Dana Scott’'s proof of Brouwer'’'s continuity principle

We analyze the topos Sh(mm} s the category of sheaves over the

Baire-space Hm : the product of countably many copies of the

countably infinite discreie space.

Hm is homeomorphic to the space of irrational numbers, with the

subspace topology induced from the standard space of the reals.

We will find out that Brouwer ‘s continuity theorem holds in it: the
statement that every function from the reals to the reals is

continuous is true internally in this topos.

Some generalities first. Given any topological space T 4, Iet H =
0CT) = the cHa of opens of T ; E = Bh(T}) = Bh{H) . Then the real
number object % in E can be identified as the sheaf of continuous
functions U-—R fromopens U of T to R , the space of the

standard reals. In other words, % as an H-set is as follows:

[R] = {s:U—R : U E H>
and, with writing |s| = dom(s) ,
ls=t|l=|ls=pt] =inttx Elsialtl: st = 03

{ int(S) is the interior (largest open subset) of the set S C T ).

We have Es = |s| .
The relation < on ® 1is agiven by
ls<t] =14t Elsinlt] : stx) < tx)3

(since s , t are continuous, the last set is open),



and the operations + , - ; — 5 | | {(absolute value) (and., indeed, all

the usual continuous operations such as exp , cos , sin , etc.) are

\Jﬁby

fu=s+¢t ]| ='tx Elslnaltinlul : utx) = stx) + £ ,

defined pointwise:

etc. The closed interval [s,t] is defined by the condition
u g [s,t1 &= (=fu < 8) A (9t < W) ,

and thus
lu € Cs,t3|| = Intx€T : wGx) € [sGO, LM IT .

The rational numbers are identified, under the above identification of
the reals, with the constant functions with values the rationals. The

object of ratiornal numbers, a subobiect of % , is denoted by © .

{(As a reminder, let me mention that the above are not definitions: in
the topos E , the concept of (Dedskind) reals, with all the usual
relations and operations on it, has a fixed meaning, derived from the
axiomatic {(intuitionistic) concept. Thus, the above are facts to be

verified. !

In the case of the BRaire-space, we can make a simplification: we may
restrict attention to functions s with the full domain T . Consider
the sub-H-set X of ® consisting of those s for which [s| =T 3
we put ” s =y ” = “ s =£ < ” - We have the inclusion i:X—% ; a
morphism of H-sets, represented (strongly represented in the sense of
the notes on H-sets, p. 4.5) by the ordinary inclusion |X|—[%®] .
We claim that 1 is an isomorphism in H-8et . It is clearly a

monomorphism; it remains to show that it is amn epi, that is
| V=€ Juex s = i || =1 .

The truth-valus in guestion is

I



A Usi— N/ “5 = u”) 3
sElR | uff X |

thus, we have to show

Is1 < \/ |ls = v (1)

ufl X |

for any s € |®| - But, the Baire-space is totally disconnected, i.g.,

every open set is a union of clopen (closed and open) sets: in fact, a

basis of the topology is given by the sets of the form

U= 4{x E mm 2 x(il) =Ny g oeee g W) =03

with k , ij and n. EN , which are also closed {(since WU is the

union of all {x E mm t ACL ) =My 4 e x(ik) =m.3 , with m. ¥ n;
for at least one j ). Let C be any clopen subset of [s]| . Define
u:T—sR by putting uix) = s(x) For x EC , and ui(x) =0 for all
¥ ET-C s u is continuous since C is clopen. Clearly,

“5 = u“ =L . Since the union of all clopen C (Cls] is |s]| , (1)

follows.

Since we have the isomorphism X ¥ R ;, we can take % to be X ; the
arithmetical opsrations remain to be defined in the pointwiss manner.
Note that (the new) R is fyll: Es =1 for all s € [R] .

In [Scott 11, the reals are deféned directly as continuous functions
T—=R ;3 it is then shown that this new notion of "real number”

satisfies the axioms of intuitionistic analysis.

