ,theelement (V, x) isinthe same component of El ( A)
as (A a) . (U u) isinitia inthat component, so thereis g: (U, u) —(V, x) . But then

e
(U, u) ;(A, a) ;snce (U, u) isinitial, e=f g .Since Y isa cocone,

fog
(,U[ V, ] og:(,u[ U e - Finaly,

(tolf)(x) =t(a) :(’U[U, e](u) :(’U[V,f]( gl (u)) :"U[V,f](X)

as desired for (10).
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The uniqueness of t isclear. We have proved Claim 2.

A op
The fact that the functor | =A( - D" A) : A—D=Set D™ is full and faithful is a direct

consequence of the density of D in A (Claim 2). It remains to show that | isessentially
surjective on objects.

Let XOD. el (X) is, by definition, the category of elements of X, with objects the pairs

(U, x) with UOD, xOX(U) ;anarrow (U, x) —>(V,y) isanarrow Uf%V such that

(Ff) (y)=x. We have the forgetful functor el ( X) — D, which, composed with the

inclusion D#A,givesthe diagram ®: el (X) —A . We define A=col i n{ @) , and
provethat XOI (A) .

Calculating | (A) , we obtain

I(A):A(-D, colim U O colim A(-D,U): colim D(-,U,
(U, x) Oel (X) (U, x) Oel (X) (U, x) Oel (X)

where the indicated isomorphism is a consequence of Claim 1. It is classic (aform of Yoneda's
lemma) that the last colimit isisomorphic to X itself.

The proof of 1.(2) is complete.

Appendix to section 4.

Proof of 4.(2): A magma is defined like an w-category except that we do not require the last
four laws: unit laws, associativity and interchange, in the definition of cw-category. In
particular, a magma has dimension, domain, codomain, identity and composition operations,
the latter being defined under the usual domain/codomain conditions, and the operations are
required to satisfy the domain/codomain laws.

First, we show that the free magma-extenson W=" X
following (we abbreviate W for |W , X for |X]):

magmal U " of X by U stisfiesthe
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(1) The canonical map "I : X—W is monic; we take it to be an inclusion.

(i) The canonical map " A": U—W factors through W X .
(iii) 1,0X iff abX.
(iv) For any O<k<n , the partial composition (w. ,w2) oWy W,

maps the set XxX into X and the set (WKW - ( XxX) into W X. In other words, if a#kb
is well-defined, then a#kb 0 X iff both a and b belongto X.

The proof of thisis straightforward; we can construct |W as a set of words satisfying (i) to
(iv), without having to make any identifications.

Next, we observe that imposing on W the four identities mentioned above, in order to turn it
into an w-category (which will be X[ U] ), we never have to identify an element of X with
an element of W X . Looking at an instance of any one of the four identities, we see that if on
either side, the expression isin X, then the one on the other isalso in X . Take, for instance,

the left unit law: 1gn) #kb = b , where a:d( k) b.If bOX, then alX, and 1gn) Ox,

thus 1{") #, bOX . This shows thet if the right-hand side isin X , so isthe left-hand side.
The converse is even more obvious. The same thing is true for the other laws, in a similarly
more obvious manner.

Define the subclasses C1 to C4 of (W X)x(W X) asfollows. They correspond to the

four w-category identities. Into CI (1{1,2,3,4}) ,wetake up the pair (Wl' w2) iff

Wy isan element of W X on one side of an instance of identity number-i , and W,y isthe
corresponding element, necessarily in W X, on the other side.

We can define an equivalence relation = on W X asthe least equivalence on W X that
contains the classes C, 1o Cy, and satisfies

a#kb l &a=a’' &b=b’ &a’ #kb’ | = a#kb =a’ #kb’ (2

The logical forms of the conditions tell us that such least = exidt.
Next, we show easily, "by induction”, that we have

a=h — al|b ©)
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and as a consequence, we have
a#kbi &a=a’ &b=b =— & #kb’ L & a#kb =a #kb’ 4

which is a strengthening of (2). Finally, we extend = to W&( W X) UX by saying that, for
Wy, WZDW, Wy =Wy iff either Wy, WZDW X and Wy =Wy in the original sense, or

w1:w2DX. It followsthat = isan equivalence on W that contains C1 to C4 , and satisfies

(1), (3) and (4). We can define the w-category whose underlying set is W =, the set of all
equivalence classes of = on W, by the method of representatives. It is easy to see that, with
the incluson X— W =, it has the universal property of the free w-category extension
X=Xy .

The assertions in 4.(2) are now clear.
Proof of 4.(8). Here is a complete construction of X[ U] geared towards proving the lemma.

We define what we mean by aword w, and what are dw, cw ; the latter two entities are
elements of X1 and they are paralldl.

The words come in three digoint sets, Wy, W and W, ; the set W of all wordsis

WV by 4

V\é consists of all the expressions of the form iAdX where xDXn_ 1 (identity words);

A(1d,) 31 001 d) gy x-

For k<n, aword VD% isa k-to-n identity if v:iAdX for a k-to-n- 1 identity xDXn_ 1
in X.

V\i equals U, the given set of indeterminates, du and cu are as given in the attachment of
U to X.

W, is defined inductively: for words v, w and k<n such that c(k)v:d(k)w [here,

o k)vdgf a(k-1) gy , and similarly for ¢ ],
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the formal expression vﬁkw belongs to W, iff

either VDV\{LDV\é , or WDV\iDV\é ;

neither v nor w isa k-to-n identity.

and

Moreover, d(Vv# W) 45 dv if k=n-1,and d(v# W) 45; dv# dw when k<n-1, and
similarly for ¢ . We do have that d(v#w) |[c(v#, w) .

