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Lower case Roman lettersup to w, (not X, y,....!I) : non-negative integers.

| allow p tomean +o ;then ====0.
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Terminology: When %< X < pll , We say that é isthe first or mai n part of x ; we may

write p(x) for p,and nl(x) for ;L) The second part of x isthe main part of

X - nl( X) . The lemma gives an upper estimate for the second part in terms of the first part.

We can define p(x) by p(x) = [1/x] , the ceiling of 1/ x : the smallest integer
>1/x .Weadlow p=w: p(0)=c.Of course, m(0) —1—
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and the last inequality is a true statement by assumption.

1 : . -
Write m = 1(x) b, W where 51 isthe first part of x ; when x=0 , then

pl(O) =0 and nl(O) =0.

Define



n
M (X) = m(x- kzlnk(X)) :

Also write pn(x) for the denominator of nn(x) : nn(x) = le.By 1. Lemma,
dropping x from the notation, we have the inequality

With afixed x , and dropping x from the notation, write Sy =Py 1.By (1),

2.
S (sn+1)sn>sn ; 2
-2 n-2
2 I, . (2"9) ,,(2"9)
thus, S h+n2Sn . sl—l Is possible; but 5222 , S0 S 25, =2
(n=2) . We conclude
n-2
1 _ 1 -(279)
——=—=<2 (n=2) . 3
Sh Py 1
(o]
2. Corollary Y nn(x) convergesto X .

n=1

Pr oof By definition, for nn+1(x) =1 , we have that

pn+1

n
1 1 1 1

< X- (x) < = <
Pn+1 kglnk Phe171 Sper  PpHPy-D)

By (3), the assertion is clear.

As an example, for x={2 - 1, the expansion given by 2. Corollary (which we will call the
E-expansion) has the following beginning:

1. 1 1 1
3t 137253 % 218201 7 -
1. 1 1 1

=1l+3+ 13t 113t 2333179

12 =1+

+... .

The error of approximating 42 with the sum shown is
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For convenience, | also use X=X Xpp17Xp" n(xn) . Thus, x- kglnk(x) =Xq . Also,

xn+1:(xn) 1 (if I may say s0...).

P 1 1
Now, assume that x isrational, x:—?r>0 .Let ——=m(x) ; p#e.Thus, TS—%
<p-il; and b<ap and a(p-1)<b;

a(p-1) <b<ap.
Thus, O<ap-b <ap-a(p-1) =a.

l_a 1_ap-b_ c _ .
Look at X-B—B- D= bp ~bp_ for c=ap-b ; wehavethat c<a.

00

3. Proposition When x isrationa, the series )
n=1

0
for large enough n ). In fact, if X:—% , thenthesum )
n=1

nn( x) isfinite ( nn( x) =0

nn(x) has at most a non-zero

terms.

Pr oof According to the calculation just made, the numerator of the fraction Xq is
smaller than that of x if the latter is #0 ; and the numerator of Xn+1:( xn) 1 issmaller
than that of X if the latter is #0 . Thus, after at most a steps, where a is the numerator
of x , the process of producing non-zero parts will stop.

Let us define the E-length of arationa fraction x:% , denoted KE(x) , tobetheleast /
such that x£:0 , or equivalently, the largest ¢ such that Xy 1¢0 . We have shown that

a - a a \ _
lE( T) <a . For many fractions - we have KE( T) =a.
3* Observation Whenever n=1 (nod a!) , we have that KE( %) =a .
There are weaker congruence conditions that also suffice for / E( %) =a.



Proof of 3* By inductionon a .

For a=0 and 1, the assertion is clearly true.

Let a>2 , and assume the truth of the assertion for a- 1 .
Since, in particular, n=1 (nod a) , we have, for some m,

n=(mil) Ed+1l=miA- (a-1) .

