Notes for Mathematics 189-705B

(M. Makkai)

The goal of the first part of the course is an exposition
of André Joyal's theorem that says (roughly) that every
function from the reals to the reals in the free topos is
continuous. This theorem of Joyal's will serve as a focus for
a rather large body of general material with obvious importance
in categorical logic. Later we will build on this general

material to go in other specific directions.
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§1. The interpretation of formulas in

categories

1.1 Higher order logic and toposes.

In Lecture 5 |[Lambek, '79 Fall], the language Ll of higher order
logic was introduced. We will adopt and use Ll extensively. It will be

important for us to be able to use "arbitrary types, functions and
relations", and accordingly, we adopt a minor amendment to the formulation

of Ll . Remember that Ll was used to construct the free topos freely

generated by the empty graph. Our modification amounts essentially to
what 1s necessary to give a similar description of the topos freely
generated by an arbitrary graph.

The 'arbitrary graph' is replaced by what we now call a frame

of reference, (f. of r.), something slightly more general than an arbitrary

graph.. A f£. of r. consists of:

(i) a (n arbitrary) set of type parameters. In order to be able to

describe the other ingredients of a f. of r., namely relation and operation
symbols, we define, the set of types just as they were defined loc. cit

except that all type parameters are also types. Thus, 1,fL, N are types

(but not type parameters); e.g. P(A xf1) 1is a type where A 1is a type
parameter, etc. (we write P( ) for the power-set operation, written P( )
log. cits). We might want, at some stage, to extend slightly the ways

of type-formation. One obvious such extension would be to allow the ex-

B
ponential A for any types A and B .

Now, in the frame of ref., we also have

(ii) a stock of relation symbols

and



(iii) a stock of operation symbols;

with the following further specifications: Every relation symbol R has a

number say n , its arity, associated with it (n may be 0). Furthermore,
we have an n- {uple of types Al,...,An also associated once for all
set
with R . Intuitively, we want that R be a sub of
object
Alx...xAn ; W anifact write; R " £ ™ AlX..-X An (1)

to mean that R has been thus specified. It is important here that the Ai
can be any types, not jugt type parameters. E.g., we might want to consider
a relation-symbol R "C " A x N x P(N) , i.e., an unspecified ternary
relation whose 'first place' is of type A (a type parameter), second place is
to be filled by a natural number, and third place by a set of nat. no's. —
We have a similar specification for operation symbols. The corresponding

notation is Fos ATXELAR " —s " A

- (2)

The language L , based on a fixed but arbitrary frame of ref.,
is now defined as before except that we allow (i) R(al,-..,an} as a formula

( = term of type £L:!) if ai is a term of type Ai(i = NGl o) g ERE R

as an (@Y ; and (ia) f(al,...,an} as a term of type A if ai is a term

of type Ai (i =1;..-,n) , for £ Ms in (2) . The axioms and rules con-

cerning entailment (Fx) are given exactly as before; what we have defined is in-

tuitionistic higher order logic with respect to an arbitrary frame of reference.
Next we turn to interpreting Ll in a topos; we follow Lecture 6

Ioc. oit. If we denote the f of r . adopted by F , then we have to

start with an interpretation

M osof e

of F in E , a topos. M associates an object M(A) of E with each type
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parameter A in F ; before we explain what else M should be specified

to do, note that now M(A) is defined for any arbitrary type A (not

just a parameter) in a natural way: e.g., M(N) = the natural number ob-
ject in E , M(P(A)) = P(M(a)) where P( ) on the right-hand side denotes
the power-set operation in E . Now, M must specify a subobject

ME)S e M(Al}x- .. XM (An)

or equivalently, an arrow

MIR) = MA )X .. xM{A ) — Jd%
ik n

(some abuse of notation to identify the two; we'll be more careful only if
it is necessary), for any R e F as in (1), and an arrow

MGEY M{Al)x...XM(An) — M(A)

for £ as in (2). This finishes the definition of an interpretation

M: F— E.
The interpretation of arbitrary terms (including formulas) in
E by M is now defined as before; we alter the notation somewhat, how-

ever. Recall that a term t of type A with exactly the distinct free

variables x X was interpreted as an arrow t : 1 —- M(A) (M(A)

S il £

was written simply A before) in the predogma E[xl,...,xm] ;, Where X,

~

is an indeterminate of type M(Ai} (!) . By functional completeness, t

gives rise to a unique arrow denoted M(t): M(Al)X...xbd(An) — M(A) in E

(so that t equals the composite

<Xl;...,X >
m
;¢ - M(Al)x...XM(Am) w M(A))

Furthermore, in case of a formula ¢ , of course M(¢) will classify a sub-

cbject M(¢) &= M(Al)X. ..XM(Am) -, (also denoted by M(¢) , unless more precise
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notation is forced upon us). Now, as we said, we can take over the definition
of E with the straightforward amplification required by the 'new' terms,

or , we can also give a direct definition of M(t) . What we would like to
have, in final analysis, is a slight variant: given a term t and a list of
district variables ; == ,...,xm?' of respective types Bl,...,Bm, including,

1

but not necessarily identical to, the set of free variables in t , we want to

define
Mx_,,(t) 5 M(Bllx...XM(Bm} — iM(A)
e ™
M
(here t 1is of type A) . Here is one clause of the definition. Given a term
B =iy f(al,..;,an} , with f an operation symbol as in (2), and ; as above,

we have (by induction hypothesis) the arrows

ML) e Mx] — M(A,) .
“X> 5 8 il

M+(t) is now defined as the composite

@
e M'>(al) roe. -rM+(an)
—>] X X Il_} e i
i *1=1M2y)) 5T :
The case of a formula t - = -¢ + = - R(ajsr---,a) (with R as in (1) is no

different since this is the special case when A =JL. We will not give the
other clauses of the definition. They caﬁ be inferred from Lecture 6, loc. cit.
without difficulty. Also, the interpretation of the 'new' terms could be
recast in the form of arrows in predogma-extensions; then the old clauses can

be taken over verbatim. For an exposition of interpreting terms t as M (t)
>
X

as we did (except for arbitrary relation and operation symbol, and for the



subscript ;) , see also Section 5.4, pp.152 — .., in [ P.T. Johnstone, Topos
Theory] . The convenience of having arbitrary relation and operation symbols
will soon be apparent; since examples will abound later, we won't give any
now.

Given a sentence 0 (a formula without free variables) , we say that

o is valid in the interpretation M (or: in E by M), and write M | o,

or M|=U, if M(o) : (=M
E @

(g)!) : 1 — ML equals the arrow 'true'

1 —= & in E or, in the subobject interpretation (note that then M(o) is

meant to be a subobject_of 1), if M(o) is the '.total‘ (maximal) subobject 1 of 1

This is in agreement with loc. cit.; specifically, it coincides with the
entailment 'empty' hgm—ﬁ—,- a being valid as defined there. More

. - + . .
generally, given formulas 4)1.- . .,c_b_n Y and variables x  containing all

free variables of the formulas, we could define the validity of the entailment

n

¢lr---f¢' = ¥
X
as in loc. cit., or equivalently, by

M A9 )R AN (§ ) < M, (v)

+
ble / ! 3 \ X
intersection of order of subojects
- -+ 2
subobjects of Mx] of Mx]

or equivalently again, by

M = ¥ X (917 A ) =+ V)
E

with reference to validity of sentences. (Exercise).
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The fundamental fact is that all logical and non-logical axioms (defined
to be specific entailments in Lecture 5) will be always valid in any interpre-
tation in any topos, as well as all (structural) rules will preserve validity;
of course, this was proved in Lecture 5 and our changes and additions are

inessential. — this fact is expressed by saying that intuitionistic logic is

valid in any topos.

