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Abstract

We compare computads (as defined in [15], [16], [3]) with multitopic sets (cf. [5]- [7]).
Both these kinds of structures have n-dimensional objects (called n-cells for computads
and n-pasting diagrams for multitopic sets), for each natural number n. In both cases,
the set of n-dimensional objects is freely generated by one of its subsets. The computads
form a subclass of the more familiar collection of ω-categories while multitopic sets are
of a more novel nature, being based on an iteration of free multicategories. Multitopic
sets have been devised as a vehicle for a definition of the concept of weak ω-category.
Our main result states that the category of multitopic sets is equivalent to that of many-
to-one computads, which is a certain full subcategory of the category of all computads.

Introduction and preliminaries

The notion of free structure has penetrated all parts of modern algebra. It has the following
abstract generalization. Given categories C and S and a functor U : C → S, we say that
an object A of C is free with respect to U iff for some object I and arrow ι : I → UA in S,
the following universal property holds: for every object B of C and arrow φ : I → UB of
S, there is a unique C-arrow f : A → B such that the following diagram commutes:

I

UB

φ

ÂÂ?
??
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??
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?I UA
ι // UA

UB

Uf

ÄÄ

We say that I generates the free object A (via the arrow ι). In the familiar cases, the
objects of C and S are mathematical structures, I is a substructure of UA with ι being
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the inclusion map, and the elements of (the universe of) I are called generators of the free
structure A.

For example, if C is the category of commutative rings, S the category of sets and
U the forgetful functor, the free ring generated by a set X is nothing but the ring Z[X]
of polynomials with integral coefficients and indeterminates from the set X. Borrowing
terminology from this example, we will usually refer to the generators of a free structure as
indeterminates or, in short, indets.

Another familiar example is that of a free category generated by a directed graph (see,
e.g. [10], §7 of Chapter II). In this case, C is the category Cat of (small) categories, S is
the category Grph of directed graphs and U is, again, the forgetful functor.

The notion of free category has been generalized to higher dimensional categories by
Street, leading to the concept of computad which is central for the present work (cf. [15]
and [16] for the 2-dimensional case and [3] for the general definition).

To fix our notations, we now recall the structure of higher dimensional categories. An
n-dimensional category or, in short, an n-category C has a set of k-cells Ck, for each k 6 n.
For k > 0, it has domain and codomain functions d, c : Ck → Ck−1; thus, a k-cell u is
envisaged as an arrow du

u // cu, linking its domain du ∈ Ck−1 to its codomain cu ∈ Ck−1.
For k > 2, we also require du and cu to be parallel, meaning that ddu = dcu and cdu = ccu,
i.e. du and cu have the same domain and the same codomain. For the sake of uniformity,
we say that any two 0-cells are parallel, so that we can say that du ‖ cu whenever u ∈ Ck,
with k > 0. If u is an l-cell and k < l we let d(k)u be the k-cell obtained from u by l − k
successive applications of the domain function d; the k-cell c(k)u is defined similarly. The
n-category C is also equipped with partial composition operations •k for k < n. If u, v ∈ Cl

and k < l, then u •k v is an l-cell that is defined iff d(k)u = c(k)v. Finally, with each l-cell

u, l < n, C has an identity (l + 1)-cell u
1u // u. The concepts that we mentioned, satisfy

certain axioms. For a precise definition, see [9], as well as section 1 below.
An ω-category is one that has n-cells for each natural number n < ω (as customary in set

theory, ω is the first infinite ordinal number). An n-category can be seen as an ω-category
in which all cells of dimension > n are identities. An ω-functor F : C → C′ between
ω-categories is a map from the cells of C to those of C′ that preserves the ω-categorical
structure. The category ωCat of ω-categories is the one that has the small ω-categories as
objects and the ω-functors as arrows.

For an N -category C, with N 6 ω, and n < N , let Cn be the n-category whose k-cells
are the same as those of C, for all k 6 n. Cn is called the nth truncation of C. If A is an
n-category, we say that C extends A iff Cn = A.

Fix an (n−1)-category A. An extension of A will be any n-category that extends A. A
pre-extension (I, d, c) of A will be a set I together with functions d, c : I → An−1, such that
dx ‖ cx for x ∈ I (remember that An−1 is the set of (n− 1)-cells of A). For the sake of this
preliminary discussion, let us introduce the categories Ext(A) and Preext(A); the former
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has the extensions of A as objects while its arrows are the ω-functors that extend the identity
functor on A. The latter category has the pre-extensions of A as objects and the structure
preserving maps as arrows. There is an obvious forgetful functor U : Ext(A) → Preext(A).
An extension B of A is called free if it is a free object of Ext(A) with respect to U , in
the sense of the definition that opened this introduction. This concept is at the heart of
Street’s definition. An ω-category A is called a computad iff An+1 is a free extension of
An, for each n < ω.

In the first part of this paper (sections 1-6), we concentrate on the study of free extensions
of finite dimensional categories. We start by presenting a construction of a free extension,
using a method familiar from universal algebra (cf. e.g. [4]): given a pre-extension (I, d, c)
of an (n−1)-category A, we set up a formal equational language C which has terms denoting
all the cells that can be constructed from the elements of I by applications of the partial
operations defined among n-cells in an extension of A. The language C has also a deductive
system that allows us to prove equalities among terms. Two terms are called equivalent
if their equality is provable in C. The elements of the free extension constructed by this
method, will be the equivalence classes of C-terms.

The same method could be used to construct the free ring generated by a set of inde-
terminates X. However, a simplifying circumstance occurs in this case. The terms of the
corresponding formal language are algebraic expressions that use indeterminates, constants
for 0 and 1, binary operation symbols +, ·, − as well as parentheses. Each such term t can
be proven to be equal to a polynomial, which is unique (assuming that the monomials that
are the terms of the polynomial occur in a canonical ordering induced by a given ordering
of the set of indeterminates). We shall call this polynomial the reduced form of the term t.
This situation allows us to replace the equivalence class of t by the unique polynomial which
is the common reduced form of the members of this class. The free structure generated by
X becomes, in this way, a term model, i.e. a structure whose elements are individual terms,
rather than equivalence classes. This is how the polynomial ring Z[X] is obtained.

Can the free extension X of an n-category B, generated by a given pre-extension, be
also construed as a term model? In other words, can we substitute each equivalence class
of terms by a ”canonical” representative, a common ”reduced form” of its elements? Under
certain conditions, the answer to this question is positive. This result is just one corollary,
a side benefit, of the study that we conduct in sections 3-6. We are now going to describe
the content of these sections, in rough terms.

Assume that B itself is a free extension of an (n− 1)-category A, generated by a set I
of n-dimensional indets (i.e., generated by a pre-extension of the form (I, d, c)) and let X
be any extension of B. Call an (n + 1)-cell of X, u ∈ Xn+1, many-to-one iff its codomain
cu is an indet, i.e. cu ∈ I. We define, in section 3, a partial binary operation, called
placed composition, between the many-to-one cells of X. As it turns out, the many-to-
one cells of X, together with the operation of partial composition yield a structure CX

which is a multicategory. The abstract notion of multicategory, described in section 4, is a
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generalization, introduced in [6], of a notion due to Lambek (cf. [8]). Free multicategories
do have term models, as shown in [6] and briefly sketched in section 5. The main technical
result of this paper, theorem 6.1, states that if X is a free extension of B, generated by a set
J of many-to one indets, then the multicategory CX is also free (and, actually, generated
by the same set of indets J).

As we stated already, a computad is obtained by starting with a barren set and iterat-
ing the free extension construction indefinitely. If, at each stage, the generating indets are
many-to-one cells, then we get a many-to-one computad. These are the objects of a cate-
gory m/1Comp described in section 7. The many-to-one cells of a many-to-one computad
A together with the (partial) operations of placed composition and the domain/codomain
functions, form a structure SA. This structure is a multitopic set, an abstract notion in-
troduced in [7]. Roughly speaking, a multitopic set is a structure obtained by iterating
indefinitely the construction of free multicategory. The precise setup, as well as the descrip-
tion of the category mltSet of multitopic sets, are presented also in section 7. In section 8
we show, using the results of section 6, that actually, all multitopic sets are of the form
SA for some many-to-one computad A. We then infer that the categories m/1Comp and
mltSet are equivalent. More colorfully said, multitopic sets are the same as many-to-one
computads. This is the main result of our paper.

Multitopic sets have been introduced in the sequence of papers [5], [6], [7] as a vehicle for
producing the ”right” definition for the notion of weak higher dimensional category. This
approach was inspired by an earlier attempt of Baez and Dolan (cf. [1], [2]). See [9] for
a survey of the competing definitions of weak higher dimensional categories, including the
one of [11], based on multitopic sets. Our main result shows that the definition of [11] could
be rephrased using the more familiar notion of many-to-one computad.

An alternative approach for defining weak higher dimensional categories, based on a
concept called dendrotopic sets, has been devised by Palm in [14]. In addition, Palm shows
that the category of dendrotopic sets is equivalent to that of many-to-one computads, thus
concluding that the categories of multitopic sets and of dendrotopic sets are also equivalent.

We conclude the preliminaries by recalling one more notation. If u is a k-cell of an
ω-category A and k < n, then we let 1(n)

u be the n-cell obtained from u by n− k successive
applications of the x 7→ 1x operation.

1 Free extensions

Let (I, d, c) be a pre-extension of an (n−1)-category A, meaning, as we recall, that I is a set
and d, c : I → An−1 are functions such that dx ‖ cx for each x ∈ I. As in the introduction,
the elements of I will be called n-indets. We should think of an n-indet x as denoting an
arbitrary n-cell belonging to an ω-category extending A (i.e. an ω-category whose (n−1)th
truncation is A), having domain and codomain dx and cx. We now define an equational
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language C = C(A, I, d, c), dealing with the n-cells obtained from the (cells denoted by)
n-indets, by repeated compositions. The symbols of C will be the n-indets, the composition
symbols •k, for k < n, as well as the identity symbols 1a, for each (n − 1)-cell a ∈ An−1.
Besides these, C will employ left and right parentheses as auxiliary symbols.

Definition 1.1. The set T (C) of C-terms and the domain and codomain functions
d,c : T (C) → An−1 are defined as follows:

1. Every n-indet x is a C-term with dx, cx as specified by the given functions d,c : I → An−1.

2. For each a ∈ An−1, 1a is a C-term with d1a = c1a = a.

3. If t, s are C-terms and d(k)t = c(k)s, then (t)•k (s) is a C-term (the parentheses around
t and s insure unique readability; usually, we just write t •k s) and we have

d(t •k s) =

{
ds if k = n− 1
dt •k ds if k < n− 1

c(t •k s) =

{
ct if k = n− 1
ct •k cs if k < n− 1

4. There are no C-terms besides those mentioned in 1-3.

The meaning of the C-terms should be clear. If X is an ω-category extending A and if
ϕ : I → Xn is an assignment which is correct, meaning that dϕx = dx and cϕx = cx for
all x ∈ I, then we can evaluate any C-term t under the said assignment and get the value
valϕ(t) ∈ Xn. Remember that when saying that X extends A, we mean that A = Xn−1 (the
(n−1)th truncation of X). More generally, if X is any ω-category, F : A → X an ω-functor
and ϕ : I → Xn an assignment that is consistent with F , in the sense that dϕx = Fdx,
cϕx = Fcx for x ∈ I, we can evaluate t under F, ϕ and get the value valF,ϕ(t) ∈ Xn . The
formal definition runs as follows.

Definition 1.2. Under the assumptions that we just mentioned, we define the function
val = valF,ϕ : T (C) → Xn , by induction on C-terms:

1. val(x) = ϕx, for x ∈ I.

2. val(1a) = 1Fa, for a ∈ An−1.

3. val(t •k s) = val(t) •k val(s).

If A = Xn−1 and ϕ is a correct assignment, we let valϕ = valiA,ϕ, where iA is the
inclusion ω-functor of A into X.

5



It may so happen, that for terms t and s we have valF,ϕ(t) = valF,ϕ(s) for all F and
ϕ. This occurs whenever t and s must be equal in virtue of the axioms of ω-category. We
can describe this situation precisely, by setting up a deductive system for proving equality
of terms. This is done in the definition below, which completes the presentation of the
equational logical system C = C(A, I, d, c). Let us mention that the axioms of the notion of
ω-category are the associativity, exchange and identity axioms of this definition.

Definition 1.3. We define the deductive system C as follows, where, in the axioms and
rules below, t, s, w, t1, s1 are arbitrary C-terms and all compositions are supposed to be well
defined (according to definition 1.1).

Axioms.

1. t = t (equality axioms).

2. (t •k s) •k w = t •k (s •k w) (associativity axioms).

3. (t •k t1) •l (s •k s1) = (t •l s) •k (t1 •l s1), where l < k < n (exchange axioms).

4. 1(n)
b •k t = t = t •k 1(n)

a , where k < n, c(k)t = b and d(k)t = a.

Also, 1a •k 1b = 1a•kb, where a, b ∈ An−1, d(k)a = c(k)b (identity axioms).
Rules.

1.
t = s

s = t

t = s s = w

t = w
(equality rules)

2.
t = s

t •k w = s •k w

t = s

w •k t = w •k s
(congruence rules)

We will write ‘` t = s’ or, sometimes, `C t = s to indicate that t = s is provable in this
system.

Is this system complete? In other words are we sure that, whenever 0 t = s, there are
X,F and ϕ for which val(t) 6= val(s)? The positive answer to this question, follows from
the existence of free extensions.

Theorem 1.4. Given A, I, d, c as above, there exists an n-category A[I] satisfying:

1. A[I] is an extension of A, i.e its (n− 1)-th truncation is A, A[I]n−1 = A.

2. Each x ∈ I is an n-cell of A[I] with domain dx and codomain cx.

3. A[I] has the following universal property: if X is any ω-category extending A and
ϕ : I → Xn a function satisfying that dϕx = dx and cϕx = cx for x ∈ I, then there
is a unique ω-functor G : A[I] → X such that Ga = a when a is a cell of A and
Gx = ϕx for x ∈ I.
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Moreover, A[I] has the following strong universal property: whenever X is an ω-category,
F : A → X an ω-functor and ϕ : I → Xn a function such that dϕx = Fdx, cϕx = Fcx
for x ∈ I, there is a unique ω-functor G : A[I]→X such that Ga = Fa whenever a
is a cell of A and Gx = ϕx for x ∈ I.

Remark. The universal property means that A[I] is a free extension of A in the sense
explained in the introduction. The strong universal property means that A[I] is free with
respect to a forgetful functor U1 : C1 → S1, where C1 is ωCat while S1 is a category whose
objects are pairs 〈B, (Z, d, c)〉 with B an (n − 1)-category and (Z, d, c) a pre-extension of
B (the interested reader should have no problems in identifying the arrows of S1 and the
definition of U1).

Proof. As outlined in the introduction, the n-cells of A will be equivalence classes of C-
terms, under a suitable equivalence relation.

Claim 1.5. (a) If we define, for C-terms t and s, t ≈ s iff ` t = s, then ≈ is an equiva-
lence relation that is a congruence with respect to •k, k < n.

(b) If ` t = s then dt = ds, ct = cs.

(c) If ` t = s then valF,ϕ(t) = valF,ϕ(s), for all F and ϕ.

Proof. (a) is immediate (congruence with respect to •k means that t ≈ s implies t •k w ≈ s •k w
and w •k t ≈ w •k s).

(b) and (c) are easily checked by induction on proofs.

We can now describe the n-category A[I]. The cells of A[I] of dimension 6 n − 1 are
those of A, while the n-cells are the equivalence classes t/≈ for t ∈ T (C), where d(t/≈) = dt,
c(t/≈) = ct and (t/≈) •k (s/≈) = t •k s/≈.

Claim 1.5(a)(b), insures that the definitions of c, d and •k are correct, and the axioms
of our deductive system insure that we defined, indeed, an n-category. However, we wanted
the elements of I to be n-cells of A[I] and what we have, instead, is that x/≈ is a such,
for every x ∈ I. To correct this, we only have to identify x with x/≈. To be sure that we
do not make unwanted identifications in this way, we have to check that x 6≈ y, whenever
x 6= y for x, y ∈ I. This is easily seen, however. It should be clear when do we say that an
indet x occurs in a term t ∈ T (C). A straightforward verification shows that the following
is true.

Claim 1.6. If ` t = s then any indet x ∈ I occurs in t iff it occurs in s. Hence, if x and y
are distinct indets, then 6` x = y, which means that x 6≈ y.
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This shows that we can, indeed, identify x with x/≈ and assume that the elements of I
are n-cells of A[I].

To conclude the proof, it is enough to show that A[I] has the strong universal property

stated in part 3 of 1.4. Given an ω-functor A F // X and a function ϕ : I → Xn such that
dϕx = Fdx, cϕx = Fcx, we define G : A[I] → X by

Ga = Fa for a a cell of A and G(t/≈) = valF,ϕ(t) for t ∈ T (C).
Claim 1.5(c) implies that this definition is correct and definition 1.2 of valF,ϕ(−) insures
that G is an ω-functor. It follows immediately that G extends both, F and ϕ and that any
such G has to be defined as above. Thus, G is unique and we have proved 1.4.

If we now let iA : A → A[I] be the inclusion functor and ϕ be the inclusion function
from I into the n-cells of A[I], then an easy induction on terms shows that valiA,ϕ(t) = t/≈.
This fact yields immediately the following.