We deduce
- a a-l1
1= mEg-- 5
1 _ a a1
m  n mCh
a _1,a1
n — m min
_ a _ _ _ _a-1
Therefore, for X=——" pl—pl(x) =m and ( x) 1% " mmR - If 1 can show that the

*
denominator mCh satisfies the condition of 3 with respect to the numerator a- 1,1 am
done -- and | can as you'll see.

The condition n=1 (nod a!) saysthat n=N[&! +1 for some N. We have that our m
aboveis

-1, o N@+1-1

~ ———=+1=Na-1)! +1,
hence
nEl (nod(a-1)!) .
But our denominator isnot m, but m(h . Butbut,
mih =m (nod a!)
and, a fortiori
mih=m (nod (a-1)!)
since n=1 (nod a!) . Thus,
mih =m=1 (nod (a-1!)

which is what we wanted.

By an Egyptian fraction (E-fraction, for short) | mean a (possibly infinite) series of the form



[04]

1
n=1 Pn
where for al n,
P iseither aninteger =2 or « (inwhich case %:%: 0);
n
if Pn=, then Pn+1=Pht2= - @
and, if both Ph: Phsq are finite, we have

According to this definition,

1 1
3+ +0+0+0+. ..

is not an E-fraction; an E-fraction

S S

3 Py
must have p223 [2+1=7 . On the other hand,

1 1
——+—z*t0+0+...

is an E-fraction, and its sum is the same as that of the non-example, namely I—Z .

Unfortunately, the terminology is not accurate historically. Ancient Egyptian arithmetic used
al lax E-fractions, that is, sums of distinct unit fractions as representations of (rational)
fractional quantities.

In fact, on the historical record, we can perceive (see: Victor Katz, A History of Mathematics)
bits and pieces of the following "historical algorithm™ for producing a lax E-fraction

representation for any —?r (except that | have not convinced myself that the process (that |
formulated myself, not by following historians) always terminates (non-termination may
possibly occur only as a self-repeating loop)).

k a

[t , where c=1 ( nod 2) . Write the binary-rational —K in the form of afinite
2
sum of distinct positive, negative, and zero powers of 2 (Yes, that's right: the Egyptians knew

Let b=2



k

how to do this!) —?r now appears as the sum of distinct terms of the form % and EkLEob
with non-negative integers k . In the next step, one decomposes the individual terms of the

k
first kind (the second kind being already unit fractions). One deals with —=— , with

c=2d- 1, using (repeatedly) the formula
2[e e e

2d-1 - d ‘Tdre

(Yes, the Egyptians were aware of this piece of the proper E-expansion!; see Observation 3*).
One may have to repeat the process since equal unit fractions may appear in different parts of
the sum.

Applied to I—Z = ﬁ , the historical algorithm gives
7 _..3_ 2+1 1.1,
g =ltz=l+r=g==1+5+7;

and, dividing with 3 ,

7 1.1, 1
T2 "3ttt 12

Thisis alax E-expansion, but not a proper one. For the Egyptian scribe, this could have been

the officially accepted representation of 12 , and not 12 = %+% , hor I—Z =
%+% , -- but | don't know for sure.
For 11 . . .
or 15 the historical algorithm gives:
11 _ 11 . 11 _ 8+2+1 _ 1., 1.
2°748' 4 - 4 -2%*z3%%
11_2 ,1 1.
127376712
and at this point the Egyptian scribe would have stopped since % was accepted on its own
right, it was not expanded as % = % + % . If he had expanded % , he would have gotten
11 1,1 .1 1 _1. .1 1
2 "2%'6 6" 127273712

which is a proper E-expansion.

When we apply the "algorithm" to %O , We get:



9 9 9 1 9 2 1
5 = ; =2+=>—, 55 =+ ;
20 22E5 52 > 20 5 22E5
_ .21 1 .9 _1 1 1
5=2[8-1:5=3*3% 20 “3* 35 * 20
Thisis not proper, since -(20=15[14+1) . The proper E-expansion of %O is
9 _ 1,1 1
20~ 3'9" 180"
and that of —>— is
11
5 1,11
11 ~ 379799
The historical algorithm gives
o 1,1 .1

11 3 11 33 °

The singling out of the particular sum-of-unit-fractions form we call "E fraction" isjustified by
the following lemma and the subsequent theorem.

