811 Regular cardinals

In what follows, kK, A, u, v, p awaysdenote cardinals.

A cardinal k issaidto beregular if k isinfinite, and the union of fewer than K sets, each
of whose cardinality islessthan k , isof cardinality lessthan « . In symbols. k isregular if
K isinfinite, and

forany set | with || | <k and any family DAI QDI of sets such that IAi | < K
foral i O1 ,wehave | \ /A |<K.
i Ol
(Among finite cardinals, only 0,1 and 2 satisfy the displayed condition; it is not worth
including these among the cardinals that we want to call "regular”.)

To see two examples, we know that DO isregular: thisisjust to say that the union of finitely
many finite setsis finite. We have also seen that Dl is regular: the meaning of thisis that the
union of countably many countable sets is countable.

For future use, let us note the ssimple fact that

the ordinal-least-upper-bound of any set of cardinalsis a cardinal; for any set | , and
cardinals )‘i for i dl , lub )‘i isa cardinal.
i dl
Indeed, if a=l ub )‘i , and B<a, thenfor some i Ol , B<)\i .If wehad B~a, then by
i dl
B<)\i <a, and Cantor-Bernstein, we would have Bw)\i , contradicting the facts that /\i IS
a cardina and B</\i . Thus, if B<a,then Bra ,which meansthat a isacardina.

The condition of regularity can be stated in the following equivalent manner: the infinite
cardina «k isregular iff

Q) for each set | with cardinality lessthan k , and for each family Eb{i QDI

of ordinals a; , each lessthan k , we havethat | ub a; <K.
i Ol
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Indeed, assuming that k isregular, and assumingthat || | <k and a; <K foral i0 ,

wehavethat | a; <o, <k,thus [luba; [=1 1/ a; | <k;but, forany cardina K,
il i Ul
and any ordinal a, | o | <k impliesthat a < k (why?); thus, | ub a; <K follows.
1 Ol

Conversely, assume that (1) holds, and show that k isregular. In particular, K isalimit

ordinal. Let |1 <k and IAi <k foreach i .Let )\i =\Ai | ; )\i is an ordinal less than

K . Hence, by (1), A d5f | ub )‘i < K . Aswe noted above, A isacardinal. Let
i al
u=max( A, [11) ; since A, [I| arebothcardinalslessthan Kk, u isacardina <k .But

then |l | <y and A I:)\i <SA<u . Hence, if p isinfinite, we have

A s \i%IAiISuDJ:u<K;

i Ul
810
and if p isfinite, then UAi is finite, and so again
i Ol
AT < k.

iUl

Thisshowsthat K isregular.

In fact, we can formulate regularity in terms of ordinals, without (overtly) referring to
cardinals. Let ussay of alimit ordinal o that it isregular if it satisfies

(') foranyordina B lessthan &, and for each family [ul DI<B of ordinals
a, , each lessthan 0, we have that | ub a, < 0.

1<

Note that if k isan infinite cardinal, then it isalimit ordinal, and if it satisfies (1), then it
satisfies (1'), since <k impliesthat [Pl <k . Conversely, | claim that if the limit ordinal o
satisfies (1), then it isaregular cardinal. o isinfinite. Assume (1') for sucha & . Let (<o.
If wehad B ~ 0, then we would have an indexing Ebrl DI<B of all ordinalslessthan o,

and so, alsousing that o islimit, | ub a, =l sub a, = é, contradicting (1'). This shows
< ' i< !

that & isacardina. But now looking at formulation (1), if we have an arbitrary set 1 with
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11<d, wecanindex | by anordina [(<¢d, and transform any instance of (1) into one of

(1)

We have shown that an equivalent definition of "regular cardina” is given by the condition
(1), together with the condition that & isalimit ordinal.

We have a large class of regular cardinals. Let us write k" for the least cardinal greater than
K .If k=nlw, then K =n+1 , and if K:Da, then K+:Da+1 . A successor cardinal is
one of the form k" . The fact is that all infinite successor cardinals are regular. The reason is

mmﬁ\ll<ﬂ'mdlﬁ|<K+mriDl,mmlﬁISK,deISK,mw

K<K.

I JA s

Y IA <11 I xKk< KK
i Ol i 01 A

1
§10

On the other hand, eg. O, =1ub Dn is not regular (we say singular for not regular).

W h<w
Namely, now |w|:w=D0<Dw,andforeach ndow, |Dn\:Dn<Dw, but

| n\D//a)Dn I =1 le = Dw; thus, the family D]]n Eth IS a counter-example to the regularity
condition for [ W

We have now seen that the cardinals DO and Da+1 are regular. We just saw that for a=w,
Dw issingular. Are there limit cardinals, that is, cardinals of the form D5 for alimit ordinal
O that are regular? One sees that if so, then we must have [ 6:5 . the reason is that the set

{0 _:a<d} iscofinalin O5: lubO_ =0 (why?); therefore, if d<a were the case, we
a o a<d 9 o
would have a contradiction to formulation (1') of the regularity of [ 5 However, if we take

the smallest & for which [ 5:5 , k=0 5 turns out to be singular; thus, the above does not
have a converse! Consider the following sequence:

( n<w)

defined recursively. We have Ko<Kq since O<DO . By an easy induction, we show that

