Rearranging colimits: A categorical lemma due to Jacob Lurie

81 Statement of the result

A: alocally presentable category.
A transfinite system of length o, or briefly, an a-system (o : an ordinal), in A, isafunctor

A: [da] >A

where [ a] isthe ordered set of al ordinals B<a , ordered in the usual way. We write AB

<p): A, . h
for A(B) ,and AVB,or aVB’ for A( y<p) Aye 3 Of course, we have

o ABB:idAB ( B<a) |

A A
. Sy yB —A. OB
As A, Ag=As >Ag ( o<y<p<a) ,

a
The system is continuous if, for every limit ordina (3, B<a, (AV%AB) V<B isa
a5y

colimit cocone on the diagram Al <f] (=(Ay, A57>Ay) 5SV<B) (itis
automatically a cocone).

Since we are interested only in continuous transfinite systems, henceforth, by "transfinite
system™ we mean a continuous one.

a
The arrows A %Ayﬂ are called the links of the system. The arrow
anq 80 2, is the composite of the system.

We aso write aBT for aBa( :ABa) and a . for agy -

Instead of ordinals, we may use elements of any well-ordered set to index transfinite systems,
without any essential change of the concept.

With | any classof arrows, C[ |, a] isthe class of all composites of continuous transfinite
systems of length a whose links are from the class | 0{all isomorphism arrows} .

DEF DEF
C[l] = (C[l,n] = \J (I, a
a0 d

DEF
i, <a = \Jcl, B
Ba



Note that C[C[1]]=C][!]

Po[ I'] istheclass of al pushouts of arrowsin | : the class of all arrows A—B for which
there is a pushout diagram

A——>B
X— Y

with (X>Y) Ol .

Remark: These concepts will be used in two contexts: in a (fixed) category called A, and the
functor category AG, with a (fixed) (small) exponent category G. We may (but not always

will) put A, or AG, in a subscript position, such as CA[ I'] , toindicate context.

The combination C[ Pol ] iswritten S 1] .
Given an a-system A in the notation above, and an arrow AO —>A0 , we can take the
pushout of the system A aong the arrow Py - and get an a-system

A

a
A _ A A yB A )
A= (AgA —VEsAY o

for any B<a , we define the object AB and the arrows éOB: AO %AB , pB: AB%AB by
taking the pushout

AO AOB eAB
pol - lpB
AL A
Ao : 3
0B

It follows that the square
A
yB
Ay eAB
Lo e
A SA
Yy A B
AVB



is a pushout square whenever y<p<a ; from which both defining conditions for A bei ng an
element of C[ Po(1), a] (continuity at limit ordinals, and the links being pushouts of
| -arrows) follow.

fThus, C[Po(1), a] isclosed under pushouts, Po(C[ Po(1l),a]) =C[Po(1), a] .In
act,

SIS =811

A class X of arrowsin category A is S-closed if S[ X] =X. An S-closed class X is
small-S-generated if thereisasmall set | suchthat S 1] =X; asmall-S-generated classis,
in particular, S-closed.

Consider a small-S-generated class X of arrowsin the category A, and let G any small
category. The class [X, GLI of arrowsin AG is defined to be the class of all arrows

F: U-——>V (natural transformations) in AG such that every component FG' uyoe ——Vv(u
(GIb(G ) belongsto X. Itisobviousthat if X is S-closed (in A), then [X, GO is
S-closed (in A®) aswell.

Lemma (J. Lurie) Assume A isalocally presentable category, G asmall
category. If X isasmall-S-generated class of arrowsin A, then so isthe class [X, GO in

AG

| have found this interesting, since the proof seems to require something unexpected:
systematical rearranging of colimits, in particular, transfinite composites, into other types of
colimits.

82 Rearranging colimitsin general

CAT : the super-large category of possibly large categories (so that Set , the category of
small sets, inin CAT ). Let A be "norma" category (in CAT and locally small; later: locally
X

presentable). Form CAT/ A, the comma-category (whose objects are | , and whose arrows
A
X—>Y

AN

are commutative triangles o OL_// ). We have a pair of (partial) adjoints ( D istotal, L
SA

is partial)
D
7%
A 0 CAT/ A L-D
L



A A
D A— l

A
A DCAT/A;
L =colim

In more detail: D isdefined by:

A CAT/A
A A
A ld
A
b3
A A a A A
AN k o //d/
g
A
X >

d Xy, and (XX5A) — 2 5 (X— X a

where d stands for "domain" ( |
A

Indeed, the adjunction bijection

G f f

L(LM) > A col i nT 5 A
A
G =
Ir SD(A) G y A A
A

y ’
\ ° yd /a
N e
A

expresses that cocones with vertex A on diagram I are in a bijective correspondence with
arrows f:colinl —A.

G
To say that A issmall-cocomplete, isto say that L( ) isdefined for all small G.
A

Let us apply the fact that (partial) adjoints preserve colimits.

(For easier reading, we will write Col i mt with acapital C whenitisusedin CAT or
CAT/ A.)

What that meansisthat if in CAT/ A we have adiagram A of objects at each of which L is
defined, and Col i m{A) existsin CAT/ A, then,in A, L(Colim A)) isdefinedif and



only if colinm(LeA) exists, and they are the same:

Fact 1

L(ColimA)) ~colin(LsA)
[ ~: Kleene's "complete equality” (IM p. 327). Here it means that if either side is defined, so
is the other, and the two values are isomorphic (rather than equal asin Kleene)].
In the applications of this fact, we also use that Colimitsin CAT/ A are computed asin
CAT : the forgetful functor CAT/ A—— CAT preserves (in fact, creates) Colimits.

We will apply the above in the following "rearrangement” form.

Let A- P-——>A beadagram, and assume that ATzcoI I MA exists.

Suppose

q
QQ——Cat  (xIQ5Q, x-yHQ Q)

isadiagram in Cat ( OCAT) , and P=Col i mQ in Cat , with coprojections dy: Qx -—P.
Let AP-——>A beadiagramin A, and let I‘oqx: QX%A be the restriction of ' ( x0Q).
Assume that Bx =colinm I‘oqx) exists for all x0Q; let, for uDQX ,

bUT: quu s BX be the coprojection. We have a canonical arrow bX T9y: BX - By ,
defined by the property
o ) quu = quqf u o
U-|: 7 o qf u
/// N
BZ B
XY

for al uDQX . We have adiagram B: Q——A, B(Xx) :BX , B(Xﬁy) :beHy ;
thisiswhat we call a rearrangement of the original diagram A.
Fact 2 The rearrangement has the same colimit as the original diagram, and in fact, one

colimit exists iff the other one does:

colimB ~ coli mA

Thisis an application of Fact 1. A: Q—— CAT/ A isgiven by



A Q CAT/A

Q
X L Teqy
A
Xi9 Q ig Q
y X \ // y
N //
A
P Q
We havethat Col i M\ = A | , theoriginal diagram; L-A istherearrangement B | ; the
A

A
colimit ( L ) of the first is the same as the colimit of the second.

We will use Fact 2 in a certain special kind of situation.

Suppose A: P— A isadiagram onthe poset P.Let Q be acollection of subsets of P, and
consider Q to be the poset ordered by containment ( 0) . Define the diagram ®: Q— CAT
as "identity": ®( X) =X (more precisely, the poset X with the order induced by that of P on
X), with ¢( XOY) =i nclusion: X->Y.

Assume that Col i m® is P ; more precisely, assume that the family of inclusions
i ncl . _— .
D('iePEkDQ isacolimit coconein CAT . *)

Note that it is not enough to have a colimit in POSET ; POSET | nc

preserve all Colimits.

> CAT does not

One case when (*) holds is when we have 1) and 2) as follows:

1) UJQ= \ X =P;
XQ

2) Q isdirected under the subset-ordering: if X, YOQ, then thereis ZOQ such
that XOZ and YOZ.

Another case when (*) holdsis this. We have subsets X and Y of P suchthat XOY=P, and
for xOX- (XnY) , yOY-(XnY) , x and y areincomparablein the order on P ; we take
Q{ XnY, X, Y} . In this case, with the posets meant to be the induced subposets of P, the
colimit Col i m® isgiven by the diagram



with all arrows inclusions, a Pushout in CAT .
Although the just stated case of rearrangement is one that is important for us, it might be noted

that it falls under the more general conditions, ensuring (*), which are 1) above, the condition
that each XOQ isan initial segment of P, and the condition that X, YOQ imply XnYUQ.

A third case when (*) holdsiswhen ROP isaninitial segment of P (x<yUOR= x[R) ,

and, with x |={ yOP: y<x} , we have Q={ R} B{ R0x |: xOP- R} . Note that, for
X, yOP-R, Rix|ORDy | iff x<y ;and R isthe bottom element of Q.

Of course, in all three cases, the verification of (*) is a routine check.
A collection QJP(P) satisfying the assumption (*) gives rise to a rearrangement of the
diagram A asfollows.

Let, for each XOQ, AX denote a (choice of) col i n{ AlMX) , with AMX: X—>A the

restriction of A to X, with the ordering on X induced by that on P . Let
Eax X AS( fequ(Dx be the corresponding colimit cocone.

We dtipulate that when X has a top (maximum) element w (that is, wiX and for all x[OX,
DEF

we have x<w), then AX = A\N and Ay =8y

Whenever XOY, X, YOQ, we have the canonical map Ay AX%AY for which
Ay o8y y=a, v (xOX) . It is easy to see that we have adiagram Al Q : Q—A,
AL QA =(Ax axy) x yoo, xay -

The assertion is that, under the foregoing conditions,

Fact 3 colimAlQ) ~colimA) .

Thisis aspecial case of Fact 2: the diagram B of Fact 2is A[ { .

We make two, essentially equivalent, detailed assertions out of Fact 3, the "direct" and the
"converse" versions. The direct version says (in a detailed manner) that if col i n(A) exists,
then so does col i M Al Q) ; the "converse" version says the converse.



() (direct) Let Eax_l_: AS(%ATD be a colimit cocone on A, and define,
for XOQ, Ayrt AX%AT by

for all xOX . Then Eax_l_ %(DQ is a colimit cocone on the diagram Al QJ : Q—>A.

