§4, The category of sheaves over a cHa

4.1. Sheaves
Let L be a cHa. We have explained how L is considered a category
and in fact, a site, in §3. In brief, the topology is the canonical one:

{[x.: 3eT}  is5 a covering of x Af \/ X, = x.
b .
ieTI

: o . .
A presheaf is a functor F: L 3 =y SRy  dga,, atfamily =Rl) . UeL>

of sets, and a family <FE: U = v ellL> of funetions Fﬂ: F(V) —— F(U) such
Noe W W U
f < < W, h F ol = F d al F_= 1Id SR
that for O v we have Uo v o’ and also, & F (U) s a
: 3 7 3 -
standard abuse of notation, we write srU for FU{S} (for motivation, see
below). A compatible family <si: ieI> of sections (elements) S; € F(Ui)

is one that satisfies the following: for any i,j € I, sir(UiAUj) = Sjr(UiﬂUj).
F 1is a sheaf if for every compatible family <si: iel>, s, € E‘v‘CUi)Jr there is

a unigue s € V Ui such that srUi =Y for all iel.
ieI
A morphism h: F —— G of (pre-)sheaves is (of course) a family
(hU)UeL of functions hU: F(U}) —— G(U) such that for any U = V and
s € F(V) we have hU(srU) = hv(s)rU (of course, ‘r’ refers to Fg on the
left, and GE on the right).
The category of sheaves on L is denoted Sh(L).

Here is an important kind of sheaf. Let p: E' -+ E be a continuous

function between spaces. The sheaf F of continuous sections of p, a

sheaf on O(E), is defined as follows: F(U), for U e OQ(E), is the set

of continuous s: U —— E' such that



commutes: for 5 e F{V), U =¥V, SFU is the ordinary restriction of s.
Why is this a sheaf? On the one hand, the so-called separatedness condition

(the uniqueness part of the condition in the definition of sheaf):

"iE 5.t € F(\/[L) and srU, = trU, for all ieI, then s=t" - is true
Jer * % X
now simply because \/IH'= U means U Ui = U and because functions are
iel ieI

determined by their values. On the other hand, the 'completeness' part:

£ <si & Ui: ieI> 1is a compatible family, then there is s € F(,\/[E) with
srUi - si for all ieI" - is true because, first of all, the comp;iibility
implies that there is a function s with domain QUi with restrictions

SrUi = si (the union of the graphs of the si is ;unctional with domain

in by the compatibility conditions), and secondly, because continuity

is a local condition: s is continuous iff for every x € doms there is

a neighborhood V of x such that s[vV is continuous.

Every sheaf on E (that is, on O(E)) is the sheaf of continuous

sections of some continuous s: E' - E (see e.g. TT).

4.2, Li-sets

Here we present an alternative description of Sh(L). Sources are:
[D. Higgs, A category approach to Boolean valued set-theory, 1973], and FS.

L is@ cBa i An Ti-geb o aisanpase <|X{, ¢> of a set |X[ and a
function &§: |X|X|X| + L, satisfying the conditions given below. For writing
these conditions down, we introduce the following notation: we write [x = '],
or [=x =X x'], for &(x,x') (¢ L) (read: 'the truth value of x,x' being equal') ;
also, Ex for [x = x] (Ex is 'the truth value of the existence of x'). Here

are the conditions:



[x=x']:[x' = x"] <[x=x"] (- stands for A).

Of course, these are required for all x, x', x" € X.
A morphism of L-sets, £: X > Y, is a function F: [X|X|Y[ + L, satisfying
the conditions given below. We introduce the notation e = £ivi), or

[x e £(y)], for F(x,y) € L. The conditions:

[ = " x'Ily e £(x)] <[y e £(x")]

[y 2 v'ily e £(x)] < [y' & £(x)]

[y e £x)Ily' & £(x)] <[y = y'l

Ex = V [v & £(x)]
yeYy

' range over |X|, v.y' over |Yl

2f course; X, X
Composition of two morphisms f: X > Y, g: Y + Z is defined as follows:
we define h = gef: X + Z by defining
[zehx] = Viyetfmllzegwl.
df ye¥Y
It is left as an exercise to show that we have thus defined a category,

the category of L-sets, L-sets. We note only that the identity map
Ic‘iX: X > X is given by
[x e Idx(x)ﬂ = Fy.
The verification of our claim uses, besides the definitions involved, some

simple 'propositional logic' in L, actually involving only A and V

(1)

(2)

(3)

(4)



Given a sheaf F on L, we can deduce the following L-set [F]: we

have |[F]] & (5,0 seP(U), vell, [<s,0> = <t,v>] d=f\/{w < UAV: s|W = t|w}.
[F]

(In the case of a sheaf on O(E), this is the interior of the set of elements € E
on which the two sections agree.) To verify that this is an L-set, one uses only
that F is a presheaf. Furthermore, if h: F - G is a morphism of sheaves,

we define [h]: [F] - [¢] by putting

[<t,%> ® [h]i<a, 1)1 = [<t, v = <hU{s), u>].

(teG(V), seF(U)) ge [G]

[-] so defined becomes a functor Sh(L) -+ L-sets; but before stating this,
and some more surprising facts, we single out special properties of L-sets

of the form [F] for F a sheaf.

Definition 4.2.1 (i) The L-set X is called complete if the following holds:

for any family <xi: ieI> of elements of IX[, and any family <Ui: ieI>

of clements of L, if ©u, Aau, slx, =] ('x, and x, agree on U, A U, ')
1 ] 1 ) 1 1] 1 2

for all 1i,j € I (compatibility), then there is at least one x with

Ex = \/Ui such that Ui <[x = xiﬂ. ¥or this "X we write: %= (B:% Uy
iel iel
even though x may not be unique.

(ii) The L-set X is separated if Ex = Ey < [x = y] implies that x = y.

Notice that for any sheaf F, [F] is complete and separated. Namely,
first of all, notice that for X = <s,U> ¢ |[F]| we have Ex = U. Suppose
the compatibility condition in 4.2.1 (i), with x, = <Si'Ui>' The condition
(with i=j) implies that Ui < U;. Also, with ti = Si Ui, we obtain that
<ti: ieI> is compatible in the original sense: since Ui AP = [xi = xjﬂ =

Vig =1ut a9: s. W= s.[W}, we have that, for U' =U, A U,,
1 J 1 J 1 g,



u' = \/{W = e {tirU')rW = {ter')rW}, hence by the 'separatedness' of

the sheaf F, tirU' = ter', as required. So, with U = \/{E} there is
iel
seF(U) with srUi = ti for all iel:; x = <8,0> will satisfy Ex =0T and

IA

U [x = x.]. This shows that [F] is complete. On the other hand, if

i i

I

Ex = By s lx=yl, then x = <8,0», y = ¢t,U>, Ex = By = U, and by the
"separatedness" of F we find, similarly as above, that slU = t‘U, i.e.

s=t, and x =y; so [F] is separated.