The most important choice of the frame is when it is 'identical' to the
topos E we interpret it in. With any topos E , the canonical frame of ref.
associated with E has all the objects of E as types; in addition, it only
has unary operation symbols £f:A"—" B , one for each morphism

f : A—B ; the identical interpretation of this frame in E does what its

name suggests. With this M , we write [;-: ¢] or [xl € Al,... 2l Eor

M, (¢) ; or even, [¢] if the free variables meant are precisely the ones in
X

¢ . B.g., for £ : A =B dn' E , the image of £ , im £ , 'a subobject of

B, is the same as [y € B : ExeA (£(x) = v)] (exercise) .

We write

E

= o
E i ; : :
for Mcan g itk Mcan the identical interpretation of the canonical

frame in E ; also, we write
E
TFE o

E E
to mean: if F f\ T ', then F G



E
Warning: T = o is not the same as

E
= (AT — o)
the second is stronger!
The canonical frame is slightly but usefully extended in the following way.

Given objects Al,...,An i ‘B, cand a subobject R =—4-A1X...X An >

we introduce the relation-symbol i o ] Alx..;xﬁ. into the language;
n

of course its canonical intrepretation being the subobject we started with.

Similarly, an Operation-symbol £ : Alx...XAn "— " A comes from an

arrow £ : Alx...X‘An +—An =k R ——— It looks like we have not done

anything, but consider the following example. We define a subobject

R&== A XA of A XA tobe an equivalence relation

(Grothendieck) on A E

E
]== 'R is reflexive, symmetric and transitive'
E
i.e., F= R xx
E

|== Rxy —r RyX
|= (Rxy A Ryz) — Rxz

(we have omitted ¥

A4 in front as usual). Without the 'extended'
XeA yeA

canonical language, this could be said only in a considerably more compli-

cated manner.
Another situation in which we have an interpretation M : F — E

arises as follows. Imagine that we havea functor F : E' — E ; assume



at least that F 1is left exact. Then F can be regarded an interpretation

of the canonical frame FE; associated with E' in E ; this is quite

obvious if we consider FE' only in the restricted sense, namely, with

types and unary operations only. But even in the extended sense of FEr

this 18 OK. If c.ig. R "Seep N AlX...x An is a relation symbol based on a
subobject R G—DAlX...XAn) in E’ , then, since F is left exact, F(Alx...XAn) =

FAlX ess%EA - ; and - -F (R ¥ Alx ...XA ) 1is a subobject FR<—» FAlX e .XFAn (since
n n
a left exact F takes a monomorphism into a monomorphism). Thus, F interprets

the symbol R " &=p " A, %.. .XAD as a su.bobject FR =) F(Al)x...XF(An) as it

should.

Returning to the example above, let R &% A x A be an equivalence
relation in E’ . F(R) being an equivalence relation on F(B) (in E) is equi-

valent to saying that the three axioms above are valid in E with R re-

placed by F(R) and A by F(A) . This is equivalent to saying that in the

interpretation F : E' — E those three sentences, now as they are, without

R and A being replaced by anything, are valid (!) . It can be shown

(see MR as well as [ Fourman-Scott]) that the following is true. Whenever o
. r = 3

is a Horn sentence in the language of E (0 of the form qx(('rrl 'I'Tn) Ty
with LA first order atomic), then a left exact F : E' - E preserves the
walidity of o : ’

E

|== g S |== o RS

I T validity in E by F

validity in the
identical inter-

pretation.



So, we conclude that a left exact functor preserves equivalence relations.

1.2. Extensions and restrictions

An important extension of Ll is the consideration of infinite con-

junctions and disjunctions. Syntactically, we adopt AL and Y I as
formulas whenever I 1is a set of formulas satisfying the restriction that
there should be altogether finitely many free variables in formulas in I .
The interpretation of the new class of formulas will be defined by the
following additional clauses: if M : F + E is as before, free variables

" -
of E are in =x , then

M, (AZ) = A{M, (0) : 0 € I}

X X

inf (intersection) (g.%.b.) of a set of

subobjects of M[;] Sk E

M+(VEJ= VM (o) : o€ 5}
X b 4

T

sup (union) (L.u.b.) of a set of
_>
subobjects of M x] in E .
These inf's and sup's don't necessarily exist in an (elementary) topos E ; but
they do exist e.g., in Grothendieck topoi (see below). If they do, the corres-

ponding formulas become interpretable in € ; more precisely, for a formula to

become interpretable, all the infinite conjunctions and disjimctions in the

formula have to be interpretable.
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One also considers parts of the language we have introduced so far-.

Infinitary first order logic is the following 'fragment' of the full language.

Af.otz. T now can have relation and operation symbols with type speci-
fications that can be type parameters only. Terms are built up from operation

symbols and variables only (no { | ... } , etc.) ; atomic formulas are those

n
of the form R(a. ;s«»pa. ) ; with R¥C S A X, . XA , a. term of type A, ,;
1 n L n 1 &

and a, = a, with terms of identical types. Arbitrary formulas are built-up

from atomic ones by finitary and infinitary (\/,/\) propositional operations,

as well as A4 PR , With A a type (or 'sort') in the frame of ref.
XeA XeA

adopted. Coherent (geometric) logic has formulas built from atomic ones using

only A , T(= true) , V , T . Finitary
finitary conj. inf, .disj.
first order logic has no infinitary operations; finitary coherent logic

is meant accordingly.

The reference [ Makkai & Reyes: First order Categorical logic] (MR)
has various results concerning the interpretation of first order logic in cate-

gories. We mention only two. A coherent axiom is a sentence of the form

v® (¢ - ¢) , with ¢ and ¢ coherent formulas; it is countable if only countable
disjunctions are used in ¢ and Y ; it is finitary if only finite disjunctions

are used. A (finitary) (countable) coherent theory is a set (in the case of

'countable', a countable set) of (finitary) (countable) axioms. We have the or-
dinary (SET — ) interpretation of first order (or even, higher order) logic,
which is actually the one we explained above for the special case E = SET = the

category of all sets and functions. For a theory T,, and an axiom o0 , we Wwrite



Tf= o if for all M : F + E , interpretation of F in E, M |=T
E E
(M =1t for ¥ T e T) implies that M |= o . Then ‘ordinary' (model-

E E
theoretical) logical consequence is the same as T F= g s
SET
Theorem 1.1. (i) For finitary coherent T and o , T|= o implies
SET

T|= ¢ for any!topos E .
E

(ii) For countable coherent T and o , the same is true for
toposes E in which all infinitary disjunctions in T and 0 are inter-
pretable.

The proof of this theorem is given by combining Theorem 3.5.4
(ii) (p. 129 in MR) and Corollary 5.2.3 (p. 162 in MR) , together with the

easy observation that the coherent fragment of me is "stable with respect

to M : F>E ™

t

(callads=gs GineME |, p.129) .

Instead of explaining this, we refer to MR where some minimal conditions for
'adequate' interpretations of formulas in categories (not necessarily toposes)
are explained, chief among them being "stability under pullback". Actually,
we will occasionally refer to interpretation of formulas when we don't know

if the. category is a topos; then the definitions in MR must be used.
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Another result is

Theorem 1.2 Suppose that E isa finitely complete category (has finite left

limits). Let RS- A X B be given. Then R is the graph of some arrow

E

£:a—8 (Le P

<<

_ &
- VysB(ny ~r fx = y)) if and only if |=

'R dis Functional®, i.e.

A = .
ik Y1Y2EB ((nyl nyzl gt - y.)

For this theorem, see Thm. 2.4.4 (p.89) in MR. For a topos E , the same

theorem was proved in [ J. Lambek, Fall '79] .