(it)(conver se) Let Eax_l_: AX%AT Q(DQ be a colimit cocone on the diagram
Al Q: Q—~>A, and define, for xOP, ay o AS(—>AT as a,  Tay ea, y with some/any
XOQ such that xOX . (By 1), thereissuch X ; and by the directedness axiom 2), one sees that

ay - so defined is independent of the choice of X'.) Then EaXT:AS(HATq(DP iIsa

colimit cocone.

83 Good diagrams

K isan infinite regular cardinal.

In this section, we only assume of the category A that it is (locally small and
small-)cocomplete. Of course, it still make sense to say of an object that it is K-presentable.

Let P=(P, <) beapartia order. < istheirreflexive versonof <. u, v, w, X, ... range
over P. x| ={y:ysx}; x|l ={y:y<x} .

We make two assumptionson P :
1) P hasaleast element L (for which 1<x for al x).
2) < iswell-founded (no decreasing infinite sequence Xg>X1>X 5> . ).

Let xOP.If x|/ hasatop (maximum) element x (suchthat y<x <=y<x ), wecal x

isolated; x isthe predecessor of x . Note that the notion of "successor" is not well-defined:
it may happen that different points have the same predecessor (unlike in the linearly ordered
case).

A point x which is not isolated, and which isunequal to L, iscalled alimit point. (We
could call alimit point "colimit point", in view of the role this notion is going to have.)

P isof k-good if foral xOP, #(xl)<k.

A good diagram in A,



Ay

A=A A %A\/ Ei(,yDP; XSy: P——A

is afunctor from a good poset P to the category A such that, for every limit point x , the
subdiagram AM(x /) isacolimit diagram: the family y:anX: Ayaﬂy Q/<x isacolimit

cocone on the diagram AlM(x/]) (thefactthat y isacoconeon AM(x|.) isalready
given).

Note that, in the notation introduced for Fact 3, the goodness condition can be expressed by
saying that the arrow axH X AXH—%AX is an isomorphism whenever x isalimit
point of P .

The good diagram is k-good if the underlying poset is k-good.

Let us denote the colimit col i m{ A) by AT We write ay . AS(AAT for the colimit

coprojection ( xOP ). The composite of the good diagram A is the coprojection
a A N —eAT ; the composite of the good diagram A is sometimes denoted

LAO AJ_—%AT :

Clearly, the notion of good diagram essentially generalizes that of transfinite system. The only
"difference” in the two concepts is that, in "transfinite system", we have included the
composite itself as data. More precisely, if A isatransfinite system of length a=1, then
Ata = AN B<a} isagood diagram, and its composite is isomorphic to the composite of A
(in the original sense of "composite” of a transfinite system).

The links of a good diagram are (using the notation above) the arrows a _ for the isolated
X X
points X .

Let G[ J] bethe class of composites of (small) good diagrams all whose linksarein J . We
let G[J, (<k)] denote the class of composites of k-good diagrams all whose links are in
J.
For A acardinal number, G[ J, A] will denote the composites [AL[ of good diagrams
A: P—>A suchthat #(P-{1})=A.

DEF
GglJd, <Al = \UJG[J, y ,where u rangesover cardina numbers <A .

USA

Weuse G[J,(<k),A] inthesense G[ J, (<K)] nG[ J, A] ; and similarly with <A replacing
A ; etc.

The first fact, 1. Proposition, that justifies the passage to the more general concept of good
diagram is that it shares the main property of transfinite systems. As a matter of fact, however,
1. Proposition will not be used for our technical purposes.

Let £/ and r betwo arrowsin the category A.We say that ¢ isleft-orthogonal to r ,
equivalently, r isright-orthogonal to £, in notation Zir , if

9



09 0o o—9 .p

A
for every zl 0 lr , there is Zl O/R/ . jr

0—p—— O 00O

If R isasetof arrows, then /1R means Or OR. Zir ; and similarly for other combinations.

1. Proposition Let r JArr (A) . Supposethat A isagood diagram and for every link
£ in A, fir .Then [CALCLr .

The proof is "the same" as for transfinite systems. For completeness, we outline it.
Let A be agood diagram; we use the notation above.

Let r: X—>Y.Letusfix g: AJ_HX and h:hT: AT—eY such that

AJ_ X

DAE{ K r 1)

7
<

By recursion on the well-founded relation < (the order on P) (!), we define kX: AS( -Y
such that

10



(1)

(here, a X is the structure map in the diagram A ; ay - is the colimit coprojection), with
the additional condition that the kx are compatible: every time y<x , we have

A

Ay x ° : 2)

X
kx

in other words, Ekx: AS( exq(up IS a cocone with vertex X on the diagram A.

DEF
For x=0, k L =9 the assumption ensures that we are in the right for (1); (2) is vacuous.

For x limit, use the cocone [k, : %Xq/<x on AN x/l]) ,to get the unique map

ko A(=coli m AN x]])) ——X that makes Eky: Ay%XDysx into a cocone on the
diagram AM(x]) ; we have ensured (2). (1) will be true because: the upper commutativity is
the cone property of Eky: Ay %X%’SX , tested with y1=4<y,=X , since g:hJ_ ; and for
the lower commutativity, the two maps AS( :iY that are to be shown equal are equal when

composed with a Py%ﬂy (y<x) ,and x isthecolimitof AMNX/]]) .

yXx
For x isolated: use the assumptionthat a _ L1 ,toobtain a,  such that
X X
h -
A X X
X /,//‘2
a ° //‘//‘
- T r
X X - Ky .
AS( Y
hy = hray,

11



You will see that both (1) and (2) will follow for the present x ; in case of (2), for y=x"
first, and then for all y<x .

(1) is shown as the inductive case for x limit (although " x=T " we cannot say).

This completes the proof.

Below, we will see that, in fact, the two operations C[ Po[-]] and G[ Po[-]] coincide
(in particular, if one accepts as known that 1. Prop. holds for C instead of G, then 1. Prop.
itself becomes superfluous). The point of the new G-operation liesin the parameter « , in the
specific verson [ -, (<k)] , which has no direct counterpart for the C-operation.

For posets P and Q, we write PLQ if P isanon-empty initial ssgment of Q: P isan
induced subposet of Q (for x, yOP, xs( P)y = xs(Q)y ), and P isclosed downward
in Q: xOP and ys(Q)x imply that yOP .

(For asubset X of aposet P, XCP meansthat X isanon-empty initial segment of the

poset P inthe usual sense ( X is closed downward); for two subsets X, Y of P, we write
XLY in the obvious appropriate sense.)

If Q isagood poset, and P#0, PLQ, then P isgood aswell; if Q is k-good, sois P.

Let Q beagood poset. Let PCLQ. Then for every xOP, (XLL)(P) =(xii)(Q) If
x':rrax((xll)(Q)) exists, then x™ <x , thus x” OP, and rrax((xil)(P))
max((xJ]) (Q ) . We see that for x[P, the concepts of "isolated point", "predecessor",
"limit point", are the samein P asin Q.

Therefore, if B: Q>A isagood diagram, P20, PLQ, then BIP isagood diagram as
well; if B is k-good, BI'P is k-good as well.

For good diagrams A: P>A and B: Q >A, wewrite ALB if PLQ and A=BIP . Note

that, in this case, we have the canonical arrow c=c[ A, B]
=c[ PCQ : AL —>B_ for which CoaXT:bXT for all xOP . If ACBLC, then

c 7 BT C

Let A: P>A bea k-good diagram. Consider the family Q of all nonempty XLCP such that
#X<k . Q isordered by containment [ ; and Q is k-directed: any union of initial segments
of P isaninitia segment, and the union of k-many onesis of cardinality <k .

Fact 3, case one, is applicable: 1) holdsby P being k-good; 2) has been checked. In this
situation, we will use the "direct version" of Fact 3, in the situation stated under 1) and 2)
there.

Let's record this special case as

12



Fact 4 Let A- P—>A bea k-good diagram. Let P be the collection of all initial
segments of P cardinality lessthan « .

1) (P, 0) isa <k-directed ( k-filtered) poset

2) P gives rise to a rearrangement AzA[ I3] of A (inthe sense of Fact 3).

Note that A: P> A can be treated as a subdiagram of A I379A, by identifying P with a
subposets of I3, under the identification of a with a| ; recall that we had AS(L = AS( .

Although its use is less essential, it is convenient to use P for the poset of all non-empty
initial segments of P, ordered by inclusion, and A the rearrangement diagram for A on P.

The concept of "end-segment” and the facts about it, to be treated next, are obvious in the case
of transfinite systems; they are not hard, and they are also important, in the general case.

DEF
Let A: P—>A beagood diagram, RCP anon-empty initial segmentof P; P/R =

{1} ﬂ P-R) (here 1 isthe bottom element of P); P|R aso denotes the induced subposet
of P.

The diagram A|R Q—A is defined thus:

AlR: P|R 5 A

X —— ARDXL
(xgy) ——— aRDxL, ROy |

Fact 5 1) A|R isgood, k-goodif A is, itslinks are pushouts of links of P, and
its composite [A|R0O equals the arrow A AR AL

2) In particular, aRTDg[ Po[ 1], A] for A=#(P-R) , | =the set of links
of P.

More generally, for RCSLP , by the foregoing applied to Al'S, we have
aRSDg[ Po[1],A] for A=#(S-R) .

A DEF N
3  (P|R OP||R = {XOP:RRCX& #(X-R) <k} , by the map
Y>RIY . Thediagram (A R) ~ isthereby identified with AN P||R) , the restriction of the

13



diagram A to the subposet P||R of P.

Proof of 1) The last fact about the composite is the "third case" of Fact 3 stated
above.

Temporarily, we write Q for P|R,and B for A|R.

More generally, for any non-empty initial segment X of Q, by using Fact 3 for Rﬁ( in
place of P, we can, and do, take BX (=col i mBX) to be AR@(,and bXY: BX%BY to

be aptl pbl: Agtk  >ArEy (LOXCYLQ).