Let Py be any real number at least 2 , and define

Pht1 = Pr(P-D+1 (n=1,2,...) . (5

4. Lemma  Under (5), we have Y =

n=1 Pn pl'l'

Pr oof | claim that

n-1
1 _ 1 1 _
kgl b = pl_l- pn'l (n=1,2,...) (6)

For n=1 thisisright. To passfrom n to n+1 , we need

1?2 1 1

Ph pn'1 - pn+1'1

2 2
thus



2
11 _ PpyaPy _ (Pp-1) _ 1

as desired.

By (3) (whose assumption (2), with Sy =Py 1, holds with equality for < by the definition
(4)), (6) implies the assertion of the lemma.

5. Theorem (1) Every E-fraction denotes (convergesto) avalue xJ[ 0, 1) .
(i) Every real number x[[ 0, 1) has an Egyptian fraction expansion
(0] (0]
(E-expansion, for short): x = ) L for an E-fraction L.
n=1 Pn n=1 Pn

Moreover, we have that the partial sums approximate the sum x in acontrolled manner; in
particular,

N
05x-21<1,

n=1 Pn PN -1

where we have the estimate (4) holding for all n . Furthermore, D 1_ T tends to zero
N
double-exponentially: see (3).
o 1
(i) Every rationa xO[ 0, 1) nQ hasafinite E-expansion (x = ) N in
n=1 "n
which, with a suitable N, Pp=® for n>N).
(@iv) Suppose x[[ 0, 1) has two different E-expansions
(o] (o]
1 1
x = 7 = Lo (7)

n=1 pn n=1 qn

Let N be the first integer for which pN;th;then either P\~AN - OF ApPP) > 8Ssume, eg.,
the first alternative. Thus,

1) Ph=a, for 1<n<N, and NG INE

The assertion is that (7) and 1) can happen together only if



2) Pn+1 = pn( Pn- ) +1 foral n=N, N+1, ...;
3) qN = pN- 1;

and
4)

= .

ANt1TOAN2T - T
In particular, x must be rational.

(0] 00
In other words, the E.-fractions ) L Y L have the same value if and only if
n=1 Pn n=1 9n
either they are identical ( Ph=A, foral n ),
or thereis N=1, 2, ... such that conditions 1), 2), 3) and 4) hold,
or the same with the two E.-fractions interchanged.

00
Remark By 4. Lemma, 2) impliesthat ) 1 pl-l (apply lemmato {ﬁk}
N

n=N pn

defined by f)k = Pran 1 ). Thus, under the conditions 1), 2), 3) and 4), we do have

0 00 N1
X = Z 1 _ Z_l =

1l 1,1
n=1 pn n=1 qn n=1 pn qN

in particular, x isrational.

(v) Every rational x[[ 0, 1) has a unique finite E-expansion.

(vi) Everyirrational x0[ 0, 1) hasa unique (necessarily infinite) E-expansion.
0
Theirrational x'sin [0, 1) arein a bijective correspondence with the E-fractions ) %
n=1 "n
for which each P is finite and Pn+1 > pn( Pn- ) +1 (strict inequality) holds for infinitely

many n=1, 2, ....

0
(vii) Scholium Let us say that the E. fraction Y % is srict if either it is
n=1 "n
finite (eventualy pn:oo), or there are infinitely many n such that

Ph+1 > Pr(Py- D) +1

The strict E-fractions are in a bijective correspondence with the realsin the interval [ 0, 1) ;
in this correspondence, an E-fraction is mapped to its sum. Moreover, the finite E-fractions are
mapped onto the set of all rationalsin [0, 1) .



0
(viii) For two strict E-expansions x= ) L and y= 'Z 1

n=1 Pn qn

and only if the two expansions are not the same, and for theflrst n where p,%d,, - We have

Ph<dp -

, we have x<y if

Proof of 5. Theorem

o4}

_ : . 1
():  Consider the E-fraction n21 P Let q,=p,.and q,,,=0,(0,-1)+1.