1.3 Remarks concerning the informal uses of logic.

The rather obvious significance of Theorem 1.1 can be spelled out as
follows. Suppose we have made an assumption concerning a few objects and mor-
phisms in a topos € in the form of (a typically finite set say T of)

certain sentences ¢ . in the canonical frame associated with E) being valid
i

S o R We'll see many examples of this situation. Imagine that we have an
'internal topological space' or a 'group object' in E , etc.; all these

notions will be introduced formally later, in the form just mentioned. Now we
want to deduce a new property of the same objects and morphisms, formulated in

the form of the sentence say ¢ being valid in E . Note that what we want is:

E

T F= 0 . Typically, we would have ample knowledge of the situation if E were

the category of sets. If, e.g., the original assumption set T concerns one

or more ‘'group objects', and ¢ 1is a further statement about these groups, then
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ordinary group theory would tell us that "T F= 0 is true in the ordinary sense",

which is equivalent to saying that T F 0 holds.
SET

Now, if it so happens that both T and o are both finitary coherent,
or both countable coherent, then Theorem 1.1 allows us to conclude, without
further work, that indeed T*QE a is true, for the original (arbitrary) topos
E in which T and o were formulated (in the 'countable' case we would need

the appropriate additional assumption). [ Notice that T F=E o implies

E
T F g 2] A similar procedure can be followed in the general case of T
and o being from the full 1language Ll . even in the infinitary sense, al-

though in this case a clear-cut statement is less easy to make. The fact of

intuitionistic logic being valid in E could be used as follows. We would

examine our informal proof of T P o and could find that it could be
SET
L) L]
formalized into a proof T P— o in the formal system mentioned above (see
Lecture 5, [ J. Lambek, Fall'79]) . Then, of course, we could conclude that

D F: g . But, typically, it would be a more-than-tedious task to show the
E

formal probability of T }- o

There is, however, an informal sense of intuitionistic validity. For
an excellent exposition of informal intuitionism, I refer to [ A. Heyting,
"Intuitionism, An Introduction", North Holland, 3rd. revised ed. 1972]. 1In
intuitionistic mathematics, existence is taken seriously; something to exist
is meant that it is possible to exhibit that something. This strong notion of
existence is carried over into the interpretation of disjunction: a dis-

junction FJ; ¢i being true means that there exists an iel such that ¢i
ie
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is true, i.e., that we can exhibitan iel such that ¢i is true. So, the

truth of the disjunction ¢ VY means that I can actually pinpoint one of
the two formulas ¢ and Y and assert that it is true. Therefore, the
disjunction

Fermat's last theorem V —» Fermat's last theorem
has not been shown to be true, since I cannot pinpoint either of the two
statements being ture. [: f[ 5 {‘\ I (: o 08 \’:

Let us give a few more examples. Consider the following sentences in

infinitary propositional logic:

el "k

(M 4.) Ay o ;-L\E/I”’i"‘ ¥)

AR ARE ReFAYRAT

ieI

You can convince yourself that, in ordinary (classicaj)logic, both are wvalid
[ technically, they are SET-valid] . Now, the first one is intuitionistically

valid, but the second one is not. 1If, e.g., (?g; ¢i) A UV 1is true, then we can
find i€ such that ¢i is true; also, we know that 1 1is true; hence
¢i A Y 1is true; so, we have found i€ I such that ¢i A Yy 1is true, as

required. — The validity of the second sentence fails as follows: Suppose

{g&(wivw) is valid. Then for each i , we can actually find that one of ¢,

and Yy 1is true. But now we are stuck; can we actually claim that either

for all i e I (an infinite set, say) we have found ¢i true, or that at

least once, we have found { true? To say so would réquire examining possibly
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infinitely many indices i that we could never complete. — The following example

is instructive. Let, for i ¢ N , oy be the statement: "in the decimal ex-

pansion of 7 , starting with the ith decimal place, there are at least

10 consecutive 7's" , and let ¢, be = o, . EEE b be ?V/ Be o Lli@yy
5 i fefll "

"there is at least one i with the property ...". Now, nobody knows whether

=1y 'or Y is the case. This means that nobody knows if {i}“¢i vV
\.'—-‘\(-‘\-)
this being eqg-
uivalent to Ty

/\

is intuitionistically valid. But we do know £ {¢iv ¢) : given any i e N ,
we can decide if o, is true. If not, ¢, is true. If yes, then >V/ o,

i 5 ie[N i
is true; that's it. — You can find mahjexamples in [ Heyting, loc. cit.] of

this nature that suggest that certain classical truths should not be true in-
tuitionistically. Naturally, to claim that the above is actually not valid
intuitionistically requires a precise definition of intuitionistic truth. Once
we have such, as we do for finitary logic as formulated in Lecture 5, or for
infinitary logic as formulated in Chapter 5, MR, then we can actually prove
that the above is not valid (see also later).

It is quite safe to say that informal intuitionistic validity implies
formal intuitionistic wvalidity. Although one cannot make this quite as precise
as the corresponding statement in classical logic (where it is formulated as
Godel's completeness theorem), it can be accepted similarly to Church's thesis,

actually in the context of the full, even infinitary, higher order logic Ll s

Thus, returning to our starting situation, if we can establish by informal but
constructively/intuitionistically valid arguments that the assumptions T imply

E
0 , we can more-or-less safely conclude that T F= g
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Glossary of notation

Mo
£

makes sense for an interpretation M : F — E and it means that the sentence

4 valid ;
d i
o is (made) {true } inn £ by M

For a set T of sentences,

M T W voeT , N[E o.
E E

P ko
E

makes sense for any language in which T & ¢ are formulated, and any topos

(category) E ; and it means: for all M , M |= T implies M [= 0 . Warning:
t E

(even for finite T)

|=AT +~ 0 might be stronger
E

than T |= o ; the former is equivalent to saying that MAT) < M(o) for all M
° 1 !

a sub-
object of E

(although for E = SET , they are equivalent
(why?) ).

E
F o

makes sense only if ¢ 1is in the canonical frame associated with E , and then it

means that ¢ is true in the identical interpretation.

TI:EU




E £
means: ]=/\ T implies [ o©

(and again, it might be weaker than

E
FAT = g).

1.17



§ 2. Grothendieck toposes.

Historically, Grothendieck toposes came before elementary ones.
Without any regard to history, here we give a brief summary of basic
definitions and facts.

Unless otherwise stated, every category is assumed to be finitely
complete. Also, every category is locally small, i.e. each hom-set is a

set rather than a class.

Definition 2.1. (i) A geometric morphism

between categories El and E2 is a pair

*
of adjoint functors: u 4 u

left-adjoint
left exact (preserving finite left limits).

(ii) A (geometric) inclusion is a geometric morphism u

such that wu, is full and faithful.

Remark. Limits, and "everything else", are not 'distinguished' usually;
they are defined only up to isomorphism. Preservation of limits is meant

accordingly.



Definition 2.2. (&) Let :f be a topos. An:f-topos is a geometric

morphism E %-fi with E a topos. We also say: E is a topos over f’,
with structure map E + f

(1i) The geometric morphism E - ¥ is bounded if

there is an object G € ]El such that for any E € [EI there are: S € |jﬂ,
a subobject I %= u*(S) X G and an epi I —» E,

(iii) A Grothendieck topos is a topos over SET with a

bounded structure map.