Forany xOQ- {41} , (x.ll) (Q = {1} ﬂ x| |- R) . Therefore, if x isolated for Q, then
the corresponding B-link

b
B 0)9.x g
(X_)(Q) X
equals the arrow
_ AROx ||, Rx |

Let xOQ beisolatedin P. Then x isisolated in Q aswell: either x| |- R£0 , in which
case x ,the P-predecessor of x ,isin x|/-R (otherwise x OR, and since R is closed
downward, x |=x//) OR,and x//-R=0),and (x )(Q) =x ;or x|/-R=0 and
(x)(Q=y .

Let xOP- R, and consider the diagram of inclusions:

ROx|| —>ROx |
Xl ——— x|

ThisisaPushout in CAT , asin "case two" of Fact 3. Therefore,

14



ARDx || >Arox |
aw ] Wa
ALl T a oA

with each a being the corresponding " a-arrow", isapushout in A.

If x isalimit point of P, thelower horizontal a isanisomorphism; if x isisolated in
P, thesameisalink of A. Thus, the upper horizontal isawaysin Po[|] . Therefore, if
x0Q isanisolated point of Q, the corresponding B-link, being the upper horizontal in the
last diagram, isin Po[I] .

Finally, if x isalimit point of Q, then (aswe saw above) x isalimit point of P aswell,

B(xu) (Q 7b>BX 1S ARDX\H,LARDX\L , and the latter arrow, being a pushout of

the isomorphism AS(LLLAS(L , IS an isomorphism itself.

This completes the (overly fussy?) proof of Fact 5.

2. Proposition

) Gg[J] OC[Po[J]] .Infact, G[ J, A] OC[ Po[J], A] for any infinite
cardina A .

(@iD) For any cardinal number (=initial ordinal number) A=k ,
gl J, (<k),<A] O C[Po[J], A]
[In other words: if A: P-—>A isa k-good diagram such that A=#P>k , and the links of A

areinthe class J , then there is a transfinite sequence B: [ A] — A of length the initial
ordinal A, whoselinksarein Po[ J] , suchthat TAG=[BL. ]

Pr oof We remind the reader of a well-known fact: for any well-founded partial order
(P, <) , thereis awell-ordering (well-founded total ordering) < of P extending < ( x<y
implies x<y ).

[The proof isby Zorn'slemma. Let ¥ consist of all well-ordered sets ( X, <X) such that
XOP & Ox, yOX(X<y = X<yy) & O, yOX(y<x=yOX (&x<yy))
(<X extends <IX;and X isaninitia segment of (P, <) );

and let << be the partial ordering of "initial segment” on % :

15



(X, <x) <<(Y, <Y) =
XOY & O X5 (X1 <y X o=>X 1 <yX ) & OyOY. OXOX. (y<yx=y0OX) .

Clearly, the union of any <<-chainin & isagain amember of . Let (X, <y) bein

(7, <<) ,andlet UDP-X. Define Y=X0{u} ,and <y on Y suchthat <, extends <y,
and X<y for all xOX. Then (Y, <Y) belongsto 1 ; note that <y extends <Y,

because u<x with x0OX isimpossible, since u0X and X isaninitial segment of (P, <) .
Thus, with (X, <X) maximal, X=P .]

To prove part (i), let A: P— A be agood diagram; let < be a (total) well-ordering of the
set P extending the given well-founded partial order < on P.

Note that 1 , the bottom element for <, is necessarily the least element for < as well.

For any xOP, let [x)={y0OP:y<x} and [x]={y0OP: y<x} . Definethe subclass Q of
AP) as

Q = {[x]:xOP} BH{[x):xOLi my(P) }
(Li m<( P) isthe set of points that are limit points with respect to the well-ordering <).

Clearly, QIP(P) issuitable for arearrangement of the diagram A in the sense of Fact 3. In
addition, Q iswell-ordered by O (strict subset relation). The limit pointsof (Q, ) arethe
sets [ x) for x a <-limit point. [ x] isasuccessor unless x=1 : the [-predecessor of

[X] is[Xx) .

In fact, the order type of (Q 0U) isequal tothat of (P, <) if thelatter isa limit ordinal;
and one more if the latter is a successor ordinal.

We have, in the notation of Fact 3, the diagram Al J : Q>A suchthat col i mA[Q =
colimA,and [TA  =[A0,; adding atop element to A[ @ gives us a transfinite system.
The continuity of the transfinite system is an application of rearrangement (Fact 3, first
situation), coming from the fact that, for a <-limit point x , [ x) isthe directed union

[x) = Ulyl D Uly)
y<X y <X
y<-limt
Astothelinksof Al @ : Q—>A, thetypica Al Q) -link a[ X)) [X] appears in the pushout
diagram

16



a
[X), [x]
AL x) A x]

axu, [ X) ax, [ X]

ALl | x A

which is the result of "Fact 3, second type" rearrangement, according to the CAT-Pushout

[ X) >[x]
NN > X

of induced subposets [we have [ x) nx|=x|/), [x)Ox|=[x] ,andany yO[ x)-x/|| is
not <-comparabletoany zOx|-x|| (otherwise: z=x ; z=x<y wouldimply x<y , fase

since yO[ x) ; S0 y<x , contradicting yOx || )].

axii,x

By the assumptionson A, the lower horizontal AS( Ll AS( is an isomorphism
when x isa<-limit, and an element of J when x isisolated (in this case AS(LL:A )
X

Thus, the Al Q -linksare all in Po[ J] .
This proves part (i).
To see part (i), assume the hypotheses of (ii) on A . An elementary argument shows that now

the well-ordering < of the above proof can be chosen so that the order-type of ( P, <)
equals the (initial) ordinal A .

[In the next few lines, each of the symbols <, < isused in two different senses. They are
used in the standard senses in contexts like fB<a, B<a for ordinas a,B ; and they are used
in the sense of the given k-good partial order on P, in contexts like x<y , x<y for
X, yOP .]
Let (aHxa) be abijection [ A) —> P . Keeping with the notation x |={ yOP: y<x} , with
the original k-good ordering < of P, let

XO{:XC{\L - U XB\L .

B<a

P isthe digoint union P= @X ,and Y = @X =x_| isclosed downward
aiA @ a B<a B "o
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( z<yDYa=> yDYa). Let af x] denote the ordinal a for which xDXa[ X] . Choose a
well-ordering < a of xa (which set, of course, may be empty) such that <a extends
<rxa , by the opening general fact above. Define the relation < on P by

X<y == dther a[ x] <B[x] or (a[x]=p0[ x] =a and x<ay ).

< isawell-ordering of P in order-type the ordinal sum

6 ’
a;)\ a

where 50{ is the order-type of (Xa’ <a) .

< extendsthe partial order < on P:let x, yOP, a=a[ X] , B=a[y] , and assume X<y ,

to prove x<y . Since \9 X, isclosed downward for < on P, we have x[J \9 Xy, and
y<B y<p

thus a<p . Then either a<f, in which case x<y asdesred; or a=f, inwhich case x<y

implies X<y implies x<y as desired.

Since P is k-good, each set x| isof cardinality <k ; hence each set XaD xal is of
cardinality lessthan K ; hence, since k isregular, 6a<K.Therefore,since k<A and K is

regular, we have ) 6as)\ . Of course, as the order-type of the set P of cardinality A,
a<A

Y 60{2)\ . Therefore, ) 5a , the order-type of (P, <) , equalstheinitial ordina A .]

a<A a<A

As the italicised sentence above says, the well-ordered set ( Q [) , constructed in the proof
above in part (i), has order-type that of ( P, <) , the latter being the limit ordina A ;
therefore, the transfinite system A[ @ constructed in the proof of part (i) is of length equal to
the initial ordina A asdesired.

The converse of 2. Prop., 3. Prop. below, is somewhat more difficult. In preparation for 3.
Prop., we introduce some constructions.

Directed union of good diagrams

Here is the first construction on good diagrams, directed union, that we will need.

Suppose Ai X Pi —A isagood diagram for i 0l , where | =(1, <) isanon-empty directed
poset ((i,jOl)=—>[KkOI.i<k& <k);and A CA whenever i <j . Then we can

define the union A = @/ A agood diagram, such that A' CA foral i 0l .
i Ul
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Namely, welet P = \Djl P , the poset whose underlying set is the union of the underlying

[
sets of the posets PI , and for which xs( P)_y = xs( PI_)y for some, equivalently any,
i O suchthat x,y areboth elements of = . Clearly, P! CP (i0r) . P isagood poset:
check that each of the conditions 1), 2) follows from its truth for (some/)all P, Similarly, if
each P' s K-good, sois P.

The diagrams Ai , AJ must agree on their common domain, since we have some k=i ,
and Ak extends both A and AJ . Thus, it is meaningful to define A: P—>A by the
condition that AMP' =Al . A so defined Isagood diagram; K-good if each Al s K-good.

Let us apply Fact 3, "converse" version (ii), to the collection Q={ Pi ;i d} of initia

segments of P . We are allowed to do that since P is the directed union of the members of
Q. Let'srepeat, in a suitable notation, what we get now.

Let AT—coI [ n{A ) with coprojections aX_I_ PS(%AT For i<gj ,let
IJ—c[A AJ] A_r—eA_r the canonical arrow. These data form a diagram Al SA.

Let AT—coI [ n(A) =coli n(AT) with coprojection a A_I_%AT
i Ol

iDEF

N s N .
For xOP, a,. = a oaxT.AS(HAT for some/any i such that xDPi .

We have that the a, _ for xOP= U P' form acocone on the diagram A= U A , and in
(] (]
fact, thisis a colimit cocone.

Here is the second construction we will need, actually two similar constructions, both
adjoining a new link to a diagram.

Adjoining a link

Given agood diagram A: P—>A, and aninitial segment XCP of P. Let Ay denote
col i mCAMX) ; when w=nax( X) exists, we put AX:A\N. Let ayX: nyéAX be the
colimit coprojection (yOX), and ay :c[X Pl: A eA_I_ the canonical map; when

u=max( X) exists, ayX YW (yDX) (in particular, a,,; -| dA\N) and CIVE

Suppose also given an arrow f : Axe B (thus, the domain of f isthe given object A, , its
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codomain B is arbitrary). We construct the new diagram B = Al f/ X] , the result of
"adjoining f to A at X", asfollows.