Corollary 1.7. The deductive system C is complete, namely, if 0 t = s, then for some X,
F and ϕ we have valF,ϕ(t) 6= valF,ϕ(s).

Remark. As easily seen, the universal property of 1.4, part 3, determines A[I] uniquely up
to an isomorphism (actually, up to a unique isomorphism that is the identity for the cells
of A and for the elements (n-indets) of I). It follows that the universal property actually
implies the strong universal property.

An n-category B will be called a free extension of A iff it extends A and for some
I ⊂ Bn, B has the universal property of A[I] (and hence, it is isomorphic to A[I], as
just remarked). We also say, in this situation, that B is freely generated by the set I (an
abbreviated terminology that suppresses A).

An important convention. A 0-category B consists of the set B0 of its 0-cells, and
nothing more. Thus, a 0-category is just a barren set (this is a customary point of view).
An ω-functor from such a B to any ω-category X is just a function from B0 to the set X0

of 0-cells of X. We will say that any 0-category B is freely generated by the set B0 of its
0-cells. This is justified because the obvious universal property holds trivially. Also, we will
sometimes refer to the 0-cells of any ω-category as 0-indets.

This terminology will turn out to be convenient in the sequel, as it will allow the inclusion
of the case n = 0 in several statements.

We conclude this section with a remarkable property of free extensions. As the statement
and, even more so, the proof, involve some technical details, the reader may wish to skip
this on first reading and return to it when it is invoked in later sections.

In analogy with the notion of free group, one might expect that the same free extension
of A might be generated by several distinct sets of n-indets. In many important instances,
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this is not so, however. As it turns out, under certain conditions, the set of n-indets of a
free extension is uniquely determined.

Definition 1.8. An n-cell u of an ω-category X is indecomposable if whenever u = v •k w,
with k < n, then either u = 1(n)

a or v = 1(n)
a , where a = d(k)v = c(k)w.

Identity cells are, in general, decomposable in many obvious ways. For example, if u, v
are non-identity m-cells such that u •m−1 v = a is defined, then 1a = 1u •m−1 1v, showing
that 1a is decomposable. More generally, if l < k < m and a = u •l v, where u, v are k-cells,
then it is easy to see that 1(m)

a = 1(m)
u •l 1(m)

v . We will consider this kind of decompositions
of k-identities to be trivial. A formal definition, which is wider in a certain respect, will
now be given. A cell of the form 1(m)

a , with a a k-cell and m > k, will be called a k-identity
of dimension m.

Definition 1.9. A k-identity e of dimension m > k is called essentially indecomposable if
whenever e = u •l v with l 6 k, then both u and v are k-identity cells of dimension m.

Remark. In the case of l = k < m, the condition of essential indecomposability just means
that if e = 1(m)

a = s •k w with a of dimension k, then s = w = 1(m)
a .

Definition 1.10. An n-category X is well-behaved if, for all k < m 6 n, all k-identities of
dimension m are essentially indecomposable.

Notice that any 0-category is trivially well-behaved. Also, as free categories, i.e. free
extensions of 0-categories, have a very simple structure (cf. e.g. section 7 of chapter I in
[10]) and are easily seen to be well-behaved. The remarkable result that we want to prove
is the following.

Theorem 1.11. If A is a well-behaved (n − 1)-category and I is a set of n-indets over
it, then for any n-cell x of A[I], x ∈ I iff x is indecomposable and is not an identity cell.
Furthermore, A[I] is also well behaved.

Thus, an n-dimensional extension B of a well-behaved (n − 1)-category A is free iff it
is freely generated by the set of its non-identity indecomposable cells.

For n = 1, this theorem is easily checked, due to the above mentioned simple structure
of free categories. For n > 1, the proof involves a deeper analysis of the deductive system
C. We begin with a definition.

Definition 1.12. 1. A term t ∈ T (C) is called constant iff no variable occurs in t.

2. t is called an identity iff for some (n− 1)-cell a of A, ` t = 1a. An identity t is called
a k-identity (where k < n) iff ` t = 1(n)

a for some k-cell a of A.
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3. A term t is called indecomposable iff whenever ` t = s •k w (with k < n) then one of
s, w is a k-identity.

Thus, a term t is indecomposable iff t/≈ is an indecomposable n-cell of A[I].
The following simple statement implies immediately the “if” direction of 1.11.

Proposition 1.13. If t ∈ T (C) is an indecomposable term, then t is an identity or ` t = x
for some variable x ∈ I.

Proof. By induction on t. If t is an identity or a variable then we have nothing to prove. If
t = s •k w, then either s is a k-identity and then ` t = w or w is an identity and ` t = s; in
either case, the claim follows by the induction hypothesis.

Next, we point out a very simple fact.

Claim 1.14. A term t is constant iff it is an identity.

Proof. By induction on t. If t is an identity or an n-indet, this is immediate. If t = s•kw and
t is constant then so are s, w, hence, by the induction hypothesis, we can find (n− 1)-cells
a, b such that ` s = 1a, ` w = 1b.

If k = n−1, then we have a = d1a = ds = cw = c1b = b, hence ` t = s•n w = 1a •n 1a =
1a, so t is an identity. If k < n− 1, then d(k)s = d(k)1a = d(k)a and likewise, c(k)w = c(k)b.
As s •k w is defined, we have that d(k)a = c(k)b, hence a •k b is defined and we have, by
one of the identity axioms, ` t = 1a •k 1b = 1a•kb. this completes the proof of the “only if”
direction of the claim. The “if” direction follows immediately by claim 1.6.

This allows us to infer the ”Furthermore” part of 1.11.

Claim 1.15. If A is well-behaved then so is A[I].

Proof. We have to show that if t ∈ T (C) is a k-identity and ` t = s •k w, for k < n,
then both s and w are k-identities. Indeed, in this case, t, s, w must all be constant, hence
identities, by 1.14. So, assume that ` t = 1(n)

a and ` s = 1u, w = 1v with a being a k-cell
and u, v being (n − 1)-cells of A. If k = n − 1, we immediately infer that a = u = v. If
k < n− 1, then dt = ds •k dw which means that 1(n−1)

a = u •k v and as 1(n−1)
a is a k-identity

in A, it is essentially indecomposable, which means that u, v are also k-identities hence, so
are s and w.

Each occurrence of a composition symbol •k in a term t ∈ T (C) has a definite scope
which is a subterm of t of the form s •k w.

Definition 1.16. An occurrence of •k with scope s •k w in a term t is called inessential iff
either one of s, w is a k-identity or both, s and w are identities.
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To put it more colorfully, a composition occurrence in t is inessential iff it can be “wiped
out” by the use of one of the identity axioms of our deductive system. The next lemma,
which is crucial for the proof of 1.11, says, in effect, that this is the only way in which a
composition symbol can be made to disappear from a term of T .

Lemma 1.17. Under the assumption of 1.11, if ` t = s and one of t, s has only inessential
occurrences of composition, then so does the other .

Proof. By induction on proofs. We have to show, first, that the statement of the lemma
is true for all the axioms and, second, that if the statement is true for the premise, or the
premises, of a rule then it is true for its conclusion as well.

We start with the associativity axioms. Let (t •k s) •k w = t •k (s •k w) be a such and
assume, e.g., that the left hand side only inessential compositions. This means that the
same is true for t, s, w, so all we have to show is that the two •k-occurrences indicated on
the right are inessential. As the rightmost indicated occurrence of •k on the left hand side
is inessential, we have three cases, and we examine each of them separately.

Assume first that t •k s is a k-identity. If so, then so are t and s and this implies
that the two indicated occurrences of •k on the right are inessential. Second, assume that
w is a k-identity. But then, the left hand side of the axiom is provably equal to t •k s
and by assumption, this occurrence of •k is also inessential and we easily conclude that
the compositions on the right hand side are also inessential. Finally, if both t •k s and w
are identities, then so are t and s and all compositions on the right are inessential. This
completes the examination of the associativity axiom.

The case of exchange axioms is more complex. The argumentation is not hard, but is
somewhat tedious. Consider the instance

(t •k t1) •l (s •k s1) = (t •l s) •k (t1 •l s1)

where l < k 6 n.
Assume first that the left side has no essential composition occurrences. Then, certainly,

t, t1, s, s1 have no such occurrences and so, all we have to show this that, on the right side,
the three indicated composition occurrences are inessential. As •l on the left is inessential,
either both terms that it binds are identities or one of these terms that is an l-identity.
In the first case, t, t1, s, s1 are all identities and hence, all compositions on the right are
inessential. In the second case assume, e.g., that t •k t1 is an l-identity. As l < k, any
l-identity is also a k-identity hence, by 1.15, is essentially indecomposable and both t and
t1 are k-identities. But then, ` t •k t1 = t = t1 and so, t and t1 are actually l-identities.
Taking into consideration that the second •k on the left is also inessential, we now easily
conclude that all compositions on the right are inessential.

Now assume that the right side of the exchange axiom has no essential composition oc-
currences and let’s show that the three compositions indicated on the left are also inessential.
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Either both terms bound by •k on the right are identities or one of these is a k-identity.
The first case is, again, trivial, so let us consider the second. Assume, e.g., that t •l s is a
k-identity and hence, is essentially indecomposable. Then t and s are both k-identities and,
as the second •k on the right is inessential, we conclude immediately that all compositions
on the left are inessential.

Checking the statement of the lemma for the other axioms is trivial and so is for the
rules.

Proof of 1.11. It remains to show that any indeterminate x ∈ I is indecomposable. assume
that ` x = t •k s. As the basic term x has no essential compositions, it follows by 1.17
that •k on the right is inessential. By 1.6, x must occur in t •k s, which means that t and
s cannot be both constant, i.e., by 1.14 cannot be both identities. We conclude that one of
t, s must be a k-identity.

2 Indet occurrences

The notion of occurrence of an indet in (a C-term denoting) an n-cell u of A[I] is surprisingly
complex and will be discussed in the present section.

We start by pointing out that the same indet may occur several times in a term de-
noting u. A simple example: assuming that a = dx = cy and b = dy = cx, the C-term
t = (x •n−1 y) •n−1 x denotes an n-cell a

u // b, the composite of the diagram

a
x // b

y // a
x // b,

and the indet x has two distinct occurrences in t. As we shall see, in certain situations
we will be interested in replacing one of these occurrences of x by a cell v of dimension
n or higher (!), such that d(n−1)v = a and c(n−1)v = b. Therefore, we must have a mean
of indicating a particular occurrence of an indet x in an n-cell u. One solution could be
to arrange the occurrences of the indets in a sequence, in the order in which they occur
in t. In the example that we just considered, we are speaking of the sequence 〈x, y, x〉.
Unfortunately, the same cell u is denoted by several terms and the order of indet occurrences
may vary from one such term to the other. For instance, the terms t = (x •k x1) •l (y •k y1)
and s = (x •l y) •k (x1 •l y1) denote the same n-cell, where l < k < n. Fortunately, whenever
t and s denote the same cell, i.e. whenever ` t = s, the same indets occur in both, each
occurring the same number of times in t and in s and, moreover, each proof of t = s yields,
in an obvious way, a one-to-one correspondence between the indet occurrences in t and
those in s.

To deal with this situation, we start by attaching to each n-cell u an indexed set 〈u〉 of
indet occurrences; this is a function 〈u〉 : |〈u〉| → I whose domain is a finite set |〈u〉|. An
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indet x ∈ I has an occurrence in u iff it is in the range of 〈u〉 and if this is the case, then
the number of occurrences of x in u is the cardinality of the set {r ∈ |〈u〉| : 〈u〉(r) = x}.

It will be useful to assume that all the domains |〈u〉| are subsets of a given infinite set
N . Following [6], we let I# be the category whose objects are the finite indexed subsets of
I (i.e. the functions from finite subsets of N into I) and arrows are defined in the obvious
way. Let us mention, for further use, that in I#, 〈u1 •k u2〉 is a coproduct of 〈u1〉 and 〈u2〉,
with several possible pairs of coprojections κi : |〈ui〉| → |〈u1 •k u2〉|, i = 1, 2.

Remark. The choice of the finite set |〈u〉| is totally arbitrary, apart from the fact that the
number of its elements should equal that of distinct occurrences of indets in u and we may,
if we wish so, reparametrize 〈u〉, meaning that we replace its domain |〈u〉| by any subset of
N of the same cardinality.

〈u〉 is just an abstract object that carries the basic information about the indets occurring
in u and the number of occurrences of each. We still have to attach every r ∈ |〈u〉| to a
particular occurrence of x = 〈u〉(r) in u. This is done with the help of an indet-occurrence
specification or, in short, a specification for u. Such a specification is given by a C-term t
denoting u (i.e. such that u = t/≈) together with a one-to-one function θ whose domain
is |〈u〉| and such that for each r ∈ |〈u〉|, θ(r) will be a place in the string of symbols t, in
which x = 〈u〉(r) occurs. This occurrence will be referred to as the r-occurrence of x in
u, as specified by θ. We will denote θ : |〈u〉| → t, to indicate that θ is a specification as
described.

As mentioned above, every C-proof π of t = s generates a bijection between the indet
occurrences in t and those in s. This is a one-to-one function χ = χπ which maps every
location in the string of symbols t at which a certain indet occurs to a location in s occupied
by the same indet. We denote this situation by χ : t → s. We let the reader figure out
the obvious definition of χπ. With the help of this notion, we can now define when two
specifications for u are the same.

Definition 2.1. Two specifications θi : |〈u〉| → ti, i = 1, 2, are called equivalent if there
exists a C-proof π of t1 = t2 such that θ2 = χπθ1 .

Remarks. 1. If every indet that occurs in u, occurs there precisely once, then we have a
unique specification θ : |〈u〉| → t, for every t denoting u. If this is the case, then any two
specifications for u are equivalent. If, however, there are indets with multiple occurrences
in u, then there are several possible specifications for u into the same t. In this case, u may
have inequivalent specifications. To show how delicate the issue of indet occurrences may
be, let us also mention that we might have two distinct specifications θi : |〈u〉| → t into the
same t that are equivalent ! Indeed, as remarked by Eckmann and Hilton, if a is a 0-cell and
u, v : 1a → 1a are 2-cells, then one can prove that

u •0 v = v •0 u = u •1 v = v •1 u.
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Thus, if we let x be a 2-indet with dx = cx = 1a, then substituting x for u and v in, e.g.
the proof of the first equality, we get a non-trivial C-proof π of x •0 x = x •0 x which yields
a χπ that interchanges the two occurrences of x.

2. An alternative, more picturesque and less formal, point of view is this. A specification
θ : |〈u〉| → t actually relabels the distinct occurrences of any indet x by different symbols
x′, x′′, .... In this way, we transform t into a term t?, all of whose indets have unique
occurrences. Any C-proof of t = s yields a suitable relabelling s? and a C-proof of t? = s?.
In this way, by looking at the proof, we can follow the rearrangement in s of the indets that
occur in t.

We now choose, for every n-cell u of A, a preferred specification θu : |〈u〉| → tu. From
this point on, when speaking of the r-occurrence of x = 〈u〉(r) in u, we will mean the
occurrence specified by θu. Occasionally, we might have to use another term t denoting
u, and in such a case, it should always be considered together with a proof π of tu = t.
Then, the above mentioned r-occurrence in u is also the one specified by the equivalent
specification θ = χπθu : |〈u〉| → t. One typical context in which such a situation occurs
naturally, will now be described.

If u1 , u2 are k-composable n-cells of A[I], then u1 •k u2 is denoted by both tu1•ku2
and

tu1
•k tu2

. Let’s write, for simplicity, u1 •k u2 = u, tu = t, tui = ti, i = 1, 2. Select a proof π
of the equality t = t1 •k t2 . It will yield a map χπ : t → t1 •k t2 . Let ιi be the “embedding” of
the term ti into t1 •k t2 , i = 1, 2. By this we mean that ιi maps every location in the string
of symbols ti into the corresponding location in the the larger string t1 •k t2 . Remember
that 〈u〉 = 〈u1 •k u2〉 is a coproduct of u1 and u2 in the category I#. A pair of coprojections
κi, i = 1, 2, will be called appropriate (with respect to the selected proof π), if the following
diagrams commute:

|〈u1〉| t1
θ1 //|〈u1〉|

|〈u〉|

κ1

²²

t1

t1 •k t2

ι1

²²
|〈u〉| t

θ // t t1 •k t2
χπ //

|〈u2〉|

|〈u〉|
κ2

OO

t2

t1 •k t2

ι2

OO

|〈u2〉| t2θ2

//

where θ, θ1 , θ2 , are the preferred specifications for u, u1 , u2 . As all maps in this diagram
are one-to-one, we immediately conclude that, given u1 , u2 and π, there is a unique pair of
appropriate coprojections κ1 , κ2 . These coprojections will relate each indet occurrence in
ui to the corresponding one in u = u1 •k u2 .

An important convention. As we remarked already, we can reparametrize any given
u by changing its domain at will. We will use this flexibility and always assume that,
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whenever we are considering the cell u •k v, the index sets |〈u〉|, |〈v〉| were so chosen as to
be disjoint and to have |〈u •k v〉| = |〈u〉|∪̇|〈v〉| (where the customary notation “∪̇” comes
to emphasize that the two terms of the union are disjoint sets), with the inclusion maps
of |〈u〉|, |〈v〉| in |〈u •k v〉| being appropriate coprojections. This convention will simplify
notations in the sequel.

3 Placed composition

In this section, we will assume that B is an n-category freely generated by a set I of indets.
This means that n > 0 and B = A[I], where A = Bn− 1, the (n− 1)th truncation of B or
else, n = 0 and I = B0. Let X be an ω-category extending B.