In other words, for words v and w, the formal expression vﬁkw is well-defined as a word,
and belongs to V\é provided v and w are " k-composable”, and it is not the case that both
v and w areidentity words (in W ), and, moreover, even if one of them is an identity word,
itisnot a k-to-n identity word.

We write v||w for dv=dw& cv=cw.

It is understood, of course, that two words are equal iff they are formally identica; e.g.,

A

v#kw:v’ﬁzw only if k=£, v=v' and w=w .

Thewordsin V\é are characterized among all words by the fact that they are of the form

vﬁkw for words v and w.

We give a "fully defined" composition of words. a word v#kw whenever v, WOW, k<n
and c(k)v:d(k)w.

V#kwdéf vﬁkw whenever vﬁkw is well-defined.

If v=i dX , WEI dy , both from V\b , then V#kwdéf [ dX:i dy:v:w when
k=n-1 (and x=y ), and VH# W 5 [ dX#ky when k<n-1.

If v isa k-to-n identity, V#kwdczaf W,

If w isa k-to-n identity, V#kwdczaf V.

In the instances when two of the last three clauses apply, the definitions give the same result.

Notice that we always have that d( v#kw) =dv when k=n-1,and d(v#kvv) :dv#kdw
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when k<n- 1, and similarly for c .

Note that if either v or w isin V\é , and v#kw is well-defined, then V#kV\DV\é cand if
either v or w isin V\i , and v#kw is well-defined, then v#kV\DV\iDV\é.

Let us show the following version of (1.1):

(1.1)* Whenever /<n, k<n, v, wdW, and v#zw is well-defined, if
v#zw isa k-to-n identity, then both v and w are k-to-n identities.

Assume the hypotheses, including that v# W isa k-to-n identity. First of al, we must have

that v and w arein V\b v:iAdX and w=i d , x,yDXn_1 .When /=n-1, we have

y

v:w:v#zw, and the assertion is clear. When /<n- 1 , we have v#zw: iAd : this

X# ,y
{
being a k-to-n identity, x#zy isa k-to-n- 1 identity in X ; therefore, by (Cn-l) for

X, x and y areboth k-to-n-1 identitiesin X, and the assertion follows.

By WX 4 W% , wemean the pullback { (v, W) OV, XW: v ||

We define the relation =, an equivalence relation on V\é , asthe least relation
= V\éxEd c d/\é satisfying (i) to (iv) below; the variables v, v’ , w, W range over V\é :
Vi Vo, v3, Vg over W.

(i) = isan equivalence.

(i) v=v' and w=w imply v W=V H# W provided one of the
composites, hence both, are well-defined.

an) v=v' and udvW oW imply V# U=V # U provided one of the
composite words is (hence both of them are) well-defined.

(iv) v=v' and udvW oW imply u# v = u#, v’ provided one of the
composite words is (hence both of them are) well-defined.

(v) If v andwarein\/\é,and

either V:(Vl#kVZ) #kv3 and vv:vl#k(vz#kVS) for some k<n and

Vi Vo, v3 0w,
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or v=(v1#k o) # ) (Va#, V,) and W=(v # Vi) # (V,# ,v,) for some
{<k<n and v;,Vv,, Vg, Vv, OW,
then v=w.

One should note that each closure condition generates pairsin = that are in the set

V\éxm,cﬂ/\é'

We extend the equivalence = to =" on the whole of W by declaring that for v, wiW,

vz*w iff either v=w, or v, \NDV\é and v=w.

*
We claim that the conditions (i) to (iv) remain true for = . More precisely,

* *

(i) = isanequivaenceon W.
(ii)* v, V', w w OW, vz*v’ and W—=*V\/ imply v#sz* A #kw
provided one of the composites, hence both, are well-defined.
(iv) If v, wOW, and
either (a) V:(Vl#kVZ) #kv3 and w:vl#k(vz#kVB) for some k<n and
Vi Vo, v3 0w,

or (b) v=(v1#k 2)#£(V3#kv4) and "‘F(Vl#z"s)#k("z#z"4) for
some /<k<n and Vi: Vo, Vg, V g4 BW,

*

then v= w.

(What would be (i) is subsumed under (i) .)

*

(i) istrue.

For (ii)* , assume the hypotheses. We need to show that if v#kw isin V%D\/\i , then

v’ #kw :v#kw. By inspecting the definition of v#kw,weseethat V#kV\DVY) only if
both v and w arein VY inwhich case v’ =v and w =w, and the desired conclusion is
reached; and similarly if V#kV\EV\i )

For (iv)*: the case (a) is similar and simpler than (b); we discuss (b) only; assume the
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hypotheses in (b).

If v or wisin V\6 , then al of Vi:Vgy, Vg, vV, must bein V\b , and we have
V=W,

If v or wisin V\i ,that is, v=u or w=u for some ullU, then, first of al, clearly,
one of ViV, Vg, vV, must be equal to u , and the others must be elements of V\6 .

Assume v=ulU. Suppose, eg., Vi=U. (U#kvz)#l(VS#kV4) =u implies, on
the one hand, that u#kv2:u and thus that Vo isa k-to-n identity; on the other hand, that
vgatrfkv4 isan {-to-n identity. By (Cn_ 1) being true for X, it follows that both Va
and v, ae {-to- n identities. It follows that

w= (U#gvg) #k(v2#£v4) = u#kv2 =u.
The other cases: v; =u (i {2.3.4} ) aresmilar. Also, the argument is similar when we

start with w=uOU .

The (equivalence) class of the word WW under = isdenoted by [w] . Of course, the class

[v] for vOMRERY is [v] ={v} .