Then, obvioudly, Ph20, , Since this holds for n=1 , and, by induction,

1 T T
E fr i nd. hyp. def. of Ah+1
00 00
1 1 1
Therefore, —— < ) =— = ——=—=<1.
n=1 Pn n=1 9n -1
T
4. Lenmma
(i): Thisis contained in 2. Corollary and 1. Lemma (item (1)); the "moreover" part i
seen by 4. Lemma; for this, see also below.
(iii): Thisis contained in 3. Proposition, and 1. Lemma (item (1)).
(iv): Let N be defined as in the statement; we have 1). By canceling the term
N1 1 N1
Yy —=—= ) —— in(7), we have
n=1 Pn n=1 9n
00 00 l
) L o (8)
n=N p n=N 9n

Recursively, let us define

Pp=Py @ Pyq =P (P, 1) +1 foral n=N, N+1,...

We have pnzﬁn (n=N) : thisholdsfor n=N, and, by induction,

10



f 7
E.-condition definition
i nd. hyp.
Therefore,

1 2 3
R 1 D
=N Pn ~ n=N D 3 - q =N

n=N "n n=N Ph . le N n=N "n
4. Lemma

(for  P=Pyin1 ) )

Py 15Py 120y

But the first and the last termsin line (9) are equal (see (8)). All inequalitiesin (9) must,
therefore, be equalities. Equality at 1 means that 2) holds (since, aso, pnzﬁn for n>N);
at 2 that 3) holds;, a 3 that 4) holds. The proof is complete.

(Vv): 3. Proposition says that every rational x[[ 0, 1) has afinite E.-expansion. By

(iv), afinite E. fraction cannot have the same sum as any other non-identical, finite E.
fraction.

(vi): By (ii) and (iv): (iv) contains the statement that a non-finite E. fraction cannot
have the same sum as another, non-identical, non-finite E. fraction.

Let us summarize how we get the E-expansion of a number x[[ 0, 1) .

(For an arbitrary real y , wetake x to be the fractional part of y : x={y} =y [)yJ  that is,
we represent y as the sum of an integer and a fractional number (oneln [0, 1) we do not
deal with the representation of integers here.)

Given x , we recursively produce quantities X for n=0, 1, ... and extended integers

pn22 (n=1,2,...) ( an[N-{O, 1} O{x} ) asfollows:

XA =X

Post = [/ %] (n=0,1,...)  (ceiling)
1

X =Xp - (n=0,1,...) .

n+l : Pn+1

(We also write pn(x) for Ph )

11



DEF
The desired result of the operation is the infinite sequence p(x) = (pl, Py: Pgs - - 2) .

The main fact is that the mapping

.
(0.1) — (NN

X """ 5(x)
is one-to-one, and itsimage SE consists of the strict E-sequences p = (pl, Py Pgs - ),

that is, those 6 for which inequality (4) holds, and, in addition, if all P are finite, the strict
version of (4) hold for infinitely many n . Moreover, the inverse of the same mapping is

SE—— [0,1)
00

> 1

p Y
n=1 pn

For a comparison, let uslook at the Babylonian number system: the familiar place-value
system (Yes, there is excellent evidence that the Babylonians were aware of the principles of
this system; they used the system with base b=60 .)

We fix the integer b>2 .

Given x0[ 0, 1) , we do the following recursion:

XO:X

d =[x, " (n=0,1,...)  (floor)
d

X =X, - n+l (n=0,1,...)

n+1 n bn+1

We obtain the infinite sequence 525( x) =( aq, 8y, ... ) of integers. The mapping

+
N

[0, 1) N
X " 3(x)
hasitsimage SB the set of strict base-b fractions, those integer sequences
Jz(dl, d2, ...) ,orinfinite series nzl (tj)% , such that the digits

1) dn are in the range Osdn<b ,
and

12



2) for infinitely many n , dn;tb- 1.