Kn<Kn+1 for all n<w. Let usdefine A = Ingan . | claim that D)\ = A . Wehave
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D)\ =lubO_ =lubl since A=l ub k_ (exercise: show that if aBsaB, for

a<h 9 n<w fn n<w
B<B <y, and y=lub B. ,then luba, =lubay);,but 0 =k , and so
ol ! iol B p<y P Kp N+l
0, =1ubk = A . However, A=0, isnotregular: wehave A =1sub k_ and w<A.
A n<w n+1 A n<w N

It turns out that, using the usual axioms of set-theory, one cannot prove that there are regular
limit cardinals. A regular limit cardinal is called a weakly inaccessible cardinal. A strongly
inaccessible, or ssimply inaccessible, cardinal k has, by definition, the additional property that

for all A<k, we aso have that 2)\<K. It is easy to see that limit cardinals with this latter

property are exactly the ones of the form beth 5 for alimit ordinal o ; these latter are called
strong limit cardinals. Thus, an inaccessible cardinal is the same as a regular strong limit
cardinal. In section 13, we will take a look at inaccessible cardinals -- despite the fact that we
cannot prove their existence with the axioms so far listed. In fact, the existence of inaccessible
cardinals will be seen as a reasonable new axiom of set theory.

There is an important calculation of the cardinality of a particular kind of set involving
regularity. We consider the following situation. We have ( B, 7) where

(i) B isa set
and

(i) F isafamily F= [fi QDI of partial operationson B, that is, each fi isa

J. J.
function with domain contained in B ' ,don(fi) 0B ' for a particular "arity" Ji (an

arbitrary set, given for each i 0l ; usualy, ‘]i is a natural number) and range(fi ) UB.
As areminder,

B‘]z{f: f isafunction, dom(f)=J ,range(f)0B} .)

We are going to write f: DA-—B tomeanthat f: dom(f) —B and don(f) OA.

J.
Thus, the partial ‘Ji -ary operation fi may be displayed as fi B! ——>B.
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Examples. (A) The notion of group is a very important one in mathematics. A group is a set

B together with a binary operation [ BzﬂB , aunary operation ()~ l: B—B,anda

O-ary operation e [J B, where these data are required to satisfy the identities

1 1

(xy) =xQyZ), ex=xlk=x, x "[X=xx ~=e.Thisfitsour setup

above, with | =3, J,=2, f

0 0
that a O-ary operation f:AoeA is basically the same as a distinguished element of A

-1
=0, lel, flz() ,JZ:O, f2:e (note

AO:{ 0} =1, andto give afunction f: {0} —>A isthe same asto give the element

e=f (0) OA). In this case, all operations are total, that is, don(fo) = 82 , €tc.

A similar example is provided by each of a number of other kinds of algebraic structure:
lattice, Boolean algebra (these we will see in some detail later), ring, field, etc. (In fact, in the
case of afield, divison is a genuinely partial operation.)

(B) The notion of limit in analysis can be considered as a partial operation. If X O RY isan

. e . =5 _ . =5 _ .
infinite ( w-type) sequence of reals, X = D(n E}Kw,then limx = Inlignooxn may not exist,
but if it does, it is uniquely determined. Let | im [ RY —R bethe partial operation
whose domain is the set of those sequences of which the limit exists, and whose value, at such
a sequence, is the limit of that sequence. In this case, the arity of | i m isthe infinite ordinal
w.

Li m can also be defined on (R®) @ Thatis, if P 0 (RY) @, ie,if P isasequence

P=0 i< Of functions f :R-—R from the reals to the reals, then | i mF isthe

function f: R-—R for which f(x) =1im fn(x) 1i mP isdefined iff the limit
n—o

[im fn(x) existsfor all x OR ("pointwise limit").
n—oo

Below, we will consider the systems (R, i m , ([R[R, lim asexamplesof (B, ) of the
general situation; in both cases, | =1 ={0} and fO =lim.
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Let usreturn to a general "system” (B, 7) asabove. Relativeto (B, 7) , aclosed set is any
subset X of B for which

J.
XOX ' adon(f;) —— f(X) OX

J.
whenever i 01 , X OB ' . Forinstance, if (B. ) isagroup, then a closed set iswhat is

usually called a subgroup of the given group: a subset of the (underlying set of the) group

whichisclosed under 0O, ()~ 1 and contains e . In the "limit" examples, closed sets are
what are usually called closed: closed under limits (in the function-space example, thisis only
one possible kind of closedness; there are also other "topologies' on that space).

It is clear that the intersection of any family of closed setsis closed (exer cise; the empty
intersection is taken to be B itself). Therefore, for any subset A of B, we may take the
intersection of all closed sets containing A, and call it the closure, or F-closure of A

notation: A, or A(f) )

In the example of type (A) (groups, Boolean algebras, ...), A is called the subalgebra
generated by A ; in the examples under (B), it iscalled the closure of the set A.

What we want to do is calculate the cardinality of A, in terms of some cardinalities given
with the situation. Let us denote:

A = rrax(Do,II N,
def

U = rrax(DO,IAI)
def

(thatis, A= 11 | unless | isfinite, inwhichcase A = DO ; Similarly for u),
and

Kk = theleast infinite regular cardina for which
def
K>|Ji | forevery i OI .
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We use the notation

VK d5f | ub{ VP: p< kK, panycadna}

We have, with these notations, the estimate formulated in the next
Theorem. With (B, ) any system of partial operations, we have, for the cardinality | A |
of the closure A of asubset A of B, that

A< max(A, ) <K )

with Kk, A and u asdetermined above.