Let X and Y be L-sets, and fO a function fO: ]X| - IY[ with

the following two properties:

[x =, x'1 = [£,(x) =, fo(x‘)ﬂ (x,x' € |x])

X
(5)
E(fo(x)) = Ex.
Then the following definition
[yefel = [y =, £, (e x|, vel¥h
defines a morphism f£: X - Y (exercise). We say in this case that £ strongly

0
represents f. In particular, for a sheaf-morphism h: F - G, [h]: [F] > [G]

is strongly represented by the function fO: <s,U> p—— <hU(s), U>

(seF(U), UeL). This now tells us that [h] is indeed an L-set map. Moreover,
it is clear that a composite of functions (between the appropriate underlying
sets) strongly represents the composite of the morphisms strongly represented
by the original functions; and also that identity strongly represents identity;

from which it follows that [-] is indeed a functor

[-]: sh(L) > L-sets.



Theorem 4.2.2 (D. Higgs; Sée also FS): the functor [-] is an eguivalence

of categories
[ 1: Sh(L) 5 Lusets.

Before the proof, some lemmas.

Lemma 4.2.3. Let X,Y be L-sets, and assume that Y is complete. Then

every morphism £f: X - Y is strongly represented by a function fo: |X[ =¥ |Y|.

If Y is also separated, f0 is unique.

r
L |
Fi

Proof: Define fO(x) = SY y|ﬂy & f(x)] (see the notation in 4:I1i)) or
more precisely, take for gO{X) any value that answers the description of
I y[[y & f(x)] (it being not necessarily uniquely determined). Note that
Y
gy e f(x)]-[y' & £(x)] <[y =y']l (see (3)), so the necessary compatibility

holds. We have that

[y @ £(x)] <[y . fo(xlﬂ (6)

by the definition of Ze--

Next, we claim that

Ex < ﬂfo{x) e f(x)] . (7)
Indeed,
Ex = Vy e £(x)] (8)
veyYy
by (4);

[y  £(x)]ly = fO(XJﬂ £ Hfofx) e fixl]l ke 1(3),

hence
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Lz &Elw)] = ﬂfo(x) e f(x)] by (6)

and we obtain (7) by (8). By the definition of Z++-,

E(f,(x) = [£,(x) = £,0] = Vy e £0] = Ex; so

veyYy
[y = fo{x)]] = [y = fo{x)]I. Ex = 2(7) Iy = fO(x)MfO(x) e £(x)]
= fz) [y ® £f(x)], which together with (6) gives

[y e £(x)] =1y = fo{x)]l

showing that, indeed, f is strongly represented by £ _. - The uniqueness

0

of fo, in case Y is separated, is left as an exercise. O

Remark to Lemma 4.3. Assume that Y is complete and let £: X > Y be a

morphism. Then me[[y e f(x)] exists, and in fact, ﬂfo(x} e f(x)] is
ve|Y
the maximum value of [y & £(x)], with fo(x) defined in the proof. This

is clear, since we have

[y & £(x)] < Ex < ﬂfo(x) e f(x)].

e

always by (7)

This, in fact, shows that

max[y @ £(x)] = ﬂfo(x) e £(x)] = Ex = E(fo(x))-
N



Proof of 4.2.2. MNow we can show that [-] is full and faithful. Let

f: [F] » [6] be an L-set morphism. By 4.2.3, there is f0= [[F]l = |[G]|
representing f. In particular, (5) holds for fo. TE 5= S50 ¢ |[F]|,
then by (5) we have fO{x) = <t,U> for some t and the same U. Define

hU(S) = t. We verify that h so defined is a (pre-)sheaf morphism, i.e.

for seF(V) and U<V, we have

hU(srU) = {hv(s))hL (9)
Let x = <s,V> ¢ [[F]], £,(x) = <t,Vv> ¢ Vsl & = =gl 1 = (2],
fO(x') = el e |[G][. The left-hand side of (9) is t', the right-hand

side is t[U. By the definition of =g
ﬂfo(x) = fo(x')ﬂ, and the latter is 2 [x = x'} = U by (5). By the

separatedness of [G](!}, it follows that t' = t[U, i.e. we have (9).

Going back to the definition of [h], now we see that [h] = £, since
[¢) @ £()] =10¢) 1] fO(')] =[() ® [h]1(+)]. It is easy to see that the

definition of h is forced, i.e. that [-] is faithful.
Before continuing the proof of 4.2, we state two lemmas.
Lemma 4.4. Every L-set is isomorphic to a complete L-set.

Proof. Let X be an L-set. Define the L-set X (the completion of X) as
E{f}x, I
Tl

sl Hoe T and wowewm, = lx=x i fer d:3 e I (such
i i 3 i 5

follows. The elements of [X] are the formal sums U of compatible

families: X, € |X
a formal sum is just a set {<xi,U,>: ieI} satisfying the compatibility condition;
L

in pagticulaz, W, = Exi). We define
1

[<t*,u> = <tfi, ] = [se, % = <t',0>] =



4.9,

(£) Sl k e
I 2¢ %, o, = v.|v.] 7 ﬂxi yjﬂ (UiAVj)

ieX jed & <i,j>eIxJ

The 'symmetry' condition for L-sets is clearly satisfied. With x and vy

the two formal sums shown, together with z = Z(f)

z ]W , we have
kekK K

[x = ylly

z] = =y ], Av.)) A L= .« (V.AW
zl (i\'/ji[:’::L v )- (0 AV)) (ijﬂyj 2, (VA ))

V. Ix. = v 0y, = 2z 1+ (U AV AV, AW, ) ;
145550k i yj YJ' k S
r r

we have vjAVj‘ < [yj yj'ﬂ by the compatibility of the yj's; hence

V.AV = = = = 2.1z the last i
( : j')ﬂxi Yjﬂﬂyj, Zkﬂ ﬂxi kﬂ SO ast sup is
< V ﬂxi = Zkﬂ'(Ui“Wk) =[x = z]. This shows the "transitivity" condition
i,k 8
for =§. Before verifying the completeness of X, we note that "every
formal sum is actually a real sum": in other words, if X = Z(f)x_lUi,
ieT

then, first of all, every individual inUi is considered an element of X

as a one element formal sum, and then, in this sense of x,[U, € X, we claim
Qi
that X = I x,|U,. This means: Ex = \/ U,, and U, 2lx=2x|v.l. To ses
: et ; T il it
1l 1€T
these relations, write:

px = [g=x1= V Ix, =2l =
T G
= V (u.AU.) (since U, AU, < [x, = x,]) =V U, ;
e e iy i 3 e
1i,] 1
(e ol = ViIx ' =xltw. w3V v . mw)=0
: S g0 & e M S

Once we know this, we note the following general fact in any L-set: 1L

for all jed, x, = I x..[U_., the family x./V, (jeJ) is compatible,
fek. 99 A4 7
then, the family xij/Uij A Vj (ieI., jeJ) 1is compatible and if
]

x= I xi.lU,. A V., exists, then 2 ;T]V. exists and equals i; this
i,3 J 13 J jeJ J
we leave as an exercise to verify. Knowing this general fact, and that
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~

in X, formal sums are actual sums, the completeness of § is immediate.
Consider the morphism o: X +—§ strongly represented by the function

oy | x| +—|§]: aO(x) = xlEx. Clearly, the conditions (5) are satisfied

for a, to define a with [x e a(x)] =[x = ao(x]ﬂ. We claim that o is

an isomorphism. First of all, we note that for any f: X »> Y, ig f is

"1-1 and onto" in the sense that
[y e £x)1-[y e £x"] <Ix=x"1,
By = Vly e £60]

for all  sGxice [Xl, ¥ € |Y|, then f is an isomorphism, with inverse

—_—

f': X > Y defined by
[xe £'(y)] = [y & £(x)]

(exercise). Finally, it is easy to see that our o is "1-1 and onto". ]

Lemma 4.2.5. Every complete L-set is isomorphic to a complete and

separated L-set.

