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Lower case Roman letters up to w , (not x, y,....!) : non-negative integers.

1 1I allow p to mean +∞ ; then � = � = 0 .p ∞

x is any real such that 0≤x<1 .

1 1 1 1 11. Lemma Suppose p∈
�

and � ≤ x < ����� and � ≤ x - � < ����� . Thenp p-1 q p q-1

q ≥ p(p-1)+1 .

1 1 1Terminology: When � ≤ x < ����� , we say that - is the first or main part of x ; we mayp p-1 p
1write p(x) for p , and π (x) for - . The second part of x is the main part of1 p

x - π (x) . The lemma gives an upper estimate for the second part in terms of the first part.1

We can define p(x) by p(x) =
�
1/x� , the ceiling of 1/x : the smallest integer

1≥ 1/x . We allow p=∞ : p(0)=∞ . Of course, π(0)=� =0 .∞

? ?1 1 1Proof of 1. Enough: q > p(p-1) , or equivalently, � < ������������� . Since � ≤q p(p-1) q
?1 1 1x-� , it is enough: x-� < ������������� . Butp p p(p-1)

1 1x-� < �������������
p p(p-1)

1 1 1�����
x < � + ������������� = ����� ,p p(p-1) p-1

and the last inequality is a true statement by assumption.

1 1 1Write π = π (x) =� = ������������� , where � is the first part of x ; when x=0 , then1 1 p p (x) p1 1 1
p (0)=∞ and π (0)=0 .1 1

Define
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n
π (x) = π (x- � π (x)) .n+1 1 kk=1

1Also write p (x) for the denominator of π (x) : π (x) = ��������� . By 1. Lemma,n n n p (x)n
dropping x from the notation, we have the inequality

p ≥ p (p -1)+1 . (1)n+1 n n

With a fixed x , and dropping x from the notation, write s =p -1 . By (1),n n

2s ≥ (s +1)s >s ; (2)n+1 n n n

m n-2 n-2(2 ) (2 ) (2 )thus, s ≥s . s =1 is possible; but s ≥2 ; so s ≥s ≥2n+m n 1 2 n 2
(n≥2) . We conclude

n-21 1 -(2 )����� = ������� ≤ 2 (n≥2) . (3)s p -1n n

∞
2. Corollary � π (x) converges to x .nn=1

1Proof By definition, for π (x) = ����� , we have thatn+1 pn+1

n1 1 1 1������� ≤ x- � π (x) < ����������� = ������� ≤ �����������������
p k p -1 s p ⋅(p -1)n+1 k=1 n+1 n+1 n n

By (3), the assertion is clear.

As an example, for x=� 2 -1 , the expansion given by 2. Corollary (which we will call the
E-expansion) has the following beginning:

1 1 1 1� 2 = 1 + � + ����� + ����� + ����������� + ...3 13 253 218201
1 1 1 1= 1 + � + ����� + ��� ����� + ��������������������� + ... .3 13 11 ⋅23 23 ⋅53 ⋅179

The error of approximating � 2 with the sum shown is
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1 1< ��������������������������� < ������������� .218201 ⋅218200 104 ⋅10

n
For convenience, I also use x =x , x =x -π(x ) . Thus, x- � π (x) = x . Also,0 n+1 n n k nk=1
x =(x ) (if I may say so ...).n+1 n 1

a 1 1 aNow, assume that x is rational, x= ����� >0 . Let ����� = π (x) ; p≠∞ . Thus, ����� ≤ �����
b p 1 p b

1< ����� ; and b≤ap and a(p-1)<b ;p-1

a(p-1) < b ≤ ap .

Thus, 0≤ap-b < ap-a(p-1) = a .

1 a 1 ap-b cLook at x- � = � - � = ������� = ����� for c=ap-b ; we have that c<a .p b p bp bp

∞
3. Proposition When x is rational, the series � π (x) is finite ( π (x)=0n nn=1

∞afor large enough n ). In fact, if x= ����� , then the sum � π (x) has at most a non-zerob nn=1
terms.