Remarks. For any topos E, there is at most one geometric morphism E -+ SET
up to a unique isomorphism; there is one precisely when copowers of any object
in E, indexed by any get, exist in E. (see Prop. 4.41, p. 119 in TT). So,
a topos E is a Grothendieck topos iff E has arbitrary copowers, and the
(essentially unique) geometric morphism E -+ SET is bounded; the latter is

(now) equivalent to the existence of a set G of objects (a set of generators)

in E such that for any E € |E|, the family of all morphisms G -+ E, with
G € G, is an epimorphic family (the corresponding morphism 'E-Gi <> B ds an
epimorphism) .

The classical definition of Grothendieck toposes is given by the notions

of presheaf, Grothendieck topology and sheaf.

Let C be a small category, now not necessarily finitely complete. The

category of presheaves over C is the category of all functors g o SET,

(c°P

denoted ,SET), or even ﬁ.



2.3,

A
Theorem 2.3. C is a Grothendieck topos.

The (easy) proof is essentially contained in the proof of 1.12 (pp. 24-25)
in TT. It is important to know how the (elementary) topos structure is computed
A

in C; this is described in loc. cit.

Let C be as above. A Grothendieck topology on (C is defined by

specifying, for each object A € |C|, a set Cov(A) of families {Ai SR 1 e 1)
of morphisms, the specification satisfying the closure conditions (i) - (iv)
specified below. An element of Cov(A) is a covering of A.

1d
(5} B ——ites 3% = ol

(e0) (pulling back coverings) if {Ai > A: i€ I} € Cov A,
B + A 1is a morphism, then the family of all morphisms B' - B such that for

some i€ I and B' > Ai we have that
P T ——n P
B'" ———————> B

is commutative (B' - B factors through at least one member of the given

i

covering) is a covering of B.

Remark. If C has pullbacks, then the following simpler version of (ii)
can be used: for {Ai -~ A: i € I} € CovA, and any B » A, the family
{Ai TR m i € I} is a covering of B.

1

(iii) (composing coverings) if {Ai > A: i€ I} € Cov(a),

and: A > A0 3 € F:1 € Covl{n,) for al)l i e T; +then
ij 3 i3 1

2,, >3, > 8 j ed,y 11} e Covin).
ij 1 3
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(iv) (monotonicity). Suppose {Ai + A: i € I} € Cov(d), and

{Aé + A: j € J} is such that for all i € I there is j € J such that A, A

factors through Aé + A. Then {A; # Ay j € JF ¢ Covwia).
A site is a category with a specified Grothendieck topology on it.

Remark. See SGA4. MR contains an almost self-contained introductory chapter
(Ch. I) to Grothendieck toposes; there, however, only sites with finitely complete
underlying categories are considered.

Qa,
et ws Eix a s8tte L. Tet {Ai —2 4+ a:4ie€1)ecCovih) and let F be

a presheaf F: cP 5> SET. Let <§i: i € I> be a family of elements (sections)

Ci € F{Ai) (i € IT). We say this is a compatible family of sections if the

following condition holds: whenever 1i,j € I and B -+ Aj are morphisms such

N
Vo

that

p o
kN

commutes, we have that F(f)(&i) = F(g){gj) (both are elements of F(B)).

o.
F is a sheaf if for every covering {Ai N A: i€ I} of any B € [C|,
and any compatible family of sections Ei € F(Ai), there is a unique section
£ ¢ F(A) such that F(ai)(g) = Ei for all i € I. The category of sheaves

= A
sh(C), or C, is the full subcategory of C whose objects are the sheaves.
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~ 2 J’\
. J i ; i .
Theorem 2.4. The inclusion functor C —— C is a geometric inclusion,

i.e. it has a left exact left adjoint, called the associated sheaf functor.

For the proof, see MR, Chapter I, Section 2; or, in a more general
context, Section 3.3, pp. 84 -, in TT; or again, in SGA4, Vol. I, Exposé

ITI; Pp. 228~

~

Theorem 2.5. C is a (Grothendieck) topos.

For the easy but important proof, see 1.12 Proposition in TT, pp. 24-25.

There is another set of "exactness conditions" that can replace those
defining elementary toposes in the definition of Grothendieck topos. A
geometric category is one that

(i) has finite left limits

(ii) has stable sups (of arbitrary families of subobjects of a

given object)

(iii) has stable images;
these are called =-logical in MR (see Definition 3.4.4 there), and these are
the ones in which the infinitary coherent language can be 'adequately' inter-

preted (see 3.5.4(ii) in MR). A geometric functor (called an =-logical functor

in MR, 3.4.5) is one that preserves the structure listed under (i) - (iii) above.

An equivalence relation R“— AXA in R was defined (as an example) in § 1.

A quotient of R AXA is a morphism A £ ;g (with B possibly written

as A/R) such that



(px = yv). (p 1is an (extremal regular) epi)

L

X,x"€A (Rxx' <> p(x) = p(x")).

A family of morphisms a, Ai + B (i € I) (with B possibly written as EEE-Ai)

is a disjoint sum if

FB o, {(x) = a lx') 2x=x" (i e I)(og 1is a nmono)
i 3 i

R o
= VxeAi,yt—:Aj (@00 = a,tn) > |

(the subobjects Ai°-—+ B, Aj‘———+ B are disjoint)

R
F VyeB i\e/I erni la,ix) =)

(the family of the ai‘s is jointly surjective).

A =-pretopos is a geometric category satisfying the following two
additional axioms:
(iv) every equivalence relation has a gquotient;

(v) every set of objects has a disjoint sum.

Finally, a Giraud topos is an «-pretopos with a set of generators (c.f. the

Remark after the definition of Grothendieck topos).



el

The above definition is a variant of the 'classical' Giraud definition,
see 1.4.3 in MR. It is designed to emphasize the connection with infinitary
coherent logic. Proposition 3.4.8 in MR is the statement of the equivalence

of the two wvariants.

Theorem 2.6. (Giraud's theorem) The following are equivalent for any

category E.
(i) E is a Grothendieck topos
(ii) E 4is a Giraud topos
(iii) There is a small category C and a geometric inclusion
E s €

(iv) E is equivalent to the category of sheaves over a small

site.

The implication (iv) = (iii) is Thm 2.4 above. The equivalence of (ii) = (iv)
is proved in SGA4, and in MR, Theorem 1.4.5. The equivalence of conditions (i)

and (iii) is proved, in a more general form, in TT, 4.46 Theorem (p. 123).

*
Theorem 2.7. A functor F: E » E' between Grothendieck toposes is u for

some geometric morphism u: E' - E if and only if F is geometric.

For the proof, see 3.4.10 in MR (p.124).

Definition 2.8. Let C, D be sites with finitely complete underlying

categories. A functor F: C > D is continuous if it is left exact and transforms

any covering into a covering.
Remark. This terminology is at variance with that in SGA4, and TT; we call
'continuous' a functor that they would call 'continuous and left exact'.

The canonical topology on any category can be defined (see MR and SGA4) ;

on a Grothendieck topos E it is the same as the one defined by



£
1 w9 — =
o, =i e I} € Cov(E) \/ L&) ~1,
ieT
- Ky T (£, (y) = x).
xXeE iel yeEi i

Any Grothendieck topos is considered a site with its canonical topology; a

functor between Gr. toposes is continuous iff it is geometric (3.4.10 in MR).

Theorem 2.9. Let C be a finitely complete site, let &: C > E be the

A 2
i a . i
composite C Y, ¢ -2 C of the Yoneda embedding followed by the associated
sheaf functor. Then € has the following universal property: for any
continuous M: C - E into a Grothendieck topos E, there is a geometric

functor M: C » E, unique up to a unique isomorphism, such that the following

commutes:

0 s
M

M e {7y
= ?

More strongly, the functor

Con(E,E} + con(C,E)

defined by composition by € (from continuous C - E to continuous C + E)

is an equivalence of categories.