We define the n-category Y asfollows. The (n- 1) -truncation of Y is X.
The set of n-cells of Y is Y. d5f W=={[W:wIW .

We put, for woW, d[ W] =dw, c[w =cw; these are clearly well-defined.

The identity n-cells are given by the elements of V\i . for xDXn_ 1 i dX = iAdX] :

For the composition of n-cellsof Y, we put
[VI# W 55 [V# W (k<n, v, wow, c(K)y=d(K)w)

The well-definedness of composition is assured by (i i)*.
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The domain/codomain laws were effectively pointed out above.

The identity laws, one for each k<n , concerning composition of n-cells, holds on the level
of words already.

The remaining laws: associativity and middle exchange in dimension n aretrue asa

consequence of (iv)*.

We have the obviousinclusonmaps I': X—Y, A: U%Yn ; (Y, T, \) isanobject of
A=Al X, U, d, c] . Weclamthat (Y, I,A) isinfactaninitial object of A. Thisis
verified by inspection; intuitively, we did not generate elements of Y , and we did not make
identifications between them, unless it was so dictated by the w-category laws.

(1.2) bholds by (1.1)* . The assertions concerning I and A are true directly by the
construction. This completes the proof.
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Appendix to section 5

Proof of 5.(3).

We have nConp , the category of n-computads, the n-truncated version of Conp ; its
morphisms map indets to indets. nConp has a non-full inclusion into nCat , and the

n
forgetful functor Xi— IXI= || IXI;
i =0
into Set :
Set < "' ncomp. sncat Q)

By induction on n , we prove that nConp has all (small) colimits, and the two functorsin
(2) preserve them. For n=0 , thisisright.

Assume the assertion true for n , to show it for n+1 .

Let (n+1) 7 bethe category of (n+1)-frames, the obvious (n+1)-truncated version of F
of section 4 . We have, as before, the pair of adjoint functors:

T
(n+1) F< T _(n+l)Cat .
e

Let [ n+1] 7 be the non-full subcategory of (n+1) F with objects ( X; U) where X isan
n-computad, and morphisms

(XLY, UAV) (XU ——(Y; V)
inwhich T isamap of n-computads. The category [ n+1] 7 isobtained by the same
simple construction from the category nConp as (n+1) F from nCat . We have the pair

of forgetful functors

Set <« (n+l) F———nCat
U«ec—1 (XU — X
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restricting to the ones in

Set «—[n+l] F——nConp ,

and we have the combined diagram

Set «—[n+l] F———nConp 2

Set <« (n+l) F———nCat

Both rows in (2) create colimits in their middle object, in the precise sense of "creation”, and
the middle vertical inclusion preserves those created colimits, by the induction assumption that
the right vertical preserves colimits.

[A pair A«—B——C of functors creates colimits if the following holds. Given a diagram A
in B, we take its images Ap . B in A and C. Assume we have found colimit diagrams

*

AA,
* * *

A , consisting of A and acoconeon A, that mapsto A A and AC by the two functors, and

AE in A and C extending AA,AC.Then, in B, thereis precisely one diagram, say

A* is a colimit diagram. Note that saying that A<—B-— C creates colimit does not assume
that A and C have all colimits; however, if they do, then so does B, and the functors
preserve them.]

Hence, by the induction assumption that nConp has colimits, [ n+1] F has colimits, and the
three functors out of [ n+1] 7 in (2) preserve them.

On the other hand, the functor & F— wCat restricted to [ n+1] 7 maps ( X; U) O] n+1] F
to X[ U] , atypica n-computad. Therefore, we have the commutative diagram of functors,
with the horizontal arrows non-full inclusions:
[n+1] F ————(n+l) F
Ezl 0 lé’
(n+l)Conp > (n+l)Cat
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In fact, because of the definition of "morphism of (n+1)-computads’, the induced functor
E~ isan equivalence of categories.

The upper left corner has colimits; the upper horizontal preserves them; so does the right
vertical, being a left adjoint; the composite from the upper Ieft to the lower right preserves
colimits. Since the left vertical is an equivalence, the lower |eft has colimits as well. By the
commutativity of the diagram, the lower horizontal preserves colimits.

Looking at the diagram

(n+1l) Conp »———>(n+l) Cat
(-) rnl l(-) 'n
nConp ——— nCat

in which the verticals are truncations, and using that the horizontals and the right vertical
preserve colimits, we conclude, also using that the lower horizontal reflects isomorphisms, that
the left vertical preserves colimits.

We have the commutative diagram

| [n+1] F

Set / Ezl

o}

T (n+1) Conp

- | n+1

where 1 isthe forgetful functor considered in (2) . It follows that |- | n+1 Preserves
colimits.

From the preservation facts of the last two paragraphs, and the induction hypothesis that the
left functor in (1) preserves colimits, we conclude that in

Set « = (n+1)Comp — s(n+1) Cat 3)
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the left functor preserves colimits. We have now shown all the properties of (3) that make up
the induction statement for (n+1) .

Having constructed colimitsin n-computads, now we have to passto the level w. Thisis
done by the following simple abstract argument.

TT
Suppose we have a limit diagram in CAT , with projections c Y Cv , VON, such that
all the categories CV have colimits, and all the connecting functors F T v CHHCV

preserve them. Then C has colimits, and the projections T, preserve them.

Note that Conp , in asuitably large CAT , isthe limit of the diagram consisting of the
categories nConp , nON , with connecting functors the truncations; the limit projections are
truncations too. 5.(3) now follows from the corresponding fact for all finite n .