Of course, we dways havethat u< | A| (why?); the two estimates determine | A | quite
sharply (see a'so more on this below).

Before we turn to the proof of (2), we note three properties of the operation vk Oneis

v < vK (for k22), (3)

which is obvious; the other is

k < VK (for v22): (4)

the third is

(v P = vSK (K infiniteregular, p<k, v=2).(5)
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For (4), notethat p < 2P < WP < K for every p<kK;but K istheleast cardina > al
T
Cantor's

p<KkK;itfollowsthat k < VK

(5) isdightly more involved. We claim that
Pvhf = POV <kt

here, we have made a distinction between exponentiation "of sets' and that of "cardinals’; P

means the set of al functions p—-o0; v isacardina (in particular, an ordinal), the result of
cardinal exponentiation applied to the cardinal-arguments v and u . In this display, on the

left side, we have the set of all p-type sequences of ordinals < VoK ; on the right, we have a
union of setsof p-type sequences.

The clam is clearly the same as to say that for any EbrED&pr( v<K) , thereis u<«k

such that [ d p(v“) . But, for each é<p, a0 vuf for some <k, since VK
£-e<p ’ O R

is the union of the sets v“,u<K.Since K isregular, p <K and each uE<K,Wehave

that | ub “E < K (see the second definition of regularity). With =1 ub “E’ U isa
E<p E<p

u
cardinal, v ¢ < vH foral &<p,andthus ag 0 vM foral &< p.We havethat

P yH
E“EDE<pD (v™) aswe wanted.

On the basis of the last claim, we have

(VP =PV = PO ekt
< Z(vu)p: ZV“EDSK[V<K = K
U<K H<K 0 0
pLp=mex(u, p) <k (4)

as required for (5) .

To prove (2), we give aformulafor the set A itself first. Define, by recursion on the ordinal
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a < K , the sets Aa as follows:

AOIA

Ay = UAB if o<k isalimit ordinal; and
pa
oL S Ji
ABJrl = ABD{fi(a) pi 01, dabdon(f,) nAB }.

Clearly, AB 0 Aa 0B whenever B< a < k.We clam that

A= \UA . 6
agKa (6)

For one thing, the right-hand-side is contained in the left-hand-side: by inductionon a <k,
we show that Aa O A . Theinduction-stepsfor a =0 and a limit are obvious. For

a = B+1 , note that since A [ A (induction hypothesis), and since A isclosed, f; (&) OA

J.
whenever i Ol and @ O donq f i ) nAB ' thus, by the definition of AB

as desired.

A oA

+1° T B+L

Secondly, we need to show that the union | / A
a<k

containing A, and the union contains A, it will follow that A0 | J A
o<k

o isclosed; since A isthe least closed set

q° which is the other

containment we need.

To show that the unionisclosed, let i Ol , and

J.

- | ;

a=[a O(\JA) ' ndon(f.) ;wewantthat f.(a) O | JA_.Since
quJi a<k & | I a<k @

. / i . < . i .
aJ OA, thereis orJ K such that aJ DAa_ . We now have the family Ebrj qD‘]i of

ordinals lessthan k . By the definition of k, we have that | Ji < K ;aso, kK isregular.
Therefore, by the second version of the definition of "regular”,

B = Iub{a-:jDJi} < K
def J
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(second use of regularity of k!).

Then, of course, a. OA, foral j 0J. ,since A, OA,. Thus,
J B | aj B
J
a’mdon(fi) nAg ', and by the definition of Agi1 - fi(é') OAg,, andasa

consequence, f (a) 0\ Ay -
a<k

Having the formula (6), it is easy to etimate | A | . By induction on a < k , we show that

| Aa | <max(y, A) <K By (3), thisistruefor a = 0. If the assertion holds for all
B<a<k,and a isalimitordinal, then

<K _ <K
A, SB;(J{ ABI sﬁgamax(u, A) T =1lal Orax(u, A)

< kax(u A) <K = max(k, max(g A) <K = max(g A) =K.
§Io (jl)

J.
Finally, for a=p+1,theset U = {f, (a):iOn, a’udon(fi)nAB 'Y has cardinality
def

< 0 gmax(A, i < aqmax(a, p <K P

. T T
ind. hyp Pyar IJi |

Atimex(A, 1) <K = max(A, max(A, @) <% = max(, p) =K.

%
) (3

%
5

( )

K

Since Ay =Ag0 U, | Ay | <max(A, 4 K4 max(A, p) K= max(A, p) =K asdesired.

Our induction is complete.

Finaly,
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Y AAS | S WBpx (A, 1) =K =

a<kK a<kK
nax(K,nax(A,u)<K

as wanted for (2). This completes the proof of the Theorem.

K

If, in particular, A < p and u isof the form n , then

<K:(V<K) <K:sup(v<K)p = sup v<K:v<K:u. Thus, we

max( A, p) ~K=p

P<K T P<K
. (5)
obtain:
if Al=vK forsome v>2, and I I<IAl ,then |[Al=A].
<DO n

Note that for al infinite v, v =sup Vv =supv=v.Thus if K= DO , then for all
n<w n<w

infinite A,wehavethat | Al =1A |<K , and we conclude that

if k=10 A isinfinite,and 1 1< /Al ,then |[AI=1A].

