Dana Scott's proof of Brouwer's continuity principle

We analyze the topos $Sh(\mathbb{N}^{\mathbb{N}})$, the category of sheaves over the Baire-space $\mathbb{N}^{\mathbb{N}}$: the product of countably many copies of the countably infinite discrete space.

 N^{N} is homeomorphic to the space of irrational numbers, with the subspace topology induced from the standard space of the reals.

We will find out that Brouwer's continuity theorem holds in it: the statement that every function from the reals to the reals is continuous is true internally in this topos.

Some generalities first. Given any topological space T , let H = O(T) = the cHa of opens of T; E = Sh(T) = Sh(H). Then the real number object \Re in E can be identified as the sheaf of continuous functions $U \longrightarrow \mathbb{R}$ from opens U of T to \mathbb{R} , the space of the standard reals. In other words, \Re as an H-set is as follows:

and, with writing |s| = dom(s) ,

$$|| s = t || = || s =_{R} t || = int{x \in |s| \land |t| : s(x) = t(x)}$$

(int(S) is the interior (largest open subset) of the set S(T). We have Es = |s|.

The relation < on R is given by

$$|| s < t || = {x \in |s| | t| : s(x) < t(x)}$$

(since s , t are continuous, the last set is open),

and the operations + , \cdot , - , | | (absolute value) (and, indeed, all the usual continuous operations such as exp , cos , sin , etc.) are defined pointwise: ,,

etc. The closed interval [s,t] is defined by the condition

$$u \in [s,t] \iff (\neg(u < s) \land (\neg(t < u))$$
,

and thus

$$||u \in [s,t]|| = Int(x \in T : u(x) \in [s(x),t(x)])$$
.

The rational numbers are identified, under the above identification of the reals, with the constant functions with values the rationals. The object of rational numbers, a subobject of \Re , is denoted by \mathbb{Q} .

(As a reminder, let me mention that the above are not definitions; in the topos E, the concept of (Dedekind) reals, with all the usual relations and operations on it, has a fixed meaning, derived from the axiomatic (intuitionistic) concept. Thus, the above are facts to be verified.)

In the case of the Baire-space, we can make a simplification: we may restrict attention to functions s with the full domain T . Consider the sub-H-set X of \Re consisting of those s for which |s|=T; we put $||s|_{\chi} t ||=||s|_{\chi} t ||$. We have the inclusion i:X $\to \Re$, a morphism of H-sets, represented (strongly represented in the sense of the notes on H-sets, p. 4.5) by the ordinary inclusion $|X| \to |\Re|$. We claim that i is an isomorphism in H-Set . It is clearly a monomorphism; it remains to show that it is an epi, that is

$$\| \forall s \in \mathbb{R} \exists u \in X \ s = i(u) \| = 1$$
.

The truth-value in question is

$$\bigwedge_{\mathsf{s} \in |\Re|} (|\mathsf{s}| \to \bigvee_{\mathsf{u} \in |\mathsf{X}|} ||\mathsf{s} = \mathsf{u}||) ;$$

thus, we have to show

$$|s| \le \bigvee_{u \in [X]} ||s = u|| \tag{1}$$

for any $s \in |\Re|$. But, the Baire-space is totally disconnected, i.e., every open set is a union of clopen (closed and open) sets: in fact, a basis of the topology is given by the sets of the form

$$U = \{x \in \mathbb{N}^{\mathbb{N}} : x(i_1) = n_1, \dots, x(i_k) = n_k\}$$

with k , i $_j$ and n $_j$ $\in \mathbb{N}$, which are also closed (since U is the union of all $\{x \in \mathbb{N}^{\mathbb{N}} : x(i_1) = m_1 , \ldots , x(i_k) = m_k\}$, with $m_j \neq n_j$ for at least one j). Let C be any clopen subset of |s|. Define $u:T \longrightarrow \mathbb{R}$ by putting u(x) = s(x) for $x \in \mathbb{C}$, and u(x) = 0 for all $x \in T - \mathbb{C}$; u is continuous since C is clopen. Clearly, $||s = u|| = \mathbb{C}$. Since the union of all clopen \mathbb{C} (|s|) is |s|, (1) follows.