F
Proof of 5.(4): Suppose X ’Y aresuchthat |F|=|G . We show by induction that
G~
Fr'n=GIn (nON) ; F=G will follow. For n=0 , the assertion is clear. Suppose n=1 and
FMn-1) =GN n-1) . Then F'n=GIn follows by the uniqueness of the universal

property of Xtn = (Xt(n-1))[ IXI ] .

Suppose XLY issuch that [X| L Y| isabijection. Recursively, we construct an

inverse (Frn)'lernHXPn For n=0, (Frn)'lz( \F\O)'l. Suppose we have

G=(FMn- 1))'1 to construct H:(Frn)'l. The universal property of
Yin=(YMNn-21)([ Y] n] givesus H Y'n—XIn suchthat H on YI(n-1) is G,

and for y0O Y] n H(y) =g(y) with g=( IF| n) -1 indeed, the only precondition for

thisisthat d(g(y) )= dy) and c(g(y))=G cy) hold, whichistruesince FI(n-1)
applied to the two sides give the same result.

Proof of 5.(5)

Let L=(L; <, 1, v) beajoin semilattice. We define an w-category L from L . Wealso
defineamap LI —L: ar>[a] .
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Let L ,={*} and [*]=1.Let Logas L [-] on Lo the identity.

Recursively, assume n=0 and the n-graphis

d d d d
L 4 Lo Loqe Lo
(o (o (o (o

defined; let
Lapg ={(x 0, y) o xOL, 6, yvOL . [ 3], [ylsx, do=dy, cd=dy} ;
for a=(x, 9, y) DLn+l,pUt [a] =x , da=d, ca=y. Thus, [da],[ca]<[a] .

For aDLn , put 1a d&f ([a], a, a) DLn+1 .

Assume a, bDLn , 0<k<n, c( k) a:d( k) b, to define e = a#kb DLn . We put
[e]=[a] v[b] ,and de=da, ce=cb if k=n-1,de= da#kdb , ce = ca#kcb if
k<n- 1. Theconditions [ de],[ce] <[ e] aresatisfied since, by induction,

[ de] =[ da] v[ db] . The conditions dde=dce , cde=cce are satisfied automatically (see
the remark at Domain/Codomain laws in 82.).

The five identities are true as far astheir [ - ] -values are concerned: for instance, in the
interchange law, the left-hand side has [ -] -value ([a] v[b]) v([e] v[f]) , theright
([a]l vle])v([b] v[f]) ,which are equal. The rest of the requisite equality are satisfied
automatically again.

Let X beacomputad. Let L betheposet P( |X|) , ordered by inclusion. We define the

w-category map ¢:X—L recursively. Ontheset X, , @(x)={x} . Havingdefined ¢ on
Xtn , for xOX| 4 wedefine r=¢(x) 0L, 1 by [r]1={x}O[¢(dx)]10[¢(cx)] ,
and, necessarily, dr=¢(dx) , cr=¢(cx) . By the universal property of

XM(n+1l) = (XMn)[ X n+1] , this extends uniquely to ¢: Xt(n+1) —L.

For alX, let uswrite supp(a) for [ ¢(a)] .supp(-) satisfiesthe four identities by
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the definition of ¢ . The uniqueness of supp can be proved by "computad induction”. Also,
the "moreover" statements are seen easily by computad induction. Let's look at the third
statement:

for fixed n , for all alx, ,we have supp(a) OXh.1=— &1y, -

For a=1, : ?=T=T.
For a=x U \X\n: 1=7=T.
For a:b#ke : suppose supp(a) OXh- 1 . Then supp(Db) DS supp(e) DS

hence, by induction, b:1olb , e:1ole : thus, azldb#klde = 1db#kde = 1da ; QED.

Proof of the computad induction principle

To show this, by induction on nON , we first show that [X] a0P . For n=-1, true by (i).

Suppose n=0, [X] <n-1

X . Indeed, let xO [X| . Thenif di m(x)#n, x0Q clearly. If di m(x)=n, xOP by
(if) and the induction hypothesis. Second, bDQ>O = 1bDQ. Truefor di m(b) #n-1
automatically, and by (iii) for di m( b) =n- 1 . Thirdly, we have

0P . Consider theset Q= \9 XmD (ann) . First, Q contains
n¥n

forall b, e and k : (b#kei&bDQ&eDQ) — b#keDQ,
once again, with nbéfdi m( b) #n automatically, and for men by (iv). The three
statements, together with * 0Q, show that 0 O/X| OO Q, and, hence, Q@=|X| . The
definition of Q then says that X, 0P as promised.

We have proved that P=|X]| .

Proof of 5.(6)
Temporarily, write [ -] for supp(-) .

(i): Truefor a=* .
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Let a=x; [x]={x}0[dx] 0 cx].Let bO[ x] ,toshow db,cbO0 x] O. If b=x, this
is true since, by induction hypothesisand di n{ dx) =di m(x) -1, dxOO dx] O.
Similarly for cx . If bO[ dx] , then assertion is true, since we now assume that assertion is
true for all a of dimension lessthan x . Similarly, for bO[ cx] . xOO x] O isobvious.

[1a] =[a] and alO[]a] O imply 1aDDE[a] 0.

Suppose the assertion for a and b ; let a#kb be well-defined. [a#kb] =[a] O[b] , and
any union of down-closed sets is down-closed; hence, [ a#kb] is down-closed. Since
a, b0 a#kb] O, it follows that a#kb oog a#kb] 0.

(if): For a=* : true. For x0 |X] n° assuming assertion for all b with di m( b) <n : now,
Fx=yOd 1Yl (1), thus [ Fx] ={y}O[ dy] O[ cy] . Comparing thiswith [ x] , using
F(dx)=dy , F(cx)=cy , and al the induction hypotheses, the assertion is clear.