Proof. Let X be a complete L-set. For any fixed U e L, define the
equivalence relation Tn T S X (u) iF {xelxl: Ex = U} as follows:

for %y <X, z~y*=lzx=yl =0. It is sasy to ces that @ is an
equivalence relation. For any X € |X[, let x = {y: y‘”EX %}, let

|X| = {x: x ¢ |X|}, and define [x =yl = [x = y] (exercise: show that this
definition by representatives is correct). We leave it to the reader to

verify that X so defined is separated as well as complete (using that X is),

and also that the morphism a: X -+ % strongly represented by aO: x F—~+ é is

an isomorphism. O



Conclusion of the proof of 4.2.2. It is left to verify that every L-set X is

isomorphic to [F] for a sheaf F. By 4.2.4 and 4.2.5, we can assume that X is
complete and separated. Define F as follows: F(U) = {xe[X|: Ex —-Ul: for

= W, e B x|U = x]U (one-element formal sum). It is immediate that F

is a sheaf, by the very formulations of completeness and separatedness for X.

It is also clear that [F] 'is' X, more precisely, the function x F——+ <x, Ex>,
strongly represents an isomorphism X - [F]. This completes the proof of 4.2.

O

4.3 IL-sets as a topos.
| ——————
We now know that L-sets is a Grothendieck topos; nonetheless, we reprove
this fact by identifying the topos structure in L-sets. For some details we
g™

omit here see §3 of [D. Higgs].

A technical remark first. Suppose X, Y are L-sets: fO: |x] + |¥| a
function satisfying the first of the two conditions under (5):
[x = x'] < [fo(x) = fo(x‘)ﬂ for x,x' € |X|. Then we can define f: X > Y

by putting [y e £(x)] = Ex.[y = fo(x)]; this is easy to check. 1In this case,

Y
we say f0 represents f; if, in addition, Ex = E(fo(x}) (hence, the full (5)

is true), then, of course, we have [y & £(x)] = [y = fo(x)ﬂ, hence f is

strongly represented by fO'

4.3.1. The finite left-limit structure.

The terminal object is 1, an L-set such that |1| = {*}, [* = *] = 1-
The verification is left as an exercise - [A general remark, helpful here and
below, is that the subcategory of complete and separated L-sets, with morphisms
that are strongly represented by some (unique} function, is equivalent, by the
inclusion as equivalence, to the whole category L-sets itself. As a consequence,

1 being the terminal object is equivalent to saying that for every complete

and separated X, there is a unique |XI + {*} satisfying conditions (5) above;
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and this is triwiall.

Let Xl, X2 be L-sets. Define Y = X1XX2 as follows:

= - = ' ! = = 1 - = 1
|YI = |Xl]X]X2|, ﬂ<xl,x2> <xl X, >] & ﬂxl X, 1 ﬂxz x, 1. The
projection ™ ¥ Xl is the morphism represented by the function
4x1,x2> [ X, similarly for Tt Y > X2. - The verification that in this

way we indeed have a product is straightforward, though tedious.

Let
X fl Y
ey
1
g —m— X
2
9

be a diagram of L-sets and morphisms. The following are necessary and (jointly)

sufficient for this diagram to be a pullback diagram:
[x; &g, (2]lx, e g,(2)]lx; e g,(z"]1lx, & g,(z")] <[z = 2']

Viye £,y @ £,x)) =V [x

e g (z)]l[x. & g, (z)]
ye |Y| ze |z , % 4

i1

for all appropriate values of the wvariables.
(Of course, this is a natural generalization of the description of pullbacks

in SET.) Again, the verification is direct but tedious.

In particular, assume that Y is complete, and let f f strongly

1,05 20
represent fl' f2, resp. Then the left-hand side of the last equation

equals Hfl,o{xl) =Y fz'o{x2)ﬂ (exercise), so the requirement becomes
[£, ox) = £, o)1 =V [x 6 g (2)llx, © g, ()]

ZE[Z
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4.3.2. Subobjects.

Let X be an L-set. Let A: |X| + L be a function satisfying:

Afx) s By fx=x'l. afx) sa(k'y for all x,x" ¢ [%|. Such an A is

called an (L-valued) (one-place) predicate on X. Define an L-set A by

putting: |i| = |X y [x=-x'] =[x=_ x']. A(x).A(x'). We leave it to the
A

X
reader to check that A is an L-set. Moreover, the function x |—— x

o

(the identity on |ﬁ| |X|} represents a morphism A ————— X, which is,

Il

in addition, a monomorphism.

Now, let B ——£~—+ X be a morphism. f is a monomorphism if and only
if £ is 'l-1', in the sense that [x & f(y)]:[x e £(y")] =< [y = yv'] holds

for all xe|X|, y,y'e|B| (exercise). Assume that f is a monomorphism and

define the predicate A on X by A(x) = \/llx ® £(y)], and form the mono-
veB
morphism A-*Ji——+ X as above. Let g: B> A be defined by [x & g(y)] =

[x & £(y)]+A(x). We claim that g is an isomorphism that makes the diagram

o

commute (exercise). This means that every subobject of X 1is represented by
. = o . .

a monomorphism A ———— X, for a predicate A on X and o the canonical

map as above. It is also easy to see that two distinct predicates define
distinct subobjects, moreover that A < B (in the sense of subobjects iff

A(x) < B(x) for all xe|Xx].
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In summary, subobjects of X are the same as (l-place) predicates on X,

where a predicate is a function A: |XI + L satisfying

A(x) £ BEx

[x=x']-a(x) < A(x').

[A hint to the exercise concerning the characterization of monomorphisms. To

show that "f is 1-1" implies that £ is a mono is easy. For the converse,

define what is the natural equivalent of the kernel-pair of f [and what does
£

turn out to be the kernel pair, though we don't need that fact]. Given B —/—— X,

define the predicate C on the L-set BxXB by

= 3 = C
C(b /b,) = X\E/Xﬂx e £(b))]lx & £(b,)]
defines a subobject C “—— BxB. Denoting the domain of this subobject by C
91 92
too, now define the morphisms C —— B, C — B as the composites
m T
ct BxB = B, C “—— BxB ———ji——+ B. Finally, check that fogl = fogz;

since f was assumed to be a'mono, it follows that 9, = g,i now show that

this means that f is "one-to-one".]

4.3.3. The subobject classifier

Let § denote the following L-set. |Q! = the set of all pairs

] ' < 1 1 —r~ 1 = = | 1
<H,Uts © LXE with O = @', and |[<U1,Ul B = SO0, >] {Ul c—AU2) U1 u,'.