Since we have the isomorphism $X \cong \mathbb{R}$, we can take \mathbb{R} to be X; the arithmetical operations remain to be defined in the pointwise manner. Note that (the new) \mathbb{R} is full: Es = 1 for all $s \in |\mathbb{R}|$.

In [Scott I], the reals are defined directly as continuous functions $T \longrightarrow \mathbb{R}$; it is then shown that this new notion of "real number" satisfies the axioms of intuitionistic analysis.

Next, we identify the exponential \Re^{\Re} in a convenient way. First of all, according to page 4.36 of [Notes], we have for \Re^{\Re} the H-set F with $|F| = \operatorname{Pred}(\Re \times \Re)$, the set of binary predicates on \Re (for predicates in general, see p. 4.14), with

where $||R| = ||\forall s,t \in \Re (Rst \leftrightarrow Sst)||$, $||Func(R)|| = ||\forall s \in \Re \exists !t \in \Re Rst||$.

Let us say that the function $f:|\Re| \longrightarrow |\Re|$ is extensional if

$$||s = t|| \le ||f(s) = f(t)|| \tag{1'}$$

for all s , t $\in |\Re|$ (this is the condition (5) on page 4.5). Let us define the full H-set Y by letting |Y| be the set of all extensional $f:|\Re| \longrightarrow |\Re|$, and letting

$$||f =_{V} g|| = ||\forall s \in \Re f(s) = g(s)|| = Int(x \in T : f(s)(x) = g(s)(x)) . (2)$$

For any $f \in |Y|$, we can define a predicate $\varphi(f)$ on $R \times R$ by putting $\varphi(f)(s,t) = ||t = f(s)||$; since f is extensional, $\varphi(f)$ is a predicate ("extensional"; see p. 4.13), in fact, $||Func(\varphi(f))|| = 1$ (exercise). The mapping $\varphi:|Y| \longrightarrow |\Re^{\Re}|$ so defined is extensional:

$$\left|\left|\begin{array}{cc} f \end{array}\right|_{Y} g \ \left|\left|\begin{array}{cc} \leq \end{array}\right|\right| \ \varphi(f) \ =_{\Re^{\Re}} \varphi(g) \ \left|\left|\begin{array}{cc} \vdots \\ \end{array}\right| ;$$

hence, it defines a morphism, also denoted by $\varphi\colon Y \longrightarrow \Re^\Re$ (see p.4.5). We claim that φ is an isomorphism; we verify that it is an epimorphism.

So, let R \in | \Re^{\Re} | , and let C be any clopen set contained in $||\operatorname{Func}(R)||$; we construct f \in |Y| with

$$\mathbb{C} \leq ||\varphi(f)| = \mathbb{R}^{\mathbb{R}} || . \tag{3}$$

Let $s \in |\Re|$. By $C \le \|Func(R)\|$, we have $C \le \bigvee_{t \in |\Re|} \|Rst\|$ and $C \land \|Rst\| \land \|Rsu\| \le \|t = u\|$ for all t, $u \in |\Re|$. It follows that

the function $r:T \longrightarrow \mathbb{R}$ defined by

$$t(x)$$
 for any (some) $t \in |\Re|$ such that $x \in |\Re|$
 $r(x) = 0$ if $x \in T - C$

is well-defined and continuous (partly because C is clopen). We put f(s) = r. It is left as an **exercise** to show that f is indeed extensional, and thus $f \in |Y|$. Note that by the definition of r, we have that for all $s \in |\Re|$, $C \le |\Re(s,r(s))|$; it follows easily that (3) holds.

Since ||Func(R)|| is the union of its clopen subsets, we conclude that

$$\mathbf{E}_{\mathbb{R}^{\mathbb{R}}} \; \mathbf{R} \; = \; \left| \left| \mathsf{Func} \left(\mathbf{R} \right) \right| \right| \; = \; \bigvee_{\mathbf{f} \in \mathsf{I}} \left| \left| \varphi(\mathbf{f}) \right| \; = \; \underset{\mathbb{R}^{\mathbb{R}}}{\mathsf{R}} \; \mathbf{R} \right| \right|$$

which shows that φ is an epi (surjective). The proof of the fact that φ is a mono is left as an exercise.