We define the new poset Q by adjoining two new elements, x and x ¥ ,to P.Welet
Q=Pi{x}{x"} ;
u<{ Qv —
(u, vDP&u<( P) V) v (uOX&(v=x vv=x+)) v (u=x &v=x+) :

P isaninitia segment of Q. We have that (xu)(Q) =X.
If max(X) doesnotexistin P, x isalimit pointin Q; if w=max(X) doesexistin P,

then x isisolatedin Q and x =w.

x ¥ isisolated: x7 =x . Q isgoodif P isgood; Q is k-goodif P is k-good and
#HX<K .

We define the diagram B: Q—— A by stipulating that

BIP=A,

BXIAX,

B +=B,

X

byx:ayx (yOX)
+=1.

XX

If max( X) doesnot exist, the construction ensures that the continuity condition at the new
limit point x holds true; in this case, there isjust one new link, b =f .Incase

XX
w=max(X) does exist, there is no new limit point, and there are two new links, bWX:i dpk
and b =f .

+
XX

If A is good, thensois Al f/ X] .If, inaddition, #X<k ,and A is k-good, then Al f/ X]
IS K-good.

The important fact about this construction is that the diagram
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Bx :AX f

is a pushout; in other words, the canonical arrow from the colimit A_r of the original diagram
A to that of the extension, Al f/ X] _ is a pushout of the adjoined link f .

Conversely, if we definethe items B, ¢ and b by the pushout

Bx :AX f

then, for the diagram B=A[ f/ X] , we can take col i mB:B_I_ to be BT=I§, with colimit

cocone Eby_l_: By%Bq/DQ given as bu_I_=Coau_|_ (ullP) , bXT=b0f=Coax_|_ and
b, =b.
X' T

These two facts are the direct and converse aspects of the rearrangement of the diagram
Al f/ X] , according to Fact 3, in the second case mentioned there, with the rolesof X, Y,

XnY and P=X0JY played by the sets Xﬂ X, x+} , P, X and Q, respectively.

3. Proposition Assume the domain of each arrow intheset | of arrowsis
K-presentable. Then

(i) CPo[l]] DG[Po[l], k] ;

and more specifically:

(i) C[Po[1],<A"] OGIPo[1], (<K), <A]
The following are immediate consequences of 3. and 2. Prop's.
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4. Corollary Assume A isa (small-)cocomplete category, and | isany class of
arrowsin A. Then

(i) CIPoll]] =¢[Po[l]] .
If, in addition, the domain of each arrow inthe class | is k-presentable, then
(i)  C[Po[l]] =g[Po[l], <] ;

and, for any initial ordinal (=cardinal) A=k ,
(i) C[Po[I],<AT] =C[Po[I], <A] .
Proof of 3. Prop., part (i) Assume A isatransfinite system of length a al

whose links are from | . By transfinite recursion, we define, for each [<a , the following
items:

1) A k-good poset PB such that, for y<p<a, PY isan initia segment of PB
(PYZPP).

2) A k-good diagram BP: PP 5 A withlinksin Po[ 1] suchthat BP=A, (esa
- B BT B
good diagram, P™ has aleast element J.B; on the left, Bl = (B )l ), and such that,
B
for y<p <a, BB is an extension of BY (in other words, BV:BBPPV).
X

3) For any B<a, acolimit cocone EbB :BB —->A,p0 with vertex the given
XT B xopP

object AB , on the diagram BB such that bfT:aO B (note that this makes the given AB the
colimit of BB , and the given ag 3 the composite of BB ) such that, for y<p<a and

xOPYOPP (and so BY=8BP), we have

bY
BlieAy
I, L
87
X bB >A
XT

(which makes the canonical c| BY, BB] X B_IYH BE equal aVB ).
To start, for =0, PB:{ 1} , etc.
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Suppose we have B<a, and we have defined all the above items for subscripts y with
y<B , with all the required compatibilities satisfied below f3.

Suppose first that B isalimit ordinal. Then we can take BB: @ BY, according to our
y<B

definition of "directed union" above. Thereby, we have fulfilled requirements 1) and 2) for all

subscripts <f3.

- - B - B .gP B_; .bY wi
| clam that if, for xOP" , we define bXT' BXeAB as bXT_ayB bx-r with some/any

y<B suchthat xOPP , then bP_ so defined iis independent of the choice of y<p, and 3)
holdsfor d<y<f . Thisfollows from Fact 4, and the fact that AB is the colimit of
AT <f] , with coprojections ayB: AyaAB.

It remains to handle the case when [<a isasuccessor ordinal, B=y+1 .

By assumption, we have a pushout diagram

a
A, YB A

y | B
s o
D fec

with f 01 . We apply the induction hypothesisfor y. A  isthe colimit of the k-good

y
diagram By.According to Fact 4, applied to BY as A inFact4, Ay isathe k-directed
colimit of {BY1X) _, by EryppY - With colimit coprojections by (BY1X) oAy
where PY isthe poset of all <k-size non-empty initial segments of pY.

Let us abbreviate (BVFX)_I_ by Cx

Since, by assumption, the object D is k-presentable, there are xoPY and r: Der such
that p:bXTor . We construct the following diagram:
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y B
= pY A
\\\\\\\\3f:r 40 e
p| 1 Cx eEr 3 q . (2
/ 7 2
P - N
D C

E, g and d are defined by making the square 2o a pushout. e isthen defined by
stipulating that the triangle 3. and the square 4 commute. We have factored the pushout
diagram (1) (the outside square in (2)) as the composite of the pushout 2o and the
commutative square 4. . It followsthat 4o isa pushout.

DEF
We put BB = BV[ g/ X] , according to the construction "adjoining alink”. Since g isa

pushout of f ,and f isin | , g,thenew linkin BB,isin Po[ 1] (apossible second
linkisin Po[ ] sinceitisan identity arrow).

Concerning the data in 3):

For uPY :

DEF 4

bP_ "= a _obY . BY °u A VB A

uT yB°"u u y B’

p DEF y b%T a,g

blr = a,gebdl 1 B=Cy A, Ag:
DEF

bB+ = e

X

The requirement that EbB : BB —AL0 be a colimit cocone is ensured by the basic
ut U B oph

property of the "adjoining-a-link" construction, specifically the "converse" version: the
requisite pushout now isthe part 4o of the diagram (2) .

0

Since #X<k , the diagram B :By[ g/ X] is k-good.

This completes the recursive construction of the items under 1), 2) and 3) .
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The diagram P: B> A required for the proposition is @j BB , adirected union of k-good
p<a
diagrams. Clearly, #P isno more than 2 [#a : the requirements of part (ii) are satisfied.
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84 Using good diagrams

As before, k isaninfinite regular cardinal, A is cocomplete category.
Welet | beaclassof arrowsin A such that
both the domain and the codomain of each arrow in | is k-presentable.
We define X betheclass C(Po[1]) . From previous work, we recall that
X=6G(Po[ 1], (<K)) . 1)

Let us start with two k-good diagrams

AP >A B: Q >A
and the corresponding extensions
AP >A B: é >A

(recall that XOP «= XLCP & #X<K ).

We use the notation we introduced before to deal with such diagrams.

Suppose given arrows r, s in A such that

aJ.T

AL A
r o S (2)
B B
1 b T T

DEF R R
A factor for p = (r,s) ,orfor (A B,r,s) ,isatriple (X, U, u) with XOP, UIQ
and an arrow u asin

1 AX AT

r o u ° S
B B B

1 bJ.U U bUT T

( o indicates commutativity as usual). We say that the factor (X, U, u) startsat X.
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Note the obvious fact that if (X, U, u) isafactor for (A B, r,s) ,and (U, V,v) isone
for (B, C,p,q) ,then (X, V,vou) isafactor for (A C, per, qes) :

a a
1X XT

AL Ax A
‘ l . lu . ls

B B B
1 b U b T
pl 1U lv ur lq

C C
1 C,v CV Cyr T

Most of the time, in the definition the pair p=(r, s) isfixed; we omit "for p" when p is
understood.

If é=(X, U, u) and n=(Y,V,v) arefactors, wewrite é<n if

a
XY
Ax eAY
u o \Y
B >
U™ by By

Given afactor &=( X, U, u) , and any VD@ such that ULV, the triple ff:( X, V, S<>bUV)

is a factor as well. é is referred to as a (codomain) shift of ¢ the V-shift of & .

5 Lemma (i) Given p=(r,s) asin(2), and any XOP , there is a factor of p
starting at X

Moreover, if ¢ isafactor starting at X, and XEYDIS,then thereisafactor n startingat Y
such that é<n .

(i) For any two factors, El and Ez,of the same p, thereisathird one,
{ , such that ElsZ and EZSZ.

Proof of (i) First, we show the assertion for x[P , that is, for XOP of the form
Xl .
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By recursion of the well-founded order < on P, we define, for all xOP , a compatible
family of factorizations EX:(x, Ux’ ux) starting at x : we have, for all y<x in P that

Eysfx :

Reminder: we require

a a
1X XT
AJ_ AS( AT
r 1o u, 2o s Q)
B B B
1 b U b T
J.UX X Ux T

For x=1, we put Uf{ J.d , and U, =r .

Let x bealimit point. The construction of the factor ( x, Ux' ux) is straightforward: we
take the colimit of the compatible system of factorizations (y, U, u,) for yOx /|| . Inabit

y
more detail, here it goes.
EF - - .
We take UX = yD\xquy . The system anX.AyeAy Dnyu is a colimit cocone on
the diagram Alx /|| ; the system
b
uy 5 UyUx 5
LA, U, U, Yox .

of composites is a cocone on the same diagram; therefore, we have u,: AS( —> BU such that
X

g VA,
Uy 0 lux 4
BUy b eBUX

UyUx

commutes for every yOx || . It followsthat (3) holdsfor x : 1o because y=.10x || ; 2o
because A isa colimit of Atx |/ ,and (3) holdsfor all yOx || inplaceof x .