Note that E(<U,U'>) = U'. We will first show that Q is a complete and
separated L-set, then point out a simpler L-set { which is however isomorphic
to §; and finally, show that  (or @) can serve as a subobject classifier.

Let <Ui,Ui'>[Vi (ieI) be a compatible family; this means

V.AV, = (U, ~U.)"(U,"AU,"). We claim that x = <VU,-V., \/ V.> serves as
B * J i J fer Tugent



X <U U, '>|V VU -V Vvi holds, making sure that X is an element of

ieTl
|52| e WX VV as required. Finally, to show V, < (U, «— V Ui'V,}'U,'-V Vi
iel J J iel iel
(as required) note that Vv, £ U,' = E(Uj,Uj'), as a consequence of compatibility,
]

\/V is trivial, so we are left with showing V, < U, =~ §] -V or
3 g 3

iel ieI
equivalently: Vj = U:.| = v Ui'Vi and Vj < (VUl'V ) —‘UJ. Now remember

i i

(or verify) that U £ U' — U" is equivalent to U.U' < U". Hence, the first

inequality is obvious. To show the second, note that because of Vi.Vj = Ui — Uj

(compatibility), we have vj'Ui'Vi < Uj' and since here i 1is arbitrary,

N | VU Ve ) < Uj' hence Vj v UiVi — U:.| as required. This completes
ok i
the proof of completeness of Q.

= < s = < s Q = 5 = :
Assume X, Ul'Ul r X, U2’U2 € I.Q ; Ex:L Ex2 [[xl xz]] Then
 J— 1 = 1 LISREE Y o= = imi
Ul U,'" & U'; and U Ul ‘—-—'*U2, hence Ul U Ul U2, and similarly,
< = - = 3
U2 = Ul,r hence Ul U2, so, xl x2 indeed.
Now, consider the simpler L set § defined as follows: [ﬂl =L (= |L|},

I{Ul = U2]] G Uy < U,- Now EU=1 forall Ue |@]. Let £: @ > Q@ be strongly

represented by the function U }—— <U,1>; this function does satisfy conditions
(5). We show that £ dis "'"1-1 and onto'. [=v,v'> e £(u)] = [l<v,v'> = <vu,1>]
(U—V).V'. So, [<v,v'> 9@ f(Ul}]].|I<V,V'> e f(Uz)]] = (O, ~*V) (0, «~29).V'

w.l

< U, «— U, (since tpl<—+w°f\°q32 P e ig valid) = [[Ul = b

1 2
showing that f is 'l-1'. On the other hand, EU = 1= (U ~>U).l =

ViU ~—V).V': <V,V'> € R}, so f is 'onto'.

fl ] s §) be the morphism represented by the function * }— <1L,1L>.

~

We show that T 1is a 'generic monomorphism', i.e. @ 1is a subobject classifier

via T i.e. that for any subobject A2 X there is a unique X S SR

such that



T
—_—

e S
-

1
pl
A

is a pullback. Let A(x) be the predicate defining/defined by the subobject

Q
e

o
A“—— x; we can assume |A| = |x]|, [x = gt = In = x'].a(x).A(x'), and

[y © a(x)]

Il

[y e x] .A(x) (see on subobjects above). Recall that

[* = p(x)]

Ea ¥ = Ak, [<u,u'> = ©(*)] = [<u,u'> o 31 = U 10" = Ut =l
One checks easily the first condition for the diagram to be a pullback is true
(regardless what vy is). Since ﬁ is complete, Yy (if exists) is strongly
represénted by a function YO: ]XI +—|5|; we'!ll denote this by x F~+—<U(x),U'(x)>.
Now, the second condition, in the form for a complete ¥, becomes

F<vte), o s wia] = YV ateilly = sdits
g X
Q ye | x|

The left-hand side, as we noted, equals U(x); the right hand side clearly
equals A(x) since A(x) <[x = x]. We have obtained that the condition is

equivalent to saying that U(x) = A(x). Since for 7Y, to strongly represent

0
a function it is necessary that E(Yo(x)) = Ex for all xe]X[, we also have
that U'(x) = Ex must be the case. If we put Yo(x} = <A(x),Ex> then we
indeed have a function strongly representing a morphism, since (5) holds,

as a consequence of A ( ) being a predicate (check!). This completes the

verification that @ is a subobject classifier.

Using the isomorphism f: Q@ =  introduced above, now it follows that
; : e ; ' True
£ is a subobject classifier, with 1 ————— @ represented by * }— 1;

in fact, given any predicate A(+) on X, the characteristic morphism

X>Q of A“—— X is represented (but not strongly represented) by the
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function x l—— A(x); i.e. A itself; just carry things over by the
isomorphism £ (exercise). [It is interesting that checking the last
statement directly, without knowing about {, is quite hard; see the next

sub-subsection 4.3.4.]

This last @ is our 'official' subobject classifier. Note that we
have shown (though { is not a sheaf) that every map X -+ @ is represented

by a unique function which is a predicate on X.

4.3.4. Exponentials, power-sets.

Recall (see T.T.) that exponentials BA can be defined by saying that
( )A should be a right adjoint to the functor A x ( ). Explicitly, we have

a morphism

AXBA "E————*—)- B
B,A

> i A
such that for any AxC ——E——+ B there is a unique h*: C - B such that

= *
h AO(lAXh Fs

[
B,

We denote Q% by PiX). It turns out that Pi(X) ds much easisr to
describe (and verify) than B® in general. We define P(X) as follows.

[P(X)[ = the set of all predicates on X; [a = Bl = /\ (A(x) ~ B(x)).
P(x) df sl

Again, we have that EA =1 for all AE|P{X}[. T 2P +.0 a8
i

defined to be represented by <x,A> —— A(x) (check!). Next we show
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Lemma  Every morphism of the form Y iy P(X) 1is represented by some

function g : Y| » |P(x)].

Of course, this is a generalization of the corresponding statement
about § since @ = P(1l). We could proceed as before by pointing out what

the 'sheaf'-completion of P(X) is; here we give the direct proof.

Proof of L. Let g: Y+ P(X) be given. For a given y ¢ |Y|, what should
be the 'value' of g? It should be the predicate A for which A(x) is the
proposition that "there exists B such that B = g(y) and B(x) holds".
Define accordingly, for any fixed vy € IY[, the predicate Ay as follows:

A (x) = v [Be gly)]lB(x).

4 Be|P(x) |
It is easy to verify that Ay is indeed a predicate for each vy ¢ |Y[

(exercise). Define the function

9y Y| > [Px)| by gotyJ & A

We claim that g0 represents g. This means the truth of the following

identity:

[neg(y)] = Ey. ( A A(x) — \/ B(x)[B & g(y)])
xe | x| Be |P(x) |

for all vy e |Zl. & e [Pl

First we show that the left-hand side < the right hand side. First, an

informal argument, in infinitary propositional logic (more-or-less).