Next, we identify the exponential ﬁk in a convenient way. First of

P the Hemet F

all, according to page 4.346 of [Notesl, we have for §
with I[F| = Pred(f x ®) , the set of binary predicates on R (for

predicates in general, see p. 4.14) . with



fr=gcs8| = ||r= s+ ||Func (ko ||+ |[Func (sh ||

o® TP (RxR)
where || R =, .0, S|| = [[Vs.t€® (Rstesssty]|
|[Func(ry || = ||Vs€x J1t€R Rst]| .

Let us say that the function f:|R|—IR| is extensronal if
l|ls = ]| € ||fts) =fcr]| LR

for all s , £t € |®1] (this is the condition (5) on page 4.5 ). Let us
define the full H-set Y by letting |Y| be the set of all
extensional f:|R|—|R®I| , and letting

lf =, ol = [[Vs€ #¢s) = gis)|| = IntxET 2 F(s) ) = g(s) GOI (@)

For any f E |Y| , we can define a predicate pf} on R x R by
putting ¢(f)(s,t) = || t = f(s) || ; since § is extensional, @(f)

is a predicate ("extensional”; see p. 4.13), in fact, |[Func(p)|| =1

(exercise). The mapping ¢:}Yl-—a|igl so defined is extensional:
I = <l weor =y v I

% {see p.4.5).

hence, it defines a morphism, also denoted by @Y —%
We claim that ¢ is an isomorphism; we verify that it is an

epimorphism.

So, let R E !RRI ;s and let C be any clopen set contained in
”Fum:(m“ : we construct f £ [Y ]| with

C < |letf) = o R|| . (%)
| o& Nl

Let s €E[RI . By C < |[FunctRy|] , we have ©C £ \/ |Rst|| and
tel R |
€~ |Rst]| ~ ||Rsul| < ||t = u|| for a1l t , u € IR| . It follows that



the function r:T7T —3R defined by

tix) Ffor any (some) t € |R| such that x € ”Rst”
if # EC 3

0O iF BT

Fi{x) =

iz well-defined and continuous {(partly because € is clopen). We put
fis) =r . It is 1left as an exercise to show that + is indeed
extensional, and thus F € |[¥ ]| . Note that by the definition of r ,
we have that for all s € |[R]| , C < ”R(s,r(s))“ ; it follows esasily
that (3) holds.

Since “Func(R)” is the union of its clopen subsets., we conclude that
E . R = |IF (RIl = {(f) = R
e R = lFmell =\ flpeor = o s

which shows that ¢ is an epi (surjective). The proof of the fat&:

that ¢ 1is a mono is left as an exercise.

x as the H-set Y of

The above isomorphism enables us to identify B
all extensional f:|R|]—|%R| , with equality defined as in (2). The

R

evaluation e:® ¥ " ——=% {(more precisely, the function representing

it} is defined as expected: e(x,f) = f(x) .

Let us mention again that in [Scott 113, the functions from the reals
to the reals are defined in a way corresponding to our last form for

2r

Let +F £ IRR

| « The extensionality of £ , {1’} above translates into
int{xzET = six) = £ix)> C intixET 2 Fis)i{x) = F{L) )3 ,

o, what is the same,

int{xET 2 s(x) = £ € {xET =z Fis)(x) = F(L)OIT ,

o



or sven,
cl{intixfT = si{x) = £)3) C IxET : Fi{s)x) = F{t)Y{x)3 , (4)

since the right-hand-side set is closed, as a conseguence of the

functions +f(s) , f(t} being continuous ( cl refers to closure).