We are going to describe several operations involving cells of dimension > n of the
ω-category X. The most important, for the present article, is the operation of placed
composition, that will be presented later in this section.

The first operation to be described is the n-cell replacement operation. If u is an n-cell
of X, r ∈ |〈u〉|, 〈u〉(r) = x ∈ I and if v is any n-cell of X parallel to x, then we can replace
the r-occurrence of the n-indet x in u by the n-cell v, producing an n-cell u rv, as result.
Notice that u rv is parallel to u. Let us recall that an n-cell v is parallel to x iff n > 0 and
dv = dx, cv = cx or else, n = 0 (as any two 0-cells are considered to be parallel).

We can generalize this operation by allowing v to be any cell of dimension> n, provided
that, if n > 0 then d(n−1)v = dx and c(n−1)v = cx. Indeed, if u is an n-cell and v an m-cell,
where k < n < m, such that d(k)u = c(k)v it is customary to define u •k v = 1(m)

u •k v.
Similarly, u •k v = u •k 1(m)

v , if u is of dimension m and v of dimension n. These operations
that yield an m-cell when applied to cells of dimensions n and m, are called whiskerings.
As any n-cell u is obtained from indets by means of compositions, we conclude that it
makes sense to replace the r-occurrence of x in u, by any cell v of X of dimension m > n,
provided that d(n−1)v = dx and c(n−1)v = cx. The result is an m-cell u rv and this kind
of replacement will be called a generalized whiskering operation. The n-cell replacement
operation is just the generalized whiskering, restricted to n-cells.

For n = 0, the generalized whiskering operations is trivial: if u is a 0-cell, then it is an
indet, and u rv = v, hence u r− is the identity function on the set of all cells of X.

For n > 0, given parallel (n− 1)-cells a, b ∈ Xn−1 of X, we let X(a, b) be the ω-category
whose k-cells are those (n + k)-cells v ∈ Xn+k that satisfy d(n−1)v = a, c(n−1)v = b. With
this notation, we see that, for u ∈ Xn and r ∈ |〈u〉|, x = 〈u〉(r), u r− is a function from
the set of cells of X(dx, cx) to the cells of X(du, cu). As a clue to a precise definition of this
function, we note that the following three conditions should be met.

1. If u is an n-cell of X, r ∈ |〈u〉| and 〈u〉(r) = x then u rv is defined iff d(n−1)v = dx
and c(n−1)v = cx. If this is the case, then d(n−1)(u rv) = du and c(n−1)(u rv) = cu.
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2. If u = x ∈ I (remember that we identified x with the n-cell x/≈) then u rv = v
(where, of course, |〈u〉| = {r}).

3. (u′ •k u′′) rv =

{
(u′ rv) •k u′′ if r ∈ |〈u′〉|
u′ •k (u′′ rv) if r ∈ |〈u′′〉|

(remember that, by the convention established at the end of section 2, we have
|〈u′ •k u′′〉| = |〈u′〉|∪̇|〈u′′〉|).

We want to associate with every n-cell u an indexed set of partial functions 〈u r−〉r∈|〈u〉|
so as to have conditions 1-3 met. One might think that these conditions can be used to
define the partial function u r− by recursion on the n-cell u. However, the same composite
u might be represented in more than one way as a composition of two other cells. Conditions
1-3 allow us to define, by recursion on the C-term t, a partial function t r− and we still
have to show that all terms denoting a given u yield the same function. This can be done
by induction on proofs. However, we prefer another route.

We will use the universal property of A[I] (cf. theorem 1.4) and construe the mapping
u 7→ 〈u r−〉r∈|〈u〉| as a functor into an n-category W.

Definition 3.1. W is the n-category satisfying the following requirements:

1. Wn−1 = A, i.e. the k-cells of W are those of A for k < n.

2. The n-cells of W are pairs U = (u, 〈Hr〉r∈|〈u〉|), with u an n-cell of X and Hr a function
from the set of cells of X(dxr, cxr) to the set of cells of X(du, cu), where xr = 〈u〉(r).
The domain and codomain are dU = du, cU = cu.

3. For a ∈ An−1 = Wn−1, the identity over a in W will be (1a, 〈 〉) (where 〈 〉 is, of course,
the empty indexed set of functions).

4. if U is as above and V = (v, 〈Kr〉r∈|〈v〉|) is such that d(k)U = d(k)u = c(k)v = c(k)V ,
then we have

U •k V = (u •k v, 〈Lr〉r∈|〈u•kv〉|),

where

Lr(−) =

{
Hr(−) •k v if r ∈ |〈u〉|
u •k Kr(−) if r ∈ |〈v〉|

A straightforward verification shows that W is, indeed, an n-category.

For x ∈ I, seen as an n-cell of A[I] with |〈x〉| = {r}, we have that ϕx =def (x, 〈Hr〉) is
an n-cell of W, where Hr = idX(dx, cx) is the identity function from X(dx, cx) to itself. Thus
we defined a function ϕ : I → Wn and we have dϕx = dx, cϕx = cx. By theorem 1.4, there
is a unique ω-functor G : A[I] → W such that Ga = a, for a a cell of A and Gx = ϕx, for
x ∈ I.
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Claim 3.2. For every n-cell u of A[I], the first component of Gu ∈ Wn is u itself.

Proof. Let Π : W → A[I] be defined as Πa = a for a a cell of A = Wn−1 and ΠU =
u for U = (u, 〈Hr〉r∈|〈u〉|) = u. Then Π is an ω-functor, hence so is the composite
ΠG : A[I] → A[I] and we must have that ΠG = 1A[I], the identity ω-functor on A[I],
because, by 1.4 there is a unique functor A[I] → A[I] which is the identity for the cells of
A and for the indets x ∈ I.

Definition 3.3. For u an n-cell of X, if Gu = (u, 〈Hr〉r∈|〈u〉|), then we define u r− =
Hr(−), for r ∈ |〈u〉|.

It follows immediately that the partial functions u r− satisfy conditions 1-3 stipulated
just before definition 3.1. Actually, conditions 1-3 determine these functions uniquely, as
summed up in the following statement.

Theorem 3.4. Given Xn = A[I], there exists a unique system of partial functions {u r− :
u ∈ Xn, r ∈ |〈u〉|} satisfying conditions 1-3.

Proof. The existence of a system as stipulated has been just proven, so we have only to prove
uniqueness. This done by induction on n-cells. Let us emphasize that, while definitions by
recursion on n-cells cells require special caution, as we just saw, proofs by induction are
unproblematic, as the set of n-cells of X, being the same as the set of n-cells of A[I], is the
least that contains the indets and the identity n-cells and is closed under composition. We
are now going to see a first instance of such a proof.

Assuming that {u ∗r− : u ∈ Xn, r ∈ |〈u〉|} is another system of functions satisfying 1-3,
an induction on u shows that u ∗r − = u r−. We leave the straightforward argument to
the reader. Many more instances of proofs by induction on cells will be met soon.

Remark. All these involved statements are relevant for the case n > 0 only. If n = 0 then
every n-cell is an indet and u r− is always the identity function.

It is well known and easily seen that the whiskering operations are functorial in the
following sense: if x, v, u are n-cells such that u = x •k v for some k < n, then the function
− •k v : X(dx, cx) → X(du, cu) is an ω-functor (and, of course, a similar statement holds
for v •k −). The same is true for generalized whiskering.

Theorem 3.5. If Xn = A[I], u ∈ Xn, r ∈ |〈u〉| and 〈u〉(r) = x then the function
u r− : X(dx, cx) → X(du, cu) is an ω-functor.

Proof. By induction on u.
If u is an indet x ∈ I, then u r− is an identity map and there is nothing to prove.
u cannot be an identity, as |〈u〉| 6= ∅.
If u = u′•ku′′ and, say, r ∈ |〈u′〉|, then u′ r− is an ω-functor by the induction hypothesis,

hence so is the composition u r− = (u′ r−)•k u′′ of the ω-functors −•k u′′ and u′ r−.
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If u, v are n-cells of X, then so is u rv, if defined. Again, an easy proof by induction
on u, will show that 〈u rv〉 is a coproduct of 〈u〉 \ r (i.e. 〈u〉 restricted to |〈u〉| − {r})
and 〈v〉. The coprojections of this coproduct are induced by those of the •k operations
involved, and if we stick to our convention of choosing disjoint index sets for the arguments
of these composition operations, we will always have that |〈u rv〉| = (|〈u〉| − {r})∪̇|〈v〉|,
with the inclusion maps being the induced coprojections. Again, this will greatly simplify
notations in the sequel.

Theorem 3.6. If u is an n-cell then:

1. (“Commutativity”) If r, q ∈ |〈u〉|, r 6= q such that u rv, u qw are defined where v,
w are also n-cells, then (u rv) qw = (u qw) rv.

2. (“Associativity”) If r ∈ |〈u〉|, and u rv is defined, v an n-cell, q ∈ |〈v〉| and v qw is
defined with w a cell of dimension > n, then

(u rv) qw = u r(v qw).

3. (Identity rule) If r ∈ |〈u〉| and 〈u〉(r) = x then u rx = u.

Proof. By induction on u. We sketch the proofs of parts 1,2 and leave the proof of 3 to
the reader.

Proof of part 1 : As |〈u〉| is assumed to have at least two distinct elements, u is neither
an indet nor an identity. Assume that u = u′ •k u′′. Then |〈u〉| = |〈u′〉|∪̇|〈u′′〉|. If r, q
belong to different summands, e.g. if r ∈ |〈u′〉|, q ∈ |〈u′′〉|, then both sides of the stipulated
equality are seen to be equal to (u′ rv) •k (u′′ qw) (this case doesn’t require any induction
hypothesis). If both r and q belong to the same summand, e.g. r, q ∈ |〈u′〉| then the
statement follows from the induction hypothesis for u′.

Proof of 2 : If u is an indet, then both sides equal v qw. If u = u′•ku′′ and, say, r ∈ |〈u′〉|
then the left side equals ((u′ rv) qw) •k u′′, while the right one equals (u′ r(v qw)) •k u′′

and the statement follows from the induction hypothesis for u′.

Assume that, not only is Xn = B a free extension of Bn−1 = A, but also Xn+1 is a
free extension of Xn. Let’s say that Xn+1 = Xn[J ] = B[J ], for a set J of (n + 1)-indets.
This situation will be encountered from section 6 on. If so, then we can define generalized
whiskering functors for n-cells, as well as for (n + 1)-cells. The following simple technical
lemma, linking these two kinds of operations, will be useful later.

Lemma 3.7. Assume that X is an ω-category as just described. If we have w ∈ Xn,
q ∈ |〈w〉|, u ∈ Xn+1, r ∈ |〈u〉| and v is any cell of X of dimension m > n + 1 then the
following equality holds, provided that the expressions involved are defined:

(w qu) rv = w q(u rv).
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Proof. By induction on w. If w is an n-indet, then w q− is an identity functor, and there
is nothing to prove. w cannot be an identity, as |〈w〉| 6= ∅. Assume that w = w′ •k w′′ and ,
e.g., q ∈ |〈w′〉|. Then

(w qu) rv = ((w′
qu) •k w′′) rv.

By the induction hypothesis, (w′
qu) rv = w′

q(u rv), and we conclude

= (w′
q(u rv)) •k w′′ = (w′ •k w′′) q(u rv) = w q(u rv).

We now go one dimension higher and define the operations of placed composition that
involve (n + 1)-cells of X. Let u be such a cell. Its domain du is an n-cell of X, hence of
A[I]. Assume that r ∈ |〈du〉| and 〈du〉(r) = x ∈ I. Schematically, the situation may be
represented as in the figure below, where we indicated the r-occurrence of x in du.

cu //

du • x //

JJ

u

KS

Let, in addition, v be another (n + 1)-cell of X with codomain cv = x. The two cells
can be represented as in the figure at left below and it is a natural thought to combine the
two cells into a single one, u ◦r v, whose domain will be du rdv, the result of replacing the
r-occurrence of x in du by dv. The new cell is represented schematically in the figure at
right and is called the placed composition of u and v at r.

cu //

du • x //

JJ

u

KS

dv

]]

v

KS

cu //

• //

JJ

u◦rv

KS

du rdv

]]

What is the precise definition of placed composition? The cells u and v cannot be
composed as they are, because the domain of u doesn’t match the codomain of v. This,
however, can be corrected with the help of the generalized whiskering functor du r−.
Indeed, as we have dv

v // cv = x = 〈du〉(r), we get, after applying du r−,

du rdv
du rv // du rcv = du rx = du
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and thus, du rv is an (n + 1)-cell with codomain du, matching the domain of u. This
motivates the following definition:

Definition 3.8. For u, v ∈ Xn+1 with r ∈ |〈du〉| and 〈du〉(r) = x = cv, we define the
placed composition of u and v at r to be the (n + 1)-cell

u ◦r v = u •n (du rv)

with domain du rdv and codomain cu.

Again, we can generalize this operation further, by allowing v to be any X-cell of di-
mension > n + 1 such that c(n)v = x. Definition 3.8 makes sense for such a v, with •n

indicating a whiskering, and produces a cell u ◦r v, of dimension equal to that of v, which
will be called the placed whiskering of u and v at r.

Remark concerning the case n = 0. In this situation, du is a 0-cell, i.e. an indet, so that
du r− is the identity function, |〈u〉| is a singleton, say {r}, and the placed composition is
defined only when c(0)v = du and we have, therefore, u rv = u •0 v.

The placed whiskering operations in general, and placed compositions in particular, have
properties similar to those of the operations of replacement and generalized whiskering.

Theorem 3.9. If u is an (n + 1)-cell then:

1. (“Commutativity”) If r, q ∈ |〈du〉|, r 6= q and v, w are (n + 1)-cells for which u ◦r v,
u ◦q w are defined, then (u ◦r v) ◦q w = (u ◦q w) ◦r v.

2. (“Associativity”) If r ∈ |〈du〉|, v is an (n+1)-cell such that u◦r v is defined, q ∈ |〈dv〉|
and w is any X-cell of dimension > n + 1 with v ◦q w defined, then (u ◦r v) ◦q w =
u ◦r (v ◦q w).

3. (Identity rules) If 〈du〉(r) = x then u ◦r 1x = u. If cv = x and |〈x〉| = {r}, then
1x ◦r v = v.

Proof. Proof of part 1 : We have

(u ◦r v) ◦q w = (u •n (du rv)) ◦q w = u •n (du rv) •n (d(u •n (du rv)) qw) =
= u •n (du rv) •n (d(du rv) qw) = u •n (du rv) •n ((du rdv) qw)

(remember that du r− is functorial, therefore d(du r−) = du rd−)
In the same way, (u ◦q w) rv = u •n (du qw) •n ((du qdw) rv), hence the desired

conclusion will follow from the following:
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Lemma 3.10. If u′ is an n-cell, r, q ∈ |〈u′〉|, r 6= q and v, w are (n + 1)-cells satisfying
cv = 〈u′〉(r), cw = 〈u′〉(q) then

(u′ rv) •n ((u′ rdv) qw) = (u′ qw) •n ((u′ qdw) rv)

Proof. By induction on u′. u′ can be neither an indet nor an identity, so assume that
u′ = u′1 •k u′2, k < n.

Case 1: r, q belong to the same one of |〈u′1〉|, |〈u′2〉|, e.g. r, q ∈ |〈u′1〉|. Then

(u′ rv) •n ((u′ rdv) qw) = ((u′1 rv) •k u′2) •n (((u′1 rdv) qw) •k u′2) =
= ((u′1 rv) •n ((u′1 rdv) qw)) •k u′2,

where the second equality is just an instance of the exchange axiom (axiom 3 of defini-
tion 1.3). To see this, one should notice that the •k compositions stand for whiskerings and,
therefore, u′2 is just short for 1u′2 .

Similarly, (u′ qw)•n((u′ qdw) rv) = ((u′1 qw)•n((u′1 qdw) rv))•ku′2 and the equality
follows from the induction assumption for u′1.

Case 2: r ∈ |〈u′1〉|, q ∈ |〈u′2〉|. Then,

(u′ rv) •n ((u′ rdv) qw) = ((u′1 •k u′2) rv) •n (((u′1 •k u′2) rdv) qw) =
= ((u′1 rv) •k u′2) •n ((u′1 rdv) •k (u′2 qw)) = ((u′1 rv) •n (u′1 rdv)) •k (u′2 •n (u′2 qw)) =

= (u′1 rv) •k (u′2 qw),

where, again, the equality before the last is an instance of the exchange axiom, while the
last equality follows by identity axioms (the first line of axiom 4, definition 1.3), taking into
consideration that u′1 rdv, u′2 are just short for 1u′1 rdv, 1u′2 , respectively .

A similar computation shows that (u′ qw) •n ((u′ qdw) rv) equals (u′1 rv) •k (u′2 qw)
as well. No need for any induction hypothesis for this case.

The proof of part 1 is now complete.

Proof of part 2 : A computation shows that

u′ ◦r (v ◦q w) = u′ •n (du rv) •n (du r(dv qw)), while

(u′ rv) qw = u′ •n (du rv) •n ((du rdv) qw)

and the desired equality follows by part 2 of theorem 3.6.