"Assume [A © g(y)]. Then Ey. To show the other conjunct of the r.h.s.,
first assume A(x) and show: there is B s.t. B(x), [Beg(y)]. But
the assumptions mean that B 3F A works. Second, assume there is B with
B(x) and [B © g(y)]. Since [A e g(y)] is true, it follows that [A = B]
(by requirement (3) on morphisms). By the definition of [A = B], this

together with B(x) implies A(x), and this was what we wanted."

Here is the formal argument that essentially reverses the steps.

First note
[a = B]*B(x) < A(x) (10)

(by the definition of [Aa = B] = N @ax «— B(x)), and the fact that
x

¢ b4 e 15 4 Adl—al;

[a e g(y)llB e g(y)] <[a=8] (11)
by (3) for the morphism g; (10) and (11) combined give:

[a e g(y)l-B(x)-[B & g(y)] <a(x). (12)

Take the sup of the l.h.s. for all B. Obtain

[ae gV Bx)I[Be gyl <a(x) . (13)
B
Hence
[2 e g] <VBxIB 6 giy)] —=a(x). (14)
B

Obviously, [A © g(y)].A(x) < \/B(x)ﬂB e gy)l
B
hence

[ e qg(y)] < a(x) H*‘VB(x}ﬁBég(Y)]]. (15)
B



Taking the meet of the r.h.s's of (14) and (15), we get that [A & g(y)]
is < the second conjunct on the required identity; [A © g(y)] < Ey is
obvious, completing the (one-sided) proof.

Second, we show the reverse inequality.

"Assume Ey and for all xe|X[, A(x) if and only if there is B such that
B(x) and [B & g(y)]. By Ey, there is C such that [C & g(y)]. We
claim [A = c]. By definition, it suffices to show that A(x) if C(x).
Assume A(x). By assumption, there is B such that B(x) and [B & g(y)]

But since we also have [C © g(y)], it follows that [B = C], hence by B(

4.20.

x)

we conclude C(x). This shows A(x) = C(x). Conversely, assume C(x). But

then C(x) and [C © g(y)] both hold, hence by assumption A(x) as required."

The formal proof:

[ N ax) «— VexIBegyhl-cx- I[ce gy < ax
xe | x| B

v—
call this U temporarily

(this is clear)

U+lc & g(y)] < c(x) — A(x)

[c e g(y)l'B(x):[B & g(y)] < C(x)

(this is a somewhat condensed step) (exercise).

[ce gyl V (B(x)+[B & g(y)]) < c(x)
B

¥

call this V;

Clearly, U+<A(x) £ V, hence

[c e g(y)]Uu-a(x)+ < C(x)

u-fc & g(y)] < a(x) —C(x)

(16)

(3:7)



(16) and (17) combined:
U.[c & g(y)] < A(x) «C(x).

vdcegiyl < A @ax «— cx)
X€E X!

v.lc e gy)] <[a = Cc].
But [c e g(y)]-[A =c] <[a & g(y)], hence U.[Cc & g(y)] <[a & g(y)]

u. V[[c e gy)] <[ae gyl

c

L )
W

= Ey by condition (4) for g;

U.Ey < [A ® g(y)], which was to be shown.

This completes the proof of the Lemma.

Now, we complete the verification of P(X) as follows. We have to
show that for any h: XXY - @ there is a unique h*: Y + P(X) such that
h = eXO(lXXh*). As we know (in two different ways), h is represented by
some ho: ]XI X [Y] + @ ; actually h0 is unique if it is required to be
a predicate on XxY. Now, the following is a simple general fact: if

fO: ]Al > [B v Bt |B| = |C| represent . the morphisms f: A+ B, g: B > C,
*
respectively, then gOOfO represents gof (exercise). To find h , note

*
that we know (Lemma) that it must be represented by some hO: l¥| - |P(x)];

*
so h= exo(lXXh ) will be represented by

4.21.
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<x,y> |

* *
* 4 <x:h0 (y)> F——————“—*'(ho (7)) () s
(lXXh )0 (GX)O
* *
S0, if ho{x,y} = (hO (v)) (x), then indeed, h will be as required; to

this end, we have to define

*

hO = the predicate Ay such that Ay(x) = ho{x,y).
= Ax Al(X,¥).
* *
Ay is indeed a predicate for all y; hO represents a function h , and

* *
by the above, h satisfies the required identity. But also, h is unique:

*
the above argument essentially shows that the definition of h was forced

(exercise) .

Summary: P(X) is defined as the L-set whose underlying set is the set of all

predicates A on X ([x = x'] < A(x) —Aa(x"); A(X) < Ex), [a ~pix) B] =
/\(Alx) ~— B(x)); €y XxP(X) - @ is represented by the function

X

<x,A> — A(x); given XxY ——E——+ f represented by ho: |X| X [Y| =+ Ti,

*

then its 'exponential transpose' Y -—E———+ P(X) is represented by the

function y b—— kth(X,Y)- In other words, everything is as natural as

possibly can be!

4.3.5. The natural number object.

We postpone the discussion of this until a bit later.

4.4. Logic in L-sets.

Now we not only know that L-sets is a topos; we know the topos structure
on it exactly. This enables us to compute the interpretations of formulas.
For simplicity, we restrict attention to the canonical frame of reference

associated with & = L-sets; actually, this is no loss of generality (why?).
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Recall that we denoted by
-5
[x | ol

the interpretation of ¢, an arbitrary formula of Ll; we have

[X | o]: x> Y

-
HE 9. dnia termief fype Yo o= w aol o ) XS L SN o e A sipd
1 n 1 n ol
type Xi (i = A, .0l
If, in particular, ¢ is of type § (it is a formula), then
[; | ¢l: X + Q. As we know, |Q| = L, and any morphism X > Q is

represented by a unique predicate on X. We will denote this predicate by

- i - -
[o(x)] or just [¢]. Furthermore, the value of [o(x)](a) at
a e |X| = |X1|X...X]Xn] we will mostly denote by directly writing the
arguments in the places occupied by the corresponding free variables. E.q.
let @ ==» Ver{ny -+ xeA); here the free variables are: x of sort X, and

A of sort P(X); R denotes a relation on XxY, i.e. a subobject of XxY.

Then
ﬂver(ny ~ xed)]

will denote the predicate on XxP(X) representing the morphism
[x,Alver(ny + xeA)]: xxP(X) -+ Q; and even more, whenever x 1is a concrete

element of ‘Xl, A e |P(x)| (that is, A is a predicate on X), then
Ever{ny + xen)]

means the value € 2 of the above predicate at the said arguments. Of course,

this kind of abuse of notation is common in logic and mathematics.
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Some care has to be exercised if the free variables are not exactly
the ones occuring in the formula. We have the following the general rule.

->
Let x = x ,...,xn; suppose it is exactly x

1 ,...,xk that occur in

i
o(k < n); Kegpr oo r Xy do not. Let [¢] denote what we denoted by

Sy " SRcre = A N R -
Hm(xl, xk)ﬂ above. Then Ew(xl xn)ﬂ [o] A Ex A Exn i.e., the

k+1
effect of the 'vacuous' variables is their contribution of their existence-

values to the formula. This assertion can be easily proved by using the fact

that the following diagram is a pullback:

[x | o] ¢ R LR X

proj.

|

[ s ®

. | o]¢ S o e

k

E.g., this tells us to compute

[o(x) v v(y)]

(with exactly the free variables as indicated) as follows:
fox) v o) =lotx,v)] v [v(x,y] = [o] By v [Y]*Ex (for the logical

connectives, see also below).