Proof According to the calculation just made, the numerator of the fraction x is1
smaller than that of x if the latter is ≠0 ; and the numerator of x =(x ) is smallern+1 n 1
than that of x , if the latter is ≠0 . Thus, after at most a steps, where a is the numeratorn
of x , the process of producing non-zero parts will stop.

aLet us define the E-length of a rational fraction x= ����� , denoted � (x) , to be the least �n E
such that x =0 , or equivalently, the largest � such that x ≠0 . We have shown that� � -1

a a a� (����� )≤a . For many fractions ����� , we have � (����� )=a .E n n E n

* a3 Observation Whenever n≡1 (mod a!) , we have that � (����� )=a .E n

aThere are weaker congruence conditions that also suffice for � (����� )=a .E n
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*Proof of 3 By induction on a .

For a=0 and 1 , the assertion is clearly true.

Let a≥2 , and assume the truth of the assertion for a-1 .

Since, in particular, n≡1 (mod a) , we have, for some m ,

n=(m-1) ⋅a + 1 = m ⋅a - (a-1) .

We deduce

a a-11 = m ⋅ ����� - �����
n n

1 a a-1� = ����� - �����
m n m ⋅n

a 1 a-1����� = � + ����� .n m m ⋅n

a a-1Therefore, for x=����� , p =p (x)=m and (x) = x = ����� . If I can show that then 1 1 1 1 m ⋅n
*denominator m ⋅n satisfies the condition of 3 with respect to the numerator a-1 , I am

done -- and I can as you'll see.

The condition n≡1 (mod a!) says that n=N ⋅a!+1 for some N . We have that our m
above is

n-1 N ⋅a!+1-1m= ����� + 1 = ��������������� + 1 = N ⋅(a-1)! + 1 ,a a

hence

m≡1 (mod (a-1)!) .

But our denominator is not m , but m ⋅n . Butbut,

m ⋅n ≡ m (mod a!)

and, a fortiori

m ⋅n≡m (mod (a-1)!)

since n≡1 (mod a!) . Thus,

m ⋅n ≡ m ≡1 (mod (a-1!)

which is what we wanted.

By an Egyptian fraction (E-fraction, for short) I mean a (possibly infinite) series of the form
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∞ 1� �����
pn=1 n

where for all n ,

1 1p is either an integer ≥ 2 or ∞ (in which case ����� = � = 0 ) ;n p ∞� � n � ������

if p =∞ , then p =p = ... ∞ ;n n+1 n+2

and, if both p , p are finite, we haven n+1

�������������������������������������� ��
p ≥ p (p -1)+1

�
. (4)n+1 n n� ��������������������������������������

According to this definition,

1 1����� + ����� + 0 + 0 + 0 + ...3 4

is not an E-fraction; an E-fraction

1 1����� + ����� + ...3 p2

must have p ≥3 ⋅2+1=7 . On the other hand,2

1 1����� + ����� + 0 + 0 + ...2 12

7is an E-fraction, and its sum is the same as that of the non-example, namely ������� .12

Unfortunately, the terminology is not accurate historically. Ancient Egyptian arithmetic used
all lax E-fractions, that is, sums of distinct unit fractions as representations of (rational)
fractional quantities.

In fact, on the historical record, we can perceive (see: Victor Katz, A History of Mathematics)
bits and pieces of the following "historical algorithm" for producing a lax E-fraction

arepresentation for any ����� (except that I have not convinced myself that the process (that Ib
formulated myself, not by following historians) always terminates (non-termination may
possibly occur only as a self-repeating loop)).

k aLet b=2 ⋅c , where c≡1 (mod 2) . Write the binary-rational ����� in the form of a finitek2
sum of distinct positive, negative, and zero powers of 2 (Yes, that's right: the Egyptians knew
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ka 2 1how to do this!) ����� now appears as the sum of distinct terms of the form ����� and �������
b c k2 ⋅c

with non-negative integers k . In the next step, one decomposes the individual terms of the
k2first kind (the second kind being already unit fractions). One deals with ����� , withc

c=2d-1 , using (repeatedly) the formula

2 ⋅e e e����������� = ����� + �����
2d-1 d d ⋅c

(Yes; the Egyptians were aware of this piece of the proper E-expansion!; see Observation 3*).
One may have to repeat the process since equal unit fractions may appear in different parts of
the sum.