For the proof, see 1.3.15, although the part after 'more strongly'

is not stated there. See also Section 4.9, Exposé IV, SGA4, p. 354.
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§ 3. Complete Heyting Algebras.

We follow here FS closely.

3.1. The category of complete Heyting algebras.

Definition 3.1.1. (i) A complete Heyting algebra, cHa, or local lattice, is

a poset (partially ordered set) (H, £) with a maximal element, denoted 1,
such that any two elements x,y € H have a greatest lower bound x A y, and any
set I of elements of H has a least upper bound denoted V@, and such that

the following identity holds

Vo) A x = \QY Aixs ¥ € B}y
(ii) A morphism of cHa's, h: H + K, 1is a map between the underlying
sets of the cHa's H, K that preserves <, 1, A,\/: hix A v) = hix) Ahix),
hVe = Vih(x): x € L} (preservation of <, 1 being a consequence).
(iii) The category cHa of cHa's is the category whose objects are the cHa's,
and morphisms are as specified, with composition being the composition of maps

between two underlying sets.

Remark. We will use the same latter, say H, for the cHa and its underlying

set. For emphasis, we might write ]H| for the underlying set. Also, we shall
: : - (H) . : :

write something like \/ for sup in H, etc.; we won't do this unless

forced to.

Main Example. Let E be a topological space, and let H = 0 (E) be the

collection of all open sets of E. (A space E is understood to be given by
0(E) such that ((E) is closed under finite intersection and arbitrary union).
Then, with set-theoretic containment as the ordering <, H is a cHa: A is
ordinary set-theoretic intersection, V’ is ordinary set theoretic union. - It is

far from being true that every cHa is isomorphic to one of the form 0 (E).



The importance of this example comes from the following further connection.
Given any continuous function £: E - E' between top. spaces, one has the
inverse-image map: f-l: OE") ~ O(E)(f_l(v) = {x € B: £(x) € V} for any
v e O(E')); it is immediate that f-l is a cHa-morphism. For a significant
class of spaces, indeed, for most spaces of interest, there is a converse to
this statement: every cHa-morphism between the cHa's of opens gives rise to a
unique continuocus map (in the opposite direction) between the spaces themselves.
We will explain this in detail a bit later.

A very special case of open set algebras is a 'power-set algebra'. For
any set X, the power-set P(X) of X 1is a cHa with containment as the order;
this is the special case of the above O((E) with E the discrete space on X
(every subset of X is open). Classically, [P(X) is in fact a complete Boolean
algebra (see below). We say 'classically' because we have in mind a context,
the context of a given ambiant topos, when this will not be true any more, but
when we still will want to be able to talk about 'internal' cHa's etc. Although

we don't want to make any formal statement about facts being proved intuitionistically,

we want to point out distinctions informally that will help us later to formally
internalize things when we come to that.

As a matter of fact, intuitionistically P(X) is not a Boolean algebra,
and indeed, much worse is the case.

Let's consider the power set P(1) of the one-element set 1 = {*} .
In ordinary (classical) mathematics, {4 has two subsets, namely # and 1
itself, hence P(1l) is a 2-element set. Intuitionistically, this is not a
valid statement any more. One can e.g. define the subset X of 4 by the

following specifications:



* ¢ X< Format's last theorem is true. This is a perfectly good
definition of the subset X < 1, but we don't know if X is empty or X = 1.
[ Recall, formally, that P(1) in a topos is the algebra of truth values]. 1In
other words, in intuitionism, it is perfectly legitimate to talk about [P (1),
but P(1) is not the same as a two-element set!

Now, let us return to the familiar context of classical mathematics. Then
we see that P(4), as a cHa, is an initial object of cHa: given any cHa,

H, there is a unique cHa-morphism
P(l) - H,

and OH(=V{H)ﬁ) to @ = (o s

namely the one that assigns 1H to 1(=L i

[P(ﬂ.))

Actually, P(1) is an initial object of cHa on purely intuitionistic grounds as
well. We will return to this point when it will be necessary; officially, we
stay in classical mathematics for a while.

cHa's are defined in an 'algebraic' manner, with operations satisfying
identities (£ 1is redundant since x £y * x A y = x), although one of the
operations, \/: is an 'infinitary' one (it operates on sets of elements). As
a consequence, projective limits of arbitrary diagrams of cHa's is computed
'as usual'; technically, we say that the underlying set-functor cHa - SET

creates (projective) limits (see CWM). E.g., the product izIHi of a family

{Hi: i € I} of cHa's has the cartesian product iEI|Hi[ as its underlying
L(H. )
set, and operations are defined element-wise: e.g., (N/’G.}{i) = fV * 5.(1)
J€d 3 Jjed 9

|H.! (exercise) .
4 [ EEREEEOS.

£ famil g g e g) = I
or any family { 5 | } iy
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Considerations of colimits, and the related question of free algebras,
will be important for us. For this, and other purposes as well, we will now
discuss a method of presenting cHa's. This method will be closely related
to EiEEE} in fact, we now define a particular kind of site. A E—site, by
definition, is a poset (P,<) with 1 and A, together with a Grothendieck

topology on (P,<), the latter considered a category in the following (familiar)

way: the objects are the elements of P, [hom{p,p'}] = 1, and ]hom(p,p')[ =ik
iff p £ p'; it is clear that this uniquely defines a category. In particular,
what we have is the relation Cov ¢ P(P) X P of covering: (I,p) € Cov*<> % € Cov(p)

with our earlier notation.
The definition of Grothendieck topology restated yields now:
(1) {p} e cowipl:
(i) T € Covip) = Z(A)g ¢ Covig) Hhewe ZI(A)g = {x A g: x e Zlk
() a3 f {pi: i € I} € Cov(p), and Ei € Cov(pi), for all i e T;

then U Ei € Covip).
ieI

(iv) if I € Cov(p), ¢ consists of elements =< p, and & dominates
Z in the sense that for all x € £ there is 'y € ¢ with x = y,
then @& e Cov(p).
For later reference, we note the following as a consequence:
(v) Suppose ¢ consists of elements < p, L € Cov(p), and for every
g e Z, we have @&®(A)g € Cov(g). Then & € Cov(p).
Proof: by (iii), the set &(A)Z & {x A g:; xe &, ge Bl = B (a(n)g) - Covip).

gez
On the other hand, clearly ¢ dominates &(A)E, so by (iv) © € Covip).



A morphism of p-sites is defined to be the same as a continuous functor
between sites: in other words, £f: P -+ Q, for p-sites P and 0Q, is

a function between the underlying sets that preserve =<, 1 and A as

=7 r

well as satisfies:

Y € Cov(P)(p) = £ e CDV(Q)

e
= {f(p): p € Z}.

(Elp))s

We have thus defined the category of p-sites, B:EEEEE'
Notice that every cHa is a p-site, in a natural way:
L € cowvix) = V@ = x. Also, between cHa's, a p-site-morphism is the same
as a cHa-morphism. In other words, cHa is a full subcategory of p-sites.
— ——

Now, every p-site can be regarded as a presentation of a uniquely

determined cHa. We explain this in the properly categorical spirit.

Theorem 3.1.2. The inclusion i: cHa“—— p-sites has a left adjoint:
e —

cHa ; & — p-sites.
e = >
T
L oo i
Equivalently(!), for every p-site P there is (a necessarily unique, up to iso.)

cHa L(P) together with a morphism of p-sites ¢€: P - L(P) with the following
universal property: for any cHa H and any p-site morphism f£: P + H there is a

unique cHa-morphism f: L(P) - H such that

2 —'-)- L(P)

i gk



commutes. L(P) is the cHa defined by P (as a 'presentation'). We can
™
make sure that L(iP) = P if P is a cHa; in other words,Loi = Id Ha
cHa
Proof. Let P be a p-site. Define the relation < on P(P) as follows:

(P) (P)

I £ ¢ = Vxep(Z(A)x € Cov (x) - ®(A)x € Cov (%)) s

Also, define ~ by

a0 Rl R

A
~1

Clearly, < 1is a quasi-order, ~ an equivalence, and < induces a partial

ordering also denoted < on L e P(p)/~ = the set of equivalence classes

of ~ . For the equivalence class of I we write: \J(f)E ('formal sup of I').