The proof of 3 is easy (for the first statement, one should only notice that
du r1x = 1du).
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Theorem 3.4 and definition 3.8 show that the operations of placed composition are
uniquely determined by the ω-categorical composition operations •k. The next statement
describes the behavior of a •k composition operation when one of its arguments is a placed
composition. It will allow us to show, in section 6, that under certain conditions a converse
also holds, namely, the placed compositions determine uniquely the ω-categorical ones.

Proposition 3.11. If Xn = A[I], then the following identities hold, where u, u′, u′′, v, v′, v′′

are (n + 1)-cells of X such that the left hand side expressions are defined, then:

1. u •k (v′ ◦r v′′) = (u •k v′) ◦r v′′, for k 6 n.

2. (u′ ◦r u′′) •k v = (u′ •k v) ◦r u′′, for k < n.

Proof. Part 1 : As c(v′◦rv
′′) = cv′, we see that u•kv′ is defined and, as |〈u•kv〉| = |〈u〉|∪̇|〈v′〉|,

the right hand side expression is defined, whenever the left is.
If k = n, then we have u •n (v′ ◦r v′′) = u •n (v′ •n (dv′ rv′′)) = (u •n v′) •n (dv′ rv′′)

and the desired identity follows once we notice that dv′ = d(u •n v′).
If k < n, then u •k (v′ ◦r v′′) = u •k (v′ •n (dv′ rv) = (u •n 1du) •k (v′ •n (dv′ rv).

We can now use an instance of the exchange axiom and conclude that u •k (v′ ◦r v′′) =
(u •k v′) •n (1du •k (dv′ rv′′)) = (u •k v′) •n (du •k (dv′ rv′′)) = (u •k v′) •n ((du •k dv′) rv′′)
(notice that the second •k in the third expression represents a whiskering) and the desired
identity follows if we notice that du •k dv′ = d(u •k v′).

Part 2 : To see that the right hand side is defined if the left is, notice that d(u′ ◦r u′′) =
du′ rdu′′ ‖ du′, hence d(k)(u′ ◦r u′′) = d(k)u′. The proof of the identity is similar to that of
the case k < n of part 1.

Theorems 3.9 and 3.6 point out common properties of the placed composition operations
on one hand, and the n-cell replacement ones, on the other. Actually, these two families of
operations are particular instances of a general concept that forms the subject of the next
section.

4 Multicategories

The notion of multicategory that we are about to present, has been introduced in [6] and
extends a notion defined previously, under the same name, by Lambek (cf. [8]). It is
an abstract concept that, as we just hinted, displays the common features of the placed
composition operations, on one hand, and the n-cell replacement ones, on the other.

A multicategory has a set of objects and a set of arrows. Each arrow u has a source Su
and a target Tu. Su is an indexed set of objects, a function from a finite set of indices |Su|
into the set of objects. The multicategory has also partial multicomposition operations,
which we denote ¯r, r being any index. If u, v are arrows then u¯r v is defined whenever
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r ∈ |Su| and the target of v is “appropriate” (in a sense to be made precise shortly) for the
object Su(r) that occurs in the r-position in the source of u. If such is the case, we will say
that v is multicomposable (or, r-multicomposable) into u.

One kind of examples of multicategories is based on the operations of placed composi-
tions playing the role of multicompositions. In this context, the objects are the n-indets
while the arrows are certain (n + 1)-cells. The source of an arrow u will be 〈du〉 and its
target will be cu. Thus, the target of v is “appropriate” for the object Su(r) = 〈du〉(r) iff
it equals it.

The situation is a bit different in a multicategory based on the n-cell replacements. The
objects are, again, the n-indets and the arrows are the n-cells, the source of u being 〈u〉.
This time, the r-multicomposition of v into u will be defined iff we have the equality of
ordered pairs (dv, cv) = (dx, cx) where x = Su(r). We will call (dx, cx) the type of the
object x and let the target of v be Tv = (dv, cv). Hence, in this case, the target of v is
“appropriate” for the object Su(r) = 〈u〉(r) iff it equals its type.

In preparation for a formal definition, let us specify a few conventions and notations.
As we mentioned already, given a set O, we let O# be the category whose objects are finite
indexed sets of elements of O, i.e. functions from finite subsets of a given infinite set of
indices N , and arrows defined in the obvious way (see also [6]). Recall that, given an object
f of O#, f : |f | → O, we allow ourselves to reparametrize f replacing, at will, the domain
|f | by any subset of N of equal cardinality. To be more precise, if s ⊂ N and σ : s → |f |
is a bijection, then we regard f ′ = fσ : s → O as being the same as f . Of course, when we
do this, we also identify the O#-arrows from and to f with the corresponding maps (e.g.
γ : g → f should be identified with γ′ = σ−1γ : g → f ′). Finally, if x ∈ O, we let 〈x〉 be the
object of O# whose domain is a singleton and whose range is {x}.
Definition 4.1. A multicategory C consists of;

1. An object system, which is a triple Ω = Ω(C) = (O, Ȯ, (−)·) where O is a set of
objects, Ȯ a set of object types and (−)· : O → Ȯ a map that associates with every
x ∈ O its type ẋ ∈ Ȯ. We say that C is based on Ω. If O = Ȯ and (−)· is the identity,
then Ω is called a simple object system and is denoted Ω = (O).

2. A set A = A(C) of arrows together with source and target functions S : A → Ob(O#)
and T : A → Ȯ.

3. Partial multicomposition operations that associate with each pair of arrows u, v ∈ A
and each r ∈ |Su| such that Tv = (Su(r))·, an arrow u¯r v such that S(u¯r v) is a
coproduct of Su\r and Sv with specified coprojections and T (u¯r v) = Tu (following
our practice, we will always assume that Su, Sv have been so reparametrized as to
have |S(u ¯r v)| = (|Su| \ {r})∪̇|Sv| with the inclusion maps being the specified
coprojections).
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u¯r v will be referred to as the multicomposition of v into u at place r.

4. An identity arrow 1x, for each x ∈ O, such that S(1x) = 〈x〉, T (1x) = ẋ.

These components are subject to the following conditions:

(a) (Identity rules) If Tu = ẋ then 1x¯r u = u, where, of course, |S1x| = {r}. If Su(r) = x,
then u¯r 1x = u.

(b) (“Commutativity”) If r, q ∈ |Su|, r 6= q, Tv = (Su(r))· and Tw = (Su(q))· then
(u¯r v)¯q w = (u¯q w)¯r v.

(c) (“Associativity”) If r ∈ |Su|, Tv = (Su(r))·, q ∈ |Sv| and Tw = (Sv(q))· then
(u¯r v)¯q w = u¯r (v ¯q w).

We now reexamine the examples that motivated this definition.
As it turns out, there are two important examples based on placed composition.

The first (and main) example: If B is an n-category generated by a set I of indets, as
we considered in section 3, and X is an (n + 1)-category extending B, i.e. Xn = B = A[I],
then we define the multicategory C = CX of placed-composition, whose object system is
simple, with set of objects I. The set of arrows will be A = {u : u ∈ Xn+1, cu ∈ I}, i.e. the
set of those (n + 1)-cells of X that were called many-to-one in the introduction. For u ∈ A,
Su = 〈du〉 and Tu = cu. The multicomposition operation at place r will be, of course, ◦r.
Finally, for x ∈ I, the identity arrow will be the identity cell 1x.

Remark concerning the terminology. An arbitrary (n + 1)-cell u ∈ Xn+1 can be seen as
linking between the finite indexed sets of n-indets 〈du〉 and 〈cu〉. In general, both these
indexed sets have (finitely) many components. If it so happens that cu ∈ I, i.e. 〈cu〉
contains just one component, then it is only natural to say that u is a many-to-one cell.

A moment of thought will show that we do not have to take the arrows to be just the
many-to-one (n+1)-cells. By deciding that all (n+1)-cells of X are arrows we get another
example of multicategory based on placed composition.

The second example of multicategory: We enlarge the placed-composition multicategory
CX into an extended placed-composition multicategory C+ = C+

X whose set of objects O is
still the set of n-indets I, but the set of arrows A equals Xn+1, the set of all (n + 1)-cells
of X. To accommodate this situation, the object system of C+

X is not simple anymore. The
set of object types is Ȯ = Bn, the set of all n-cells of B = A[I] and (−)· is the inclusion
map. The source and the target of u are Su = 〈du〉 and Tu = cu. The multicomposition
operations and the identity arrows are defined as in the case of CX.

The definition of C+
X is made possible by the fact that, in the abstract concept of

multicategory, the map (−)· : O → Ȯ is not necessarily onto Ȯ. Hence, we might have
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arrows whose target is not the type of any object; such arrows cannot be multicomposed
into any other arrow (but, of course, other arrows can be multicomposed into it). This
possibility was not ruled out in [6], but it seems that it had no relevance in that paper.
It is, however, useful in the present work as the notion of extended placed-composition
multicategory will turn out to be valuable in section 6 below.

Remark concerning the case n = 0. In this case, X is a 1-category (i.e., just an ordinary
category) and all its 1-cells are many-to-one. Furthermore, as we remarked after defini-
tion 3.8, placed composition is the same as categorical composition and so, we have in this
case that CX = C+

X = X. Hence, an ordinary category, can be seen at the same time as a
multicategory of a very particular kind. Actually, the ordinary categories are precisely those
multicategories whose object system is simple and the source of any arrow is a singleton.

We now turn to the replacement context.

Third example: Given B = A[I] of dimension n > 0, we construct a multicategory
R = RB of cell replacement as follows. The set of objects of R will be O = I, the set of n-
indets. The set of types Ȯ = {(du, cu) : u an n-cell of A} and for x ∈ O = I, ẋ = (dx, cx).
The set of arrows A will be Bn, the set of n-cells of B = A[I] and for u ∈ A, Su = 〈u〉,
Tu = (du, cu). The placed multicomposition operation at r will be r and for x ∈ O = I,
the identity arrow 1x will be x itself.

We now define the obvious notions of morphisms of object systems and of multicate-
gories.

Definition 4.2. 1. A morphism γ : Ω → Λ between object systems Ω = (O, Ȯ, (−)·)
and Λ = (L, L̇, (−)·) is a pair of functions γ = (γo, γt), where γo : O → L, γt : Ȯ → L̇
and we have, for x ∈ O, (γox)· = γtẋ. Thus, if Ω is simple, then γo = γt and, if such
is the case, we denote γ = γo.

2. A morphism χ : C → D, where C, D are multicategories, is a pair χ = (χΩ, χa) such
that:

i. χΩ : Ω(C) → Ω(D) is a morphism of object systems.

ii. χa : A(C) → A(D) and for each u ∈ A(C), χaTu = Tχau and there is a bijection
θu : |Su| → |Sχau| such that Su = (Sχau)θu (and we will usually assume that
an appropriate reparametrization has been made, so that θu is an identity map).

iii. If u, v ∈ A(C) and u¯r v is defined, then χa(u¯r v) = (χau)¯r (χav)

iv. χa1x = 1χox, for x ∈ O.

Remark. Stipulation iii has been made under the assumption that the θ bijections of ii
are identity maps. Otherwise, we have to say that χ(u ¯r v) = (χu) ¯r′ (χv), where
r′ = θur and must add obvious requirements concerning the links between θu, θv, θu¯rv
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and the coprojections related to the sources S(u ¯r v), S((χu) ¯r (χv)). For example, if
the coprojections are inclusion maps, as we usually assume, then we must just require that
θu¯rv = θu∪̇ θv.

5 Free multicategories

We follow a path analogous to the one taken in section 1. We will design a language that
allows to specify arrows built from given indeterminates by means of multicompositions
in a multicategory. Given an object system Ω = (O, Ȯ, (−)·), let J be a set of arrow -
indeterminates, together with source and target functions S : J → Ob(O#), T : J → Ȯ. The
elements of J will be also called a-indets or, simply, indets, and will denote arbitrary arrows
in a multicategory based on Ω. We will define an equational language M = M(Ω, J, S, T ).
The symbols of M will be the a-indets, the multicomposition symbols ¯r, for r ∈ N , the
identity symbols 1x for x ∈ O, as well as left and right parentheses, as auxiliary symbols.

Definition 5.1. The set T (M) of M-terms and the source and target functions
S : T (M) → Ob(O#), T : T (M) → Ȯ are defined as follows:

1. Each indet f ∈ J is an M-term with Sf, Tf as specified by the given source and
target functions.

2. For each x ∈ I, 1x is an M-term with S1x = 〈x〉 and T1x = ẋ.

3. If t, s are M-terms and r ∈ |St|, Ts = (St(r))·, then (t)¯r (s) is an M-term (usually
written just as t¯rs), with T (t¯rs) = Tt and S(t¯rs) being a coproduct, with specified
coprojections, of St \ r and Ss. We will follow our simplifying practice and assume
that St, Ss have been so reparametrized as to have |S(t ¯r s)| = (|St| − {r})∪̇|Ss|,
with the inclusion maps being the specified coprojections.

4. There are no M-terms besides those mentioned in 1-3.

The semantics of the M-terms is analogous to that of the C-terms of section 1. For
C a multicategory based on Ω and an assignment ϕ : J → A(C) which is correct, in the
sense that Sϕf = Sf, Tϕf = Tf , one defines the value val(t) = valϕ(t) ∈ A(C) of any
term t ∈ T (M), under the assignment ϕ. More generally, if γ : Ω → Ω(C) is a morphism
of object structures for any multicategory C and ϕ : J → A(C) an assignment that is
consistent with γ (in the sense that Sϕf = γSf, Tϕf = γTf) , we can evaluate t under
γ, ϕ and get valγ,ϕ(t) ∈ A(C). The definition of the evaluation function valγ,ϕ is most
natural and similar to definition 1.2, so that we do not present it formally.

Next, we define the axioms and rules of the equational logicM as we did in definition 1.3:
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Definition 5.2. The deductive system M has the following axioms and rules, where, t, s, w
are arbitrary M-terms and all multicompositions are supposed to be well defined (according
to definition 5.1).

Axioms.

1. t = t (equality axioms).

2. 1x ¯r t = t and t¯r 1x = t (identity axioms).

3. (t¯r s)¯q w = (t¯q w)¯r s, if r 6= q (commutativity axioms).

4. (t¯r s)¯q w = t¯r (s¯q w) (associativity axioms).
Rules.

1.
t = s

s = t

t = s s = w

t = w
(equality rules).

2.
t = s

t¯r w = s¯r w

t = s

w ¯r t = w ¯r s
(congruence rules).

Again, we will write ‘` t = s’ or, sometimes, ‘`M t = s’, to indicate that t = s is
provable in system M.

As in section 1, we are now able to prove the existence of free multicategories.

Theorem 5.3. Given Ω, J, S, T , there exists a multicategory Ω[J ] based on Ω, with
J ⊂ A(Ω[J ]), such that for f ∈ J , Sf, Tf are the source and target of f in Ω[J ] and the
following universal property holds:

Whenever C is a multicategory based on Ω and ϕ : J → A(C) a function such that
Sϕf = Sf, Tϕf = Tf for all f ∈ J , there is a unique morphism χ : Ω[J ] → C which is the
identity on objects and object-types and satisfies χf = ϕf for f ∈ J .

Moreover, Ω[J ] has also the following strong universal property: whenever C is any
multicategory, γ : Ω → Ω(C) a morphism of object systems and ϕ : J → A(C) a function
such that Sϕf = γSf, Tϕf = γTf , there is a unique morphism χ : Ω[J ] → C extending
both, γ and ϕ in the sense that χΩ = γ and χaf = ϕf for f ∈ J .

Remark. Here we used abbreviated notations, that will be adopted in the sequel. We wrote
just χ for χa and , likewise, γ for γo or γt, as the subscripts are understood for the context.
Also, when applying a function to a finite sequence (like in γSf), we understand that the
function is applied to each component of the sequence.

First proof (Sketch). As in the proof of 1.4, we define, for M-terms t, s, t ≈ s iff ` t = s,
and take the arrows of Ω[J ] to be equivalence classes t/≈, of M-terms, identifying f ∈ J
with f/≈. The details are similar to those of the proof of 1.4. In particular, χ(t/≈) =
valγ,ϕ(t).
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The multicategory Ω[J ] will be called free or, more specifically, freely generated by J
over Ω. This terminology is justified, as both universal properties show that Ω[J ] is a free
object with respect to suitable functors U , in the sense described in the introduction.

An important example. Let Ω0 = ({0, 1}) be the simple object system having {0, 1}
as set of objects and object types. Given any set J , make J it into a set of a-indets over
Ω0 by letting Sx = 〈0〉 and Tx = 1, for each x ∈ J , and consider the multicategory Ω0[J ].
A moment of thought will show that there are no non trivial arrow compositions in this
multicategory and hence its set of arrows will contain, besides the two identity arrows 10, 11,
only the elements of J . We can, therefore, identify the set J with the free multicategory
Ω0[J ]. Hence, any barren set can be viewed as a free multicategory.

The notion of a-indet occurrence in an arrow u ∈ A(Ω[J ], can be developed precisely as
we did in section 2 for the similar notion of indet occurrence in an n-cell of an n-category
which is a free extension of its (n − 1)th truncation. Thus, each u as above has a finite
indexed set 〈u〉 : |〈u〉| → J of a-indet occurrences and 〈u ¯r v〉 is a coproduct of 〈u〉 and
〈v〉 with specified appropriate coprojections and we will always assume that the index sets
|〈u〉|, |〈v〉| were so chosen as to have |〈u¯r v〉| = |〈u〉|∪̇|〈v〉|, with the inclusion maps being
the appropriate coprojections.