We discuss the interpretation of L= Eirast- L_ was a part of Ll'

but (at least as far as the finitary part of Ll was concerned) L was

sufficient to express everything in Ll. We postpone the natural number

object until later.
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The morphism [ﬁ: *]: X > 1 is, of course, the one represented by the

constant *- valued function |X| » {*}.

Given a,b terms of type A and B, respectively, then [;|<a,b>]
= i i > >
is the morphism (X - AXB) = <[x|a],[x[b]>. Let [x‘a] = oy X A
[zlb] = B: X - B. Then, as the computations concerning products (given as an

exercise) show, <a,B> is the function for which
[<u,v> & <a,B>(x)] = [u e a(x)]-[ve B(x)].

Now we come to the three important operations: =a’ €, and 1 i}

As expected, it turns out that the value [a - a'] for a,a' € |a| in
the sense introduced in this subsection is the same as the one that goes into
the very specification of A as an L-set. The verification is easy; one has

to look at the diagonal A -+ AxA, etc.

In general, if a and a' are terms of type A, then

[a(x) = a'@l = V [ue [x|al®]-[ue [x]|al1®]
ue |a

This comes from the characterization of pullbacks. E.g., if we have f: B -+ A,
gs @ + A, ‘then
[£0) =, g@] = V [ae £m]laeg(e]
aelA

tor any: b € [B[, ELE |C[.
The morphism €yt xxP(X) » @ was given above. As a conseguence
[x €y A] = [xea] = A(x)

for any erXI and predicate AElP{X)l. For terms in place of x and A,
there is a formula involving some sups that can be figured out by pullbacks;

but also, once we have more logic, we can handle this in a more straightforward
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way; see below.
Now, let m(x,;) be a formula, x of sort X, the product of sorts
- =>
of ¥ being Y. &o, [x,y|tp]: XxY L+ . The term {xex|m(X.§]} should
be interpreted as an arrow Y — P(X); and indeed, we have that
> - G . gt o * ->
[v|{xex|9(x,y)}] is the exponential adjoint h of h += [x,y|¢]. Therefore,

as we learned, {;|{XEX[@(X,§)}] is represented by the function

v |¥]) —— axlox, 1] .

Finally, we state the effect of the connectives and quantifiers. As we
know, these could be computed on the basis of the above things; it is an
instructive exercise to show that, indeed, the rules given below are true.

— —
Let us write Ex for Exl Nyo sl Exn; B =1 a3f H = 0.

[oGO] A [yl

I

denotes the meet A in L

[ (pAv) (0]

[ (o) ] = [o )] v [v )]

B e ink in L

these are II/\QJ.(';)]] = Ex- /\Ilcp,(;)]]
of course not jer * r s
given by L , e
rather by the ﬁ = /\ﬂ¢i(x)] if I is nonempty
additional ieI
rules for i
infinitary BEx dif T =0
logic. P -
[ Vo, @1 = Ve, x]
L iel ieIl

I

sup in L.



[=v)&@] =Ex-Lo] = [v])
[ (40) ()] = Ex--[9 )]

[v o) @] =% N\ &y = [oy, 0D
= yE[Y

(y of sort Y)

- -
(@ o6l = V lyD]
yely|
Finally, the atomic formulas that we added to Ll. If e.g. a binary
relation R ' “——' XxY is given, this is the same as a predicate R on

xxY¥, and in fact, [R(x,y)] = R(x,y). If e.g. f: XXY + Z is a morphism

as shown, then, as it is expected, we have

|IZ =Z f(x;Y)B = ]IZ =] f(x:Y)]]
the way f is given

Example. The definition of equality on P(X) was given so that we have the

bi-entailment

A=BE VXEX(A(X) <=sBi(x) ).

Indeed, this is true; [v__ (A(x) <> B(x)] = /[\lEX — ([ax)] «—[Bx])
xe | X
o PN e ) bt I B AT - i
xe | X| xe | X

The following is a way of dealing with atomic formulas that have terms
in them that are more complicated than variables. E.g., if £f: B =+ A,

g: C > P(da), then [£f(b) € g(a)] =13 (x = £(b) A X =gile) A xex)

xeA, XeP(n)
= V. ilz o 2150459 oleil-a) .
xe |a|

xe|P(a) |

227



4.5. The effect of morphisms between cHa's

4.28.

4.5.1. Let u: L - H be a cHa-morphism. Then u is a continuous functor

between L and H as sites. Therefore, it induces a pair of adjoint functors

*

Sh(L) ——————— Sh(H)
e
Uy
* *
u o u, , u left exact;
such that the diagram
L 4 > H
canonical functor: . € €4
Yoneda, followed by
'associated sheaf'
*
u
Sh (L) - Sh (H)

*
commutes; also u (and u,) are unique up to a unique isomorphism; for
these matters, consult Section 2.
Since L-sets is equivalent to Sh(L), in the above we can replace
T
Sh(L) and Sh(H) by L-sets and H-sets, respectively. One of the advantages
—— i ™

of using L-sets instead of (besides) Sh(L) is that with the former, the
e ——

*
description of the functor u is very simple.
€
Let's denote the composite L —FEL%~Sh(L) ——— L-sets, with [=]
=] S

[
the equivalence constructed before, also by EL. This is the effect of
€_: L - L-sets, as one can easily check: note that every UelL is a
L L i T——
subobject of lL' the terminal object (maximal element) of L; since EL

is left exact, it maps 1 to 1, the terminal object of € = L-sets; and
L e

it should map U = 1 to a subobject of 1; now, the subobjects of 1 are

L

in 1-1 correspondence with the predicates on 1, and a predicate on 1, |l]

being the singleton {*}, is simply a 'truthvalue' U € L; not surprisingly

U € L is mapped onto (the) U (-valued-predicate-determined subobject of) 1.
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Next, let u: L -+ H be a morphism of cHa's. If X is an L-set, then
* *
let u (X) be the following H-set: |u (X)| = |x|;

[x = x'] = ullx=_ x']).
A af X

*
It is left an exercise to check that u (X) is an H-set. Given a morphism

* * *
f: X > Y of L-sets, then we define u (f): u (X) - u (Y), an H-sets morphism,

as follows:

[y  (u (£)) (0] 5 ully e £0D).