0 1

Let us turn to the examples above. In the example of type (A), we have that k = DO , because
al operations are finitary, that is, the arities Ji are finite cardinals. Also, )\:DO . Thus, if

(B, F) isaninfinite group (say), and A U B isany infinite subset of B, then A, the
subgroup generated by A, is of the same cardinality as A.If |B|=v,thenforany u<v,
we may choose asubset A0 B suchthat | Al = u (why?); we thus obtain that

an infinite group has subgroups in each infinite cardinality less than or equal the
cardinality of the group.

Of course, the same conclusion holds for Boolean algebras, etc.

O
In the examples under (B), we have K = Dl . Now, vK=vy 0 . Also, now
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A = max( DO' 1) = DO . With (R, lin) ,wegetatrivial concluson, namely that
0 O, O 0 O

Arsmax(Dg 1A) 9<(2 9 %=20 (rivid since ADR, and 'R =2 ©). But,
. R .. L R Oo - Oo
with (R™, | i n) we obtain, smilarly, that AOR™, Al <2 imply that | A| <2
0
R _.2 9

aswell, which is"non-trivial" now since |R™ | =2

see later ...)

(for the cardinalitiesrelated to R,

Here is another example. Let us fix a positive integer n . The class (in fact, set) B of Borel

subsets of R" isthe least subset X of PR™) which contains all open sets, and which is
closed under countable union and complementation:

whenever A OX forall il0w, then \ /A OX;
iUl
AOX — R™-ADX

0
(Borel sets are important in measure theory). We have that | Bl =2

O
setsis 2 0 . (It immediately follows that there are non-Borel sets; why?) This result comes

out of the above general theorem in the following way. Let A be the set of all open subsets of

0 : the number of Borel

R". Let B=R", I ={0, 1} ; JO:w; lel; fo: BY »B Is the operation of countable

union: fo( DAI EiDo) :i\Dlei ; flz BB is complementation: fl(A) =B-A. Thenit

isclear that B isnothingbut A, B=A, theclosure of A in the given system of
operations.

0 0
Clearly, )\:DO. We know that |A| =2 o; thus, p=2 O. K:D1, the least regular
cardinal above |[J 0! :DO . Therefore,
0, <O U5 O 0 0 0
Bismax(0y. 2 %) 1=(29) 0=20"0=270

The most obvious feature of the theorem is that in the estimate for the cardinality of the
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closure A, the cardinality of the set B does not play any role. And indeed, B can be of any
size, in fact, even a proper class. The version of the theorem when B is a (possibly proper)

class, rather than just a set, is almost the same as the original; the definition of the class B‘]

remains the same; now, each f i is possibly a proper class; the only change is that now we
cannot talk about the collection of the operations f i (i 0O0) inthe same sense as before;
but we take aclass 7 whose elements are of theform (i,a) for i Ol , with I aset, and

J
stipulate that fi d5f {a: (i,a)dF} isaFunction whose domain isa subclassof B

The proof of the theorem remains esssentially the same.

Finally, we refine the distinction between regular and singular cardinals by introducing the
cofinality of acardinal k ; asit will turn out, a cardinal is regular if and only if its cofinality
isitself.

We formulate the basic notion in terms of ordinals. For every ordinal o , we have that

a=1sub B; a istheleast strict upper bound of all ordinals lessthan a . It may happen
B<a
that o can be written in the form

a = | sub BE (7)
é<y

for a system of ordinals Bf indexed by an ordinal y smaller than a ; the least ordinal y
for which there is a representation of the form (1) of a iscaled the cofinality of a, anditis
denoted cf (a) ; wehavejust seenthat cf (a) <a .

When a=(+1 isasuccessor ordinal, then we can take y=1 and BO:B; this shows that
cf (a)=1; thecofinality of all successor ordinalsis 1 .

Let us note that if (7) holds, then we can change the f3 g to some B’E such that the sequence
EB’f DE<y is (not necessarily strictly) increasing: é<¢&’ <y implies that B’ESB’E, ; and (7)
still holds, with some y' <y

a = | sub B’f' (8)
é<y

To this end, we define B’E:I ub BZ for all é<y.Itisclear that the B’E are increasing, and
(<&
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also that B’Esa for al é<y. If infact B’E<a for al &<y, then

azlsubﬁfslsubﬁ’fsa
é<y é<y

and so (8) holds with y' =y . If, on the other hand, thereis é<y such that B’fza, then we
let v betheleast such ¢ ; then B’€<a for each é<y , andthus

a= lub stlsub B’fsa,
é<y é<y

and (8) again holds. Note that if, in addition to the above, y=cf (a) , then y' is
necessarily equal to y, since y <y and (8) would contradict the "least-ness' of y . Thus, if
y=cf (a) , the we have arepresentation (7) of a in which the Bf are increasing.

The characterization (1') of regular cardinals shows that

9 for alimit ordinal o, cf (a)=a impliesthat o isacardinal, infact a
regular cardinal.