The above isomorphism enables us to identify $\mathbb{R}^{\mathbb{R}}$ as the H-set Y of all extensional $f:|\mathbb{R}|\longrightarrow|\mathbb{R}|$, with equality defined as in (2). The evaluation $e:\mathbb{R}\times\mathbb{R}^{\mathbb{R}}\longrightarrow\mathbb{R}$ (more precisely, the function representing it) is defined as expected: e(x,f)=f(x).

Let us mention again that in [Scott II], the functions from the reals to the reals are defined in a way corresponding to our last form for \Re^{\Re} .

Let $f \in |\Re^{\Re}|$. The extensionality of f , (1') above translates into

$$int(x \in T : s(x) = t(x)) \in int(x \in T : f(s)(x) = f(t)(x))$$
,

or, what is the same,

$$int\{x \in T : s(x) = t(x)\} (\{x \in T : f(s)(x) = f(t)(x)\},$$

or even;

$$cl(int{xET : s(x) = t(x)}) ({xET : f(s)(x) = f(t)(x)} , (4)$$

since the right-hand-side set is closed, as a consequence of the functions f(s), f(t) being continuous (cl refers to closure).

We claim that the stronger fact

Claim 1.

$$\{x \in T : s(x) = t(x)\} (\{x \in T : f(s)(x) = f(t)(x)\}\$$

i.e.
$$s(x) = t(x) \implies f(s)(x) = f(t)(x)$$
 (5)

is also true. To show this, fix s , t $\in |\Re|$ and x $\in T$, and assume that s(x) = t(x) . Let us construct open sets U and V in T such that

cl(U) \wedge cl(V) = {x} and s|U, t|V are bounded.

To do so, we look at T as the space of rationals; we find distinct \times_n ($n\in \omega$) in T such that $\times_n \longrightarrow x$; we take an open interval S_n around \times_n , for each n, such that the cl(S_n) are pairwise disjoint, $x\notin \text{cl}(S_n)$, and the lengths of the S_n tend to zero; by the continuity of the functions s , t , we can choose (decrease if necessary) the S_n so that both s and t are bounded on $\bigcup_{n\in \omega} \text{cl}(S_n) \text{ ; finally, we put } U = \bigcup_{k\in \omega} S_{2k}, V = \bigcup_{k\in \omega} S_{2k+1} \text{ ; cl}(U) = \bigcup_{k\in \omega} \text{cl}(S_{2k}) \cup \{x\}$, and similarly for cl(V), thus U and V satisfy the requirements.

Now, we define a function u on cl(U) \circ cl(V) so that u(x) = s(x) = t(x), and u(y) = s(y) for y \in cl(U) - $\{x\}$, u(y) = t(y) for y \in cl(V) - $\{x\}$. The function u is continuous at each

y \in cl(U) \cup cl(V) , as is easily seen by looking at the cases y = x , y \in cl(U) - $\{x\}$, y \in cl(V) - $\{x\}$ separately. By the Tietze extension theorem (any real valued continuous bounded function from a closed subset of a normal space can be extended to a continuous real valued function to the whole space; T is certainly normal; it is even completely metrizable), there is u \in $|\Re|$ extending the previous u . Now, we apply (4) to s and u , as well as t and u , in place of s and t . We have that x \in cl(int{y \in T : s(y) = u(y)}) cl(U) , hence f(s)(x) = f(u)(x) . Similarly, f(t)(x) = f(u)(x) , and (5) follows.