As we mentioned in the introduction, there is, however, a basic difference between free
extensions, on one hand, and free multicategories on the other. The latter is simpler, in the
sense that the free multicategory Ω[J ] can also be described as a true term model, whose
arrows are certain terms (and not equivalence classes of terms) in ‘Polish’ notation. This is
the way free multicategories are constructed in [6] and we reproduce the description here.

Second proof of 5.3 (Sketch). The arrows of Ω[J ] will be certain strings of elements of O∪̇J .
For the following construction only, it will be useful to depart from the convention adopted
elsewhere in this paper and to assume, first, that the index set N is the set of natural
numbers and, second, that for an arrow u, the finite set |Su| will always be of the form
[k] = {0, .., k − 1}, for some natural number k (thus, the objects of O# will be strings of
symbols (i.e. elements) from O). We also assume that each f ∈ J has a uniquely specified
source, with no reparametrizations allowed. By the way, theses are the conventions adopted
throughout [6]. As a result, the specified coprojections associated with multicompositions
will no longer be assumed to be inclusion maps.

Definition of A = A(Ω[J ]) and of the target function T:

1. If x ∈ O then x ∈ A and Tx = ẋ.

2. If f ∈ J , |Sf | = [k], ur ∈ A and Tur = (Sf(r))· for r < k, then u = fu0u1..uk − 1 ∈ A
and Tu = Tf (here, u is the concatenation of the one symbol string f and the strings
u0, u1, .., uk − 1).
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3. There are no arrows in A besides those mentioned in 1-2.

The elements of A will sometimes be called reduced M-terms or, simply, reduced terms.

Definition of the source function, multicomposition and identity arrows:
For u ∈ A, Su will be the substring of u consisting of the O-symbols only.
If u, v ∈ A, Su(r) = x ∈ O and Tv = ẋ, then the rth O-symbol occurrence in the string

u is an occurrence of x and u ¯r v will be the string obtained from u by substituting the
said occurrence of x by an occurrence of v. Thus, if u = u′xu′′ with x indicating the said
O-symbol occurrence, then u ¯r v = u′vu′′ (this explicit way of writing, should be useful
when checking that the multicategory laws are fulfilled for this definition). The specified
coprojections associated with this multicomposition are obvious.

Finally, for x ∈ O, 1x will be x itself.

We leave the reader the tedious but routine task of checking that we did, indeed, con-
struct a multicategory.

In order to have J ⊂ A, we have to identify f ∈ J with fx0x1..xk − 1, where xr = Sf(r)
for r < k.

Finally, the universal property of Ω[J ] is also routinely checked, using the fact that
fu0u1..uk − 1 = (..((f ¯k − 1 uk − 1)¯k − 2 uk − 2)..)¯0 u0.

As an immediate corollary of this second proof of 5.3, we conclude a simple but im-
portant statement. We say that a multicategory C is a submulticategory of C′, C ⊂ C′, iff
O(C) ⊂ O(C′), Ȯ(C) ⊂ Ȯ(C′), A(C) ⊂ A(C′) and the inclusion maps of the components
of C into those of C′ form a multicategory morphism χ : C → C′. We also say, in such a
situation, that Ω(C) is an object subsystem of Ω(C′), Ω(C) ⊂ Ω(C′).

Proposition 5.4. If Ω ⊂ Ω′ and J, J ′ are sets of a-indets over Ω, Ω′ such that J ⊂ J ′ and
the source and target functions on J are the restrictions of those on J ′, then Ω[J ] ⊂ Ω[J ′].

Strictly speaking, the A-terms are not M-terms, but can be easily translated into terms
of the latter kind. Indeed, the last remark of the second proof of 5.3 implies that each u ∈ A
is the value valϕ(u?) of a recursively defined M-term u?, where ϕ : J → A is the inclusion
map of J into A (actually, the map u 7→ u? is primitive recursive).

The M-terms u? are of a special form. Call an M-term t normal, if t is an identity term
or else, is of the form

t = (..((f ¯k − 1 tk − 1)¯k − 2 tk − 2)..)¯0 t0

with f ∈ J , |Sf | = [k] and t0, .., tk − 2, tk − 1 normal terms (we still cling to the convention of
the second proof of 5.3, according to which the index sets are initial segments of the natural
numbers, and each a-indet has a uniquely specified source). Obviously, u? is a normal M-
term for all u ∈ A. Conversely, every normal M-term can be seen to be u? for a unique
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u ∈ A. Thus, the free multicategory Ω[J ] can be described as a term model whose arrows
are the normal M-terms.

It follows that every M-term t is M-provably equivalent to a unique normal term t̂
(namely, the only normal term satisfying t̂ ∈ t/≈). It is not hard to establish this fact
directly and to show that the function t 7→ t̂ is primitive recursive. Incidentally, this implies
that we have a primitive recursive algorithm for deciding whether t = s is M-provable or
not, for given t, s. This fact is usually described as saying that the word problem for M is
decidable.

These circumstances allow a simpler treatment of the notion of a-indet occurrence, as we
can define 〈u〉 canonically, as the sequence of a-indets arranged in the order in which they
occur in the unique normal M-term that denotes u. Still, we prefer to think of |〈u〉| as a
finite indexed set with domain |〈u〉| ⊂ N , which can be reparametrized to our convenience.

We now return to the analogy that exists, nevertheless, between free extensions of
(n− 1)-categories on one hand, and free multicategories on the other. Given an arrow
u ∈ A(Ω[J ]) and r ∈ |〈u〉|, with 〈u〉(r) = f ∈ J , if v is another arrow such that Sv =
Sf, Tv = Tf , we can replace the r-occurrence of f in u by an occurrence of v and get an
arrow u .

rv. The precise definition is worked our similarly to that of cell replacement, as
done in section 3.

Theorem 5.5. There is a unique system {u .
r− : u ∈ A(Ω[J ]), r ∈ |〈u〉|} of partial

functions , satisfying the following conditions:

1. If 〈u〉(r) = f ∈ J then u .
rv is defined iff v ‖ f , meaning that Sv = Sf, Tv = Tf . If

this is the case, then u .
rv ∈ A(Ω[J ]) and S(u .

rv) = Su, T (u .
rv) = Tu.

2. If u = f ∈ J and |〈u〉| = {r}, then u .
rv = v.

3. If u = u′ ¯j u′′ then

u .
rv =

{
(u′ . rv)¯j u′′ if r ∈ |〈u′〉|
u′ ¯j (u′′ . rv) if r ∈ |〈u′′〉|

Proof. (Sketch) The uniqueness is easily seen by induction on u.
Let us use the following notations: A = A(Ω[J ]) and A(Su, Tu) = {v ∈ A : v ‖ u}, for

u ∈ A. We construe the function u 7→ 〈u .
r−〉r ∈ |〈u〉| as a morphism into a multicategory

W, whose definition is based on the idea that was used also in definition 3.1:

1. The object system is Ω(W) = Ω.

2. The arrows are pairs U = (u, 〈Hr〉r ∈ |〈u〉|), where Hr : A(Sfr, T fr) → A(Su, Tu),
fr = 〈u〉(r). Also, SU = Su, TU = Tu.
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3. If x ∈ O then the identity arrow over x in W is (1x, 〈〉).
4. If U is as above and V = (v, 〈Kr〉r ∈ |〈v〉|), j ∈ |SU | = |Su| and TV = Tv = (Su(j))· =

(SU(j))· then U ¯j V = (u¯j v, 〈Lr〉r ∈ |〈u¯j v〉|) where

Lr(−) =

{
Hr(−)¯j v if r ∈ |〈u〉|
u¯j Kr(−) if r ∈ |〈v〉|

It is easy to verify that W is, indeed, a multicategory. We can define ϕ : J → A(W) by
letting ϕf = (f, 〈Hr〉), where |〈f〉| = {r} and Hr = idA(Sf, Tf), the identity map of A(Sf, Tf)
onto itself. By the universal property of Ω[J ], there is a unique morphism χ : Ω[J ] → W
which is the identity on the object system and extends ϕ. As in 3.2, we see that for u ∈ A,
we have χau = (u, 〈Hr〉r ∈ |〈u〉|) and we define u .

r− = Hr(−).

Given Ω and J as above, one can define a multicategory D = DΩ, J of arrow replacement
as follows:

Ω(D) = (OD, ȮD, (−)·D), where OD = J , ȮD = {(Su, Tu) : u ∈ A} and ḟ = (Sf, Tf).
The arrows of D are those of Ω[J ], while the source and target functions are defined by

SDu = 〈u〉, TDu = (Su, Tu). The multicomposition operation at r ∈ |〈u〉| is u .
r− and the

identity arrow over f ∈ J is f itself.
The proof that D is a multicategory is similar to that of theorem 3.6.

A morphism χ : Ω[J ] → Ω′[J ′] between free multicategories is said to be indet preserving
if χf ∈ J ′ whenever f ∈ J . If χ is such a morphism then it easy to see that, for every
u ∈ A(Ω[J ]) there is a bijection θ : |〈u〉| → |〈χu〉| such that χ(〈u〉(r)) = 〈χu〉(θr). We will
assume that an appropriate reparametrization was made such that |〈u〉| = |〈χu〉| and θ is
the identity. If so, then we have the following useful statement:

Proposition 5.6. If a morphism χ : Ω[J ] → Ω′[J ′] preserves indets, then it preserves
also arrow replacement. This means that for u, v ∈ A(Ω[J ], if u .

rv is defined the so is
(χu) .

r(χv) and χ(u .
rv) = (χu) .

r(χv).

Proof. A straightforward induction on u.

We now return to the comparison between the languages of composition and multicom-
position. As we saw, M-terms have normal forms and two terms are M-provably equal iff
they have the same normal form. Is a similar result true for C-terms? It does not seem to
be so, especially in view of [12]. However, in the restricted many-to-one situation, the C
and M equational logics can be linked to each other in a beneficial way that displays useful
similarities. This is the subject of the next section.
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6 Comparing M and C in the many-to-one case

Consider, again, an n-category B generated by a set I of n-indets. In this section we make
the following

Assumption. J is a set of many-to-one indets over B = A[I]. In other words, J is a set
together with domain and codomain functions d, c : J → Bn such that cf ∈ I for all f ∈ J
(and, of course, df ‖ cf).

Thus, the indets in J denote arbitrary many-to-one cells in ω-categories extending B.
Once we have such a J , we can construct three distinct structures:

First, there is the free (n+1)-category X = B[J ], which is the n-category B augmented
by the set Xn+1 of the (n + 1)-cells generated from J .

Second, we have the multicategory CX based on the the simple object system Ω with set
of objects O = Ȯ = I. The arrows of CX are, as we recall, the many-to-one (n + 1)-cells of
of X and the source and target functions are Su = 〈du〉, Tu = cu. In particular, all indets
f ∈ J are arrows of CX.

Finally, we construct the free multicategory Ω[J ] generated by J over the same object
system Ω on which CX is based. The arrows of Ω[J ] can be construed either as equivalence
classes t/≈ of M-terms or, else, as reduced M-terms u ∈ A.

By the universal property of Ω[J ], there is a unique morphism χ : Ω[J ] → CX which is
the identity on both, the set of objects (and object-types) O and the set of indets J . This
map deserves a closer look. As remarked at the end of the proof of 5.3, for any M-term t,
χ(t/≈) = valiJ (t), where iJ is the inclusion map of J into the set of arrows of CX, which is
nothing but the set of many-to-one (n + 1)-cells of X. Thus, χ maps every arrow of Ω[J ],
which is described by an M-term, to a many-to-one (n + 1)-cell of X, which is described
by a C-term. Actually, by carefully following the proofs of 1.4 and 5.3, one can exhibit a
primitive recursive function that sends every term t ∈ T (M) to a term t̃ ∈ T (C) such that
χ(t/≈) = t̃/≈. The function t 7→ t̃ is, therefore, a translation of M-terms into C-terms.

The considerations above point to the fact that the map χ is a very important one. It
deserves a special notation and name.

Notation. If χ : Ω[J ] → CX is the unique morphism of multicategories that is the identity
on O = I and on J , then we denote χ = [[−]]. This morphism will be referred to as the
canonical morphism of Ω[J ] into CX.

Thus, we have χu = χau = [[u]] for u ∈ A(Ω[J ]) and [[x]] = x, [[f ]] = f for x ∈ I, f ∈ J .
As we remarked in section 4, if n = 0 then the category X is the same as the multicat-

egory CX and, as in the present case X is a free category, it is also identical with the free
multicategory Ω[J ]. Moreover, the canonical morphism [[−]] is the identity map.

In the case n > 0, however, the situation is much more complex and interesting. Not
every (n+1)-cell of X is of the form [[u]] for some arrow u of Ω[J ], simply because the latter
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is always a many-to-one cell. But are all many-to-one (n + 1)-cells of X of the form [[u]]?
Furthermore, is the [[−]] map one-to-one? In other words, is [[u]] 6= [[u′]] whenever u 6= u′?
The answer to both these questions is positive, as it follows from the following statement
which is the main technical result of this paper:

Theorem 6.1. [[−]] : Ω[J ] → CX is an isomorphism of multicategories.

Thus, if X is an (n+1)-category freely generated by a set J , then CX is a multicategory
freely generated by the same set J . As a result, we have the following corollary that will be
extremely useful in the sequel.

Corollary 6.2. Assume that X, B and J are as above. If Z is any other (n + 1)-category
extending B and χ : CX → CZ is a morphism of multicategories which is the identity on
objects and satisfies, for all x ∈ J , dχax = dx, cχax = cx, then there is a unique ω-functor
F : X → Z which is the identity on the cells of B and extends χ, in the sense that Fu = χau
whenever u is a many-to-one (n+1)-cell of X (which means that u is also an arrow of CX).
If Z is also a free extension of B and χ is an isomorphism, then F is an isomorphism as
well.

The significance of the last statement of this corollary is that in a free extension X of
B generated by many-to-one indets, the many-to-one (n + 1)-cells of X (i.e. the arrows of
CX) determine the entire (n + 1)-cell structure of X.

Proof. Due to the freeness of the (n+1)-category X, there is a unique ω-functor F : X → Z
which is the identity on the B-cells and such that Fx = χax for x ∈ J . All we have to
show is that F extends χa on all many-to-one (n + 1) cells of X. As these cells are also
the arrows of CX and, by 6.1, CX is a free multicategory, we may prove that Fu = χau by
induction on the arrows of CX. If u is an indet or an identity, there is nothing to prove. To
handle the induction step u = u′ ◦r u′′, notice first that for any n-cell w of B and r ∈ |〈w〉|,
F preserves the generalized whiskering operation w r−. This is seen by induction on w,
using conditions 1-3 of 3.4 which, as stated by that theorem, characterize the generalized
whiskering operations. Once this is done, we infer

Fu = F (u′ ◦r u′′) = F (u′ •n (du′ ru
′′)) = Fu′ •n F (du′ ru

′′) = Fu′ •n (du′ rFu′′)

By the induction assumption, Fu′ = χau
′, Fu′′ = χau

′′. Also, as F is the identity on
B-cells, we have du′ = Fdu′ = dFu′ = dχau

′, hence we can go on with our sequence of
equalities and conclude

= χau
′ •n (dχau

′
rχau

′′) = χau
′ ◦r χau

′′ = χa(u′ ◦r u′′) = χau.

The last statement of the corollary now follows immediately. If Z is free as well, then
we have also a unique ω-functor G : Z → X which is the identity on B-cells and extends
χ−1

a . Hence, both GF, FG are identity functors, as they are identities on the cells of B as
well as on the many-to-one (n + 1)-cells (which include the (n + 1)-indets).

33



Before turning to the proof of 6.1, let’s point out the significance of this theorem at the
level of M-terms. If t ∈ T (M) then t/≈ is an arrow of Ω(J). Let’s denote [[t/≈]] = [[t]].
The significance of [[t]] is clear: t describes a way of constructing an arrow from a-indets and
identity arrows by means of repeated multicomposition operations; [[t]] ∈ A(CX) ⊂ Xn+1 is
the (n + 1)-cell described by t when we interpret the a-indets as the corresponding (n + 1)-
indets in X, while the multicomposition operations ¯r are interpreted as the (n + 1)-cell
placed compositions ◦r. Theorem 6.1 states, first, that t and s denote distinct cells [[t]] 6= [[s]],
whenever 0M t = s. Furthermore, 6.1 tells us that an (n + 1)-cell u ∈ Xn+1 is of the form
[[t]] for some t ∈ T (M) iff u is a many-to-one cell.

Theorem 6.1 will follow from a stronger and somewhat surprising one that will be stated
after the preliminary discussion below.

The multicategory CX has the extension C+
X based on the object system Ω+ = (I,Bn, iI),

where iI is the inclusion map of I into the set Bn of all n-cells of B = A[I]. If Ω[J ] is,
indeed, isomorphic to CX, then it must have an extension based on Ω+ which is isomorphic
to C+

X and we now set out to identify such an extension. The set A(C+
X) of arrows of C+

X is
also the set of all (n + 1)-cells of X and has the following characterization that will assist
us in our endeavor:

A(C+
X) is the least set of arrows containing the indets and the (n + 1)-identity cells (of

X) and closed under the placed composition operations ◦r.
(As we use this fact only as a guiding principle, we will not give a full proof, but only

indicate how a categorical composition •k can be expressed by means of multicategorical
composition in a simple case: assuming that u and v are many-to-one (n + 1)-cells such
that u •k v is defined for some k < n, then u •k v = (1x •k y ◦2 v) ◦1 u, where x = cu, y = cv
and 1, 2 are the indices indicating the occurrences of x, y in x •k y.)