7 7Applied to ������� = ����� , the historical algorithm gives12 4 ⋅3

7 3 2+1 1 1��� = 1+� = 1 + ����� = 1 + � + � ;4 4 4 2 4

and, dividing with 3 ,

7 1 1 1������� = � + � + ������� .12 3 6 12

This is a lax E-expansion, but not a proper one. For the Egyptian scribe, this could have been
7 7 1 1 7the officially accepted representation of ������� , and not ������� = � +� , nor ������� =12 12 3 4 12

1 1����� + ����� , -- but I don't know for sure.2 12

11For ��� , the historical algorithm gives:12

11 11 11 8+2+1 1 1��� = ����� ; ����� = ��������� = 2 + � + � ;12 4 ⋅3 4 4 2 4
11 2 1 1��� = � + � + ��� ;12 3 6 12

2and at this point the Egyptian scribe would have stopped since � was accepted on its own3
2 1 1 2right, it was not expanded as � = � + � . If he had expanded � , he would have gotten3 2 6 3

11 1 1 1 1 1 1 1����� = � + � + � + ����� = � + � + ����� ,12 2 6 6 12 2 3 12

which is a proper E-expansion.

9When we apply the "algorithm" to ����� , we get:20
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9 9 9 1 9 2 1��� = ������� ; ������� = 2 + ����� ; ��� = ����� + ������� ;20 2 2 2 20 5 22 ⋅5 2 2 2 ⋅5
2 1 1 9 1 1 15=2 ⋅3-1 ; � = � + ����� ; ��� = � + ��������� + ������� .5 3 3 ⋅5 20 3 3 ⋅5 20�����������������������������������������

9This is not proper, since ¬(20≥15 ⋅14+1) . The proper E-expansion of � is20

9 1 1 1����� = � + � + ����� ,20 3 9 180

5and that of ������� is11

5 1 1 1������� = � + � + ��� .11 3 9 99

The historical algorithm gives

5 1 1 1������� = � + ��� + ��� .11 3 11 33

The singling out of the particular sum-of-unit-fractions form we call "E fraction" is justified by
the following lemma and the subsequent theorem.

Let p be any real number at least 2 , and define1

p = p (p -1)+1 (n=1, 2, ...) . (5)n+1 n n

∞ 1 14. Lemma Under (5), we have � ����� = ��������� .p p -1n=1 n 1

Proof I claim that

n-1 1 1 1� ����� = ��������� - ������� (n=1, 2, ... ) (6)p p -1 p -1k=1 k 1 n

For n=1 ,this is right. To pass from n to n+1 , we need

?1 1 1������� = ����������� - ��������������� .p p -1 p -1n n n+1

2 2But p -1 = p (p -1) , p -p = p (p -1)+1-p = p -2p +1 = (p -1) ;n+1 n n n+1 n n n n n n n
thus
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2p -p (p -1)1 1 n+1 n n 1����������� - ��������������� = ������������������������������� = ��������������������������� = �����
p -1 p -1 (p -1)(p -1) (p -1)p (p -1) pn n+1 n n+1 n n n n

as desired.

By (3) (whose assumption (2), with s =p -1 , holds with equality for ≤ by the definitionn n
(4)), (6) implies the assertion of the lemma.

5. Theorem (i) Every E-fraction denotes (converges to) a value x∈[0, 1) .

(ii) Every real number x∈[0, 1) has an Egyptian fraction expansion
∞ ∞1 1(E-expansion, for short): x = � ����� for an E-fraction � ����� .p pn=1 n n=1 n

Moreover, we have that the partial sums approximate the sum x in a controlled manner; in
particular,

N 1 10 ≤ x- � ����� < ��� � ��� ,p p -1n=1 n N

1where we have the estimate (4) holding for all n . Furthermore, ��� � ��� tends to zerop -1N
double-exponentially: see (3).