Let x beisolatedin P.
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By assumption, there are D f

>COl  and a pushout as in the upper square in

X—X XT l (5)
B

Weusethat C is k-presentable. By Fact 4, the system
[b

:By,—B_ U .

ur T Talo

U
is a colimit cocone on the k-directed diagram B: (AgeA . Therefore, the composite
sca,_oCc : C—A factorsthrough bU_I_: BU% B-r for some ULQ, which we can take to

XT
contain UX_,thatis, UX_DU.Thatis, we have g asin

D C
‘| |
1o C
Ayt
Aa - Ar
g
u, . S
X l 3 2
B B B
U b U T
X— UX_U Ayr
to make the commutativity 2o hold, where 2. isthe equality of the two arrows from C to
B_.
T

Looking at the two parallel composites from D to BU in the diagram, denoted

h

7% . . . .
D . %BU,weseethat they are coequalized by bU-r' Bu—eBT . Therefore, since D is

K-presentable, and BT is the colimit of the k-filtered system of the BU's , we can choose U
so that, in addition, we also have the commutativity 3. ; that is, h=Kk .

Next, since AS( IS a pushout as shown, we have £: AS( - BU producing the commutativities
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4o and 5o , equaitiesof arows A, _ B, respectively C By :

D C
d 1o Cl
Ay
e, T, . A
u
X— 20 S
A

Sy, by, u By by B
Weput U =U and u =£.
We have
AS( ax_x AS( aXT AT
Ux_l 40 Uy=L o ls ’
U oy U " oy T P

4. was achieved before; 6- istrue since each of the pushout coprojections c: Ceﬁy and
a

X—X . >
79& equalizes the two arrows AS( %B
This ensures (3), and (4) for all y<x (for the latter, also because (4) holds for x— in place
of x).

T

This completes the construction

(XOP) > (U 0Q u: A —B )
X

satisfying (3) and (4).

Now, let XOP arbitrarily. In anutshell, (X, UX' ux) is defined as the colimit of the
compatible system of all (x, Ux , uX) for xOX.
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In more detail, define szx\DjXUX . We have that UXDPH since #X<k , each #UX<K , and
K isregular.

Define u 'AX:coI I MCATX) —>BUX by the condition that ux°axX:bUXU Uy for all

X
X

xOX. The proof that ( X, Uy, ux) is afactor is similar to the proof for ( x, UX, ux) the

case of x limit above.

The moreover part of (i) follows from the main part, by applying it to the derived good
diagrams A|X: P|X—>A, B|U Q|U~>A, and to the situation

a
XT
Ax a
u 0 S
B B
U bUT T
where é=( X, U, u) .
Proof of (ii) First, we prove the assertion for the special case when both ¢ 1 and 62

start at the same point x in P (rather than at a general XOP ). More specifically, we prove,
by induction on x according to the well-founded relation <, that factors El and 62

starting at X have a common shift.

Let &=(x,U,u) (i0{1,2}).

The proof for x=1 issmilar to that for x limit, to which we turn now.

Let x bealimit point; the argument now is a straightforward appeal to the "uniqueness
property" of colimits.

In more detail:
We have A =col i m{Atxll) .

i
y)

where uiy:ui oayx: Ay»BUi starting at y ; by induction hypothesis, there is Yy such

For each y[Ox |/ , and for each i O{ 1, 2} , we have the factorization n;:(y, Ui ,u

that the Yy-shifts of n>1, and n§ are equal.
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Let Y=\ Y, .Thenthe Y-shifts of nl and n2 areequa for al yOx|| . Define
yOX || y y y

DEF

hi bUi v°Y; :AS(—eBUi (10{1,2}) .
Since

Da‘yx: A\/ A Q/DXLL

is acolimit cocone on the diagram Alx |/ , and, for each yOx || ,

1 2

hyoayy = bUlYouy - bU2Y°uy =hyeay, A By,
it follows that hl:h2 , which means that the Y-shifts of ug and u, are equal.

DEF
Let now x beisolated. Define Vi = Ujeay (1 =1,2). We have the factorizations

(x—, Ui » Vj ) dtarting at x— . By the induction hypothesis, their shifts are equalized at some

YD@. For each i =1, 2 , consder the diagram

aXT
L ls
B B
Y T
by v by

obtained from the fact that aX_XDPo[ '] .Since (X, Ui » U ) isafactor, we have the

commutativity 1o . Therefore, the two arrows C:i B, areequal. Since C is
K-presentable, we can choose YOQ such that, in addition, for both i =1, 2, the two arrows in
the same diagram C:i By are equal.

Let w :bui voYi

. Then, on the one hand, as we just saw
WjeC = WyoC ;
and on the other hand,
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W18y =V1oPy v T VP y T WAy
since, by the induction hypothesis, vy and v, are equalizedat Y. Since ¢ and Ay
are pushout coprojections, it follows that Wy =W, . This means that the Y-shifts of ug and
u, are equal as desired.
Finally, for the general case of (ii): let Ei =( Xi , Ui » U; ) (i=1,2) . Let X=X1DX2 ;
XOP . By the "moreover" part of part (i), we have factors ¢ 1 and ¢ 2 both starting at X,
such that Ei sZi . The assertion will follow for El and 52 if we can show it for Zl and

Z2 . In other words, we may assume that El and 52 start at the same XOP .

This case now follows from the special case, for factors starting at points xP , proved above,
by a colimit argument, exactly as above the case of x being alimit point was handled.

This completes the proof of 5.Lemma.

DEF
Next, we let G be a category such that #G( = #( | | honb(a H)) ) islessthan «,
G HIO(G
#G< K .
G H, ... rangeover objectsof G.

We consider the functor category AG :

We recall that [X, GO denotes the class of al arrows ¢: @ >VY in AG such that (pGDX for

al G.

Let ¢: ®—W¥ beanarrowin [X, GO; let GIG. By (1), we have k-good generating
diagram AG' PG—eA with linksin Po[ I ] such that

b= AgEal 1 06=A% — AC=yG .

Let usfix a system {AG} QG of generating diagrams AG Relative to the fixed system, we
say that a factorization ¢=0-p ,

p /‘/2 \O-
-
7 ©

¢

P 2y (6)

G

in the category A G

, iIsgood if, for each G, the factorization aJ__I_:d)G:aGo PG isonethat is
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given by the diagram AG in the form

G G G
p~=a AT —A
G LXG 1 XG

for some choice of sets XGDﬁ’G ( XG isaninitial segment of PG, not necessarily of
cardinality <k ), one for each GIG. The sets XG are referred to as the carriers of the
factorization, XG being the carrier at G.

The factorization is k-good if, in addition, XGDISG ( #XG<K).

Thus, a k-good factorization of ¢ is given by a complex

( D(GDﬁGEb]G, TgO

.
c9 HDG) ¥

such that, for each g: G>H, (XG, XH, rg) isafactor for (AG, AH, og, Yg) :

a a
X X T
G 172G G G G
d)gl o lrg o l Yg .
H H H
Ay _H AxH JH AL
J.XH XHT

and, every time hog=k in G, wehavethat ThoI'g=lk .

Thetriple (X, U, u) being afactor involves the condition that the initial segments XCP ,
UCQ are of cardinality <k . If we remove this condition, the above, originally stated for
k-good factorizations, gives a characterization of a good factorizations in general. (We don't
want to use "k-good factor" for "factor", since the expression "factor" is used often in the
meaning set as it is now. )

From now on, we assume that KZDl )

6. Lemma  For any system D{GECDG of sets YGDF;G’ thereisa k-good factorization (7)
of ¢ such that YGE X foral GIG.



Pr oof We define, recursively for nN , sets XgDﬁG, one for each GJG, and

arrows ug: AGn >AHn+1 , one for each g: G—H, such that, for every nlN ,
X X
G H

1) foreach G, XACXM'L,

2) for each g: G>H, En = (XQ; Xlr_]|+1, ug) is a factor for
(Ag Ay @9, ¥9) ;

. n n+1 .
3  foreach g:GoH, & <& " asfactorsfor (Ag Ay @g, ¥g) ;

n+l _ n+1 G

4) every time k=g-h , we have U~ =up ougoaxn n+l - in other words,
GG
with G%HQK, GMK, we have the commutativity
G
a
nyn+1
TR <A <A
¥ xn+1
G G
n ° n+1
ugl luk
H K
Axn+1 n+l ~ Axn+2
H h K
0 DEF
We put XG = YG'
Next, for each g: G>H, weuse 5.(i) and let V OP,, and v :AG HA\F) such that
G
. 1 A
(Xg, Vg, vg) is afactor for (AG' AH, g, Yg) . For every GIG, we let XGDPG be the
set XlzxoGD \J{V,: codom(g) =G . For every g: G>H, we define, uO: AC M
G g g XO Xl
G H
as ud=a' eV .We have satisfied 2) for n=0.
g VgXH g
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Now suppose that n=0 and we have defined all XM for men+1 , and all uM for men ;

G g
well define the X% and the ug+1.
For every g: G >H, we define V._OP,, and v . AC SAP sichthat XM oy
y g ' g H g+l Avg H ="g’
G
_/ntl : n ) -
Zg—( XG : Vg, Vg is afactor for (AG' AH, g, ¥g) , and Eg < Zg ; for this, we use

5.(i).

Next, let us fix the triple (g, h, k) =(G-9>H-"5K, 6-K=N9, k) - we construct the

following diagram:

G
a v
AGn AGn+1 K 9A\|§ ak
1 v 3 > aK
y" l g ' Z (8)
9 H W K K
a5 Ay AN T

H — - 2 ° g K ,//‘z
A - " a

xﬂ*l Vh AVh

(we have omitted the subscripts from the a-arrows).

W and w are chosen so that n=( Vg, W w) isafactor for (AH, AK, oh, WYk) such that
+1 :

=X Vi, vy) <0 this makes 26 hold.

Since Zg:(xgrl, Vg’ Vg) is a factor for (AG, AH, ®g, Yg) , and n=( Vg, Ww isa

factor for (AH, AK, oh, Yh) ,and, ® and ¥ being functors, ®k=( ®¢g) -( ®h) and

Yk=(¥g) -(¥h) , it follows that 9:(Xg+1, WWOVg) isafactor for (A

G1
Since Zk:( Xgrl, Vk’ Vk) is another factor for the same (AG' AK’ ok, Wk) , by 5.(ii),

there is a common shift of 6 and Zk:thisispreciselytheexistenceof Z in(7) soasto
make 3 hold.

A Ok, YK) .

Let us re-denote the set ZDISK as Z( g, h) to emphasize its dependence on the composable
pair (g, h) ( k=h-.g) .