We conclude that the set of arrows of CX, i.e. the set of many-to-one (n+1)-cells of X,
fails to encompass all (n + 1)-cells, just because it lacks the identity cells 1w for the n-cells
w ∈ Bn \ I that are not n-indets. Likewise, the multicategory Ω[J ] lacks arrows that would
naturally correspond to the same identity cells. This observations leads us to the idea of
augmenting J by adding new a-indets that will denote these missing items. To be more
precise:

We extend the set of a-indets J over Ω to a set J+ of a-indets over Ω+ by letting
J+ = J∪̇{ew : w ∈ Bn \ I} with the source and target functions extended by setting
Sew = 〈w〉 and Tew = w. The new indets ew will be called, also, predeterminates or, in
short, predets. From a syntactical point of view, the predets are indets like all the others,
but semantically they are predetermined to denote identity cells or arrows.

Consider the multicategory Ω+[J+] freely generated by J+ over Ω+. It extends the free
multicategory Ω[J ], cf. 5.4. Let ϕ : J+ → Xn+1 = A(C+

X) be defined by ϕf = f for f ∈ J
and ϕew = 1w for w ∈ Bn \ I. By the universal property of free multicategories, there is
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a unique morphism χ : Ω+[J+] → C+
X which is the identity on the object system Ω+ and

such that χg = ϕg for g ∈ J+. We denote, for any u ∈ A(Ω+[J+]), χu = [[u]]+. The main
property of the map [[−]]+ is that [[u ¯r v]]+ = [[u]]+ ◦r [[v]]+. Using this, it is easy to infer
that [[−]]+ extends the canonical morphism [[−]]. This means that [[u]]+ = [[u]] whenever
u ∈ A(Ω[J ]).

We can now state the stronger result to which we alluded above.

Theorem 6.3. [[−]]+ : Ω+[J+] → C+
X is an isomorphism of multicategories.

An unexpected feature of this statement is that C+
X turns out to be a free multicategory

some of whose generating arrows are, at the same time, identity cells in a related category.

To get a better grasp of the significance of this result, it will be useful to have a closer
look at the structure of the arrows of Ω+[J+]. To shorten terminology, these arrows will be
called J+-arrows, while those of Ω[J ] will be referred to as J-arrows.

Claim 6.4. A J+-arrow u is a J-arrow iff Tu ∈ I. Consequently, if u = u′ ¯r u′′ then u′′

is always a J-arrow.

Proof. The ”only if” direction is immediate. For the ”if” direction, assume that Tu ∈ I
and prove by induction on arrows that u is a J-arrow. If u is an indet, then it cannot be a
predet, hence is a J-arrow. If u is an identity, it must be 1x, where x = Tu. If u = u′¯r u′′

then Tu = Tu′ ∈ I and Tu′′ ∈ I as well since otherwise, u′′ could not possibly be composed
into another arrow. Therefore, both u′ and u′′ are J-arrows, by the induction hypothesis,
hence so is u.

We can now show that 6.3 implies immediately our important theorem 6.1.
Proof of 6.1. All we have to show is that [[−]] is a one-to-one mapping from the arrows of
Ω[J ], i.e. the J-arrows, onto those of CX. But this follows immediately from the fact that,
by 6.3, [[−]]+ is bijective. As [[−]]+ is the identity on the object system Ω+, it will map
bijectively the arrows of Ω+[J+] whose targets belong to I onto those of C+

X with the same
property.

Proof of 6.3. The advantage of working with the multicategory C+
X, rather than CX, is that

its arrows have an additional structure embodied by the partial categorical composition
operations. If [[−]]+ is, indeed, an isomorphism then its inverse map will induce a similar
additional structure on the arrows of Ω+[J+] and we ought to be able to identify it.

We will define a new (n + 1)-category Y such that Yn = B and Yn+1 = A(Ω+[J+]).
Thus, in particular, J ⊂ Yn+1 and we will show that, on one hand, Y is freely generated
over B by J and hence, Y is isomorphic to X = B[J ], while, on the other hand, Ω+[J+] is
identical with C+

Y. From this follows that Ω+[J+] is isomorphic to C+
X and it will be very

easy to show that the canonical morphism [[−]]+ is the isomorphism that we exhibited.
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By setting Yn = B, we already defined the 6 n-dimensional structure of Y. Also,
as we decided that the (n + 1)-dimensional cells of Y are the arrows of Ω+[J+], all that
remains to be done is to define the domain/codomain functions for (n+1)-cells, the (n+1)-
dimensional identity cells and the compositions of (n + 1)-cells at all dimensions6 n.

The domain/codomain functions of Y will be denoted d̂, ĉ and are defined simply by
d̂u = d[[u]]+, ĉu = c[[u]]+. Thus, we get d̂u, ĉu ∈ Bn = Yn and d̂u ‖ ĉu, as required. Also, for
k < n, we have d̂(k)u = d(k)[[u]]+ = d(k)d̂u, ĉ(k)u = c(k)[[u]]+ = c(k)ĉu, where d, c are the
domain/codomain functions in B. Remember that [[−]]+ is the identity on object systems,
hence it preserves sources and targets. As the source and target of [[u]]+, as an arrow of C+

X,
are 〈d[[u]]+〉 and c[[u]]+, we infer the following useful equalities: Su = 〈d̂u〉 and Tu = ĉu, for
all u ∈ Yn+1. Also, d̂(u¯r v) = d̂u rd̂v and ĉ(u¯r v) = ĉu, as is easily seen.

The identity cells are easy to define: if w = x ∈ I, then the identity over w will be the
identity arrow 1x and if w ∈ Bn \ I then the identity cell over w will be the predet ew. We
introduce a helpful notation: for w ∈ Bn, we let εw = 1x if w = x ∈ I and εw = ew when
w /∈ I. Thus, the identity cell over w ∈ Bn = Yn will be, in any case, εw.

Before going on, let us remark that, as a consequence of 6.4, the set of all J+-arrows is
the least set P ⊂ A(Ω+[J+]) such that: (a) P contains all predets and identity arrows (in
other words, εw ∈ P for all w ∈ Bn) and (b) u¯r v ∈ P whenever u ∈ P and v is a J-arrow
such that u¯r v is defined. This observation will allow us to prove statements by induction
on J+-arrows.

We now turn to the definition of the composition operations of Y, which will be denoted
•̂k, for k 6 n. We have to define these only for cells of dimension n+1. This is done through
the following two claims that are strongly suggested by proposition 3.11.

Claim 6.5. There is a unique partial binary operation •̂n over Yn+1, satisfying the following
requirements:

1. u•̂nv is defined iff d̂u = ĉv.

2. d̂(u•̂nv) = d̂v and ĉ(u•̂nv) = ĉu.

3. u•̂nεd̂u = u.

4. u•̂n(v′ ¯r v′′) = (u•̂nv′)¯r v′′.

Proof. The uniqueness of u•̂nv follows easily by induction on v. We have to show, for every
u ∈ Yn+1, the existence of the partial function u•̂n(−).

Case 1: d̂u = x ∈ I. In this case, Su = 〈d̂u〉 = 〈x〉 and d̂u = ĉv iff Tv = ĉv = x and we
can define u•̂nv = u¯r v, where, of course, |Su| = {r}. Conditions 2-4 are easily verified.

Case 2: d̂u = w0 /∈ I. We use the strong universal property of Ω+[J+]. Let γ : Ω+ → Ω+

be such that γo is the identity and γtw = w for w 6= w0, while γtw0 = ĉu = Tu. It is
easily seen that this γ is a morphism of object systems. Next, let ϕ : J+ → A(Ω+[J+])
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be defined as ϕg = g for g ∈ J+ \ {ew0
} and ϕew0

= u. Then ϕ is consistent with
γ, in the sense that Sϕg = γSg and Tϕg = γTg, hence there is a unique morphism
χ : Ω+[J+] → Ω+[J+] extending γ and ϕ. Obviously, the restriction of χ to Ω[J ] is the
identity. We now define, for v such that ĉv = Tv = w0, u•̂nv = χv and have to show that
conditions 2-4 are met. 3 and 4 are easily verified and condition 2 is proven by induction
on v. We indicate only the induction step for d̂: if v = v′ ¯r v′′, then u•̂nv = (u•̂rv

′)¯r v′′,
by condition 4. Hence, d̂(u•̂nv) = d̂(u•̂nv′) rd̂v′′ and, by the induction hypothesis this
equals d̂v′ rd̂v′′ = d̂(v′ ¯r v′′) = d̂v.

Claim 6.6. For every k < n, there is a unique partial binary operation •̂k on Yn+1, satis-
fying the following:

1. u•̂kv is defined iff d̂(k)u = ĉ(k)v.

2. d̂(u•̂kv) = d̂u•̂kd̂v and ĉ(u•̂kv) = ĉu•̂k ĉv (where, of course, the composition •̂k of
n-cells in Y is the same as •k in B).

3. εw•̂kεw′ = εw•̂kw′.

4. u•̂k(v′ ¯r v′′) = (u•̂kv
′)¯r v′′.

5. (u′ ¯r u′′)•̂kv = (u′•̂kv)¯r u′′.

Proof. Again, the uniqueness of •̂k satisfying 1-5 is easily established by an induction on u
and v, so we have to show only the existence.

It would be nice to produce an argument that uses solely the universal (or strong uni-
versal) property of Ω+[J+], as we did in the proof of 6.5. Unfortunately, we did not find a
such, yet. The proof that we are presenting uses the concrete description of the J+-arrows
as equivalence classes of M+-terms, where, of course, M+ stands for the multicomposition
language M(Ω+, J+, S, T ) which is appropriate for Ω+[J+]. Thus, we will define, first, t•̂ks
for M+-terms t, s satisfying d̂(k)t = ĉ(k)s, such that conditions 2-5 will be met (here and in
the sequel, we abuse notation slightly, by letting d̂t = d̂(t/≈) and so on). Then we will show
that ≈ is a congruence relation with respect to •̂k and conclude by setting u•̂kv = t•̂ks for
u = t/≈, v = s/≈.

We will define, by recursion on the M+-term t, the partial function t•̂k(−). Assume
that d̂(k)t = ĉ(k)s.

If t is an identity or a predet, i.e. t = εw for w ∈ Bn, we define t•̂ks by recursion on s:

t•̂ks =





εw•̂kw′ if s = εw′

εw•̂kx ¯r f if s = f ∈ J, ĉf = Tf = x, |〈x〉| = {r}
(t•̂ks

′)¯r s′′ if s = s′ ¯r s′′
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(where, in the middle case s = f ∈ J , |〈x〉| represents the second summand in |〈w〉|∪̇|〈x〉| =
|〈w•̂kx〉| = |Sεw•̂kx|).

As we proceed with this recursion, we prove by induction on s that condition 2 is
fulfilled, i.e. d̂(t•̂ks) = d̂t•̂kd̂s and ĉ(t•̂ks) = ĉt•̂k ĉs. The basis of this induction, i.e. the
cases in which t is an identity or a predet or an indet, are easily handled using the fact that
[[εw]]+ = 1w, hence d̂εw = w. Let us turn to the case of s being a multicomposition, which
is the induction step. We have:

d̂(t•̂ks) = d̂((t•̂ks
′)¯r s′′) = d[[(t•̂ks

′)¯r s′′]]+ = d([[(t•̂ks
′)]]+ ◦r [[s′′]]+) = d[[t•̂ks

′]]+ rd[[s′′]]+

and the induction hypothesis tells us that d[[(t•̂ks
′)]]+ = d̂(t•̂ks

′) = d̂t•̂kd̂s′ = d[[t]]+•̂kd[[s′]]+,
so that we can continue the evaluation of d̂(t•̂ks), keeping in mind that, •̂k is the same as
the ordinary •k for Y-cells of dimension 6 n :

d̂(t•̂ks) = (d[[t]]+•̂kd[[s′]]+) rd[[s′′]]+ = d[[t]]+•̂k(d[[s′]]+ rd[[s′′]]+) = d[[t]]+•̂kd[[s′¯rs
′′]]+ = d̂t•̂kd̂s.

The proof that the same is true for the codomain functionĉ is similar and somewhat
simpler. It uses the fact that ĉs = Ts = T (s′ ¯r s′′) = Ts′ = ĉs′.

This completes the definition of the t•̂k(−) function when t is an identity or a predet.

If t is an indet f ∈ J , Tf = 〈x〉 then we know that `M+ t = 1x ¯r f = εx ¯r t and, as
we have already defined the partial function εx•̂k(−), we may let t•̂ks = (εx•̂ks)¯r t.

Finally, if t is a multicomposition, t = t′ ¯r t′′ then we let t•̂ks = (t′•̂ks)¯r t′′.

We leave the reader the verification of condition 2 in these other two cases.

Conditions 3-5 are obviously met for the •̂k operation thus defined for M+-terms. It
remains to show that ≈ is a congruence relation with respect to this operation.

To show that ` t = t1 implies ` t•̂ks = t1•̂ks, we proceed by induction on the proof of
t = t1.

If t = t1 is anM+-axiom, we have to examine five cases (as there are two kinds of identity
axioms). These cases range from trivial to very easy, except (somewhat surprisingly) for the
left identity axioms of the form t = 1x¯r t. We have to show that ` t•̂ks = (1x•̂ks)¯r t and
we do this by induction on t. Notice that, in this case, t has to be a J-arrow, as Tt = x ∈ I.
If t is an indet f ∈ J , then we have by definition that t•̂ks = (εx•̂ks)¯ t, so there is nothing
to prove (remember that εx = 1x). If t is an identity, it has to be 1x and t•̂ks = (1x•̂ks)¯r t
becomes an instance of a right identity axiom. Finally, if t = t′ ¯q t′′, where q 6= r, then we
have:

` (1x•̂ks)¯r t = (1x•̂ks)¯r (t′ ¯q t′′) = ((1x•̂ks)¯r t′)¯q t′′,

by an instance of the associativity axiom. However, by the induction hypothesis we also
have

` (1x•̂ks)¯r t′ = t′•̂ks,
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from which we infer, using the congruence rule,

` ((1x•̂ks)¯r t′)¯q t′′ = (t′•̂ks)¯q t′′ = t•̂ks,

the last equality holding by the definition of t•̂ks for the case of t being a multicomposition.
If t = t1 is the conclusion of an inference rule of M+ then the desired equality follows

immediately from the induction hypothesis.

The proof that ` s = s1 implies ` t•̂ks = t•̂ks1 is similar, once we established that,
for s = f ∈ J , with Tf = x, |〈x〉| = {r}, we have ` t•̂ks = (t•̂kεx) ¯r s. This is done by
induction on t and presents no difficulties.

The proof of the claim is now complete.

Claim 6.7. The structure Y that we just described, is an (n + 1)-category.

Proof. We have to verify the axioms for (n + 1)-cells only.

Verifying the exchange law (u′1•̂ku
′′
1)•̂l(u′2•̂ku

′′
2) = (u′1•̂lu

′
2)•̂k(u′′1 •̂lu

′′
2), when l < k 6 n

and the expression on the left is defined (which implies that so is the one on the right). We
have to distinguish two cases:

Case 1: k = n. We reason by induction on u′′1 , u′′2 . If they are both ε’s, i.e. u′′i = εd̂u′i
for

i = 1, 2, then, by 6.5, part 3, the left side of the desired equality is nothing but u′1•̂lu
′
2; as

to the right side, it is (u′1•̂lu
′
2)•̂n(εhdu′1 •̂lεd̂u′2

) and is seen to be equal to the same, because
by 6.6, parts 3 and 2,

εd̂u′1
•̂lεd̂u′2

= εd̂u′1•̂ld̂u′2
= εd̂(u′1•̂lu

′
2).

If any of the u′′s is a multicomposite, then the exchange axiom follows from the induction
hypothesis, using the connection between the •̂ and ¯ operations, as displayed in 6.5, part
4 and 6.6, parts 4,5.

Case 2: k < n. If all four cells are ε’s, i.e. u′i = εw′i , u′′i = εw′′i then, by part 3 of 6.6,
all we have to show is

ε(w′1•̂kw′′1 )•̂l(w
′
2•̂kw′′2 ) = ε(w′1•̂lw

′
2)•̂k(w′′1 •̂lw

′′
2 )

and this follows by the exchange law in B = Yn. Otherwise, if any of the cells is a ¯-
composite, then the equality follows easily from the induction hypothesis, using again the
connections between •̂ and ¯.

The verification of the associative law is similar, and somewhat simpler.

The identity laws:
To verify the left identity law for •̂n, we have to show that εĉv•̂nv = v. We do this by

induction on v. If v is an ε, we must have d̂v = ĉv and v = εĉv and the desired conclusion
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follows by 6.5, part 3. If v = v′ ¯r v′′, then ĉv = Tv = T (v′ ¯r v′′) = Tv′ = ĉv′ and using
the induction hypothesis as well as part 4 of 6.5, we conclude that

εĉv•̂nv = (εĉv′ •̂nv′)¯r v′′ = v′ ¯r v′′ = v.

The right identity law for •̂n is part 3 of 6.5.
The left identity law for •̂k, with k < n, is εw•̂kv = v, provided that w = 1(n)

a where
a = c(k)ĉv. The proof is by induction on v. If v = εw′ , then εw•̂kv = εw•̂kw′ and as w′ = ĉv,
we have that a = d(k)w′, hence w•̂kw

′ = w′, by the left identity law in B = Yn, and the
desired law follows. If v = v′ ¯r v′′, then the conclusion follows easily from the induction
hypothesis, once we notice that ĉv = Tv = T (v′ ¯ v′′) = Tv′ = ĉv′.