∞ 1(iii) Every rational x∈[0, 1)∩ � has a finite E-expansion ( x = � ����� inpn=1 n
which, with a suitable N , p =∞ for n≥N ).n

(iv) Suppose x∈[0, 1) has two different E-expansions

∞ ∞1 1x = � ����� = � ����� . (7)p qn=1 n n=1 n

Let N be the first integer for which p ≠q ; then either p >q , or q >p ; assume, e.g.,N N N N N N
the first alternative. Thus,

1) p =q for 1≤n<N , and p >q .n n N N

The assertion is that (7) and 1) can happen together only if

8



2) p = p (p -)+1 for all n=N, N+1, ... ;n+1 n n
3) q = p -1 ;N N

and
4) q =q =... = ∞ .N+1 N+2

In particular, x must be rational.

∞ ∞1 1In other words, the E.-fractions � ����� , � ����� have the same value if and only ifp qn=1 n n=1 n
either they are identical ( p =q for all n ),n n
or there is N=1, 2, ... such that conditions 1), 2), 3) and 4) hold,
or the same with the two E.-fractions interchanged.

∞ 1 1 �Remark By 4. Lemma, 2) implies that � ����� = ��������� (apply lemma to {p }p p -1 kn=N n N
�defined by p = p ). Thus, under the conditions 1), 2), 3) and 4), we do havek k+N-1

∞ ∞ N-11 1 1 1x = � ����� = � ����� = � ����� + ����� ;p q p qn=1 n n=1 n n=1 n N

in particular, x is rational.

(v) Every rational x∈[0, 1) has a unique finite E-expansion.

(vi) Every irrational x∈[0, 1) has a unique (necessarily infinite) E-expansion.
∞ 1The irrational x's in [0, 1) are in a bijective correspondence with the E-fractions � �����

pn=1 n
for which each p is finite and p > p (p -)+1 (strict inequality) holds for infinitelyn n+1 n n
many n=1, 2, ... .

∞ 1(vii) Scholium Let us say that the E. fraction � ����� is strict if either it ispn=1 n
finite (eventually p =∞ ), or there are infinitely many n such thatn

p > p (p -1)+1 .n+1 n n

The strict E-fractions are in a bijective correspondence with the reals in the interval [0, 1) ;
in this correspondence, an E-fraction is mapped to its sum. Moreover, the finite E-fractions are
mapped onto the set of all rationals in [0, 1) .
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∞ ∞1 1(viii) For two strict E-expansions x= � ����� and y= � ����� , we have x<y ifp qn=1 n n=1 n
and only if the two expansions are not the same, and for the first n where p ≠q , we haven n
p <q .n n

Proof of 5. Theorem

∞ 1(i): Consider the E-fraction � ����� . Let q =p , and q =q (q -1)+1 .p 1 1 n+1 n nn=1 n
Then, obviously, p ≥q , since this holds for n=1 , and, by induction,n n

p ≥ p (p -1)+1 ≥ q (q -1)+1 = q .n+1 n n n n n+1� �
�

ind. hyp. def. of qE. fr. n+1

∞ ∞1 1 1Therefore, � ����� ≤ � ����� = ������� ≤ 1 .p q q -1n=1 n n=1 n 1�

4. Lemma

(ii): This is contained in 2. Corollary and 1. Lemma (item (1)); the "moreover" part i
seen by 4. Lemma; for this, see also below.

(iii): This is contained in 3. Proposition, and 1. Lemma (item (1)).

(iv): Let N be defined as in the statement; we have 1). By canceling the term
N-1 N-11 1� ����� = � ����� in (7), we havep qn=1 n n=1 n

∞ ∞1 1� ����� = � ����� (8)p qn=N n n=N n

Recursively, let us define

� � � �
p =p and p = p (p -1)+1 for all n=N, N+1,... .N N n+1 n n

�
We have p ≥p (n≥N) : this holds for n=N , and, by induction,n n
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� � �
p ≥ p (p -1)+1 ≥ p (p -1)+1 = p .n+1 n n n n n+1� � � ��

E.-condition
�

definition

ind. hyp.