The inverse function is given as

SB [0, 1)
q 7 o
n=1 b"

+
Furthermore, if we drop condition 2), and consider the set B of all dD[N[N

holds, together with the function

for which 1)

B 2 [0, 1)
g 2 %
n=1 bn

then the fiber X l(x) has more than one element only when x isaso-caled b-adic

rational number, a sum of negative-exponent powers of b , and in that case, Z'l(x) has
precisely two elements.

All thisis, of course, extremely familiar. We also see that the basic facts for the E-expansions
(listed above and in 5. Theorem) are in close analogy with those for B-expansions. The analog
of 4. Lemma s the identity

b-1

=1 .
1 p"

1nMH~18

n

We have a third ancient number system, the Greek one: anthypharesis, or continued fractions,
now I'll call them G-fractions. Once again, we restrict attention to expansions of fractional
numbers, x[[0,1) . Hereis the recursive definition:

0

a, = L1/an (n=1,2,...) (f1 oor)
_ 1 _

Xn+1_Tn'an' (n=1,2,...) .

a IS a positive integer, unless xn:O . It should be understood that when xn:O , then
a,=1/0=|1/0|=w, and, by definition, al x,, for N>n are 0 ,andal ay for N>n are

0,

The third line of the definition rewrites as

13



X =
" a5
n+1
Thus,
X=Xq = 1 = 1 1 =_1 1 =. ... (20)
a.+ — a.+ a.+ -
1 Xq 1 1 1 1
A+t~ ay+ 1

Therefore, if any X becomes zero, we get that x isarationa expression of the integers
ap, 8y, ..., and therefore x isrational number. We will see that, conversely, if x is

rational, then thereis n such that X=X 41" =0.

By the convergents of the G-expansion we mean the finite continued fractions obtained by
omitting the "tails", the L from the above expressions:

1
Yi = ——
1 a

1
Yo = ——— 1~

a.+ —

1
y: 1
3 2+ 1

A |

etc. When a,=w,we have Yn=Yn- 1 and thus YN Vn- 1 foral N>n-1 .

Let's ook at the expression Y, & algebraic expressions (rational functions) of the variables

ag,85,. ... For any rational function y of aq, 85, . ., let Y/ denote the shift of y, the
expression in which al the a;, are simultaneously replaced by a 4q1° if

y=¥( aq, 8y, ... ) , then y=y( a,, ag, - .) . The point of this notation is that, obviously,

1
Yn+e1 = N~
a1* Yn
P
Thus, if Yo = q_n with polynomials Ph Ay of ap, 85, ... , then
n

14



yn+1: - = — =
a1+ yn a +pn pn+alqn
1 ~
qn

Therefore, if we define

Prer = p, (n=1,2,...) (12)
ey = Pptagdy (n=1,2,...) (12)
_Pns1

With (10) and (11) as recursive clauses, and

py=1
91791
as starting clauses, we define the (al, Ay, ... ) -polynomials, (and, for integers a, ay, . -

p
the integers Ph: 9p ); and we call Yn = q_n the nth convergent of the G-expansion at
n
hand.

We derive arecursive formula for Ph and dp, without the shift operation, one which, on

the other hand, expresses each term by two previous terms, rather than just one as in the
original definition.

We put
p.q=1, pp=0
q.1,=0,95=1.
Note that p, = €|O: 1,and qq = ﬁo+a1€|0 =a, ; that is, (11) and (12) hold for n=0 too.

W _Po_
e put yo—q—O—O.