Next, consider an object K of G, and define
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DEF
XK = U {Z(g’ h) (g, h) composable, codon{ h) =K} .

Defing, for k: G>H, the arrow

n+l. G K
uk .Axthl—eAxn+2
G K
so asto make & =(XG T, X0"2, ul™1) the X2 shift of the factor
+1
zk_(xn N V) -
DEF DEF
. +1 +1 +1 +2 +1
With EE = (xg x[l ,uE) EE = §.=(X3 X! x& ” ) , we do have that
€k<62+1 to satisfy condition 3) .

Returning to the atriple (g, h, k) as before, and the corresponding diagram (7), with
:Z( g, h) we have 1. by the inductive assumption ESSZ g We complete the diagram (7)

K
with an arrow Z( g, h) a%sz , and we see that the composite arrow
G K n+1 G K n+1 .
Axn+1 79Axn+2 equals Uy , and the one Axn+1 Xn+2 equals Up . We obtained
G K H K

that the requirement 4) holds as the commutativity of the outside of the completed diagram
().
1) holds with n+1 in place of n . 2) holds as stated.

The recursive construction is compl ete.

We complete the proof of 6. Lemma by taking colimits.

In more detail:

For GJG, define X n\DjINXG Since D=k, and kK isregular, XGDP

AG

For GG, let T(Q = X .For g: G—>H, let
G
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(g) =coli mu” : (G =coli mAG >col i mAl_| =M(H ;
g xn Xn+1
G H

in other words, '(g) isdetermined by the commutativity of

s r(g)

H
A A
XG XH
aGn ° aHn+1
e Ay Xy
G H
Axn u n Axn+1
G g H

for every n . Indeed, on the one hand, the left vertical arrows are the colimit coprojections of
adiagram B:IN— A ; thisfact is a case of rearrangement according to Fact 3, "case one". On
n

u a
the other hand, the composites AG %QAH 1%%—(‘ for n=0, 1, 2, ...
XN X0+ H

G H
form a cocone on the same diagram B, as a consequence of item 3) in the construction.

Let nON, and let G%HgK, k=h-g , and consider the diagram

G (9 H r(h) K
X X X
G H K
1o a'ﬂ 20 aKW
n+1
aC AH U AH
n > n+1 > n+1
ug //// XH //// XH
//// 30 /,/// K
G K
Axn un Axn+1
G k K

1. and 2+ hold by the definitionsof I'(g) and I'(h) . 3. isitem 4) of the construction.
The resulting outside commutativity says that

R r(h)-r(g) WK
X X
G K
aﬂ : waH
G K
Axn un Axn+1
G k K
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commutes for all n -- which saysthat '( h) -I"'(g) answers the description of, and
therefore equalsto, (k) .

This completes the proof of 6. Lemma.

7. Proposition Assume:

K isaregular cardinal, KZDl;

G isacategory such that #G<k ;

A is acocomplete category;

| isclass (set) of arrowsin A such that for every f Ol , both donm{f) and
codon(f) are k-presentable.

Then
A [Po[1]], GO = C(AG>[ A po[17, <], GO
Pr oof The fact that the class on the right-hand side is contained in the one on the
left-hand side is obvious.
Let ¢: ®—>Y bean arrow in the class on left-hand side. By the conclusion (1) stated at the

start of this section, drawn from the work in previous sections, we have, for each GJG, a
K-good diagram AG PGfaA with linksin the class Po[ | ] , and such that

(AEdg 9GHYG.
Recall the notion of good (not just k-good) factorization.

With alimit ordinal o, let D(BDB<G be an indexing by ordinals of the set G|j|GPG.

We are going to construct, by transfinite recursion, a transfinite system

G, PB 9B
EI'BDA O] I'B LPDB<0{

of good factorizations of (¢, with carriers Xg (GIG, B<a) , "carrying" the arrows

: _AG
FB( g) : FBG-AXB

G

eA;IﬁzrﬁH (g:G>H) . (9)

H

and with the following additional properties:

1) For afixed GJG, the carriers Xg form an increasing continuous system whose
unionis PG:

39



yrxB -
a) y<B<a = XGE XG

b)  for B limitordinal, \J X¥=xE ;
<B
C) for G, B and xDPG if 1(x) :xy,for | the coprojection
x Yt

l: PGfeg|j|GPG (briefly, if xyI]PG), we have x[ G

2) Whenever B+1<a, #( xé*l-xg) < Kk ("small increments").

3) Forany g: G>H in G, and y<f(<a, the diagram

G
A VB
G X6 G
y B
G XG
r o r
ygl l Bg
aH . aH
xY xB
H & VB H
HH

commutes.

Before we carry out the construction, we want to elaborate on the (rather obvious) fact that the
construction proves the proposition. For this purpose, one repeatedly uses the fact that colimits
in a functor category are computed componentwise.

Suppose we have 1) to 3) done.

We have natural transformations uyB: Fyfe FB (ysp) for which (uyB) G~ axy 3 : the
naturality of “VB is 3).

G

We have afunctor I: [ a) ={ B: B<a} ———> A~ for which T'( ) :FB , and

r . °'c
r( y<p) :“VB ; for GJG, the Gcomponent [ a) —A

[ @) —— A defined as

>A of I isthe functor

B+ A)C(EB, (@Y%) lﬁeaiy B

G GG

G

I isacontinuous transfinite system I: [ a) >A~: for B alimit ordina <a,
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EuyB: _ry%rBDy<B is a colimit cocone on the diagram I ' ) , because this holds after
evaluation at every GIG:

a
G xéxg

G
D \AERA CACEN
y B DV<B
G XG

is a colimit cocone on the diagram

a
Oy Y
e X3 s
Xc‘S xY oy’
G G

this fact being a case of "rearrangement” of the colimit A)cé':col I m AGPX) according to

"case one" of Fact 3.

In fact, we have an extension of I' , alsodenoted I ,to I': [ d] eAG (thatis, T'(a) is
defined) as follows.

The system EUB: r B»WDB < of natural transformations GB is a colimit cocone on the
diagram T , since after evaluation at every GUG, thisis true:

a
xYr
G G G
DAxgeAT DB<a

is a colimit cocone on the diagram

Yy B
e X6 e
Y B ysp<a
G G

this fact being a case of "rearrangement” of the colimit AS:COI I m AG) according to "case

one’ of Fact 3 because of | XB = P, which holds by 1)c).
g G "G

At the same time, we see that the composite [T [0 of I is ¢, since thisfact is true after
evaluation at each GUG.

of the AG-system [, which are the

For GJG, the G-components of the links u
G

Yy Y+l
3G

y, v+l

arrows a arein g[ Po[ 1], <k] by condition 2) and Fact 5, part 2). Therefore,

41



they arein C[Po[l ],<k] , by 2. Prop., part (i) ("in fact,..."). In other words, the links u
themselvesarein [C[ Po[ ], <k], GL.

y, y+1
We have shown that ¢ belongsto C( AG)( [C[ Po[ 1], <k], GD) asdesired.

In turn, we carry out the construction 1) to 3).

_ _ _: 0_xG

For B=0, we let FO—/\, Po= dA' XG_BJ_ .

Let B<a, and suppose al items for smaller ordinals have been defined. The new items to be
defined are the ones displayed in (9).

If B isalimit ordinal, the new items are uniquely determined by conditions 1)b) (defining the
sets Xg (GIG ) and 3). Given g: G—H, the facts of 1)a) and 3) being true, for all pairs
(d,y) suchthat d<y<B inplaceof ( y, B) , ensurethat thereisaunique arrow I Bg
satisfying 3) with all y<, because

a
Yy B
e X6 e 0,
y By<pB
G XG

is a colimit cocone on the diagram

a
Oy Y
e X3G s
Xc‘S xY oy’
G G

this fact being a case of "rearrangement” of the colimit A)cé':col I m( AGPX) according to
"case one" of Fact 3.
(One is tempted to dismiss the issue by putting
DEF
FB 0 colimrY
y<B
but thisis of course not enough: we are not defining things here merely up to isomorphism).

It remains to handle the case when [ isa successor ordinal, B=y+1.

Recall the construction of the "end-segment” diagram A|R and the facts about it from Fact 5.
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We will apply 6. Lemma to the the arrow ay: Fy—>W in place of ¢: ®—— WY, the diagram
AG|xg’;- PG|Xé—>A in place of Ag Pg—>A (one for each GIG) .

_AG _ .
Note that I y( G = AXV = (AG| Xé - Note that, by Fact 5, the k-good diagram AG\ Xé

generates as its composite the arrow

G G G
(0 )~=a~, : A SAZ.
y G y y
G %G
We have XBD | | PG, picked out by the ordina [ at hand. Let GODG be the object for

GG
which x VDPGO . For an application of 6. Lemmma, we put YGO:X VL , and YG:D for

GG, .
By Fact 5, (PG|Xé " isidentified with PG“Xé:{ZDISG: xél;z & #( Z- xé <k} , and the
diagram (AG|Xé " with '&G restricted to PG”Xé' Thus, 6. Lemma gives us,

afunctor I B: G—A (as I' of 6.Lemma),

natural transformations I

T GB
r Y h th o T=
v B suc ataB =0,

and

for each G, aset, denoted Xg (as XG) in P
#(XE-xY) <k, and

Yy B
G such that XGI;XG,

_ G .G .G G _.G . ,G G
FB( c) _AXB : rG—axéxg AxéeAxg, (GB) G—axg_r. AxgeAT

This is sufficient.
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85 Thefinal part of the proof, not using good diagrams
The next proposition is completely independent from the work done so far.

8. Proposition Assume that

K isaregular cardind,;
A isalocaly k-presentable category;
| isaset of arrowsin AK.

A
Then [ Po™[ 1], <k] = Po[ (] o’ K)[I],<K]]

Pr oof The fact that the right-hand side is contained in the left-hand side is obvious.

Let me use the notation 7[ J, a] for the class of all continuous transfinite systems
A: [ a] >A of length a whose links are in the class J . Thus,
fOC[ J, a] & 0AO7[ J. o] . f =[AL.

7[ a] denotes the class of al continuous transfinite systems A: [ a] —A of length a,
without anything being said on links.