We claim that the stronger fact

Claim 1.
{RET 1 six) = £{x)>  {xET : fF(s){x) = F{) ()3
={x} = tix} = Fig5)(x) = FL{E) (%) (S)

is also true. To show this, fix s , £t € |Rl and x £E T , and assume
that six) = t(x) . Let us construct open sets U and VYV in T such

that
cl() A clV) = {x> and s|U , t|V are bounded.

i,
To do so, we look at T as the space D;Eratinnaisg we find distinct

% (n € w) in T such that % —s3 x® 3 we take an open interval Sn

mn-3>m

around X for each n , such that the ci(Sn) are pairwise

disioint, = f cl(Sn) ; and the lengths of the Sn tend to zesros by
the continuity of the functions s , t ; we can choose {(decreases if

necessary) the Sn s0 that both s and t are bounded on

Lfcl(Sn) : finally, we put U = k;SEk s V= k)52k+1 : ciliuy =
nEw kEw kEw
chltszk)u{x} s and similarly for cl(V) , thus U and V satisfy

kEw
the reguirements.

Now, we define a function u on cl{ll} v cl(V) so that wilx) = ={x)
= t{x) , and uly) = 5(3,) for v E cl() - {x3 , uly) = t(y) For

y € c1(V) - {3 . The function u is continuous at each



y £ cl(l) v cl(V) , as is easily seen by looking at the cases vy = x ,
y E clil) - Ix2 , v € cl(V) - {x} separately. By the Tietze extension
theorem (any real valued continuous bounded function from a closed
subset of a normal space can be extended to a continuous real valued
function to the whole space; T is certainly normal; it is even
completely metrizable), there is u € |[R| extending the previous u .
Mow, we apply (4) to s and u , as well as t and u ;, in place of
s and t . We have that x € cl{inti{vET : s(y) = uly)} J cllh) ,
hence F(s){(x) = F{ud(x) . Similarly, £(t){x) = F{u)x) , and ((J)

follows.

[l claim 1

The relation says that f{(t){(x} depends only on the value of t at

% 5, not otherwise on t ; this fact allows us to make a
"type—-reduction" in the description of the elements + E XR : these

are, at present, functions f:RT-—amT s we can represent § by  a

function f:TxR—R , as follows. Let f(x,a) = (f(sa))(x) wheare s,
is the constant function sa:T-—am with value a . For any t € [R |
and x €T , by applving (5) to St (x) and t , we get

FOEY () = Flx,t(x)) . (&)
Claim 2. For any f € !ﬁﬁt , the function Ff:TxR-—=R satisfving (&)

is continubus (as a function on the product space T x R ).

Proof of Claim 2. Suppose not. This means: there are x , x_ &l =
a 4 anE R and a positive ¢ such that |[x - xnl (again, we consider
T as the space of irrationals),; |a - anl both tend to zero with

n-—sm , but

-y ey
| $(x_,a ) — fix,a) | > ¢ (7

for all n . Since the function f(sb) is continuous Ffor any b ; we
’ : y : :

T = E el

7




can siightly move, if necessary, each %, SO that the M becoms
pairwise distinct, in addition to the above properties. Now, we can
define the function t on the closed sst {xn : nEpruixdt by putting
t(xn) =a_ ti{x) = a ;3 since a_converges to a,; t is

continuous; by Tietze, we can extend t to t:7T-—R . By (&),

FE)(x) = F(x,a) , FOE) (¢ ) = ¥(x,an> s (a)

but F{t} is a continuous function, and hence

Fitrix) = 1im f(t)(xn} 5 this is in contradiction with (8) and (7).
n-2o
L1 Cilaim 2

Theorem. The following statement is true in Sh(mm) z

Veer® Va,r€q Ve€q (e > 0 — 3560 (5 > 0 A
Vs, tER ((s,t € [g,rd A ls — t1 < 8 —3|F(s) — £(E) | < €)))

Proof. We have to show that, for any § E |£Ri s and g , r , € £ @
with ¢ > 0 ; we have that

[36E0 (3 > 0 A Vs,tER (s, € [g,rl A ls — t] < B —

1£(s) — )1 < N = 1

{the bars indicate constant functions with the appropriate values).