*
It is left as a further exercise to check that u so defined is a functor

*
u : L-sets + H-sets. Furthermore, the reader should verify that
e

u
L = H
5 "
*
L-set - H-sets
A *
commutes. - Finally, we claim that u is continuous, i.e., it is left exact

and has a right adjoint. As we said in § 2, to this end it suffices to show

*
that u preserves the validity of infinitary coherent entailments ¢ | 1V,

formulated in the canonical frame of reference associated with L. For the

benefit of the fastidious, we give some details of the proof; those who have

a well established trust in the existence of order in things should ignore this.
Recall that [Q(;)ﬂ is the predicate (on X, where X is the L-set

.+
associated with the wvariables ; as usual) that represents [;: e(x)]: x > Q.
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* *
Now, (u ); (p) 1is {a subobject of u (X)} in H-sets; 1let us denote the

*
a morphism u (X) = Q
* -
predicate representing (u ); (9) by [o(x)]. Note that ¢ 4is still in the
<> *
language of L, but 'interpreted' in H-sets: [¢(x)] is a function on

* *
|u (X]| = |x| with values in QH = H. We are using here u as an inter-

o
pretation of (the canonical frame of reference associated with) L in g:gg}g;

*
we had a notation M; (p) for M: FL = H: now u takes the place of M.

Lemma. For any infinitary coherent ¢,
> % > -+ -
[ox)] (x) = ullox)](x))

+
for any X € |X|.

The proof is a trivial induction on the complexity on ¢. Note that it
suffices to consider the only kind of atomic formula x = f£(y), since by the
trick mentioned at the end of 4.4 all others can be eliminated [Now we are in

the basic first order language, i.e. only unary operations are present; no

relation symbols other than =].

S0l et (gs = Tix = B x = <xy> (for simplicity), X = X 3% ,

2 L

x of sort Xl, Yy of sort X

is Fx= f{y)ﬂ*?

ot f an arrow X2 o Xl in L-sets. - What

By definition, it is the representing predicate of the arrow

(u*)x X = £ u (X) » 2. Now, (u*)x

r

y(x = f(y)) is obtained by passing

r

*
to the interpretation u (f) of the op. symbol £, and then computing

*
[x,y|x =u (f)(y)] in the topos H-sets;
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*
fe8y (W), x=£) = [x,7|x = (u (£)) ()]
; 8 J
i
interpretation of the formula

*
x = (u (£))(y) in the canonical
frame of reference associated

with H.

*
But we know, from 4.4, that [x,y[x = (u (£))(y)] is represented by the
* *
predicate [x & (u (f))(y)]: [X] + H. By the definition of [x = f(yv)] ,

we have therefore

o1 =Ix=21” =[x e ( (£)) (] =

|

def. of u*(f}
see above
=ullxe £ = ulle)] X)),

as was to be shown.

Remembering the definition of (infinitary) coherent formulas, we are
left with showing the equality for ¢: = True; as well as with an inductive
argument showing that the equality is preserved upon applying the logical

operations A, V and Hy. We deal with 337 only.

*

* *
Let R“—— u (¥)xu (X) be the interpretation (u )y ;(q)(y,;)); then
r

(u*);(':ly oty = [0y myn) Eoo8E8)  4pce
* -
Gy oy, 01 &) = [y ryx] (x)
I e

elements from X in H-sets as in 4.4
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We know : ﬂgy Ryx] (x) = [[Ay Ryx] o

V e (WL Y T e
ye Y|

velt] o o* ey TR

v ulloly,0]) = u( \/ [{!P(Y,;)]l) =

ys!Y[ réinceA TEET ye Y|

a cHa-morphism

u([Fy m(y,;)ﬂ), and this establishes what we wanted (right?).

*
Using the lemma, now we prove that u preserves the validity of

coherent entailments. Suppose Bgks (0 — v, i.e. [;|¢] < [§ | V]
(order in’
Sub (X)
ie. [o(0] X < [v(x)] (X for all x ¢ |x|. (x: all free variables
(._._...._.._A_._..._.._..._'

order in L

in @ or V). Since u preserves order, u(ﬂm(;)ﬂ(;}) = u(ﬂw(;)ﬂ(;)).

By the Lemma, we get [o@1 (X < [vD1 @;: &« B
. * { * .
e (u );($) Ty }z(w), ie.
; = A}
order in SubH_sets(u (X))

E g P A

H-sets

as was to be shown.

*
We have established that u : L-sets - H-sets is the (up to isomorphism,
P e T

unique) canonical continuous lifting of wu: L - H.

A.5.2, We now consider the following important special case. Let H =P(1),
(classically) the 2-element Boolean algebra (cHa); the unique cHa morphism
ug: P(l) >L maps @ into O of L, 1 into 1 of L. [Sorry, we have

: : u
reversed the direction L ——= H to H -+ L].
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*
P (1) -sets is the category of sets, SET (why?). The functor u_: SET - L-sets
e oo A it O ——
v
is denoted by (“5. For a set S, S is the L-valued set with underlying

set S itself and with equality:

1 et W) I X =¥

0 (6EE) if Ay

e : v
f is the morphism § o 5 represented by £.

For a function £: 8 > S 1 5

1) 27
As an application, we identify the natural number object in L-sets.
P e, T
As it is known, continuous functors between preserve N; see e.g. Prop. 6.16,
p. 170 in [T.T.]. As a consequence, the natural number object in L-sets is

v
W, with MW the set or ordinary natural numbers; O0: 1 - N is the map
A"
vV v A
1l > represented by *I_’Oﬁmi N—S—rN is E—Si—ﬂvm, with S: W — N

the ordinary successor function.

4.6. Restating matters in the sheaf-language.

We start with the general remark that since Sh(L) = L-sets, once we
have proved something about L-sets, we have proved "the same" about Sh(L).
It takes some effort to make the precise statements, however. - It is worth

the effort since the idea of sheaf, and the sheaf theoretic language, seems

geometrically

! tually’ : ;
{ CREPRE TR y} superior to the L-sets-language; the latter is needed only

because it makes it possible to use 'logic'.
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4.6.1. The global section functor

For any category C with a terminal object 1, the global section

functor P: C - SET is the covariant functor represented by 1l: I = Homc(l,—).
- In case of C = sh(L) (see 4.1), there is the following essentially equivalent

but more convenient, definition. T: Sh(L) = SET is defined by:

X - I‘ > X(1 )
X
ek
ts a | >
nat. transf hJ, T }hl
¥ R

- More generally, we define
RJ: Sh(L) =+ SET
by:

X X (U)

hp———n

U

Y Y(U)
Also, let's introduce the notation L]U (U € L) for the poset
{V € L: Vv £ U} with SL restricted to it. Clearly, L|U is a cHa;

Llu \ /L
= U; A = A : B = « i i

lL[U U x L]U Y =% A \/ {xi Ted} \/ {xi. ieI}. Now, given
any presheaf X on L, we can define the presheaf X[U on L|U by

simple restriction:



(x|u) (V) = x(V) for V < U.
Clearly, (—}|U is a functor
Sh(L) + sh(L|v);
and ' defined above is the composite
Sh(L) =55~ sh(n|u) - SET.
|
'global' T of -sh(L|wv).