Let o beanordina <k ,andlet AO7[Po[ ], a] . Forevery B<a,we have, and we fix,
a pushout diagram

B B+1
pﬁw 0 Wqﬁ
D C
3 fg B

with fBDI .

We are going to construct BOZ[ Po[ 1], a] , B: [ a] %AK (") such that the given diagram

A isapushout of B (see 81), and, in particular, [AO isapushout of [BL. The
construction will be a recursive one; we will construct the restriction BIM ] : [ O] eAK by

recursion on the ordinal B<a . Smultaneoudy, we have to produce other items, to keep the
recursion going.

More fully stated, we propose to construct an "augmented triangular matrix of objects and
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arrows' in A (mostly in AK):

objects Bg ( B<a, Pspsa) in A

pH
"horizontal" arrows B’“;yﬁe Bg ( ysBsu<a);

pVH
"vertical" arrows BE% BE ( Bsvspu<a);

bET
"upper augmentation” arrows BELAB ( Bsp=a);

"lower augmentation” arrows

A A

p Ugeq 1
Dg B eBg, CBB+>Bgil ( B<a):

all subject to the following 1) to 4):

1) For any u<a, the "horizontal" diagram BH: [ U] feAK IS a continuous
transfinite system.

[Explanation: BH is defined by

DEF DEF
M - pH M - pH -
B"( B) Bg B™( y<p) by
thus, we require
o H pHd = pH .

and

for B<u alimit ordinal,

mH .M BH is a colimit cocone on the diagram B“P[B) ]
yB "y B-y<B

21) Forany B<a, the"vertica" diagram BB: [ B, a] »AK Is a (not necessarily
continuous) transfinite system.

[Explanation: [ B, a] ={: Bsu=<a} ,
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DEF U DEF I
BB(IJ) = BB’ BB( vsH) = byB,

thus, we require

bg“::id, bE“obgV::bg“ ( B<p<v<p)

Moreover,

HT. gl : .
2.2) EbB 'BB %ABD[?S[,KO{ is a cocone on the diagram BB :
[that is:
t%ﬂmykb?' (Bsvsu<a) ]

3) The following are pushouts:

pH
BH yB . gH

y B
3.1) b;“w O ngu ( y<Psvsu<a)
B; v eBE
yB
AyayﬁeAB
3.2) bﬁTw o ngT ( y<B<<u<a)
BH I eBg
bvB
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1 1
Bg+ b[3+1 7 Bgil

oB B PP
B
3.3) B o Agy1 ( B<a)
Pp
i
Op B

4) For all B<a, we have

A
B~ T
\bB
p 0 -3
B BB

The desired entity, denoted B: [ a] feAK above, is going to be the "horizontal" diagram BY
mentioned in 1) for p=a . 3.3) says that the links of BY arein Po[ 1] ; 3.2) says, for

y=0, B=u=a,that CAO isapushout of [B[I. Thus, the construction, once it is carried out,
will certainly prove the proposition.

Suppose B<a , and the construction of entities marked as sub- or superscripts by ordinals
y<[B has been carried out.

For =0, we only need to say that 88:D0 : ﬁozi dp . and bg'r:po _

0
Let >0 bealimit ordinal, p<a.

The construction of the entities marked by [ (and, possibly, by smaller ordinals) is carried
out in two steps. In the first step, we construct entities like the required ones except the arrow

p B: DB —> Bg of which we don't obtain a version. In order to be able to get the last arrow, in
the second step, we modify, by an appeal to Fact 6, the system we got in the first step.

The first step of the construction is a straightforward "taking-limits" action.

The entities gotten in the first step are denoted by the letters E (when they are objects) and e
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(when they are arrows); their sub- and superscripts will exactly follow their, eventually
desired, B- , respectively b-versions.

We define, for y<g,

3 DEF v

EF = colimB , =colim(B vy pB)) .
y v<f y y

with Byr[ Y, B) the"vertical" diagram By (see 2)) restricted to the set

[y, B)={v: ysv<f}

Since y<p<a< Kk, the definition makes Eg K-presentable.
The vertical arrow e‘;/B: B‘;/f; EL; is a colimit coprojection ( v<f3).

The horizontal arrow egyz Ege Ee is defined, through Eg being a colimit, by the
requirement that, for all v<pf, the following commute:

Begﬁ
y
E5 eEy
egB ) e;ﬁ
: (1)
VvV VvV
55——Iﬁf—fesy
oy

One notes that 3.1) for ordinals <@ impliesthat (1) is, in fact, a pushout square as we want to
fulfill 3.1) for the new cases.

For y<p, the vertica arrow eL;T: EL;

ﬂmmmmmﬂmjma|wﬁ,eﬁaﬁﬁey.

Using, for o<y<f, the (already known) pushouts

—>Ay is defined, again by Ee being a colimit, by

a
oy
A579Ay
Ut Ut
b5 w O Wby
u u
85 T eBy
oy
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we see that the squares

a
oy
A5 eAy
egﬂ O WeeT (2
B B
"5 B %y
oy
are pushouts.
DEF
EB = colim Ee = coli mEBr[B)

B y<pB

bB 'BB —eBB . colimit coprojections.

yB "y B
Since fB<a,and o<k, Eg IS K-presentable.

B

Note that there are no new pushout requirements according to 3.1) involving the object E B
However, we need, and do have, the pushout

a
A, YB A

y B
BT Bt
el w O We B 3
B B
Sy B 5B
yB

as a "horizontal" colimit of the pushouts (2).

A islocaly k-presentable; since EgDAK , the comma category A’zEgiA isaso locally

K-presentable, and its k-presentable objects are those in ¥ P Eg LAK . For the object

Ao

X= egTT of X, the comma category A’KLX is k-filtered, and the forgetful functor

%
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K
Y X Y
r g
(Y’y,x) = X ////BT e — YT
\EB /// eO EB
0 0

has X asits colimit, viathe cocone (Y, Yy, X) >X .

Let uswrite 2 for the comma category ,%:EgLA , and take the functor "pushout along

B . B B ..
eOB' E0 eEB :
G Y ¥
y Y.z \? u eﬁ
yT e )?T A
///Z ///Z’\
B
EO EB
A
) B
By (3) for y=0,thevalueof G at X is(can betakentobe) X = egTT . G preserves
eB

colimits; it preserves the colimit of F described above. Combine this fact with the fact that
the forgetful functor YA preserves connected colimits, in particular, the colimit of
GoF: X, IX >4

It follows that the system D?%ABQ Y,y,x) indexed by the commutative triangles

v X
r AO
o A
(Y,y,x) = X ///eBT , Isa colimit cocone on the k-filtered diagram
N EB Y O
0
X XA (4)

A 1

(Y, v, X ) m—— Y
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Y

X

here, Y and Y >Ag are defined, for avariable triple (Y, y, x) 0Ob( £, 1X) , by the
diagram
a
0B
"o A
r\x o( o) X //
N
/7’ =
Y 0 S;\\\\\\
B B
=0 oB B
0B

We now apply the fact that the object DB isa K-presentable. Therefore, the arrow
p B: DB feAB factors through an object of the diagram (4); that is, there are, and we fix such,

triple (Y, vy, X) DOo(,l’KLX) , and an arrow u: DBe\A( such that %ou:egT .

We define the objects Bg as Bg:Y, Bg as Bgz\?,and the arrows bgT: Bﬁ%AB as
bBT

3 =X 63: DBaBg as ﬁB:u.

In between, the transfinite system BB: [ 8] 7>AK is defined as the pushout of EB along

y: EB - Y:BB (see 81 for this notion); this matches the definition of BB given before.
0 0 B

For y<f, we have the arrows beT: BeaAy (y<B) and y . EBfe BB , defined by the

_ y oy Ty
diagram
A 0y
y
. pr
\X O Y////
N bB v
L AN N
0 A Yr y
Y 0 m
B B
%0 B y

this matches the previous determination of bgT ; aso, bgsz and )? y:y .
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We complete the definition of the remaining arrows for the stage 3 by putting b‘;/B =
5 weVB (yeve
By what we have, the conditions under 3) for [ hold true.

This completes the recursive step for B<a alimit ordinal.

Finally, let B<a be asuccessor ordinal, B=y+1 . We have the items that are marked by y
and lesser ordinals.

The outside square of the following diagram:

A A

VN oo g P
b VT O A ///
y o Y >Y
/7’

gV Y \ (5)
y o y 93

b y
y Cy

is, via 4), the pushout

a
A, YB

y B
pyw a WQB
D . >C

y fy y

From this, we obtain (as before), for an arbitrary factorization (Y, y, X) , Xey=b (r , of the
arrow b )&;T , by pushout, the diagram (5), involving a factorization (\A(, 3? LX)
X o)?:qB( =0 ,,q) . of thearow qp.

Since Ay is the colimit of the objects YDAK , arranged in the k-filtered diagram

[(Y—XeA YEY] A LA >A, we havethat A, isthe colimit of the objects \?,viathe
y K B
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diagram [(Y—’%AV) NVE A LA
essentially identical case above.]

>A . [This argument was done more carefully in an

Since DB( :Dy+1) DAK , it follows that thereis (Y, vy, xX) , Xoy:bVT , such that

y
p B: DBfeAB (not in the (5)) factors through \?%AB : we have an arrow u: DB—U>\A(
such that iou:pB.
We define [-indexed items by appropriately (re-)naming thingsin (5):
A
Vr\bBT g pr P
y <
yT N = :
byl . 8P N
Y bB
_bYB yB °
By// y A q
y O qB B
D y
y CV
We define p U - Furthermore, we define
DEF DEF DEF
B . BT = LT B B .pY
BNy = B", b5 = b5 for o<y, b5B bVB b6y'

This completes the proof of 8. Lemma.

Although the following 9. Lemma has nothing to do with transfinite composites or good
diagrams, its proof is quite similar to that 6. Lemma. The situation for 9. Lemmais a more

elementary one. Both lemmas lift facts for the category A to the functor category AG. There

may be a common generalization that would spare us the repetitions involved.