£
We claim that (L,<) 1is a cHa. Clearly, VA'}{P(P}) is the maximal

element of L. We claim that
\/’(f)z A \/(f)CD = \/(f) (Z(A) D)

It is clear that I dominates I(A)®, hence I(A)p dominates (Z(A)®) (A)p,
for any p. Hence by condition (iv) defining p-sites, it follows that

Ao = 3, daes \ﬂf)(Z{A}¢) < bﬁf}E; similarly, \/{f)(Z(A)¢} s\f{f)é.

Now, assume ¥ < I and Y = &; to show that ¥ < I(A)®, assume that

Y(A)p € Covi(p).



We have that X(A)p, ®(A)p € Cov(p). For any x A p € Z(A)p, we have

that @(A)(x A p) € Cov(x A p) (see (ii)); hence, applying (iii), we get

that U o(A)(x A p) = L(A)@(A)p is a covering of p. It follows that
XeL

Y = Z(A)® as desired. This shows (1).

We claim that

S
VA s Ry, VB

ieI iel

It is clear that Ei s YU Z.. for al¥ T e ¥. Let ¥ be such that Zi£

iel
foraltl ie T, oandagsgume that (Y I,)(A)p c Covip)l. ek 2z e U % ;
i€l ® iel &
then x € Zi for some i € I, and trivialily Zi(ﬂ)x € Cov(x) (by (i) and

(iwy). By 2. =¥, dt feollows that Yis)x = Covix), hence (Y (A)p) (A) (x A p)

3

(2)

P(A)(x A p) € Cov(x A p). Since x A p is an arbitrary element of the covering

family (Y Ei)(A)p of p, it follows by (v) that Y(A)p € Cov(p). We have

iel

shown that (U Zi)(h)p € Cov p implies Y(A)p € Cov(p), hence U I K6 <V,

; ; ]
el iel
required to show (2).



After these computations of A and \/, the 'local identity'

CVUi] An= \ﬁoi A n) for L(P) is a direct consequence of the trivial

equality

(R A= R AT DY
ieI ieTI =

This completes showing that L(P) is a cHa.

Also, defining e(p) = Nﬂf){p}, we immediately conclude that € is continuous
: ; V(f)

(morphism of p-sites). For I € P(P), the element Z € L(P) can now be

written:
V(f)E =\/{s(p)= per} = Vel .

(why?) .
&
Finally, let P —— H be an arbitrary p-site morphism into a cHa H.
In order to have f: L(P) - H a cHa morphism, and also f = foe, we must

define
TVE s VE sy, (3)

Denoting the right-hand side of (3) temporarily by I, we claim that I < o
implies I <% From I < ¢, it follows that for every x € I,
; : ; o V(H) 3
d(A)x € Cov(x) (why?); hence, since f is continuous, f(x) = {f(yAx): yed} =
= \“H){f(y) A f(x): yed} = {VUﬂ{f(yJ: yed) A £(x); in other words,
VHH) : ; i
i) = f[®]. Since here x € I was arbitrary, it follows that
\/(E) V(H) s 2 2 : "
£lz] = f[¢], or I £ & , .as claimed. Now, in particular, it follows
that (3) is a correct definition of the function £ , and that it preserves <.
Using the identifications (1) and (2) of A and Y in LitEY, it s clear
that £ is, indeed, a cHa-morphism.
This completes the proof of 3.1.2, except for the last sentence in the

statement; but it is easy to modify L to make sure that L(P) = P for

B a cila. G
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We can use 3.1.2 to construct colimits in cHa. Namely, first we compute
the colimit in E:EEEEEF applying L: 2355325 = cHa, we'll obtain the co-
limit in cHa, since L, being a left adjoint, preserves colimits. On the
other hand, colimits exists in p-sites, and they are computed as follows.

First of all, notice that any system Cov0 c P(P)xP of 'coverings' or a

poset P with 1 and A gives rise to a well-determined Grothendieck topology,
namely the one EEESEEEEg by Covo, which is the smallest Grothendieck topology
Cov € P(P)xP containing CovO: COVOCCOV. [Note that the intersection of
arbitrary Grothendieck topologies on P is again a Grothendieck topology on P.]

The category of posets with 1 and A , being a category of algebras satis-
fying a certain (finite) set of identities (for A and 1), does have colimits;
see e.g. [MacLane, CWwM]. This is now the way to compute colimits in p-sites.
Given a diagram of p-sites, one first computes the colimit of the underlying
posets—with—l—and—h; then, using the canonical injections from the underlying
posets of the p-sites to this limit, one imposes all the coverings from the
given p-sites on the limit, and finally one takes the Grothendieck topology
generated by the set of all these coverings. Note that this is the smallest
topology that makes all canonical injections continuous.

Instead of giving a precise general statement, we deal with the example
of coproducts that will be important for us later.

Let L and H be posets of 1 and A. Their coproduct, L®H, 1is as
follows. Its elements are "formal intersections" =x@y (xeL, yeH); the operation

A on L®H is:
(x@y) A (x'®y') = (xAx') O (yAy').

The canonical injection L iy TBH dor x > x@lH, and similarly,

=0
H ——> I®H is: y +— lL @ y. It is left as an exercise to check that this

works. Next, 'transport' all coverings on L and H to L®H by defining
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Cov_ < P(LeH) x (LeH) to be the set {<j[I], 5(V5)>: L e P(u)}
vwAdziriel, 3? (V¢)>: ® ¢ P(H}. Note that CovO is the smallest 'pretopology’
that makes j and 3j' continuous. Let L®H also denote the site whose

Grothendieck topology is generated by Covo, and finally, the coproduct in

cHa of L and H is: L(L®H), (denoted simply L®H); the canonical injections

; €
. L®H
are the composites L — ——— L(L®H), and
i € oH
H J L®H L(L®H). It is quite easy to check that the coproduct

so defined indeed has the requisite universal property.

As we said before, an arbitrary specification of covering families
determines a site. More precisely, let P be a poset with 1 and A
("finitely complete"), and for each x € P, let Covo{x) be an arbitrary
collection of sets {xi: ieI} such that X, < X; {xi: ie1} € Covo(x) is
read to mean: {xi: ieI} is a 'prescribed' or 'distinguished' covering. Then
there is a Grothendieck topology <Cov(x): xeP> generated by the prescribed
families: the reason is that for any family <Tj: jed> of Grothendieck
topologies on P, Tj given by <Covj{x): xeP>, the specification

Covix) = [N Ceov. ix)
jed

determines a Grothendieck topology, the 'intersection' of the given topologies

T (easy exercise); therefore, the intersection of EE} topologies

A= <CovT(x): XeP> s.t. Covo{x} c CovT(x) ¥xeP is the smallest topology
<Cov(x): xeP> with Covo{x) € Cov(x) (¥xeP); this is the one that we call the
topology generated by <Cov0{x}: xeP>., If we are forced to call it a name,

we call a P as above together with a specification <Cov0(x): xeP> as above

a pre-p-site. Bvery pre-p-site determines/generates a p-site with the same

underlying poset as described. Now, we have the following fundamental fact:




Proposition 3.1.3. Let P be a pre-p-site with prescribed coverings

Covo{x}(xeP); let us denote the p-site determined by the pre-p-site by

P too. Let Q be another p-site. Then for a 1,A-preserving function
Erobs o ()

to be a p-site morphism it suffices to have that f carries prescribed

coverings into QO-coverings.