The rest is clear.

Proof of 5.(9)
(1): thisis the same as 5.(7).
(if): Since ®: Conp —>wCat and |- |: Conp—Set are faithful, the "if" parts are true.

Assume F isamonoin Conp ,toshowthat [F|: [X| — [Y| isinjective, and F is
injective asaset-map F: ||X|| > ||Y|| (the latter being equivalent to saying that F isamono
in wCat ). To do this, by induction on n , we prove that |F| n- X n=> \Y\n and

Fn: Xn %Yn are injective. For n=- 1 : true. Suppose both assertions are true for <n-1 , to
show them for n .

Let u, v X p o+ UZV , and assume Fu=Fv , to deduce a contradictionto F being a mono
in Conmp . We have F(du) =d( Fu) =d( Fv) =F(dv) , hence, by the induction hypothesis,
ddéf du=dv . Similarly, Cq5f CuU=cv .d and c are parallel elements of Xn- 1-

Write Y=XI(n-1) , U=X] _.Of course, Xtn =Y[ U] . Consider Z .= Y[U-{Vv}] .
n def

G
We can define maps of w-cats Z X suchthat G and H areidentitieson Y, also
H
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identitieson U-{u, v} ,but G u)=u and H(u) =v ; thisis possible by the underlying
universal property of Z: notethat ( d) =H( d) =du=dv , and similarly for c . Now, clearly,
(FoGQ (u) =Fu#zFv=(FoH) (u) ,thus FoG£F-H, contradicting F being a mono.

This showsthat |F| U A isinjective. It remains to prove that Fni Xq =Y, IS

injective.

Consider the factorization F=i «P according to (i), and take the truncations:

Ftn=(i 'n) «(PMn) .Since |FMn| isinjective, sois [PMn |. By construction, [Pn |
is also surjective; thus, [PIMn | isbijective. By (4), or rather, its obvious variant on
n-computads, PIn isanisomorphism. It followsthat Frn=(i In) «( PMn) isinjective asa
setmap ||[Xtn||—|[Ytn|| . The assertion follows.

(iii): Assume |F| isnot surjective. Consider the factorization F=i «P according to (i):

F
X Y
O
By 4.(7), we have Y=Z[ U] , an iterated internal free extension, for asuitableset U0 [Y| .
Since |F| isnot surjective, U£0 . Consider the pushout

Y=Z[ U

/ \
\ - /

(see 5.(3)). Then G#H since they send any ulU to the two different components of U |U.
But also GeF=H<F . We have shown that F isnot an epi.

Z[YyJ

Proof of 5.(12) .
The proof is similar to that of 5.(5) for the supp function.

Let A beany Abelian group. We define the w-category A ; the definition is analogous to
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that of L from L in the proof of 5.(5).

For n20, weput A ={(r,d,c): r0A d,cOA _,, d|[c} .For a=(r,d,c)0A_,
we define da=d, ca=c.We asodefine [a] =r . Of course, d||c means dd=dc ,
cd=cc , which is a meaningful condition here, since d, cDAn_ 1 and d and c are aready
definedon A, .

The definition so far specifies A asan w-graph.
Define 1,= ( [af, a, a) ;thatis, [[1a]]: [aj , d( 1a) =c( 1a) =a .

The definition of the compositions - #k- : ankxn exn isrecursivein n .

Suppose a, bDAn , h>k=0, and aAkb = c( K) a= d( K) b . We define e:a#kaAn :
Weput [e]=[a]+[b]- [arb] . Weareforced to define

(da) #,(db) i k<n-1

de =
da if k=n-1

(ca) #k(cb) if k<n-1

ce =
cb if k=n-1

The specification is correct since we will have del[ce in A_ ;.

To verify the interchange law, we use the notation of the statement of the law, including the
notation introduced in the remarks after it; we assume k</ .

The [- ] -value of the LHS equals

([al+[b]- [A]) + ([e]+[f]- [A]) - ( [91+[¥]- [A]) =
[a#, b] le#,f ] 6%, ]

[[a#kB n e f]
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= [a]+[bl+[e)+[f]- [#]- [¥1+IA] ;

that for the RHS:

([a)+[e]- [¢]) +(Mo]+[f]- [¥]) - [A] =
[[a#ze]] [[b#zf]] [[a#ze A b#zf]]

= [a]+[bl+[e)+[f]- [#]- [¥1+IA] ;

we have [LHS] = [RHS] . By the remarks made for interchange at the statement of the law
(section 3), thisis enough for the interchange equality.

For associativity, we get, with A=an b, B=bn, e, that the [- ] -values of both sides are
equal to [a]+[b]+[e]- [A]- [B] .

In the case of the two-sided unit law, the common value, with ¢:aAkb , s
[a#,b] = [a] +[b] - [¢] ,since ILonddp = ancb .

For the right unit law, note that, for y:c(k)a , we have [[1(yn)]] = [y] and

aAl(yn) = y.Thus

a#,1,71 = fa+ 1107 1- @ana(V1 = @i+ - 1) = o)
The left unit law is similar.
We have proved that A isan w-category.

Let X beacomputad. Welet A be |X| I, the Abelian group of finite multisets of indets
of X.We definethe w-category map ¢: X—>A recursively. Ontheset X_; , ¢(*)=0.

On Xy = Xig, $(x) :(>1<) . Having defined ¢ as Xtn—>Atn, for xO IX| we

define r=¢(x) OA .4 by [r]=( )1()+[[¢(dx)]]+[[¢(cx)]] , and, necessarily,

dr=¢(dx) ,cr=¢(cx) ;since dx|[cx ,wehave dr||cr , and the definition is legitimate.
By the universal property of XM(n+1) =(XMn)[ [X| n+1] , ¢: Xtn—Amn and

¢: X n+1%An+1 extend uniquely to ¢: Xt(n+1) — Al(n+1) . We have defined

n+1'
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p:X—>A.