The right identity law is u•̂kεw′ = u, where w′ = 1(n)
a with a = d(k)d̂u. The proof, by

induction on u is similar, except that for the induction step u = u′¯r u′′, we have to notice
that d̂u = d[[u]]+ = d([[u′]]+ ◦r [[u′′]]+) = d̂[[u′]]+ rd̂[[u′′]]+ and hence, d(k)d̂u = d(k)d̂u′.

As Y is an (n + 1)-category whose nth truncation is free over its (n− 1)th truncation,
we may define in it generalized whiskering operations ŵ r− for w ∈ Yn, as described in
section 3. Once we did that, we can also define partial placed composition operations ◦̂r by
the formula

u◦̂rv = u•̂n(d̂û rv) for u, v ∈ Yn+1, r ∈ |〈u〉|, ĉv = 〈d̂u〉(r),

as in definition 3.8. Not surprisingly, ◦̂r turns out to be the same with the multicomposition
operation ¯r of Ω+[J+].

Claim 6.8. If Y is the (n + 1)-category described above, then:

1. If w ∈ Yn, r ∈ |〈w〉| and v ∈ Yn+1 are such that ŵ rv is defined, then ŵ rv = εw¯rv.

2. For u, v ∈ Yn+1 and r ∈ |〈u〉| such that u¯rv is defined, we have u¯rv = u•̂n(d̂û rv).
Hence, ¯r = ◦̂r.

Proof. Part 1 : by induction on the n-cell w.
If w = x ∈ I, then ŵ rv = v = 1x ¯r v = εw ¯r v.
w cannot be an identity cell, as |〈w〉| 6= ∅.
Finally, if w = w′•̂kw

′′, assume, e.g., that r ∈ |〈w′〉|. Then ŵ rv = (w′ ̂ rv)•̂kw
′′ =

(εw′¯rv)•̂kw
′′, where the last equality holds by the induction hypothesis. In these equalities,

•̂k represents a whiskering, which means that w′′ is just short for εw′′ (which is the identity
cell over w′′ in Y). Taking this into consideration, we can go on and conclude that ŵ rv =
(εw′ ¯r v)•̂kεw′′ = (εw′ •̂kεw′′)¯r v = εw′•̂kw′′ ¯r v = εw ¯r v.

Part 2 : u•̂n(d̂û rv) = u•̂n(εd̂u ¯r v) = (u•̂nεd̂u)¯r v = u¯r v.
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Following our plan for the proof of 6.1, we now show the following.

Claim 6.9. The (n + 1)-category Y is freely generated by J ⊂ Yn+1 = A(Ω+[J+]) over
B = Yn.

Proof. Let Z be an ω-category extending B and ϕ : J → Zn+1 a map such that dϕf = d̂f ,
cϕf = ĉf for f ∈ J (here and in the sequel, d and c represent the domain/codomain
functions dZ, cZ of the ω-category Z). We have to show the existence of a unique ω-functor
G extending both, the identity functor on B and ϕ. This amounts to specifying the function
that sends each element u ∈ Yn+1 = A(Ω+[J+]) to Gu, which is an (n + 1)-cell of Z and
proving that there is just one such function that makes G into an ω-functor.

At this point, it is useful to remember that the (n + 1)-cells of Z are the arrows of the
extended multicategory C+

Z which is based on the object system Ω+ as well. Our proof will
proceed as follows.

First, we extend the function ϕ to ϕ+ : J+ → Zn+1, by sending the predets to the cor-
responding identity cells. By the universal property of Ω+[J+], there is a unique morphism
of multicategories χ : Ω+[J+] → C+

Z , which is the identity on Ω+ and extends ϕ+.
Next, we show that the function χa, operating on arrows, preserves domains, codomains,

identity cells as well as ω-categorical compositions (i.e. χa(u•̂kv) = χau •k χav for k 6 n,
where •k is the composition in Z). This last fact follows readily from claims 6.5, 6.6,
proposition 3.11 and the fact that χa preserves multicomposition. Hence, by setting Gu =
χau for u ∈ Yn+1, we get an ω-functor as desired.

Finally, claim 6.8 implies that any G as above preserves multicomposition, hence it
originates from the unique morphism χ that we just described. This proves the uniqueness
of G.

In the rest of this claim’s proof we are elaborating on these three steps.
If we define ϕ+f = ϕf for f ∈ J and ϕew = 1w(∈ Zn+1) for w ∈ Bn \ J , we get a

function that preserves sources and targets. Indeed, Sϕ+f = Sϕf = 〈dϕf〉 = 〈d̂f〉 = Sf
for f ∈ J and Sϕ+ew = S1w = 〈d1w〉 = 〈w〉 = Sew for w ∈ Bn \ J (notice the ambiguous
use of S as denoting source in Ω+[J+] as well as in C+

Z). A similar computation shows that
ϕ+ preserves targets. The conclusion is that we can apply the universal property of Ω+[J+]
and infer the existence of the morphism χ mentioned above.

We have to show that for u ∈ A(Ω+[J+]) = Yn+1, dχau = d̂u and cχau = ĉu. We do this
by induction on the arrow u. If u = f ∈ J , then χau = ϕf and there is nothing to prove. If
u = εw for w ∈ Bn, then χau = 1w and dχau = w = d̂εw = d̂u and similarly for codomains.
As to the induction step: if u = u′ ¯r u′′, then χau = χau

′ ◦r χau
′′ (where ◦r is (n + 1)-cell

placed composition in Z). The induction hypothesis is that dχau
′ = d̂u′, dχau

′′ = d̂u′′,
hence dχau = dχau

′
rdχau

′′ = d̂u′ rd̂u′′ = d̂(u′ ¯r u′′) = d̂u, where r is cell replacement
in both Z and X, as we have Zn = Xn. The preservation of codomains is proven by a
similar, but simpler, computation.
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It is very easy to see that χa preserves identities. We still have the task of proving that
χa(u•̂kv) = χau •k χav, for k 6 n.

For k = n, we prove this by induction on v. If v is an identity or a predet, then we must
have v = εd̂u and the equality is trivial. If v = v′¯r v′′, then χa(u•̂nv) = χa((u•̂nv′)¯r v′′) =
χa(u•̂nv′) ◦r χav

′′. By using the induction hypothesis χa(u•̂nv′) = χau •n χav
′ and then

proposition 3.11, we can go on and conclude that χa(u•̂nv) = (χau •n χav
′) ◦r χav

′′ =
χau •n (χav

′ ◦r χav
′′) = χau •n χa(v′ ¯r v′′) = χau •n χav.

If k < n, then we show by induction on u that (u•̂kv) = χau•kχav, for all v for which the
left hand side is defined (and hence, so is the right). For u = εw, this is done by induction
on v, much in the style of the calculation that we just completed (the main difference being
that this time we use 6.6, rather than 6.5). For u = u′ ¯r u′′, we use 6.6 again, as well as
the induction hypothesis for u′ and 3.11.

By letting Ga = a for a a cell of B = Yn = Zn and Gu = χau for u ∈ Yn+1, we complete
the proof of the existence of G.

To show uniqueness, assume that G : Y → Z is an ω-functor as desired. We have to
prove that G must be induced by the morphism χ as described above. For this, suffices
to show that G preserves multicomposition, meaning that G(u ¯r v) = Gu ◦r Gv. This is
quite trivial, though: on one hand, we know from 6.8 that the multicompositions ¯r are
the same as the cell replacements ◦̂r in the ω-category Y; on the other hand, any ω-functor
like G, between two extensions of the n-category B which extends the identity on B, clearly
preserves placed compositions between (n + 1)-cells.

The proof of 6.9 is now complete.

It follows that Y is isomorphic to X = B[J ] by a unique isomorphism that extends the
identity functions on B and J . We are now able to infer immediately the following fact
that we stated when outlining the proof of 6.3.

Claim 6.10. The multicategories Ω+[J+] and C+
Y are identical.

Proof. Obviously, the two multicategories have the same object system Ω+, the same set of
arrows A(Ω+[J+]) = Yn+1 and the same source and target functions Su = 〈d̂u〉, Tu = ĉu.
Further, they have the same identity arrows 1x, for x ∈ I. By 6.8, they also have the same
multicomposition operations ¯r = ◦̂r.

Concluding the proof of 6.3: The unique ω-functor K : Y // X extending the identity
maps on both B and J is an isomorphism that induces an isomorphism of multicategories
κ : C+

Y = Ω+[J+] // C+
X. In addition, κ maps the indets ew, w ∈ Bn \ I, which are

also identity cells in Y, to the corresponding identity cells 1w in X. Hence, κ must be the
canonical morphism [[−]]+.

We now mention one more remarkable fact. The elements of the set A(Ω+[J+] = Yn+1

are, at the same time, the arrows of the free multicategory Ω+[J+] and the (n+1)-cells of the

42



free extension Y of the n-category B. Therefore, we can define on this set two replacement
operations, the multicategorical .

r (cf. 5.5) and the (n + 1)-categorical ̂ r (cf. 3.4). Are
these operations the same? Certainly not, because we might encounter u, v and r ∈ |〈u〉|
such that, for f = 〈u〉(r), we have Tv = Tf (which also means that ĉv = ĉf) and Sv = Sf
(which is the same as |〈d̂v〉| = |〈d̂f〉|), but d̂v 6= d̂f . In such a case, u .

rv is defined, while
û rv is not. However, when both expressions are defined, they are the same.

Claim 6.11. If u, v ∈ Yn+1 and r ∈ |〈u〉| are such that û rv is defined, then û rv = u .
rv.

Proof. By induction on the arrow u of Ω+[J+]. If u is an indet, then both expressions equal
v. If u = u′ ¯q u′′ then, by part 2 of 6.8, u = u′•̂n(d̂u′ ̂ qu

′′). If r ∈ |〈u′′〉| then

û rv = u′•̂n((d̂u′ ̂ qu
′′)̂ rv) = u′•̂n(d̂u′ ̂ q(u′′̂ rv)) = u′•̂n(εd̂u′ ¯q (u′′ . rv))

where the second equality follows by 3.7, while the third uses the induction hypothesis for
u′′ as well as part 1 of 6.8. Employing parts 4,3 of 6.5, we go on and conclude

= (u′•̂nεd̂u′)¯q (u′′ . rv) = u′ ¯q (u′′ . rv) = (u′ ¯q u′′) .
rv = u .

rv.

The case r ∈ |〈u′〉| is similar and simpler. It uses the identity d̂(u′ ̂ rv) = d̂u′ (cf. condition
1 of 3.4).

Of course, the same claim is true for the isomorphic (n+1)-category X as well. By this
we mean that the operation of (n+1)-cell replacement in the free (n+1)-category X is the
same with arrow replacement in the free multicategory CX, whenever the former is defined.

We stated in the introduction that our results imply that, under certain conditions, the
free extension X = B[J ] can be construed as a term model. We conclude this section by
outlining a proof of this fact.

Proposition 6.12. Under the assumptions of this section, there is a primitive recursive
function (−)ν : T (C) → T (C) which associates with every C-term t another T -term tν such
that for all t, s ∈ T (C), we have that ` t = s iff tν = sν.

This means that, in the construction of the free extension X = B[J ], we can substitute
the term tν for the equivalence class t/≈.

Proof. (Sketch) By following our proofs of 6.5 and 6.6, it is not hard to see that there exists
a primitive recursive function t 7→ t′ that associates with any C-term t a M+-term t′, such
that [[t′/≈]]+ = t/≈ (hint: one clause in the recursive definition of (−)′ is (t1 •k t2)′ = t′1•̂kt

′
2,

with t′1•̂k− defined as in the proof of 6.6).
Next, another primitive recursive function takes any M+-term s to a C-term s] such

that [[s]]+ = s]/≈.
Finally, take tν = ((t′)?)], where (t′)? is the unique normal M+-term equivalent to t′

(cf. the discussion that follows proposition 5.4).
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7 Computads and multitopic sets

The notion of computad that we are going to present, was first defined by Street. A
computad is a special kind of ω-category which is obtained by starting with a 0-category,
i.e. a barren set, taking a free extension of it which is a 1-category, i.e. an ordinary category,
then taking a free extension of it which is a 2-category and so on, ad infinitum. The precise
definition is very simply stated.

Definition 7.1. An ω-category A is called a computad if for every n < ω, An+1 is a free
extension of An.

Thus, if A is a computad then there exists, for every n < ω, a set In+1 ⊂ An+1 of (n+1)-
indets, such that An+1 = An[In+1]. For the sake of uniformity, we also set I0 = A0 and
refer, sometimes, to 0-cells as 0-indets. A simple proof by induction, using theorem 1.11,
shows that for each n > 0, An is well behaved (cf. definition 1.10) and that an n-cell u is
an n-indet iff it is a non-identity cell indecomposable in the sense of 1.8. Thus, the sets of
indets of a computad are uniquely determined.

Definition 7.2. An ω-functor F : A → A′ between computads A and A′ is called a
computad functor iff it preserves indets namely, Fu is an indet whenever u is. The category
Comp, whose objects are the computads and arrows the computad functors, will be called
the category of computads.

Obviously, Comp is a non-full subcategory of the category ωCat of ω-categories.
It is not hard to see that a computad functor preserves not only ω-categorical, but also

computad structure:

Proposition 7.3. Assume that F : A → A′ is a computad functor and u an n-cell of A,
n > 0.

1. There is a bijection θ : |〈u〉| → |〈Fu〉| such that, for r ∈ |〈u〉|, F (〈u〉(r)) = 〈Fu〉(θr).
We will always assume, as we may, that due to an appropriate reparametrization, θ
is the identity.

2. F preserves the generalized whiskering operations. This means that F (u rv) = (Fu) r(Fv)
whenever r ∈ |〈u〉| and u rv is defined.

3. F preserves the placed composition operations, meaning that F (u◦r v) = (Fu)◦r (Fv),
whenever r ∈ |〈u〉| and u ◦r v is defined.

Proof. As An is a free extension of An−1, we can prove statements by induction on n-cells.
Parts 1,2 are easily seen by induction on u and then, part 3 follows immediately, because
◦r is defined, in 3.8, in terms of operations that are preserved by F , namely categorical
composition, generalized whiskering and the domain function.
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In view of the results of section 6, we take a special interest in the case in which all
indets are many-to-one.

Definition 7.4. A many-to-one computad is one in which the codomain of any (n + 1)-
indet is an n-indet, for all n ∈ ω. The full subcategory m/1Comp of Comp, whose objects
are the many-to-one computads, will be called the category of many-to-one computads.

As we learned from corollary 6.2, if A is a many-to-one computad then for each n, the
many-to-one (n + 1)-cells of A determine the structure of all (n + 1)-cells. Let us pursue
this line of thought and take a closer look at the set of all many-to-one cells of A. Following
our practice, we consider all 0-cells to be indets and, for convenience, we declare them to be
many-to-one cells. All 1-cells are many-to-one, but for n > 2, only some n-cells are many
to one.

The set of many-to-one cells of a many-to-one computad A is not closed under the
ω-categorical composition operations •k and yet, this set enjoys remarkable closure proper-
ties. First of all, if u is a many-to-one cell, then so are its domain and codomain (assuming,
of course, that u has positive dimension). Indeed, cu is an indet, hence is many-to-one,
and du is parallel to cu, hence is many-to-one as well. Next, the many-to-one cells are
closed under the placed composition operations. Thus, the many-to-one cells form a com-
plex structure that deserves a special name. We arrive thus, in a natural way, to the notion
of multitopic set that was introduced in [7].

Given a many-to-one computad A define, for n > 0, Cn = CAn . In other words, Cn

is the multicategory whose arrows are the many-to-one n-cells of A, and whose objects
(and object types) are the (n− 1)-indets. By 6.1, Cn is a free multicategory generated by
the n-indets. For the sake of completeness, we also let C0 be the barren set A0 of 0-cells,
viewed as a free multicategory (as indicated in the “important example” following 5.5).
Thus, we have a sequence (Cn)n ∈ ω, of free multicategories, such that the generating a-
indets of Cn are at the same time the objects (and object types) of Cn+1. There is an
additional structural item that links these multicategories, as we have the domain and
codomain functions d, c : A(Cn+1) → A(Cn). The structure S = SA consisting of the
sequence (Cn)n ∈ ω and the functions d, c, will be called the multitopic set associated with
the many-to-one computad A.

We now reproduce the definition of the abstract notion of multitopic set from [7].
We start with a preliminary definition that will describe the connection between the

multicategories Cn and Cn+1 mentioned above.

Definition 7.5. Given a free multicategory C = Ω[J ], we say that Ĉ is a free extension of
C via the functions d and c iff the following conditions are met:

1. Ω̂ = Ω(Ĉ) = (J). In other words, Ĉ is based on the simple object system whose
objects are the a-indets that generate C.
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2. Ĉ = Ω̂[Ĵ ], meaning that Ĉ is freely generated by a set of a-indets Ĵ ⊂ A(Ĉ).

3. d and c are functions d : A(Ĉ) → A(C), c : A(Ĉ) → J , such that for u ∈ A(Ĉ),
Su = 〈du〉 and Tu = cu. Furthermore, du ‖ cu, meaning that Sdu = Scu, Tdu = Tcu.
Also, for x ∈ J , d1x = c1x = x.