9.Lemma  Suppose given:

° K :regular cardina, k=

G : category of size <K ;
o A :localy k-presentable category;

1

[e]

[e]

functors and natural transformation
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1)
o IRACEENNTe
pew o %G (6)
Do 5C
G fg G

(involving components of the natural transformation ¢: ® —WY |, already introduced before)
such that f GDAr r( AK)

Assertion: there exist

o functors and natural transformation
G
Al‘”»lr
AK

taking values in AK ,

° a pushout diagram

in AG (at each G, we have a pushout diagram of the corresponding components),
"Iinterpolating” (6): there are

o for each G, arrows tG and Ug asin:



oG >YG
PG = 9%
AG—— TG
G wG o
te o Us
D~———C
G f G G
such that, furthermore
°e Pt G PG I°Uc Y9G -
Pr oof Let g: G—>H. Therequired items should fit into the diagram
oH YH
//aT 7
oG | v
A _5IH
£G | re~
5. 0P 1 %
0
D Ce

with the expected arrows, partly generated by the given g ; the dots are to point to what is
missing in the data from the point of view of the goal.

By recursion of n , we construct:

for every nON and GICb( G ,

o objects Dg Cg of AK,
n. n+1,

o arrows r G D?;»(DG, tG Dgfe
n. n+1,

o SG d(}wG, uG : Cgfe
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and for all nON and G%HDArr(G) ,

n. +1 n. +1 .
o arrows dg. D?;»DI']' , cg. Cgfe )
satisfying the requirements displayed as follows:
¢ fn+1
oG CEENT DRt G
n n n+1
oo e = WSG, e w O
G G
fn+1
+1 H +1
dg = D S ot
- 7 - ° //,//‘// Cg ,
G
fordl G:
0_ 0_ 0_
°c fe=Ta: r6= P SG=0G
foral G andal n:
n+l . n+l__n n+l n+l1_ n.
g otG allcl Sg °Ug “Ug:

and, fordl 6 9H MKk o K=heg .
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t u
G +1 G +1
OG OG CG CG
dn dn+1 Cn Cn+1
oo gl lk g k (8)
+1 +2 +1 +2
Dﬂ dn+1 Drll CIrjl Cn+1 Crll
h h

We put (as we must)

0
f DEF f
o e ofE G
DG %CG = DG >CG,
0
r DEF p
D506 = Dy 250G,
0
s DEF q
COG C . yg = Ce CENTlTe

Let g: G—>H.

Using the canonical k-filtered-colimit-of-k-presentables representation of the object ®H, we

find objects DgDAK and arrows dg , tg , rg ,
d t r
g g g
DG >Dg , D|_| Dg OH |
such that
dgop=r od r_ ot _=p
Dg G 979 JoH, D, 9 9"H o

Taking afixed HIOb( G , and looking at all g: G—>H with the fixed H, of which there are
<k-many only, we can make the above items dependent on H only. Wehave D, t and r ,

depending on H alone, and we have, for each (G g) such that G H , the arrow d g as
follows:

d
g 0 t AT
DG >D DH D OH |
such that,
(DgopG:r od I’ot :p
g H
DG OH | DH OH .
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Using (6), we have the pushouts

¢
oH HoyH
r o r
D D Fet=dy
t t
O
D, C
Ho fy OH

Consider variable triples (X, x,y) suchthat XOA, , D-*5X-Y50H and

D Y°*=' S oH. and apply pushout to get the diagram

¢HT> WH

y o y
X—fe)A(

X = X yex=r. 9)
D 96

t _ {

D, G
Ho fy, OH

Since the object ( ®H, r) of the comma category D/A isacanonical k-filtered colimit of
objects ( X, x) with XDAK , the object ( WH, rA) of the category I§WH isthe k-filtered

colimit of the objects (X, X) , with colimit coprojectionsthe y: (X, X) —>(WH, ) .
Therefore, since CHDAK,we can choose (X X,y) , yex=r sothat, forevery (G g) ,

79 i . X Ao = [
G-2>H, thereis cg.CGeX such that y cg Yg dg-

It is now worth looking at the diagram
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OH s YH
(Dg - _— 7 H //,// 7
//,// - Ty //,// - Lng y
oG é | YG
G x f X
//7’ c g //7, ~n A
pG d g////// WX o t q G ////// Xo t
e Dy P PP
D G C
G G

(for f , see(9)). The "top" quadrangle is a naturality square, thus commutative. By also using
fod
g

the other known commutativities, we get that the two arrows DG i)A( are coequalized
cof
g G

by the colimit coprojection 3? . Therefore, since DGDAK . we can make the choice of

(X, x,y) ,depending on H alone, so that, in addition to what we had before, we also have
fod
g
—
G X are equal.
g G

that for all g: G—>H, those two arrows

For a given object H, with the final choice of ( X, x, y) and the items derived from
(X, X,Yy) , wedefine

DEF DEF DEF
1 _ 0 1-C
H = X, tH = t, g = r.

DEF |, ODEFA 1DEFA
Cﬁ = X, uj = t, Sy = T

1DEF
fH = f (for f , see(9);
and for g: G>H,

DEF DEF
O O . A
dg = dg : cg =t cg.

For al GIOb(G ,andadl gUArr (G , we have constructed

1Clllllf1d00

Ber “6' ter Y "6 e T g Cg

and have satisfied all relevant requirements; note that the two squares (7) mentioning n+2
are not relevant yet.

Let n=0 , and suppose we have constructed, for all GICb(G andal gUArr (G , the
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items

+1 +1 n+1 n+1 n+1 n+1 n+1 n n
Dg Cg ,tG »Ug g Sg ,fG ,dg,cg.

and items with lower indices.
We repeat the above, and construct the items

‘n+2 An+2 sn+2  ~n+l ~n+2  ~n+2  pn+2 4N+l An+l
Dg Cg ,tG »Ug g ' Sg ,fG ,dg ,cg

that satisfy the requirements stated for the corresponding desired unhatted items, except the
onesin (7).

Let 6 9H Mk, 6 K=N°9, K and consider the following diagrams, with entities already

constructed:

oh 5 oK Yh 5 UK
q)g //‘//‘ Lng ////
//2¢H (n+2 _~¥H AN+2
oG~ K VG~ K
rﬂrl an+1 An+2 ﬂ+1 6n+1 )
tn+1T K > DE Sn+1T [ Cﬂ
G Dn+1 - - /7’ G Cn+1 - - /7’
G ‘ //é'n'*'l G ‘ //é\n'*'l
n+1 / h n+1 / h
t +1 +1
G T //lhDﬂ UG T //‘2
N N
DG dg 6 Cg
q)h///lﬁ (DK ¢ LIJh ///2 L‘IJI<
®g — ¢ Yg —
,//2¢H FN+2 P —>5¥H gn+2
oG rn+1 i1 K - VG sn+1T K
n+1 H di I po*+2 f n+1 H éﬁ+2
' = K SG | >
phtl—" A f A+l ——an+l.
G | 4 an‘*‘l G | k////é\n'*'l
n+1 n / h n+1 / h
+ +
te T dg/aDﬂ 1 f ug s 1
- nNn_—"nNn
Dg f LG Cg

A part of the last diagram, the rectangle
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oK YK
n+2 O SAn+2
K K )
A +2 A +2

IS a pushout.
® and ¥ arefunctors, and thus ®k=0h-dg , Yk=¥YhoYg .

For these and other reasons, everything commutes, except the two quadrangles on the left side
and the right side, the ones that correspond to the two squaresin (7).

By an argument that, by now, must be familiar, for afixed object K, we can "raise" I3Q+2

n+2 , and have corresponding arrows with all hats removed, such that, first, the left side

to DK
h k=hog

guadrangle becomes commutative, for all situations G 94 H MK , G >K, and then
g h k=h-g

further so that, again for all G=H—K, G———5K, theright side quadrangle becomes
commutative.

This completes the recursive construction.

To complete the proof of the lemma, we define

AGzcoIimDn, FG:coIian, 1] =colimf!
nCN G nCN G G nCN G
t ~=colimt n+l : u~=coli mun+1
G nCN G G nCN G

more precisely, AG=col i mDG, where DG' N—->A, DG( n) :Dg, DG( n<n+1) =t ?;1 :
and similarly for the others.

Since K>DO, AG and I'G areadl in AK.

Conditions (8) ensurethat A and ' are indeed functors, (7) ensure that ¢ is a natural
transformation.

This completes the proof of 9. Lemma.

10. Proposition Assume

K isaregular cardinal, KZDl;

61



G isacategory of size <k ;
A isalocaly k-presentable category;

JOArr (AK) :
Then
G (A)
Pol 3], 60= PolA [P0 ¥ [J], G
Pr oof Thisisdirect from 9. Lemma. We take an element ¢: ®—>V¥ of the class on the
left. We have the assumptions of the lemma; in particular, the arrows fG' DGfé CG from J .

(A)
The natural transformation :A—T constructed in the lemmaisin [Po K [J], GO, and ¢
is a pushout of it.

Theorem Assume:

K isaregular cardinal, KZDl;

G isacategory such that #G<k ;
A isalocaly k-presentable category;
| DArr(A,) .

Then

A
A po{ 117, 60= C(AG)[PO(A)[EC’(A)[PO( K)[I],<K],GEJ] .

(The conclusion in words: every natural transformation between functors G:iA whose

components are transfinite composites of pushouts of | -arrows is a transfinite composite of
pushouts of natural transformations whose components are <k-length transfinite composites of
pushouts in AK of | -arrows.)

(A)
Since the classis EC’( A) [ Po K [1],<K], GO isessentially small, Jacob Lurie's lemmais
contained in the theorem.

Pr oof
A polA 177,60 = C(AG>[ A po{A 17, <k, 60

/]\
7. Prop.
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A
= C(AG)[PO(A)[EC[PO( K)[I],<K],Gﬂ]

8. Prop.

A A
- C’(AG)[PO(AG)[PO( % EC’[PO( K)[l],<K],Gq1

(A
10. Prop. for J = ([ Po [1], <K]

A
- C(A%[PO(AG)[EC’[PO( K)[I],<K],GEJ] |

Since IDArr(AK) , and AK is closerd under colimits of diagrams of size lessthan « , we

(A)
have J = C[ Po K [1],<k] OArr (AK) as well; thus, 10. Prop. is applicable.

. (A N
Obvioudy, Po [J] =3 ,justifying the last step.
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