For alX,wewrite [a] for [¢(a)] . By construction, the equalities (i) to (iv) are
satisfied.

Next, we prove (ix). Temporarily, let us denote the set {x0 X/ : [ a] y(x) #0} by [|a]|y .
It is clear, by induction, that ||a|| O X; ma) -

We prove (ix) by computad induction.

First we take a=ul] |X] n » We assume that (ix) istrue for arguments a of dimension less
than n . Now, Fa=Fu=v0O |Y| n , and

[u] y=(7) +[du]ly+[culy
[V]y=(7) +[advly+[cv]y .
Let yO Y| and let us evaluate both sides of the equality in (ix) a vy .
First, let di m(y)2n.Since [[dv]|\,, [|cv]|\ aresubsetsof 1Y/ ;. weget

1 if y=
[VI(Y) = (] (y) = o
0 if yzv

On the other hand, on the RHS we get

- 1 d L
o1 KO0 Ty (D00 g VDO gy FeuiE0 - @)

Fx=y Fx=y Fx=y Fx=y
Since (g) (x) =1 unless x=u whenitis 1, thefirst sum on theright equals 1 when
y=v (when x=u isapossible x ), otherwiseitis O (when x=u gives Fxzy ). Since

Fx=y impliesthat di nm( x) =di n(y) =n , the other two sumsin (1) are O .

We have proved (ix) for arguments y of dimension >n .
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For yO |YI <n’ the value of the LHS in (ix) isthat of [ dv] vt [ cv] v But, by the
induction hypothesis, and using (1),

([dvly+LevIY(y)  =[dv](y) +[cv] \(y)
= [F(du) ] () +[F(cu)] ()

= 7 [duly(x) + T [culy(x)
xU X xU X
Fx=y Fx=y

Tt R
Fx=y

snce T (])(x) =0 by dimy)<dinu) .
xO IX]
Fx=y

This proves the equality (ix) when a=x is an indeterminate.

The rest of the cases are similar and easier. For instance, the "composition” clause only uses
the "linearity” of the definition of [ a#kb] .

Next, we prove that [da] <[a] and O<[a] smultaneously by computad induction on
a.

For a=* : true.

Let a=x , an indeterminate. By the induction hypothesis, [ cx] =0 , thus

[ x] =( )1(} +[ dx] +[ cx] =[ dx] . Since by the induction hypothesis, [ dx] =0 , we also have
[ x] =0 .

[ 1a] =[a] =0, and [ d( 1a)] =[ a] €[ 1a] ; the identity clause is clear.

[a#kb] =[a] +[ b] -[aAkb] , and [d(a#kb)] =[da] +[db] - [ aAkb] when
k<n-1 (since daAkdb = aAkb in this case), and [d(a#kb)] =[da] when k=n-1.
[a#kb] >[ d(a#kb)] follows: in the first case, since [ a] 2[ da] , [ b] 2[ db] by
induction hypothesis, and in the second case since [ a] 2[ da] and

[b] >[ar,b] =[d(K)b] (andthus [b]-[an,b] =0) by theinduction hypothesis. Of
Kk K
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course, [a#kb] >0 follows.
Thefact that [ ca] <[ a] issmilar.

Now, the fact that [ a] <[ a#kb] =[a] +[ b] - [ aAkb] follows from the fact that
[b] 2 anb] =[d KV b] . [b]<[a# b] issmila.

Finally, we show (viii). Let us apply (ix) to the incluson Supp(a) —— X and to the
element allSupp(a) . We get, for any yO [X| , that

0 if yOsupp(a)

Lalx(0) = (T o & supp(ay () =

x=y [a] Supp(a)(y) if yOsupp(a)

This shows the left-to-right implication in (viii).

It remains to show that ylOsupp(a) = [a] (y) =1 (we suppressed the subscript X). Of
course, we apply induction.

Let a=x0 X [ X] :()1() +[ dx] +[ cx] . Assume y Osupp(x) =

{x} Osupp(dx) Osupp(cx) .If yOsupp(dx) ,then [dx](y)=1,and [X](y)=1
since [ x] 2[ dx] . Similarly for yOsupp(cx) . If (theremaining case) y=x , then

[ X] (x) =1 since [dx],[cx]=0.

The remaining cases are omitted; they are similar to what we have seen.
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Appendix to section 6

Proof of 6.(5)

Tosee (i), let A besmall in C. Consider theindets x |A|l , and consider the following
diagram ®: G— Conp . The graph G has two kinds of objects. The first is x , one for each
xO |Al ; weput ®(x) :SuppA( X) . The second isthe pair [X, y [, one for each pair of
distinct x, yO |Al ;weput ®( x,yD = SuppA(x) nSuppA(y) , the intersection meant
in the sense of the subobject lattice of A . The arrows of the graph G are X,y [>Xx

X, y>y; o X,y>x) , & x,yO—>y) aeadl inclusons. As coprojections from
thisdiagram to A itself, take inclusions again. Since C isasievein Conp , al objects and
arrows in thisdiagram are in C .

Note that by 4.(8)(ii), the forgetful functor |- | : Conp — Set takes the intersections

o( (X, y ) to corresponding intersectionsin Set . If we apply the forgetful functor

- | : Conp— Set to all of the above, we get a colimit diagram in Set , asasimple
observation regarding the category of sets shows. Therefore, the original diagram is a colimit
diagram in Conp , hence, in C aswell. Since A is C-small, A isaretract of an object of
this diagram, say ®( x) =Supp(x) , infact, A isnecessarily isomorphic to Supp(x) . This
proves (i).