Therefore,

1 2 3∞ ∞ ∞1 1 1 1 1� ����� ≤ � ����� = ����������� ≤ ����� ≤ � ����� .p � � q qn=N n n=N p p -1 N n=N nn N� �
�

4. Lemma
�

�
� �

(9)(for p =p )k k+N-1
�

�
p -1=p -1≥qN N N

But the first and the last terms in line (9) are equal (see (8)). All inequalities in (9) must,
�

therefore, be equalities. Equality at 1 means that 2) holds (since, also, p ≥p for n≥N );n n
at 2 that 3) holds; at 3 that 4) holds. The proof is complete.

(v): 3. Proposition says that every rational x∈[0, 1) has a finite E.-expansion. By
(iv), a finite E. fraction cannot have the same sum as any other, non-identical, finite E.
fraction.

(vi): By (ii) and (iv): (iv) contains the statement that a non-finite E. fraction cannot
have the same sum as another, non-identical, non-finite E. fraction.

Let us summarize how we get the E-expansion of a number x∈[0, 1) .

(For an arbitrary real y , we take x to be the fractional part of y : x={y}=y- � y� ; that is,
we represent y as the sum of an integer and a fractional number (one in [0, 1) ); we do not
deal with the representation of integers here.)

Given x , we recursively produce quantities x for n=0, 1, ... and extended integersn
p ≥2 (n=1, 2, ...) ( p ∈

�
-{0, 1} ∪ {∞} ) as follows:n n

x = x0
p =

�
1/x � (n=0, 1, ...) (ceiling)n+1 n

1x = x - ��������� (n=0, 1, ...) .n+1 n pn+1

(We also write p (x) for p .)n n
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DEF�
The desired result of the operation is the infinite sequence p(x) = (p , p , p , ...) .1 2 3
The main fact is that the mapping

+∞
�

[0.1) � ������������� � ( � )
�

x � ������������� � p(x)

�
is one-to-one, and its image SE consists of the strict E-sequences p = (p , p , p , ...) ,1 2 3�
that is, those p for which inequality (4) holds, and, in addition, if all p are finite, the strictn
version of (4) hold for infinitely many n . Moreover, the inverse of the same mapping is

SE � ������������� � [0, 1)

∞� 1p � ������������� � � �����
pn=1 n

For a comparison, let us look at the Babylonian number system: the familiar place-value
system (Yes; there is excellent evidence that the Babylonians were aware of the principles of
this system; they used the system with base b=60 .)

We fix the integer b≥2 .

Given x∈[0, 1) , we do the following recursion:

x = x0 �
n+1

�
d = � x ⋅b � (n=0, 1, ...) (floor)n+1 n

dn+1x = x - ������� (n=0, 1, ...)n+1 n n+1b

���
We obtain the infinite sequence d=d(x)=(a , a , ...) of integers. The mapping1 2

+�
[0, 1) � ����������������� � �

�
x � ��������������� � d(x)

has its image SB the set of strict base-b fractions, those integer sequences
∞ d�

nd=(d , d., ...) , or infinite series � ����� , such that the digits1 2 nn=1 b

1) d are in the range 0≤d <b ,n n
and
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2) for infinitely many n , d ≠b-1 .n

The inverse function is given as

SB � ����������������������� � [0, 1)

∞ d�
nd � ������������������� � � �����
nn=1 b

+� �
Furthermore, if we drop condition 2), and consider the set B of all d∈

�
for which 1)

holds, together with the function

ΣB � ����������������������� � [0, 1)

∞ d�
nd � ������������������� � � ����� ,nn=1 b

-1then the fiber Σ (x) has more than one element only when x is a so-called b-adic
-1rational number, a sum of negative-exponent powers of b , and in that case, Σ (x) has

precisely two elements.

All this is, of course, extremely familiar. We also see that the basic facts for the E-expansions
(listed above and in 5. Theorem) are in close analogy with those for B-expansions. The analog
of 4. Lemma is the identity

∞ b-1� ����� = 1 .nn=1 b

We have a third ancient number system, the Greek one: anthypharesis, or continued fractions;
now I'll call them G-fractions. Once again, we restrict attention to expansions of fractional
numbers, x∈[0,1) . Here is the recursive definition:

x = x0
a = � 1/x � (n=1, 2, ...) (floor)n n

1x = ����� - a . (n=1, 2, ...) .n+1 x nn

a is a positive integer, unless x =0 . It should be understood that when x =0 , thenn n n
a =1/0= � 1/0� =∞ , and, by definition, all x for N≥n are 0 , and all a for N≥n aren N N
∞ .