4.6.2. Exponentials in Sh(L).

. X
Let X, Y be presheaves on L. Define the presheaf Y as follows:

YX{U) = the set of all natural transformations
= Y *
x|u — ¥|u HOMy, oo (1 0) (x|u, Y|v)
EarVEs 17, hoe YX{U), define
h [V = 'restriction' = PV(Sh(L|U)J(h).
Tt turng out that if - ¥ 148 a shesaf, 5o .18 YX (see below). So for sheaves

X £ X : .
X,Y, we have Y € Sh(L). Also, define ev: Y XX - Y in the obvious way:

ev, : YX{U) ¥ ) = Y [5) -

U
<h, s> —— hy(s)

Proposition 4.6.2.1. YX, together with ev, qualifies as the exponential

. g : X

in Sh(L): for every morphism ZxX - Y there is a unique 2 —£—+ X such
fx1

that ZxX =+ Y equals the composite 2ZxX o R YXXX H—E;——+ ¥.

Proof: Of course, this can be proved directly; see [1.12, p. 24 in T.T.].

But it is worth pointing out the connection with another natural definition

of exponentials, this time in L-sets. - Let now X, Y be L-sets; with a
/_'\-______/

variable R of sort P(XxY), 1let us define the formula Func(R) to be

4,35,
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VXEX HIYGY(<x,y> € R); define the subobject YXC————+ P(XxY) as the extension

of Func(R)

YX = ker{R € P(XxY): Func(R)}

and also denote the domain of this subobject by YX. In other words, YX is

the L-set such that

|¥¥| = |P(xxY)| = Pred(xxY)

and

[r = " sl = IR

X

=p(xxy) SI*[Func(R)]-[Func(s)]

Note that E (R) = [Func(R)].
(%)

Let ev: YXXX + Y be defined by
[y  ev(R,x)] = [Func(R)]-[<x,y> € R].
ey
E (R)
X
(Y")
What was stated in [Lecture 12, J. Lambek, Fall 1979] shows that the above

qualifies as exponential in L-sets.
™

Now, we compare Sh(L) and L-sets by the equivalence functor
Sh (L) =T L-sets. Let X, Y be sheaves € [Sh(L)| . Recall the definition
of the 'sheaves' (separated and complete L-sets) [X], [Y]. We exhibit an

isomorphism
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X i X

(] > v ¥

{ A \ ( I \
exponential taken in first [ ] applied, then
Sh(L) as described exponential in L-sets taken
in the statement of as described above.

the Proposition;

then [ ] applied

Let <h,U> be an element of [[Yx]l; h e (YX)(U). Define the predicate
R = i(<h, U>) on [X]x[Y] as follows: let xeX(U), yeY(V); ?ﬂé} unv;

we have that hw(x r W) € Y(W); put

[<<x,0>, <y,v>> € R] iF [<y,v> “Iv] <hW(x Fw, wsl.

We leave it an exercise to check that i 1is an isomorphism; and in fact

that the diagram

(%1% [x] lev) » [Y]

s, 0 <

[x]

ev(L—sets)

(v ¥xpx)

commutes. - What this says is that the equivalence functor [-] carries the
specification {YX, ev) into something that qualifies as the exponential;

hence the assertion of the Proposition follows.
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4.6.3. Subsheaves.
Given a sheaf X € |Sh(L)[, a subsheaf of X is a sheaf A such that

A(u) © X(u) for all UeL; and for aeA(u) < X(u), a P(A) U=a P(X) 1813

The inclusion maps A(u)c—?f——ﬁ-x(u) combine into a monomorphism A ¢“——— X
¥
u

(check) .

Proposition 4.6.3.1. The subobjects of X are 'faithfully represented' by

the subsheaves: every subobject of X is represented by exactly one subsheaf
with its canonical inclusion.

The proof, of course, is almost trivial. But the reader might want to
compare, via the equivalence [-]: Sh(L) - S-sets, the two definitions of

'canonical subobjects'. O

Here is a piece of general nonsense concerning the interpretation of

formulas.

Proposition 4.6.3.2. Let X € Sh(L); c e I'(X) = X(lL}; define c¢: 1 X

+
= Sh (L)
J{(u) = {*}¥]. Then, for

* = = i
by Eu{ ) c P u {lsh(L) the sheaf for which (lSh{L)

any formula M(x) (x: var. of sort X)

Fggigl M{c) = c e I'([x: M(x)])

substitute ¢ a subsheaf
(a term) for ef X

the variable x

Proof: M(c) 4is a grammatically correct formula; [M(g)] is a subobject of

1 (= One has a general substitution theorem for almost arbitrary

Ysh(w)?
categories: see e.g. [3.2.3, MR, p.103]. According to that, we have a pull-

back diagram
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[M(c)] € >

1
p.b. lg (1)
> M .

F= M(c) < M(c) — 1 is an iso. <> ¢ factors through
by (1)

[x: M(x)] —— X = ce I([x e M(x)]. O
clearly

[x: M(x)]C

The functor Sh(L)-————r——+ Sh(LIU) is logical, as well as geometric;
(=) |u
this is a special case of the general results [1.42 p.35 & 1.46 p. 37, TT].

We leave it to the reader to make the connection; now we want to point out a

consequence of this fact.

Let M(x) be a formula in the frame of ref. associated with Sh(L), x
of sort X; replacing symbols in M(x) by their images under the functor

(-)|Uu, we get a formula denoted M; (x); now x denotes a variable of sort

|u
XlU in sh(Ln|v); Mlu(x} is a formula in the frame of ref. associated with

L[U. We can form, on the one hand, the interpretation

[xex: M{x]]sh(L} in siort (MG ]

in Sh(L); and also,

[xex|U: Mlu(x)] [MlU{x)] '

sh(L|u) in short

the interpretation of MlU(x} in Sh(L|U). The first of these is a subsheaf
of X, the second is a subsheaf of XIU. Now, what is said above about the

functor (-)|U means
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Proposition 4.6.3.3. [M(x)]|U = [M‘U(X)]

Note that this is a literal equality; both terms of the equality are
subsheaves of X[U. - In particular, applying the global section functor of

Sh(L|U) to both sides, we get

o teniEioy
TU{M(X)] e .([MlU(X)]}-
We can generalize 4.6.3.2. as follows. If c € TU(x) = X(u), then
C € F(Llu){x[u) (and vice versa). Let M(x) be a formula over the frame of
ref. associated with Sh(L); then MlU(x) is one over Sh(L[U);_ we have
c e [x: M(x)] = ¢ € T(L|U)([x: M. (x)])
U [ |u
see 4.6.3.3.
o | S0LL0) 01)p) (@)
by 4.6.3.2.

4.6.4. §I and powersheaves.

The 'sheaf'-definition of Q@ clearly gives us the following description
GfE W cdm SShHiGL)
Q(n) = L|U = {VeL: V < U}

W18, ¥V Q).

vy lu=vaom



(also compare [1.12, TT]). - Given a subsheaf A of X, the characteristic

morphism of A
e e

is defined as follows: Tyt X(u) » L|U

x —Vivsu: x [ veaw}
= the maximal V £ U such

that x | Vv ¢ AQV).

It is left to the reader to convince himself of the correctness of the above

and make the comparison with our specifications in L-sets.

The power sheaf QX = P(X) is, consequently, described as follows:

(QX)(U) = the set of nat. transf.'s
x|u » Q|u
= the set of those h = (h)) 1=

S.
U Uel

hU: X(u) - L[U with the property
that for W < U and xeX{U),

h (X P W) o= hy () n W,

.41.