Turning to (ii), let A be a primitive object of C . Itisa colimit of adiagram of C-small
objects of C, each of which is principal by (i). When the forgetful functor |-| isapplied to
this diagram, it becomes a colimit diagram in Set ; therefore, the colimit coprojections are
jointly surjective on indeterminates. There must be an object in the diagram, a C-small
principal object, say B, such that the colimit coprojection B—A has my in its image. Of
course, the only element of |B| that can be a preimage of My is ng - We have an arrow
f: (B, nb) — (A, mA) in El (Conp) . By the definition of "primitive”, f must be an
isomorphism. Since B is C-smal, A is C-small.

Concerning (iii): let X be an object in C, and assume that it is C-small, to show that it is
Conp-small. Let us abbreviate Conp( X, -): Conp—Set to (X -) .

By (i), we know that ( X, -) commutes with filtered colimits. As X is non-empty (also by
(1), (X, -) commuteswith empty colimits. To show that it commutes with all colimits, it

135



suffices to show that it commutes with binary coproducts and coequalizers. The case of binary
coproducts is similar to, but smpler than, the case of coequalizers; we deal with the latter
only.

Suppose
% h
A 5 B————C Q)

is a coequalizer diagram in Conp ; our aim is to show that

*

f *
(XA (XB) ~—hxo0 @
g

isacoequalizer diagramin Set .

Let p: X—C beany element of (X, C) . Let usfactor p as p=i -Qq:

x 9.y 1 ¢

where q issurjective, and i isinjective. By condition (c) on C, Y belongsto C . Pull
back (1) along i :

f
A BN ¢ ©)

g
aw B Tb i
f _
~———>5 h
A - B———Y

g

By 5.(8)(iv), the lower part of (3) isacoequalizer in Conp . Since C isasieveand Y isin
C , that lower partisal in C. Since C isassumed to satisfy (b) (colimits), that lower part is
acoequalizerin C. Since X is C-small,
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*

£ _
(XA (X8 " (xv (@)

*

g

isacoequalizer in Set ; h issurjective; thereis r: X—B suchthat hor=q ; for
sdgfbor : h*(s):hos:i og=p (see(2) and (3)). Since pO( X, C) was arbitrary, we
have shown that h* IS surjective.

r
Next, let X ’B be a pair of arrows such that hor =hes . Let Y=In(hor)=In(hos) ,

S
a subcomputad of C (since X:Suppx( rrk) , Y=0 ESuppB(hr rrk) [J) . Since C satisfies

(¢), Y isin C.

Let i : Y—C betheinclusion. Taking pullbacks, we again have adiagram asin (3). As
before, the lower part is a coequalizer in C , and (4) isacoequalizer in Set .

_ r.o_
Because B was obtained as a pullback, and i .q=hor=hos , there are X B such that
S
r=bor, s=bos, q=hor =hos .Wehave r, sO( X, B) identified by the map

h (X, B) — (X, ©) . Since (4) is a coequalizer, there is a zig-zag

_* )Zl * _* )22 * _* )Zn *
]/ N ]/ N ]/ N
ry Mo F3 Mn g

with X, O(X, A) , r; O(X, A) , f (x;)=r, , g (X,)=r; .. andeither r=r and

§:Fn , Or vice versa. Let X; :ao%i o :bofi . Then we have the zig-zag
* Xl * * X2 * * Xn *
rq Mo ra M Mt
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with X; acx, A riD(X,A) , | (xi):ri , 0 (Xi):Fi +1 and either F=rq and

r
s=r _, or vice versa. This concluson was reached for an arbitrary pair X ’B such that
n s

h'(r)=h"(s) . Together with the fact that h™ is surjective, this means that (2) is a
coequalizer in Set .

Appendix to section 8

Proof of 8.(10)

We only give some details for part (i).

Thus, we are assuming that we have an w-category in the new sense, and want to prove that,
via the definitions in section 8, we have one in the old sense. Whenever we use the word
"axiom", we mean a law that comes assumed with the new definition of w-category.

Note that we defined a# zb for a, b not necessarily of the same dimension although in the

original definition of an w-category, a#zb is defined only when di n{a) =di m(b) . This
isaminor difference in the definitions: if one has an w-category in the original sense, one

may put a#zb d5f 1;”0#[1{)'“) , with N=max(m n) .

Let us abbreviate ¢{ 9 | d( 9 by ¢ and d,and (4D q(8D) by ¢ and d,
respectively.

Let's show that the expressions used to define a# zb are well-defined. The assumption is

ca=db .
For a[flb , we need ca=ddb ; this holds. Similarly for ca (b , etc.

For (aﬂib)#“l(éaﬂb) to be well-defined, we need c(a [tib) =d( ca [b) . But
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c(aldb) =caltlb ,and d(calb)=caldb , so this holds too.
The other expression for a#zb issimilarly seen to be well-defined.

We prove 8.(9). When /=k=k( a, b) , thisisthe commutative law. When {<k , we can use
the induction hypothesis to the effect that the analogous law holds for £+1 .

The LHS of 8.(9) is rewritten by using the first expression for ( -) #K( -) , for the RHS the
second; in this way, we will get expressions in both of which a without d or c before it
precedes b without d or c beforeit.