We claim that, for all n=1, 2, ..., wehave
pn:anqbn-lepn-Z

_ (n=1,2,...) . (13)
qn_anﬂqn-leqn-Z

15



Indeed, for n=1 , this holds. Assuming them for n=1 , for n+1 , we have:

pn+1 = qn = (an E‘qn- 1+qn- 2) = an+1 E‘qn- 1+qn- 2 = an+1 Elbn+pn- 1
/]\

(11
and

qn+1 = pn+a1qn = (an Elbn- 1+pn- 2) + al(an+1 Elbn+pn- 1) =
/]\
(

i nd hyp and previous line

—

2)

= an+1E'bn- 1+pn- 2 + a1( an+1 Elbn + pn- 1) =

= an+1 K pn- 1+a1 Ebn) + pn- 2+a1 Elbn- 1~

) )

= %41 ! 5n- 178 M. 1) * 5n- 2*a iy o
(Il) : pn:an- 1 Pn 1:an- 2

= 8nsrnt Apig o
(IZ) for nand n-1

which proves (13).

(13) shows that On+1294%9. 1 thus, g, grows (at least) exponentially (Fibonacci ...).

So far, we were deriving identities that are true for arbitrary ag, 85, ... . Now, let us take
x0[ 0, 1) asbefore, derive the (generalized) integers ap,a,, ... from x asabove, and
define Ph: dp and Yn as above with these values of a8y,

Note the inequalities

Vo< Vo< Vg<Vg<-.. <X < ...ys<yg<y
(14)

holding for the subscripts n for which xn>0 ; if thereisany n such that xn:O , Wwe get

yn: yn+1: =X.
The inequalities can be seen directly from (10) and the definitions of the Y -

The main point is the equality

16



Pn+19n - 9p+1Pp = (- 1) " (n=0,1,...) .
For n=0, thisbecomes 1[1 - a, M=1=(-1) 0 , thus true. By induction,

Pn+19n ~ 9n+1Pn ? o A e G P N T
(13)

= - (pyUp.q- dnPn. ) =- (- ="

Therefore, for n=0, 1, ..., we have
Ph+1 Pn_ Pp+19n - Y93+1Pn n 1
Vos1 VY=g 5 = =(-1) in-(15)
n+l "n qn+1 qn qnqn+1 nqn+1
From (14) and Ay NS @ it followsthat | i m Yn=X -
n— o

The G-expansion is also related to unit fractions: it gives x as an aternating sum of unit
fractions.

Because:
Yan=Yot(y-Yg) *(Vorv) +o oo +(Vy Vo) =

1 1 1 no o1
Yo" g, @, 1, " T, b, et ) anmn-l’

and thus x isthe sum of the absolutely convergent alternating series

- °° _1nq 1 ,
§ ngo( ) nEqn-l

and x isthe difference of two positive series

00 00

1 y 1
n=0 q2n Ean- 1 n=0 q2n+1 Ean

Thus, the Greek number system givesany x[[ 0, 1) asthe difference of two lax
E-expansions; finite ones to be sure for rational x .

Let us (re)turn to the issue of efficiently calculating many terms of the E-expansion of {N for
anon-square integer N. What | am going to say generalizes to essentially any (irrational real)
algebraic number. In particular, Newton's method of approximation and the effectively proved

17



Liouville's theorem for algebraic numbers are used.

| should say that, although the anthyphairesis of | N is very nicely calculable (it is eventually
periodic), the approximation it givesis not fast enough for our purposes.

Put
ag = [{N] (ceiling)
aﬁ - N
a =a,_ -
n+1 n 2an
We will have
AN <an+1<an< <a0
DEF 2
and, for brl = aj- N,
by
b < —
n+1 AN
in particcular
(2™
b <b7
n 2N 1
(4N)

where b:bO:aZ- N< 1. Very fast convergence! For e =a,- AN,

by

O<e_ < )
2{N-1

n

(I have taught thisin MATH338).
On the other hand, we have that, with c=[2{N+1] ,

1
c 2

AN- E- >

aways (this we call Lioyville's inequality). Indeed, if |4N%| > 1 , there is nothing to

prove. Assume || N- %| < 1. Then, clearly, % < {Nt1, amd we have

18



2 2 2
1 -
s MRl =N Py = e BN B < (24 [N <
q 1 q q
since (N isirrational
cm|4|\p%|

and the assertion is proved.
Let x={N [{N] .

[This part is under development.]
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