4. For u, v ∈ A(Ĉ) and r ∈ |Su| such that the multicomposition u ̂̄ rv is defined in Ĉ, we
have d(u ̂̄ rv) = du .

rdv and c(u ̂̄ rv) = cu (where .
r is the replacement operation

in C as defined by theorem 5.5).

We are now ready to define:

Definition 7.6. A multitopic set S consists of sequences Cn = Cn(S) of multicategories
and dn = dn(S), cn = cn(S) of functions, n ∈ ω, such that the following conditions are met:

1. C0 is a barren set viewed as a free multicategory.

2. Cn+1 is a free extension of Cn via the functions dn, cn, for all n ∈ ω.

3. For n ∈ ω, we have dndn+1 = dncn+1, cndn+1 = cncn+1 (globularity conditions).

Remark. If S is a multitopic set, then each Cn = Cn(S) is a multicategory based on a simple
object system, as it follows from definition 7.5.

If A is a many-to-one computad, then the structure SA is a multitopic set in the sense
of this definition, when dn, cn are the domain/codomain functions of the ω-category A
restricted to the set A(Cn+1) of the many-to-one (n + 1)-cells of A. This is easily seen,
thanks to the remark following claim 6.11 (applied to the free (n+1)-category X = An+1).
As we shall see in the next section, every multitopic set is (isomorphic to) some SA.

Following the notation of [7], we shall write d = dn(S), c = cn(S), as the subscripts are
understood from the context. Thus, the globularity conditions become dd = dc and cd = cc.

Other notations and terminology from [7] that we will use are as follows. The set of
generating a-indets of Cn(S) will be Cn = Cn(S) (its elements are called “n-cells” in [7],
but we shall not adopt this terminology here, as it would be confusing in our context, that
mentions so often n-cells in ω-categories). The set of arrows of Cn is Pn = Pn(S) and its
members are called n-pasting diagrams, because they can be naturally given a diagrammatic
representation (cf. [5]). Notice that P0 = C0.

A multitopic set S is called n-dimensional iff Ck(S) = ∅ for all k > n; this condition
implies that all pasting diagrams of dimension > n are identities. An n-dimensional mul-
titopic set is determined by the finite sequence 〈Ck〉k6n of its first n + 1 components. If
S is any multitopic set, its nth truncation will be n-dimensional multitopic set Sn with
Ck(Sn) = Ck(S), for k 6 n. Obviously, for a many-to-one computad A, the nth truncation
of SA is SAn .

Next, we define the obvious notion of morphism of multitopic sets.
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Definition 7.7. A morphism Φ : S → S′ between multitopic sets S and S′ is a sequence
〈φn〉n<ω of maps φn : Pn → P ′

n (where here and in the sequel, unprimed notations, like
Pn refer to components of S, while their primed counterparts, like P ′

n, refer to S′), that
preserve the multitopic structure, meaning that for each n < ω:

1. φn maps indets to indets, i.e., φnx ∈ C ′
n whenever x ∈ Cn.

2. If φ̃n is the restriction of φn to Cn, then the pair χ = (φ̃n, φn+1) is a morphism of
multicategories from Cn+1 to C′n+1.

3. For u ∈ Pn+1, we have dφn+1u = φndu and cφn+1u = φncu (notice the context
sensitivity of the notation for the domain/codomain functions: d, c refer to S′ on the
left sides of the equations, and to S on the right).

Notation. For a morphism Φ as above and for u ∈ Pn, we denote Φu = φnu. Thus, Φ can
be viewed as one single, dimension preserving, function from the pasting diagrams of S to
those of S′.

Obviously, if S is an n-dimensional multitopic set and Φ : S → S′ is a morphism then
the components φk of Φ for k > n are trivial, and Φ is determined by its first n + 1
components and we write Φ = 〈φk〉k6n. One useful instance of this is the following: if
Φ = 〈φn〉n<ω : S → S′ is a morphism of multitopic sets, the so is Φn : Sn → S′n, where
Φn = 〈φk〉k6n. Φn will be called the nth truncation of Φ.

Remark. Morphisms of multitopic sets are determined by their values on indets. These
values can be chosen arbitrarily, subject to certain restrictions that insure the preservation of
domains/codomains. More explicitly, a stepwise process of building a multitopic morphism
goes as follows. We start by choosing φ0 : C0 → C ′

0 arbitrarily. Assuming that we have
already constructed φk, for k 6 n such that 〈φk〉k6n is a morphism from S to S′, we start the
construction of φn+1 by choosing a function φ̃n+1 : Cn+1 → C ′

n+1 arbitrarily, subject to the
restriction that d′φ̃n+1f = φndf and similarly for the codomain function. There is a unique
morphism χ : Cn+1 → C′n+1 such that χx = φnx and χf = φ̃n+1f for x ∈ Cn, f ∈ Cn+1.
We define φk+1u = χu for u ∈ Pk+1. Then φk+1 extends φ̃n+1, and we know that it satisfies
condition 3 of 7.7 for u ∈ Cn+1. Using 5.6, we can show that the same condition is fulfilled
for all u ∈ Pn+1.

The composition of morphisms of multitopic sets is again such a morphism. Also, for a
multitopic set S, the sequence of identity maps idn : Pn(S) → Pn(S) is a morphism from S
to itself. Hence we may define a new category:

Definition 7.8. The category mltSet, whose objects are the multitopic sets and arrows
their morphisms, is called the category of multitopic sets.
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Can we extend the function A 7→ SA to a functor? We can, and actually, much more is
true.

Theorem 7.9. The function that associates the multitopic set SA to any many-to-one
computad A can be extended to a functor S− : m/1Comp → mltSet which is full and
faithful.

Proof. Given a computad functor F : A → A′ between many-to-one computads A and A′,
we have to define a morphism SF : SA → SA′ of multitopic sets. We set SF = 〈φn〉n<ω

where φn is the restriction of F to the set of many-to-one n-cells of A, which is the same
with the set Pn = Pn(SA) of the n-pasting diagrams of Cn = CAn . As F is a computad
map, it maps indets to indets and, therefore, condition 1 of 7.7 is fulfilled. Conditions
2-3 are also satisfied, as it follows by 7.3. Thus, SF = 〈φn〉n<ω is, indeed, a morphism of
multitopic sets, according to 7.7. The functoriality of F 7→ SF is readily verified.

The functor S− is faithful. Indeed, if SF = SG then we show by induction on n that
Fn = Gn, where Fn, Gn : An → A′

n are the restrictions of F, G to the nth truncation of
A. The case n = 0 is trivial, because F0, G0 are both the 0th component of SF = SG.
If n > 0, then Fn, Gn extend Fn−1, Gn−1 respectively and by the induction hypothesis,
Fn−1 = Gn−1. Thus, as An is a free extension of An−1, to infer that Fn and Gn are equal,
we have only to show that they are equal on the set of n-indets, which equals Cn ⊂ Pn. This
is clear, however, as the restrictions of Fn, Gn to Pn are, both, equal to the nth component
of SF = SG.

Finally, we can show that S− is full. Given a morphism Φ : SA → SA′ we define by
induction the sequence 〈Fn〉n<ω of truncations of an ω-functor F : A → A′ such that
SF = Φ. We start by letting F0 = φ0. Once we have Fn, we let Fn+1 be the unique (n+1)-
functor H : An+1 → A′

n+1 that extends Fn and satisfies Hf = φn+1f for f an (n+1)-indet
(by 7.3, it follows that Hu = φn+1u for u any many-to-one (n + 1)-cell of A).

8 Multitopic sets are equivalent to many-to-one computads

Definition 8.1. We say that Σ is an assignment of a multitopic set S into a many-to-one
computad A, and denote this as Σ : S → A, iff Σ : S → SA is a morphism of multitopic
sets.

Remark. If Σ : S → A is an assignment and F : A → A′ is a computad functor in m/1Comp
then the composite function Θ = FΣ is an assignment Θ : S → A′.

Roughly speaking, an assignment Σ is determined by its values on the a-indets that
generate S. By this we mean that once we know the nth component σn, σn+1 is uniquely
determined by the values σn+1f ∈ An+1 for f ∈ Cn+1(S). These values can be chosen
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arbitrarily, apart from the conditions that domains and codomain should be preserved (i.e.
dσn+1f = σndf and similarly for codomains).

As we shall see, theorem 6.1 implies that every multitopic set is (isomorphic to) SA, for
some many-to-one computad A. Actually, we prove somewhat more:

Proposition 8.2. For every multitopic set S there is a many-to-one computad 〈S〉 and an
assignment 〈S〉∗ : S → 〈S〉 such that:

1. 〈S〉∗ is an isomorphism of multitopic sets.

2. For any assignment Σ : S → B into a many-to-one computad B, there is a unique
computad functor F : 〈S〉 → B such that Σ = F 〈S〉∗.

Before proving 8.2, let us state two important corollaries. The first one is the main
result of this article.

Theorem 8.3. The categories m/1Comp and mltSet are equivalent. Actually, the functor
S− : m/1Comp → mltSet is an equivalence of categories.

Proof. By 7.9, S− is full and faithful. By 8.2 part 1, S− is essentially surjective on objects,
i.e., for every object S of mltSet, there is an object A of m/1Comp such that S is isomorphic
to SA (we mean, of course, that A = 〈S〉). These conditions mean that S− is an equivalence
of categories.

The second corollary states that 〈−〉 and 〈−〉∗ are functorial. To explain the functoriality
of the second of these functions, we have to define one more category.

Definition 8.4. The category Ass of assignments is defined as follows. The objects are
the assignments Σ : S → A from multitopic sets to many-to-one computads. An arrow
with domain Σ : S → A and codomain Σ′ : S′ → A′ will be a pair (Φ, F ) consisting of a
morphism Φ : S → S′ and a computad functor F : A → A′, such that the following diagram
commutes:

S′ A′
Σ′

//

S

S′

Φ

²²

S AΣ // A

A′

F

²²

Thus, if S is a multitopic set, then 〈S〉∗ : S → 〈S〉 is an object of the category Ass.

Theorem 8.5. 〈−〉 and 〈−〉∗ can be expanded to functors 〈−〉 : mltSet → m/1Comp
and 〈−〉∗ : mltSet → Ass such that, for any morphism Φ : S → S′ in mltSet, we have
〈Φ〉∗ = (Φ, 〈Φ〉).
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Remark. The last condition means that the following diagram commutes:

S′ 〈S′〉〈S′〉∗
//

S

S′

Φ

²²

S 〈S〉〈S〉∗ // 〈S〉

〈S′〉

〈Φ〉
²²

Proof. We have to define arrows 〈Φ〉, 〈Φ〉∗ in m/1Comp and Ass, respectively. The com-
posite function Σ = 〈S′〉∗Φ is an assignment from S to the many-to-one computad 〈S′〉.
By 8.2 part 2, there is a unique computad functor F : 〈S〉 → 〈S′〉 such that Σ = F 〈S〉∗. We
now define the arrows 〈Φ〉 = F : 〈S〉 → 〈S′〉 of m/1Comp and 〈Φ〉∗ = (Φ, F ) : 〈S〉∗ → 〈S′〉∗
of Ass. It is easy to verify that we have thus defined the desired functors.

Proof of 8.2. We define, by induction, the truncations of 〈S〉 = A and of 〈S〉∗ = Φ. To
be more precise, we will define sequences 〈An〉n<ω and 〈φn〉n<ω such that the following
conditions are fulfilled:

a. An is an n-dimensional many-to-one computad.

b. An+1 = An[Cn+1], which means that An+1 is a free extension of An generated by a
set of many-to-one (n + 1)-indets which is identical with the set Cn+1 = Cn+1(S)
of a-indets that generate Cn+1 = Cn+1(S) over Cn, as indicated in definitions 7.5
and 7.6.

c. φn : Pn → An and Φn = 〈φk〉k6n is an isomorphism Φn : Sn → SAn of n-dimensional
multitopic sets such that φnx = x for x ∈ Cn.

d. Condition 2 of 8.2 is fulfilled with Sn, An and Φn replacing S, 〈S〉 and 〈S〉∗, respectively.

Once this is done, we will take 〈S〉 and 〈S〉∗ having 〈An〉n<ω and 〈Φn〉n<ω as sequences
of truncations.

As the basis of the induction, we set A0 = P0 = C0 and take φ0 to be the identity
function.

Assume that we defined already An and Φn = 〈φk〉k6n.
Defining An+1. Let us define functions d′, c′ : Cn+1 → An by letting d′f = φndf

and c′f = φncf , for f ∈ Cn+1. The functions d, c : Cn+1 → Pn are closely related to
their primed counterparts. Indeed, as φn is the identity on indets, we have 〈d′f〉 = 〈df〉;
moreover, c′f = cf , as cf ∈ Cn and hence, φncf = cf . Because of these considerations, we
shall denote these newly defined functions by d, c, rather than d′, c′. Using the fact that, by
induction hypothesis, Φn is an isomorphism between the multitopic sets Sn and SAn , we
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infer that df, cf are parallel as n-cells of An and therefore, Cn+1 together with the functions
d, c : Cn+1 → An becomes a set of (n+1)-indets over An. We now define An+1 = A[Cn+1],
and thus fulfill condition b. above.

Defining φn+1. By 7.5 and 7.6, we have Cn+1 = Ω[Cn+1], where Ω is the simple object
system with set of objects Cn. The same Ω is also the object system of the multicategory
CAn+1 whose arrows are the many-to-one (n + 1)-cells of An+1. The indets f ∈ Cn+1 are
arrows of Cn+1 as well as of CAn+1 , and have the same source and target, Sf = 〈df〉 and
Tf = cf , in both multicategories. At this point of the proof, we use our main technical
result 6.1 and conclude that the canonical morphism [[−]] : Ω[Cn+1] → CAn+1 (i.e. the
unique morphism that is the identity on both, Cn and Cn+1) is an isomorphism. We define
φn+1 : Pn+1 → An+1 by φn+1u = [[u]].

Verifying condition c. The pair (φ̃n, φn+1) (cf. the notation used in 7.7) is the same
with [[−]], hence it is an isomorphism of multicategories. We have to prove, in addition, that
dφn+1u = φndu, for all u ∈ Pn+1. We show this by induction on (n + 1) pasting diagrams.
To begin with, this is given for u ∈ Cn+1 and immediate for identities. For the induction
step, we use the fact that φn+1 preserves multicomposition and infer:

dφn+1(u¯r v) = d(φn+1u ◦r φn+1v)) = dφn+1u rdφn+1v =

Using the induction hypothesis as well as the fact that, by proposition 5.6, φn preserves
arrow replacement, we go on and conclude

= φndu rφndv = φn(du .
rdv) = φnd(u¯r v).

Verifying condition d. Given an assignment Σ : Sn+1 → B, let Σ′ : Sn → B be its
restriction to Sn. By the induction hypothesis, we have a computad functor F ′ : An → B
such that Σ′ = F ′Φn. F ′ has a unique extension F : An+1 = An[Cn+1] → B such that
Ff = Σf for f ∈ Cn+1. To show that the assignments Σ and FΦn+1 from Sn+1 to B
are equal, we have only to show that they induce the same multicategory morphism from
Cn+1 = Ω[Cn+1] to CBn+1 . To this end, it suffices to show that they are equal on the indets
in Cn and Cn+1 and this is readily seen. Indeed, for x ∈ Cn, this follows from Σ′ = F ′Φn,
while for f ∈ Cn+1, Σf = Ff = Fφn+1f . Thus, condition 2 of 8.2 is established.

9 Concluding remarks

A noteworthy result of [7] says that the category mltSet of multitopic sets is a presheaf
category, i.e. it is equivalent to the category SetMltop

of the contravariant functors from a
certain category Mlt, called the category of multitopes, into the category of sets Set. Thus,
from our main result 8.3, we infer that the category m/1Comp of many-to-one multitopic
sets is a presheaf category as well. This is a remarkable fact, since it is known that the
category Comp of all computads is not a presheaf category, as shown in [13].
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The objects of Mlt, as described in [7], are the same as the pasting diagrams of the
terminal multitopic set. An alternative description of Mlt was given recently by the third
named author of this paper, cf. [17].

As a corollary of our proposition 6.12, we infer that the word problem for many-to-one
computads is solvable. The meaning of this statement is, roughly, as follows. A computad
A is determined by the sequence (In)n ∈ ω of sets of indets of the various dimensions. One
can set up a large language which has terms denoting the cells of A. This language has
a hierarchical structure, being built in consecutive stages. In the initial stage we have a
language C0 whose terms are the indets x ∈ I0. Once the nth stage language Cn is defined, we
take the next one to be Cn+1 = C(An, In+1, d, c) whose terms are defined as in definition 1.1,
with one difference: the values of the domain/codomain functions dt, ct of a Cn+1-term t are
Cn-terms, rather than n-cells of A. The meaning of Cn+1-terms is clear, once the semantics
of Cn is understood. Each Cn comes with its deduction system, similar to the one defined
in 1.3. The word problem for A is to find an algorithm for deciding whether t = s is Cn-
provable or not, for given Cn terms t, s. As we mentioned already, 6.12 implies that we have
such an algorithm, actually a primitive recursive one, for A a many-to-one computad.

After a first draft of the present work has been completed, the second named author
proved that the word problem for arbitrary computads is solvable as well., cf. [12]. His
algorithm is very different from the present one. It is not based on the existence of term
models and actually, we do not know if a result similar to 6.12 is true for arbitrary, not
necessarily many-to-one, free extensions.

Acknowledgement. We thank Michael Barr for creating his new diagram package,
which we used for drawing the few diagrams of this work.
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