By using equalities like d( da [b) =da &b , we obtain that the equality to be proved amounts
to

?
((atib) E{Eaﬂib))#“l((éaﬂﬁb) q(cal) =
((da. db) E{aﬂ?b))#“l((aam) [ calEb))

But the left factors of the two sides are equal by the ordinary commutative law, with a and

db as a and b . Similarly, the right factors are equal. 8.(9) is proved.
Next, as alemma, we prove the following generalized distributive law:
(a#zb)Ee:(aEE)#z(bEE) Q)

under the hypothesesthat p- 1</ (p=di m(e) ), and a#zb,aEe and b[e are
well-defined.

First of all, we note that k[ a, €] =k[ b, e] =k[ a# ,b, e] =p-1 . c(ale)=cale, and
d(b &) =db [& , thus, since ¢a=db , we have ¢(a®)=d(b®) ,andthe RHSin (1) is

well-defined. Writing ¢ for ¢(P"1) d for d(P"1)  wehave ¢ a# ,b) =Cb=Ca=de
(since p-1<{), andthe LHSin (1) is well-defined.

The proof of (1) is by induction on k- £/, with k=k[ a, b] . When k={, (1) isthe
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distributivity axiom.

Using the definition for a#zb , we get

LHS=((af@b)#,,.(calb)) e = ((aldb) &)#, ,((calb) &) ,

i+1 41

where we used the induction hypothesisfor /+1 . Note that the application was legitimate,

since ¢(afb) =Ca=de , and ¢(calb)=Cb=de . Since p<m, p<n and p<{+1,we
can apply the distributive axiom twice, to re-write the last as

((ale) (dble))#,,,((cale) (ble)) . (2)

When we use the definition of ( -) #ﬁ( -) onthe RHSIin (1), we immediately see that we
get the expression in (2). This proves (1).

We aso have adual form of (1):
aE{b#ze) = (a[b)#z(aEE)

under the appropriate conditions.
We |eave the proofs of the domain/codomain laws and the unit laws to the reader; they are
straight-forward inductionson £ (in the formulation of those laws, we replace the original
letter k by £Z).
Next, we prove the associative law

( a#zb) #ze = a#z( b#ze) 3
assuming that a# zb and b# (8 ae well-defined. For convenience, we assume that
di m(a) =di m( b) =di n( e) =n (which is enough for our purposes, although the additional
assumption is not necessary). The proof is by induction on n-1- £ . When /=n-1, the law

is a special case of the associative axiom.

Let /<n-1 .Werewritethe LHS of (3) as
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((aldb)#, ,(calb)) [de) # (calEh) [®)

+1 g1 (

The generalized distributive law, (1), with /+1 in place of £, applied on the first factor of

the second #Z+1 , We get

(((ardb) de)#,, ((calb) Me)) #,,, ((calEb) &)

As to the applicability of said law, note that di m(de) =¢+1 , thus di m(de) - 1</+1 .

There are three places where we can use the associativity axiom, in fact in all three of its
alternatives concerning the dimensions. we have

di m( a) =n > di m(db) =di n( de) =¢+1 for the firgt,
di m(b) =n > di m(df ) =di n{ de) =/+1 for the second,
di m{ e) =n > di n( ¢a) =di n{ cb) =¢+1 for the third.

We obtain the expression

((al(dbde))#,, (callblde))) #,,, (cal{cble)) .

Finally, an application of associativity for the operation #
hypothesis, is used to obtain

(+1 valid by the induction

(a(dbide)) #,,, ((callblde))#,, (cal{cble))) . (4)

When we tackle the RHS in a similar manner, we get

(al(dbrde)) #,,, (cal(bde)#,, (cble)))

{+1

The dual form of the generalized distributive law applied to the second factor of the first
#£+1 will result in (4).
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This completes the proof of the associative law for the "old" definition.

We turn to the interchange law.

We want to prove

?

(a#np) #ﬁ( e#n{) = (a#ze) #m( b#zf) )
under the hypotheses that the dimensionsof a, b, e, f areall equal to n, we have
0<mx £<n , and, with the (further) abbreviations ¢ = c¢(™ ,d=d(M ¢ =c(m1)
d=d(™1) the equalities

ca=db, ce=df , Ca=de,cb=df . (6)

Since mrl<{,

é(a#ze) =ce, d(b#,f) =db.

Using the definition of the operation #m interms of # we rewrite both the left and the

right sides of (5), and obtain

m+1l’

?
((aldb)# . (cab)) #Z((emf)#ml(ée[f)) =

((a# je) [Hb) # 1 (callb#,f)) . (7

We proceed by induction on £- m. First, assume ¢- me1 (the lowest value). Now, c=cC ,

d=d .
The LHS of (7) becomes

((aﬂﬁb)#z(éaﬂb)) #z((eﬂﬁf)#z(ée[f)) ,
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to which associativity for #Z can be applied, to get

(a [tib) #z((éaﬂb)#z(eﬂﬁf)) #,(cel)

which, by (5), is the same as

(a [tib) #z((&eEb)#g(eBEb)) #,(cel) .

To the middle term, generalized commuitativity, 8.(9), already proved, can be applied, to get

(a[tib) #z((eﬂﬁb)#z(éeﬂb)) #,(ced)

which, upon another use of the associative law for # /0 and the generalized distributive law
(1), becomes

((a# ) [tib) ) #,(cel(b#,f))
which is the RHS of (7).

To complete the induction. assume now m+1</ , and try to show (7). Now we have

ca=ce 45 T and db=df daf S -
and (7) becomes

?
((als)# . (r b)) #,((e®)# . (rd)) =

((a#ge) [$) #erl(rE{b#gf)) : (8)
By generalized distributivity, the RHS of (8) is

((als)#,(e[3)) # g ((r D) #,(rd))

me1 €
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and (8) becomes an instance of the interchange law for m+1 and ¢ inplaceof mand £,
true by the induction hypothesis.
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