In fact, more generally,
(10) for alimtordinal a, cf(a) isawaysa regular cardinal.
This follows from the identity
cf(cf(a))=cf(a) (12)
that we prove as follows. Let y=cf (a) and do=cf (y) . We have equalities

azlsub(Bf) and y =1 sub( VZ)
é<y (<o
and as we said, we may assume that BESBE’ whenever é<&’ <y . But then

a=Ilsub(B, ) :
7<d Yt
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indeed, clearly, a isastrict upper bound of all the By ( {<d);andif a’ <a, thenthere
is é<y suchthat o SBE (why?); and then thereis {<d such that ESVZ’ thus BESBVZ’
andso o sBy -- which showsthat a isatheleast strict upper bound of all the By

( {<9d) . But then, by the definition of y=cf (a) , itfollowsthat y<d; thatis, (9) holds.

Now, (10) follows from (11) and (9).

Exercise: Let y=cf (a) . Then there exists arepresentation of o inthe form of (7) in
which the BE are strictly increasing: Bf<Bf’ whenever é<¢&’ <y.

We have defined the cofinality of any ordinal, and in particular, of any cardinal; and we saw
that it is always a regular cardinal. For instance, if a isacountable limit ordinal, then

cf (a)=w; thisisbecause cf (a)<a, and cf (a) isaninfinite cardinal, and thereis only
one such, namely w=[ 0" What we have thus seen is that every countable limit ordinal o

can be written in the form a =Isub ap, and we may also assume that the ap here are
n<w
strictly increasing.

For an ordina a with |af :Dl, the possibilitiesfor cf (a) arethree: it canbe 1 (when
a isasuccessor), it can be DO, and it can be Dl. Obvioudy, cf(w1+1) =1,
cf(w1+w) :DO and cf(w1+w1) :Dl (we may write Wy for Dl when "we use it as an
ordina"; similarly for Wy ).

Exercise: show that if a isalimit ordinal, then cf(Da) =cf(a) .
Thus, we have cf (0O,)=cf(w)=0,, cf (0  )=cf(w,)=0,,and
w) 0 Wy 1 1

cf (O )=cf (0O, )=0,.
le wl 1
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812 Models of the axioms of set theory

Let us list the axioms of set theory ( X, Y, ... arevariablesfor classes, x , y,... ae
variables for sets):

Every set isaclass.
Every element of aclassis a set.
Axiom of Extensionality: Ox( xOX¢—x0Y) — X=Y .

Axiom Schema of Class Comprehension: for any meaningful property
P(x) of sets x , thereisa (unique) class X suchthat Ox(xOX«—P(x)) . X isdenoted

by {x:P(x)} .
Axiom of Regularity: al setsare pure: OxOX([ Oy(yOX—yOX) ] —x0OX) .
Axiom of Empty Set (AES): the class Ddgf {x: x#x} isaset.

Axiom of Pair Set (APS): for any sets x , y , theclass
{x, vy} déf{z: z=x or z=y} isaset.

Axiom of Subset (AS): any subclass of aset isaset: XOx impliesthat X isa set.
Axiom of Union Set (AUS): forany set x, \J X 45f {y: z.y0z & z[Ox} isaset.
Axiom of Power Set (AP0S): for any set x , P(X) déf{y: ylOx} isaset.

Axiom of Replacement (AR): for any Function F,if Dom(F) isaset, sois
Range(F) .

Axiom of Infinity (Al): the class
Ingf{x: OX([OOX & Oy (yOX—S(y) OX) ] —> xOX} isaset [here,

S(x) = U {x, {x}} ]
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(Global) Axiom of Choice ((G)AC): thereisaFunction C with Don( C) =V-{ U}
such that for all xODom(C) , C(x) Ox .

The axiom system we described above is called the Morse-Kelley (MK) class-set theory. To be
sure, our formulation is, in one respect, less precise than the official version of MK: the term
"meaningful” in the formulation of class-comprehension should be made more specific to read
"formulated in first-order logic"; we will say more about this below. On the other hand, there
are two other, related, formal axiomatizations of set theory: Zermelo-Fraenkel (ZF) set theory,
and Godel-Bernays (GB) class-set theory. As these terms indicate, in ZF, the only kind of
entity is"set"; in GB, asin MK, we have both sets and classes. The formulations of both ZF
and GB depend more sensitively on the concepts of first order logic than that of MK. Although
MK and GB may seem related, on account of both being a theory of sets and classes, and ZF
may seem separate since it only talks (directly) about sets, as a matter of fact, ZF and GB are
very closely related, being essentially of the same deductive power, whereas MK is stronger
than the previous two.

Henceforth, we assume the axioms of (class-)set theory, in the formulation given above (that
is, MK).

We want to investigate what subclasses, and preferably, subsets, of V, the universe of (all)
pure sets, may serve as models of all or part of the axioms of set theory. We take a subclass A
of V;theintentionisthat A should play therole of V. We re-interpret the notion of "set"
as to mean: being an element of A . To be a class should mean: being a subclass of A . Now,
the very first axiom: "every set isaclass’, requires that [x( xOA==xUA) , whichisthe
condition that we called the transitivity of A.

Henceforth, we assume that A is atransitive class.

For the "new" classes, the classes in the sense of the model given by A, one being an element
of the other should retain its origina meaning, the original [-relation.

In summary, what we investigate is this. Given a transitive class A, and given certain axioms
of set theory, we ask whether it is the case that, under the interpretation in which" a isaset™
means "alJA", "a isaclass'means "allA", and "a belongsto b " means " allb ",
the axioms are true. The model we are looking at consists of the subclasses of A ; the
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elementsof A, the "sets' in the model, are particular subclasses of A . Furthermore, we want
to investigate the said questions within our (MK) class-set theory, that is, using those axioms
freely in the total universe of sets and classes.