The third line of the definition rewrites as
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1x = ������������������� .n 1a + ���������
n xn+1

Thus,

1 1 1x=x = ��������������� = ��������������������� = ��������������������������� = ... . (10)0 1 1 1a + ����� a + ����������� a + �����������������
1 x 1 1 1 11 a +����� a +�����������2 x 2 12 a +�����3 x3

Therefore, if any x becomes zero, we get that x is a rational expression of the integersn
a , a , ... , and therefore x is rational number. We will see that, conversely, if x is1 2
rational, then there is n such that x =x =...=0 .n n+1

By the convergents of the G-expansion we mean the finite continued fractions obtained by
omitting the "tails", the x , from the above expressions:k

1γ = �����
1 a1

1γ = ���������������
2 1a + �����

1 a2

1γ = ��������������������� ,3 1a + �����������
1 1a + �����2 a3

etc. When a =∞ , we have γ =γ , and thus γ =γ for all N≥n-1 .n n n-1 N n-1

Let's look at the expression γ as algebraic expressions (rational functions) of the variablesn
�a , a , ... . For any rational function γ of a , a , ... , let γ denote the shift of γ , the1 2 1 2

expression in which all the a are simultaneously replaced by a : ifi i+1
�γ=γ(a , a , ...) , then γ=γ(a , a , ...) . The point of this notation is that, obviously,1 2 2 3

1γ = ������������� .n+1 �a + γ1 n

pnThus, if γ = ��� with polynomials p , q of a , a , ... , thenn q n n 1 2n
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�q1 1 nγ = ������������� = ��������������� = ������������� .n+1 � � � �a + γ p p +a q1 n n n 1 na + �����1 �qn

Therefore, if we define

�p = q (n=1, 2, ...) (11)n+1 n
� �q = p +a q , (n=1, 2, ...) (12)n+1 n 1 n

pn+1we get γ = ������� .n+1 qn+1

With (10) and (11) as recursive clauses, and

p = 11
q = a1 1

as starting clauses, we define the (a , a , ...)-polynomials, (and, for integers a , a , ...1 2 1 2
pnthe integers p , q ); and we call γ = ��� the nth convergent of the G-expansion atn n n qn

hand.

We derive a recursive formula for p and q without the shift operation, one which, onn n
the other hand, expresses each term by two previous terms, rather than just one as in the
original definition.

We put

p = 1 , p = 0-1 0
q = 0 , q = 1 .-1 0

� � �Note that p = q = 1 , and q = p +a q = a ; that is, (11) and (12) hold for n=0 too.1 0 1 0 1 0 1
p0We put γ = ��� = 0 .0 q0

We claim that, for all n=1, 2, ..., we have

p = a ⋅p + pn n n-1 n-2
(n=1, 2, ...) . (13)q = a ⋅q + qn n n-1 n-2
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Indeed, for n=1 , this holds. Assuming them for n≥1 , for n+1 , we have:

� � � �p = q = (a ⋅q +q ) = a ⋅q +q = a ⋅p +pn+1 n n n-1 n-2 n+1 n-1 n-2 n+1 n n-1�

(11)
and

� � �q = p +a q = (a ⋅p +p ) + a (a ⋅p +p ) =n+1 n 1 n n n-1 n-2 1 n+1 n n-1� �

(12) ind hyp and previous line

� �= a ⋅p +p + a (a ⋅p + p ) =n+1 n-1 n-2 1 n+1 n n-1

� �= a ⋅(p +a ⋅p ) + p +a ⋅p =n+1 n-1 1 n n-2 1 n-1

� � � �= a ⋅(p +a ⋅q ) + p +a ⋅qn+1 n-1 1 n-1 n-2 1 n-2�

� �(11):p =q , p =qn n-1 n-1 n-2

= a ⋅q + q ,n+1 n n-1�

(12) for n and n-1

which proves (13).