[] claim 1

The relation says that f(t)(x) depends only on the value of t at x, not otherwise on t; this fact allows us to make a "type-reduction" in the description of the elements $f \in \mathbb{R}^{\mathbb{R}}$; these are, at present, functions $f:\mathbb{R}^T \to \mathbb{R}^T$; we can represent f by a function $\hat{f}:T \times \mathbb{R} \to \mathbb{R}$, as follows. Let $\hat{f}(x,a) = (f(s_a))(x)$ where s_a is the constant function $s_a:T \to \mathbb{R}$ with value a. For any $t \in |\mathbb{R}|$ and $x \in T$, by applying (5) to $s_{t(x)}$ and t, we get

$$f(t)(x) = \hat{f}(x, t(x)) . \tag{6}$$

Claim 2. For any $f \in |\Re^{\Re}|$, the function $\hat{f}: T \times \mathbb{R} \to \mathbb{R}$ satisfying (6) is continuous (as a function on the product space $T \times \mathbb{R}$).

Proof of Claim 2. Suppose not. This means: there are \times , $\times_n \in T$, a, a, $\in \mathbb{R}$ and a positive \in such that $|\times -\times_n|$ (again, we consider T as the space of irrationals), $|a-a_n|$ both tend to zero with $n \to \infty$, but

$$|\hat{f}(x_n, a_n) - \hat{f}(x, a)| > \epsilon$$
 (7)

for all n . Since the function $f(s_b)$ is continuous for any b , we

can slightly move, if necessary, each \times_n so that the \times_n become pairwise distinct, in addition to the above properties. Now, we can define the function to on the closed set $\{\times_n: n\in \omega\} \cup \{x\}$ by putting $t(x_n) = a_n$, t(x) = a; since a_n converges to a, t is continuous; by Tietze, we can extend to $t: T \longrightarrow \mathbb{R}$. By (6),

$$\hat{f}(t)(x) = \hat{f}(x,a), f(t)(x,a) = \hat{f}(x,a,a);$$
 (8)

but f(t) is a continuous function, and hence $f(t)(x) = \lim_{n \to \infty} f(t)(x_n) \text{ ; this is in contradiction with (8) and (7).}$

Theorem. The following statement is true in $Sh(\mathbb{N}^{\mathbb{N}})$:

$$\forall f \in \mathbb{R}^{\mathbb{R}} \ \forall q, r \in \mathbb{Q} \ (\epsilon > 0 \ \longrightarrow \ \exists \delta \in \mathbb{Q} \ (\delta > 0 \ \land \\ \forall s, t \in \mathbb{R} \ ((s, t \in \mathbb{Q}, r) \land |s - t| < \delta) \ \longrightarrow |f(s) - f(t)| < \epsilon)))$$

Proof. We have to show that, for any $f \in |\mathbb{R}^{\Re}|$, and q, r, $\epsilon \in \mathbb{Q}$ with $\epsilon > 0$, we have that

$$||\exists \delta \in \mathbb{Q} \ (\overline{\delta} > 0 \land \forall s, t \in \mathbb{R} \ ((s, t \in \overline{\mathbb{Q}}, \overline{\mathbb{P}}) \land |s - t| < \overline{\delta}) \rightarrow ||f(s) - f(t)| < \overline{\epsilon})))|| = 1$$

(the bars indicate constant functions with the appropriate values). This means

We have

$$(\|\mathbf{s},\mathbf{t} \in \mathbf{E}\overline{\mathbf{q}},\overline{\mathbf{r}}]\| \wedge \|\|\mathbf{s} - \mathbf{t}\| \langle \overline{\delta}\rangle = \mathbf{Int}(\mathbf{S}_{\mathbf{s},\mathbf{t}}^{\delta})$$

for $S_{s,t}^{\delta} = \{x \in T : s(x), t(x) \in [q,r] \text{ and } |s(x) - t(x)| < \delta \}$; we also have

by also using (6).

Thus, we have to show:

where \xrightarrow{i} is the (intuitionistic) operation of implication in the cHa H: $V \xrightarrow{i} W = Int(V \xrightarrow{C} W)$, with $V \xrightarrow{C} W = \{x \in T : x \in V \Rightarrow x \in W\}$. It is immediate to see that $Int(S) \xrightarrow{i} U = Int(Int(S) \xrightarrow{C} U) = Int(S \xrightarrow{C} U)$; thus we get that for the set

$$P_{s,t}^{\delta} = \{x \in T : (s(x),t(x) \in [q,r] \land |s(x) - t(x)| < \delta\} \Rightarrow |\hat{f}(x,s(x)) - \hat{f}(x,t(x))| < \epsilon\} ,$$

we want to show

Now, notice that s and t occur in $P_{s,t}^{\delta}$ only through their values at x . Let, for a , b $\in \mathbb{R}$,