Let uswrite SC(A) for the totality of all subclasses of A ; the "model” we are talking has
SC(A) asitsdomain of individuals. To be sure, when A isaproper class, SC(A) isnota
class; its "elements' are sometimes proper classes. Thus, it is not possible to talk directly
about SC(A) within our class-set theory. Still, there is no problem with the meaning, within
MK class-set theory, of saying, about any particular statement referring to classes and sets, that
itistrueinthe model SC(A) . When the statement contains a quantifier X on classes, the
understanding is that this should be interpreted as UX( XOUA—. . . ) ; and the quantifier [IX
should be read, when meant in the sense of the model provided by A, as [IX( XOA&...) .
Note that OX( XOSC(A) —. .. ) isintuitively the sameas OX( XUA—...) , since
XOSC( A) isintuitively the same as XA, even though XOSC(A) is not something
meaningful within MK.

On the other hand, when A isaset (and thisisin fact the case we are mostly interested in),
then there is no problem of the kind described above at all. Now, SC( A) isthe same asthe

set P(A) ; and we can write XOP(A) just aswell as XOA.

If a particular axiom is true in the model, we say the class SC( A) isa model of the axiom; if
so, we write SC( A) F® when ¢ stands for the axiom.

The first few observations tell us that, under the stated (meager) conditions, SC(A) is
automatically a model of the axioms "Every element of aclassis a set”, Extensionality, Class

Comprehension, and Regularity.

The first, "Every element of a classis a set", when interpreted in the model SC(A) , says
that "every element of asubclassof X isan element of X", which is certainly true.

The second, Extensionality, says, in SC(A) , that

Q) "if X, Y aresubclassesof A, andif for all xOA, xOX iff xOY, then
X=Y "

This holds since each of xOXUOA or xOYUA impliesthat xUA, and thus
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"if for al xOA, xOX iff xgdy"
is the same as
"if for al x , xOX iff xOY";

and so, (1) becomes an instance of Extensionality understood in the original universe of sets
and classes.

The third, Class Comprehension, says that

for any meaningful property P(x) of sets x in A, thereisa (unique) subclass X of
A such that OxOA. (xOX«—P(x)) .

But, given P, we can consider the property Q of setsin general defined by
Qx) < P(x) &xOA.

Consider
Xdéf {x: Qx)} ={x: xOA&P(x)} ={x0OA: P(x)}

given by Class Comprehension in the original universe. By its definition, XUOA, therefore, X
isa"classin the sense of the model A ™. But also,

XOA = ( xOX ¢« P(x) ) ,
which shows what we want.

This simple proof is, aas, misleading. The root of the trouble is that we do not really have a
clear idea what a "meaningful property"” is. Later on, we will learn about first order logic in
explicit detail, and interpret "meaningful property” by "a property expressible by means of first
order logic in terms of the concepts of set, class and membership”. In fact, although we do not
yet have theoretical definitions concerning first order logic, we do have a working knowledge
about it. When interpreting Class Comprehension in the model SC( A) , we will encounter
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the situation illustrated by the following example.
Consider the property P(x) =" x isanatural number" . Thisis given by
P(x) = OX([OOX&DOy(yOX—S(y) OX) ] — xOX) .

P isnot quite expressed in terms of the primitives "set", "class’, and "membership”; but this
can be easily remedied, by using

u=U0 < [Dv.vlu

and
z=9(y) & W Wiz« (wWly orw=y)) .

The phrase 00X can therefore be replaced by [u( (Ov. vOu) & ulX) :
00X & u((0Ov.vOu) &udX) ;

smilarly,

S(y)OX) & [E(IMWIz«—(Wly or w=y)) &z0IX) .
4 4

Using these definitions, we have

P(x) = DX([ZEU((DV.VDU) &ulX) &
1

Oy(yOX— [Zz( OM Wz «— (Wy or w=y) ) & z[0X)) ] —x0OX) . Q)
3 4 432 1

P now is expressed in terms of the said primitives. Now, consider the case that we want to
take

the class of natural numbersin the model A.
This may be said to be given by the property Q(x) = x0A & P(x) , the one we used above.
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But there is another interpretation, one that is the really intended one. Namely, what we really
want is, more explicitly,

the class of setsin A that are natural numbers in sense of the model A.
How can we describe the property

R(x) = x isanatural number in the sense of the model A ? (2
This has a natural answer: interpret each of the quantifiers

OX,Ou, Ov, Oy, Oz, Ow
as quantification over ""class" in the sense of the model SC(A) " (inthe case of [X), and
""set" in the sense of the model SC(A) " (inthe case of the rest). The result is that we
should replace the above quantifiers by the respective expressions

OXOA, MOA, OvOA, OyDOA, [zZOA, DWIA .
Of course, writing

UOXOA means UOX. XUA—. .,

(UOA means [u. uA & ...