This means

N/ /A s.t € tg,raf| A llis - 1 < B —=|lif - £y < Elp = 1.
S6Q sElRI
*0 tEIR|

on

We have



t|ls.t € g,Faf| A fls -t1 < B = Int(Sg .

L ]

&
5.t
also have

for S = {xET 1 six),ti{x) E [g,r]1 and |six) — tix) ]| < 6 3 we

u = |[1fes) = Fetd | < E|| = xET &2 [ F(s) G = F(E) GO | < €D
St et

= {XET 1 | Flu,8({x)) — Flu,tin)) | € &} ,
by also using (&).

Thus, we have to show:

\J Int N\ (Int (59 ty.iau D= T
otq sSE| R | ¥ oy
6>0 tEIR I

where -Eé is the (intuitionistic) operation of implication in the
cHa H : V23l = Int(V-SsW) , with V -SsW = {xET : xEV == xEW} . It

is immediate to see that Int(S) 23U = Int(Int(S) SsU) = Int(S Ssu) ;
thus we get that for the set

Pi i & {HET = (stx),t(x) € [g,rd A Isi{x) — )| < & =
5

| Flts8i0d) — FAN,EOO0Y | £ €|F

we want to show

\J Int N Int(PS g =T -
=] sEIR | :
520 tEl R |
Mow, notice that s and t ocowr in Pﬁ only through their values

=.t
at % . Let, for a , b ER ,




PY = €T : (ayb € fa,rl A la-bl< & = L $ex,a)) — £ex,b) | < ¢ 2.
F

It clearly suffices to show that

\J Int [ Int (P? Wt = T . (8"
SEQ a€R *
&0 bER

et us Fix S € § , & > 0 .Let

Eé = {{a,b) E m? : a,b E [g,r] A |la - b| g:ﬁ} $ Cé is a compact

3
subset of [R° . , and define for x E T

sup |¥(x,a)) Sl o
(a,bkéﬁﬁ

(X))

Wle claim that “{x) is a continuous function of x . Suppose
otherwise; then there is 2 positive e and a seguence L tending to

¥  such that

Ie(xn) - i)} »e For all n . {7}

Writing g(x,c) for |f(x,a)) — fix,b) | with c = ta,b) , ely) =

gty,cy} for some r:y E L (since C is compacty sup = maxl: the
sequence o hhas a limit point in C ., again by compactness, thus
n
without loss of generality, = tends to some © EC 3 since gly,d)
]

is a continuous function in {yv,d) simultanecusly, we get that e(xr)

= gix_,c_ ) tends to gix,c) . Now, by definition, gix,c) < e(x) ,
mn
and by (P},

gix,c) £ eix) — e (10}

and

etn ) £ elx) ~ {11}

mIm

10



for =21} n > nQ . wWith some LP
But  ={x) = g(x,cxl s and by continuity, we can find n > n such

0
that

Fi — { S Y E -2
Qg(x,cx) gixn,cx)i | i) g(xn,cxfl < T - (12)
(113 and (12) imply E(KHP % gixn,cx) ; contradiction to the

gefinition of E(xn) .

Now, let us write «(x,8) For e£(x) , to show the dependence on § .

For a fixed ® , fi{x,a) is uniformly continucus for a E [g,.,rl ; it
follows that, with a fixed x , €(x,8) tends to zero with §

tending to zero.

let x ET , choose & > 0 such that ei{x,8) < ¢ , and, by the
continuity of &(x,5 in x . let U be an open neighborhood of x

such that el{y,;0) < ¢ For vy £ U . Reading the definition of the set

o , we sse that U Pa for all a , b £ R . But this msans that
a.h a.b

i is & subset of the left—hand side of (B'). Since we have found an

F

open neighborhood of every point in T contained in that left-hand
side, that must be egual to the total space T .

L1 Theorsm
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