 $\mathsf{P}_{\mathsf{a},\mathsf{b}}^{\delta} = \{\mathsf{x} \in \mathsf{T} : (\mathsf{a},\mathsf{b} \in \mathsf{Eq},\mathsf{r} \exists \ \land \ |\mathsf{a} - \mathsf{b} | < \delta) \Rightarrow |\hat{\mathsf{f}}(\mathsf{x},\mathsf{a})) - \hat{\mathsf{f}}(\mathsf{x},\mathsf{b}) \mid < \epsilon \mid \}.$

It clearly suffices to show that

Let us fix $\delta \in \mathbf{Q}$, $\delta > 0$.Let

 $\mathbf{C}_{\delta} = \{(\mathbf{a},\mathbf{b}) \in \mathbb{R}^2: \mathbf{a},\mathbf{b} \in [\mathbf{q},\mathbf{r}] \land |\mathbf{a}-\mathbf{b}| \leqslant \delta\} \ ; \ \mathbf{C}_{\delta} \ \text{is a compact subset of } \mathbb{R}^2 \ . \ , \ \text{and define for } \mathbf{x} \in \mathbf{T}$

$$\epsilon(x) = \sup_{\{a,b\} \in C_{\delta}} |\hat{f}(x,a)\rangle - \hat{f}(x,b)|.$$

We claim that $\epsilon(x)$ is a continuous function of x . Suppose otherwise; then there is a positive e and a sequence x tending to x such that

$$|\epsilon(x_n) - \epsilon(x)| > e$$
 for all n. (9)

Writing g(x,c) for $|\hat{f}(x,a)\rangle - \hat{f}(x,b)|$ with c = (a,b), $\epsilon(y) = g(y,c_y)$ for some $c_y \in C$ (since C is compact; sup = max); the sequence c_x has a limit point in C, again by compactness, thus without loss of generality, c_x tends to some $c \in C$; since g(y,d) is a continuous function in (y,d) simultaneously, we get that $\epsilon(x_n) = g(x_n,c_x)$ tends to g(x,c). Now, by definition, $g(x,c) \leq \epsilon(x)$, and by (9),

$$g(x,c) \le \epsilon(x) - e$$
 (10)

and

$$\epsilon(x_n) \le \epsilon(x) - \frac{e}{2}$$
 (11)

for all $n > n_0$, with some n_0 .

But $\epsilon(x) = g(x,c_x)$, and by continuity, we can find $n > n_0$ such that

$$|g(x,c_x) - g(x_n,c_x)| = |\epsilon(x) - g(x_n,c_x)| < \frac{\epsilon}{4} . \tag{12}$$

(11) and (12) imply $\epsilon(x_n) < g(x_n, c_x)$, contradiction to the definition of $\epsilon(x_n)$.

Now, let us write $\epsilon(\mathbf{x},\delta)$ for $\epsilon(\mathbf{x})$, to show the dependence on δ . For a fixed \mathbf{x} , $\hat{\mathbf{f}}(\mathbf{x},\mathbf{a})$ is uniformly continuous for a \in [q,r]; it follows that, with a fixed \mathbf{x} , $\epsilon(\mathbf{x},\delta)$ tends to zero with δ tending to zero.

Let $x \in T$, choose $\delta > 0$ such that $\epsilon(x,\delta) < \epsilon$, and, by the continuity of $\epsilon(x,\delta)$ in x, let U be an open neighborhood of x such that $\epsilon(y,\delta) < \epsilon$ for $y \in U$. Reading the definition of the set $P_{a,b}^{\delta}$, we see that $U \in P_{a,b}^{\delta}$ for all a, $b \in \mathbb{R}$. But this means that U is a subset of the left-hand side of (8'). Since we have found an open neighborhood of every point in T contained in that left-hand side, that must be equal to the total space T.

[] Theorem