OvOA means Uv. VIA—...;

etc. The result of the said replacement is the rather large expression

R(x) = OXOA([ DUOA( (OvOA. vOu) & uOX)
12

& OyUA(yIX— [z OA( IWHA( Wz «— (Wy or w=y) ) & z[X) ) | — xX) 3
3 4 432 1

Let uswrite PCA) (x)  (although we should really write PCSECA)) (%) ) for this
property R(x) , and call it the relativization of P to the model SC(A) .
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Unfortunately, the notation P(™ (x) is, till, dightly misieading: P{™) (x) is given only
when the expression for P infirst order logic is given; what if the same property P can be
given by two different expressions which, when undergoing relativization, give non-equivalent
expressions for the relativizations? When dealing with logic in earnest, we will have to face
this problem; for the time being, we ignore it.

We have concluded that the property R in (2) is P( A) (x) . Thus, when we want to see
that, in the sense of the model SC( A) , the class of natural numbers exists, what we have to
take is the class

(xoa PCY (x)3
rather than
{xOA: P(x)} .

Of course, there is no problem with the existence of the class in question in the model
SC(A) ; the said expression denotes, again, a subclass of A.

Finally, the validity of the fourth of the four axioms mentioned above, Regularity, is left as an
exer cise to verify.

Next, we discuss the meaning of each of the next seven axioms: those of Empty Set, Pair Set,
Subset, Union Set, Power Set, Replacement and Infinity in the full model based on the
(trangitive) class A . Let us call these, to have a smple term, the set-existence axioms.

Note that each set-existence axiom asserts that a certain class, formed as a
comprehension-term on the basis of some data satisfying some conditions, is a set. In other
words, in each case, we have a property P(w) , aproperty P for an undetermined set w,

P formulated in terms of some given data; the assertion isthat {w. P(w) } isaset. To be
sure, P isnot always formulated using only the primitives of set theory ("class’, "set" and
"membership"), but we can remedy this as was illustrated above. Now, according to what we
said above, the corresponding set-existence axiom, " { w. P(w) } isaset", when interpreted in

123



the sense of the model SC( A) , isto mean that, provided the data are in the model A, we
have that

twon: PUA (W)} isan element of A, )

where we referred to the relativization P( A) (w) of P described above. We are to see what
this last statement (4) means, for each of the seven set-existence axioms. In many cases, we
will establish that

G)  foral wiA, P(w) —— P(A(w

When (5) holds, we say that the property P is absolute (with respect to relativizationto A).
Under the condition that P is absolute, (4) becomes

6) {wWIA P(w)} OA.

A quality of P that is stronger than (5), but which, nevertheless, is often present, is that
7 foral wiv, P(w) —— P{A(w

In this case,
® {woa P W) = (w P(w)

and (4) becomes

Q) {w P(w)} OA.

Now, to the individual set-existence axioms.

AES: now, P(x) is x#x . Thiscontains no quantifiers; thus P(A)(x) isjust the same
as P(x) . Therefore, (7) trivialy holds. Hence, to say that SC( A) EAES isto say that
{w. P(w)} , thatis, 0,isanelementof A.Since A istrangtive, it iseasy to see that this
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always holds provided A is non-empty. We summarize:

SC(A) EAES < 0O0OA.

APS: wearegiven x, yUA; the property P(z) is z=x or z=y . The same argument
applies as in the previous case to show that (7) holds. Thus, SC( A) FAPS means that, under
the conditions that x, yOA, (9) holds. The conclusion is that

SC(A) EAPS < A isclosed under taking pair-sets.
X, YUOA =—= {x,y}UA.

AS: wearegivenaset XA, and aclass XA such that XOx ; the property P(w) is
WX ; notethat " X isaset" isthesameas” {w. WX} isaset". The same argument
applies as in the previous two cases to show that (7) holds. Conclusion:

SC(A) FAS = A isclosed under taking subsets of its elements:
xUA, yIx — yUA.

AUS: wearegiven xUOA; P(y) is [.y0z &z0Ox . Therefore, P(A)(y) IS

[ZOA yOz &z0x . | claim that (7) holds. The fact that P(A) (y) implies P(y) is
tautologous. Giventhat P(y) , thatis, yOz & z[x for asuitable z , since xJA and A is

transitive, we infer that z[A ; this shows P( A) (y) . Inconclusion:

SC(A) FAUS < A isclosed under taking union-sets:
xOA — | Jx OA.

APoS: Wearegiven xOA; P(y) is yOx =0z. (zOy—z0Ox) ; P(A)(y) is

Nz0A. (z0y—sz0x) . Forany yOA, P(y) ifandonlyif P (y) ; thisis
immediate from the trangitivity of A . We have shown (5), the fact that the subset-relation is
absolute. (Note, however, that we have not shown (7).) The term in (6),
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{yOA: P(y)} ={yUOA: yx)} =Px)nA. Wehave
SC(A) EAPS — xOA =—— P(x)nALA.

Note, on the other hand, that under the condition that AEAS, that is, xUA, y[x = y[A,
we have that P(x) nA=P(x) ; thus,

if SC(A) EAS, then
SC(A) EAPS < A isclosed under taking the power-set of its elements;
xOA — P(x)0A.

Also note that if P(x) OA, then P(x) OA (trangtivity), hence, P(x) nA=P(X) ;

if for al xOA, P(x)OA, then SC(A)EAPS.