Proof: In other words, what we are saying is that if the left exact f carries
prescribed coverings in P into Q-coverings, then f carries any covering of
the site P into a Q-covering. We prove this as follows: we consider

*
Cov (x) y the set of those families {xi: ieT}
such that xi < x (VieI) and such

that {f(xi): ieI} is a Q-covering;

* *
and we prove that T = <Cov (x): x€P> 1is a Grothendieck topology on P.
Once we have done so, then the assertion clearly follows. - The verification

*
that T 1is a Grothendieck topology on P is straightforward (exercise). O

3.2 Spaces, duality, locales.

We now return to our 'main example'. For any topological space E, we

have defined O0(E), the cHa of open sets of E. We actually have a functor

0(-): Top > cHa®P

from the category of topological spaces to the opposite of cHa, with the

LAl =1 ;
definition O0(f) = £ ~, for f: E + E' continuous (see above).



Theorem 3.2.1. The functor 0(+) has a right adjoint.

Proof. [Consult CWM, IV.1 for terminology.] Let us call a cHa-map

p:H = P(1) an (abstract) point of H. Equivalently, such a p can be

described by the set F = {UeH: p(U) =1} ¢ H; F has the following
properties: (i) it is a filter, i.e. 1l€F, F is closed under A, and
xeF and x<y imply vyeF; (ii) whenever \/ x, € F, then for some

1c¥
ieI, xiéFi . Such a set FcH can be called a (completely) prime filter

on H. Conversely, every prime filter gives rise to a unique cHa-map
h: H~>P(1). The set Pt(H) of all points of H has the following
natural topology: for any UeH, let [U] = {p: p(U) =1}; let

Ot(H))) = {[ul: UeH} (check that this is topology!). The function

Plate)

H > Pt(H) ¢ |Top|

can actually be considered a functor (cHa}oP + Top: with any h: L + H,
T —

we associate the function

Pt(h): Pt(H) — Pt (L)

p e POl

We claim that Pt(-) is a right adjoint to 0(-). 1In fact, for any space
E, define et Pt(0(E)) as follows: for any x€E, nE(x) is

p: 0(E) > P(1) such that for UeO(E), p(U) is the subset of ¢ of 1
for which * € ¢ © x € U. ("Classically" this is the same as to say that
g =1 if x e U, and 9 =¢ if x ¢ U.) It is easy to verify that

p € Pt(0(E)) and that Ny is a continuous map. Also, for H € ]cHa|,
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define €y H-> O0(Pt(H)) by EH(U] = [U] (see above); again, it is clear
that EH is a cHa-map. Moreover, it is immediately checked that n( ) and
E( ) are natural transformations:
ney: Idn ——> Pto(), s(}:OOPt—'—+Id ot WL
el (cHa) P
We claim that n( ) and e( ) are the unit and the counit, respectively,
of an adjunction 0(-) 4 Pt(-). This means (for n) that whenever

f: E > Pt(H) 1is a continuous map, then there is a unique cHa-map

g: H > 0(E) (!) such that the diagram

e
E ————— Pt (0(E))

£ Pt(g)

Pt (H)
commutes. Assume g is such, and let us adopt the 'prime filter' definition

of points. Then we have

XeR '——T—]’—‘—*v* ‘[UEO{E): XEU}
E

Pt (g)

f(x) = {heH: xeg(h)}

in other words, for heH and x€E, we have

x.€ gth) <2 _h € £(x)
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This immediately tells us that g is unique, and we have to define g(h) =
{x€E: h € £(x)} (heH). Since for heH, [h] = {p € Pt(H): hep} is open in
Pt(H), and f is continuous, we have that g(h) = f_l([h]) is open in E,

hence g is indeed a map g: H > 0(E). Since both f_l and h |— [h] are

cHa-maps, so is their composite g. - We have verified that n( ) is indeed
the unit of an adjunction in which 0(-) is the left adjoint of Pt(-).
- It is left an exercise to verify that ¢ is the counit of the same

ki 3

adjunction. O

In general (using the notation in CWM, IV.l.), if <F,G,0>: X — A
is an adjunction, and X' is the full subcategory of X consisting of those
objects x for which n: X -+ GFx 1is an isomorphism, and A' ¢ A is defined
dually, with € replacing n, then for every x ¢ [X'[, we have Fx e |A'|:

since we have that

Fn eF
Fx £, FGFx ——2— Fx

is the identity (see (8), p.80, loc.cit.), and ¥n 1is an isomorphism (since
X

nx is), it follows that S is an isomorphism. Of course, the dual statement

incl . F incl.
ey x A factors through ar &2RE2, g,

also holds. Therefore, X'
call the resulting functor X' — A' by F'. Similarly, we have G': A' — X'.

Now, the very definition of X' says that the composite G'F' is isomorphic

to Idx,, and the isomorphism Idx, > G'B* is8 LI restricted to X';
similarly, F'G' is isomorphic to IdA,. In other words, F' and G' are
equivalences.

Definition 3.2.2. A space E is called sober is n: B Pt(0(E)) is a

homeomorphism. The cHa H is said to have enough points if €y’ H > 0 (Pt (H))

is an isomorphism.
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Coreliligry - 3. 253; The category of sober spaces (full subcategory of Top whose

of objects are the sober spaces) is equivalent to the opposite of the category
of cHa's with enough points, with equivalence functors 0(-) and Pt(-) properly
_ restricted. 1In particular, the category of sober spaces is fully and faithfully

embedded into (gﬁg}oP by the functor O(-). O

Proposition 3.2.4. Any Haussdorff space is sober.

Proof. Instructive exercise; it is not true intuitionistically (see FS). O

With 3.2.3.in mind , cHa's can be considered 'generalized spaces'; the
continuous maps then should be the same as cHa-maps except that they should
be considered to point in the opposite direction. The opposite of the category

o
EEE! (cHa) P

, is called the category of locales. In other words, a locale is
the same as a cHa, except that a morphism f: H + L between locales is the
same as a morphism L - H between cHa's. In this context, if E is a locale,
the notation O0(E) is used for E itself, if we want to consider it an object
of cHa. Similarly, we write f_lz O(E") =~ 0(E) € EE? ok  £5 E S B £ Ibg.

Some further important remarks concerning these notions; we use the

notation introduced in the proof of 3.2.1.

Proposition 3.2.5. (i) For any cHa L, Pt(L) is a sober space.

(ii) For any top.space E, 0(E) is a cHa with enough points.