(13) shows that q ≥q +q ; thus, q grows (at least) exponentially (Fibonacci ...).n+1 n n-1 n

So far, we were deriving identities that are true for arbitrary a , a , ... . Now, let us take1 2
x∈[0, 1) as before, derive the (generalized) integers a , a , ... from x as above, and1 2
define p , q and γ as above with these values of a , a , ... .n n n 1 2

Note the inequalities

γ < γ < γ < γ < ... < x < ... γ < γ < γ0 2 4 6 5 3 1
(14)

holding for the subscripts n for which x >0 ; if there is any n such that x =0 , we getn n
γ =γ = = x .n n+1

The inequalities can be seen directly from (10) and the definitions of the γ .n

The main point is the equality
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np q - q p = (-1) (n=0, 1, ...) .n+1 n n+1 n

0For n=0 , this becomes 1 ⋅1 - a ⋅0 = 1 = (-1) , thus true. By induction,1

p q - q p = (a ⋅p +p ) ⋅q - (a ⋅q +q ) ⋅p =n+1 n n+1 n n n n-1 n n n n-1 n�

(13)

n-1 n= - (p q - q p ) = -(-1) = (-1) .n n-1 n n-1

Therefore, for n=0, 1, ... , we have

p p p q - q pn+1 n n+1 n n+1 n n 1γ -γ = ������� - ��� = ����������������������������� = (-1) ⋅ ����������� . (15)n+1 n q q q q q qn+1 n n n+1 n n+1

From (14) and q � ��������� � ∞ , it follows that lim γ =x .n n �
� ∞ nn �

� ∞

The G-expansion is also related to unit fractions: it gives x as an alternating sum of unit
fractions.

Because:

γ = γ + (γ -γ ) + (γ -γ ) + ... + (γ -γ ) =n 0 1 0 2 1 n n-1

1 1 1 n 1γ + ������� - ��������� + ��������� - ... + (-1) ⋅ ������������� ,0 q ⋅q q ⋅q q ⋅q q ⋅q0 1 1 2 2 3 n n-1

and thus x is the sum of the absolutely convergent alternating series

∞ n 1x = � (-1) ⋅ ������������� ,q ⋅qn=0 n n-1

and x is the difference of two positive series

∞ ∞1 1= � ��������������� - � ����������������� .q ⋅q q ⋅qn=0 2n 2n-1 n=0 2n+1 2n

Thus, the Greek number system gives any x∈[0, 1) as the difference of two lax
E-expansions; finite ones to be sure for rational x .

Let us (re)turn to the issue of efficiently calculating many terms of the E-expansion of � N for
a non-square integer N . What I am going to say generalizes to essentially any (irrational real)
algebraic number. In particular, Newton's method of approximation and the effectively proved
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Liouville's theorem for algebraic numbers are used.

I should say that, although the anthyphairesis of � N is very nicely calculable (it is eventually
periodic), the approximation it gives is not fast enough for our purposes.

Put

a =
�
� N� (ceiling)0

2a - Nna = a - ���������������n+1 n 2an

We will have

� N ... < a < a < ... < an+1 n 0

DEF 2and, for b = a - N ,n n

2bnb < ����� ,n+1 4N

in particcular

n(2 )bb < ���������������n n2 -1(4N)

2where b=b =a -N < 1 . Very fast convergence! For e =a -� N ,0 n n

bn0 < e < ��������� .n 2� N-1
(I have taught this in MATH338).

On the other hand, we have that, with c=
�
2� N+1� ,

p 1� � N - ����� �
> ����� �q 2c ⋅q

palways (this we call Lioyville's inequality). Indeed, if
� � N-����� �

> 1 , there is nothing toq
p pprove. Assume

� � N- ����� �
< 1 . Then, clearly, ����� < � N+1 , amd we haveq q
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2 2 21
�
Nq -p

�
p p p p�������� ≤ ��������������� =

�
N - ��� �

=
� � N+����� � � � N-����� �

< (2� N+1) � � N-����� �
<2 2 2 q q qq q q�

since � N is irrational
pc ⋅

� � N-����� �
q

and the assertion is proved.

Let x= � N- � � N� .

[This part is under development.]
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