Remark: This means that the arrows
Pt (L) Pt (0 (Pt(E))) (1)
"ot (1)
0(E) 0 (Pt (0(E))) (2)

€0 (g)
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k%% *
are always isomorphisms. This reminds one of the identities K = K

*k%k *
H =H of Galois correspondence; however it should be noted that the

arrows corresponding to (1) and (2) for a general adjunction X e A (F-{ G)

G
. ; i Free
are not necessarily isomorphisms (look at SET ——————q-gga i
abelian gps
"underlying set"
Proot ' of 3025, It is a general fact (quoted above) on adjunctions that

the composite

Pt(L) ———————r PELO(PE(L))) N Pt (L)

bt (1) L

is the identity. Therefore, to show (i), it suffices to show that the

composite
Pl (pt (L) }) —+=—— PE{L)} —— PL(0(pt(L))) (3)
Pt (e ) n
L Pt (L)
is the identity as well. - We will use the 'prime filter' definition of points;
for UeL the open set c© Pt(L): eL(U) = [U] was defined so that
Byl =1 e F (4)
for F € Pt(L). - Let F' € Pt(0(pt(L))); 1let's follow the course of F' along
the composite (3):
F' | F | g
BEGy) Tpt (L)

where



Bolde

e Biu] e B" (5)

bl e Fr~—F ¢ (B8] == V&P
=

arb. element of by (4)

Olpt(L)); UeL
s i) e B!

by (5)
- F" = F', as claimed.
U for part (i)
Ad(ii): In general, to say that a cHa H has enough points is

equivalent to saving that for U,V € H

— 1 1 =
VxePt(H)(ng Vex) dimplies U v (6)

(check). Let H = 0(E). For xcE, we have the point X € Pt(H), x = nE(x),

for which
e sav— % = 1}

(we have restated the definition of nE(x) in the 'prime filter' style).
- If in (6) the assumption holds, then for every =x¢E, Ue; = VE;, hence
xeU < xeV; by the axiom of extensionality, U =V as required.
Elffer (id)
[
Sober spaces are important because of the last statement in 3.2.3: for

sober E,E', the continuous maps

E—M.f—+E7

are in 1-1 correspondence with the cHa-morphisms
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11y SNBSS . RS T

(hi= f_1 = 0(f)) [actually, it turns out, for this it suffices for E' to
be sober]; the definition of E' being sober is this same statement with
E the one-element space (check). - We have also learned that once we have
presented a space E in the form Pt(H) for a cHa H, then we know it is

sober. - Notice that all we have said in this subsection (except 3.2.4) is

intuitionistically wvalid.

Finally, we want to point out that discrete spaces are sober (even

intuitionistically). Let X be any set; the discrete space on X, Xdisc'

is the space whose underlying set is X and whose open sets are all the

3 = X) s i i i
subsets of X O(xdisc) ( ); we will (sometimes) write @(X] for the cHa
(with ordinary intersection and union) of all subsets of X.

Let's first show that(]l-) =P(l) is initial in cHa; this will

imply that 1 is sober (why?). Let U e P(1), i.e. U c 1 = {*},

disc
Let L € |cHa|. Consider the subset '{1L|U} & {xeL: x = 1 and * € U}l

GE e L R {1|U} = x = 1L and * ¢ U.
4+

for all xeL

For 1 = LO = P (1) in particular, we have

(1. 5} e 1

0 0

We claim: U = quL |u}. 1Indeed, this just means
0

X 20U =T Vysp(l)(y e {1lu} +x2y) .

for all xeP(1)



But the left hand side is equivalent to:
[* g 1] 9% ¢ 2]
and the right hand-side is equivalent to:

[(y =1 and * € U) = x 2 y]
ice.. [* e U =x=1]:
hence our claim is clear.

Since U =v{lL ]U}, any .Av, -map P(1) - L has to take U into
0 cHa

V(L){1L|U}:

which shows that there can be at most one Av—map P(1) -~ L. On the other

hand, we can check that
L
e S
L
is indeed a cHa-map (exercise); this shows that P(1) is initial.

Now, let Xdisc be an arbitrary discrete space, and let u be a

prime filter on O(xdisc) = P(X); we have to show that there is a unique

xeX such that for any AcX,
A el X €A

(this is precisely to say that X is sober; check). Since X (the

disc

max. subset of X) € u, and

Uil = %
xeX

it follows that there is xeX such that {x} € u.

3:19;
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It follows that
Aeunu~Tmxeld

(why?). - Consider the one-element subset {x} of X, and restrict u

to it: define u' < P{x} by: for U ¢ P{x}
Hoe ul 5= Ve u .

It is immediate to check that u' is a prime filter on P{x}; the condition
HP{X} € u' is precisely the fact {x} € u. - But we know that there is a

unique prime filter on P{x} = P(1) (why?), namely the one u, for which
M6 e S ss fe N
0

henee Wi u s> % € U~ 1%} c U, Tet Asx and Acy:; then U =an [l e

(why?); hence {x} c A n {x}, i.e. x € A; we obtained the other direction
Aeusx e A:

this shows that =x 1is as required. - The uniqueness of x is left to the

reader to show. O

3.3. Infinitary propositional logic in a cHa

Infinitary propositional logic is a sublanguage of the full (infinitary)

Ll. Its formulas are built up from propositional atoms (O-ary relation symbols)
by using A, ¥, =, 5, <>, infinitaryaA andV . A 'formal' entailment has the
form ¢ ¢ with formulas ¢ and Y (now, no variables have to be mentioned;
we can take the conjunction of the formulas on the left to get the single

formula ¢). Remember that the specification of the logic Ll meant that we

have given when an entailment was deducible from a set of entailments;



To

deducibility was defined in terms of axioms and rules of inference. In MR,
the symbol 'F ' 1is replaced by '®' and deducibility itself is denoted by
'F '. Deducibility for intuitionistic infinitary propositional logic is
described as part of deducibility for infinitary predicate logic in MR,
Chapter V.

Of course, we also have informal intuitionistic infinitary propositional

logic, as explained in §1. If one wants to establish a deducibility
= = =
e e I X

informally, one assumes that: "if wl, then wl", LR m2, then wz",
., and, using intuitionistically wvalid argument, one deduces that
MRS e SEReH: it
Here is how we interpret propositional logic in a cHa L. We define

the operations
A, Vv, =, —, P\,/\,V
corresponding, respectively, to the connectives
B Ve e ++'/\'\/

as follows: x A y - has been defined
xVys= \/{x,y}
x— y = \/{zeL: zAx < y}
-x =x —| (] = smallest element of L,= Vﬁ )
xe—y= {2y Ay —>x%)
£ c|ul: At = V{zeL: z < x for all x e I}

\fE - has been defined.



Now, if ¢ is a formula, and one has an assignment I of an element of
L to each propositional atom, then one has a value |rp|I of 0. din I,  upon
interpreting each connective by the corresponding operation in L. We say
that an entailment ¢ =y is valid in I if |q:[I < I¢1I;. we say

that

= = =

9, T U0, wz,---l-fo v (1)
holds in L if for all I, whenever I is an interpretation in L, each

ml e wl is valid dns I, then o =\ 28 valid in I.

Theorem 3.3.1. (Soundness): Any intuitionistic deducibility holds in any cHa.

In other words, if (1) is intuitionistically deducible, then it holds in any

cHa.
The proof is a direct verification, by seeing that each axiom is wvalid
in any I (see above!), and that any rule of inference preserves validity in

any given I.

Theorem 3.3.1 is mainly a moral support; what is really useful is the
'consequence' that if we establish a deducibility informally (but intuitionistically)
then we can 'conclude' that it holds in any cHa.

As usual, the most common situation for an interpretation is that
the frame of reference is the cHa L itself, and I is the identical
interpretation.

Consider the example:

(Vo A (Vy

FV . A Y.) . (2)
iel jeJ * J

o,
J <i,j>eIxJ
This is intuitionistically valid. If we can point to an ieI and have that

mi is true and to a JjeJ and have wj true, then we have pointed to an

<j.g e Bl such Ehat .. A wj is true. - Therefore, 'it follows' that
Al
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(Vo) {\/tpj) & A b,

ieI jed <i,j>eIxJ

holds in any cHa L and any elements ¢i,¢j € L. In fact, we would have
this argument complete if we knew that (2) holds formally. But, actually,

it is easier to invent a direct proof:

(chi} A (\/nbj.) = Vo, A (\/tbj.)) &
i 1 J

=\i/ (t}/w]J Aoy = \i/(}/(wj e =V (03 A ¥)

<, relxd