AR : Asapreliminary remark, let us note that for FOA, that is, for F aclassin the model,
to say that F isaFunction in the sense of the model isthe sameasto say that F isa
Function: the concept of Function is absolute. This will be seen by inspecting the equivalence

F isaFunction

OxOF. OyOx. z0x. [ OwOx(w=y or w=z))
1
& uby[ (Ot Oy. t=u) &ubz & [WOz. OsOz. (s=u or s=v)]]
2 21

OxOF. OyOx. OzOx[ OwWOx(w=y or w=z) ) —
1

OuOy[ Ot Oy. t =u—[ OvOz[ OsOz. (s=u or s=v) —
2 3 4
Ox’ OF. Oy’ Ox. Oz’ Ox. [ OW Ox’ (w=y’ or w=z')) —
5

]

[Ot' 0Oy’ .t’=u—s[DOv’' 0z’ [Os’ 0z’ (s’=uor s"=v')—v=v']1]]111]
6 7 7654321

(the first part saysthat every x in F isanordered pair (u, v) ={y={u}, z={u, v}} ;the
second part saysthat if x=(u, v) OF and x’ =(u, v’ ) OF, then v=v’ ).
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Indeed, since each quantifier in the expression is bounded, i.e., of the form Jalb or [Calb ,
and FOA, the expression, when relativized to the transitive class A, will not change its
meaning: OxOF. Q x) relativizedto SC(A) is OxOA[ xOF—Qx)] ; and

OxOAl xOF— Q(x) ] = X[ xOF—Q x)] = OxOF. Q x)

snce FOA; smilarly, OyOx. Q x,y) relativizedto SC(A) is
OyOAl yOx—Q(x,y)] , and

OyODAlyOx —Q(X,y)] =0y[yIx—Q(X,y)] =0yOx. AX,y)
since xOA and so x0A.
Next, consider the fact that

vORange(F) «— [XOF. OyOx. OzOx. [ OwOx(w=y or w=z))
1
& ulby[ (Ot Oy. t =u) &ubz&OsOz. (s=uor s=v)]]
2 21

Writing P(v) for the right-hand-side, we see that (7), the stronger version of absoluteness
holds. We may write that Range( A) (F) , theRange of F in the sense of the model
SC(A) , is Range(F) ; Range(A)(F) = Range(F) . A similar inspection will show
that Domt ) (F) = Don(F) . Now, AR in the model means that

FOA&F isaFunction'® &ponf® (F)oA —— Rangel™ (F)DA.

Under the hypothesis that FOA , we can drop the superscript A from all three positions, and
we obtain that

SC(A) EAR if and only if
for al classes FUA,
F isaFunction & Dom{ F) LA =—= Range(F) UA.

If, in addition, SC(A) EAPS, that is, A isclosed under taking pair-sets, then we have that
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X, YOA imply that ( x, y) DA, and therefore, XOA, YUOA imply that XxXYOA. Thus, if F
isa Function, and Dom( F) DA, Range(F)UA, then FODon( F) xRange( F) OA. This
shows that in the last equivalence, we can drop the condition " FOA" , and we obtain:

if SC(A)EAPS, then
SC(A) EAR if and only if
for al classes F,
F isaFunction & Dom{ F) LA =—= Range(F) UA.

Al : We will indicate the proof of the fact that
if SC(A)EAES, APS and AUS, then SC( A) EAI iff NOA.

Assume that SC( A) EAES, APS and AUS. According to what we showed above, this means
that OOA, and x, yOA impliesthat {x, y}, |/ xOA.

We first claim that we have INDA . In fact, we have the stronger statement that VwDA . This
is left as an exercise to prove.

We show that [N(A) =N ; thatis, for the property P(x) that definestheclass N as
{x:P(x)} , wehavetherelation (7), and asa consequence, (8). Recall that P(x) was

described in (1), and P{™) (x) in (3).

The proof of the inclusion NON(®) | that is, xJA&P(x) — P{A) (x) | isleft asan

exer cise. For the converse inclusion IN( A) 0N , the main pointisthat X in the quantifier

OXOA in (3) can beinstantiated by X=N, since INOA ; therefore, if xUA is such that

x0ONCA | thatis, PCAY (x) | then the statement (... ) after the quantifier OXOA in (3)
1 1

istrue for X=N ; the facts JOA and yOA= S(y) UA can be applied to show that [ .. .]

2 2
in (3) true (this expresses that X=IN satisfies 00X & Oy(yOX — S(y) UX) in the sense of

SC(A) ); now, xON follows; this shows N2 o .
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Finally, we turn to the axiom of choice.

GAC : We show that if SC(A) EAPS, then SC(A) EGAC (of course, here it is assumed that
A isatrangtive class, and that GAC holds in the universe). In fact, if C isaglobal choice
function, one whose existence is asserted by GAC asread in the universe, then CnA isa
global choice function in the model SC(A) . Indeed, by the concept of Function being
absolute (see the discussion of AR above), we have that CnA isaFunction in the sense of
SC(A) . By two uses of the fact that SC( A) EAPS, it followsthat alJA- {0} and bOa
impliesthat (a, b) DA . Hence, it isimmediate that

Dord A (CnA) = Don{ ChA) = A- {0} . Of course, when alDon{ ChA) , then
(CnA) (a) =C(a) Ua . This proves what we claimed.

Let us draw some conclusions from our analyses. We see that the condition for each of the
seven set-existence axioms is related to a closure condition. Let us elaborate.

Let uscall apredicate P(x, X) of aset-variable x and a class-variable X a
closure-predicate if it is monotone in its second variable:

foral x, X and Y,
P(x, X) &Xa0Yy = P(X,Y) .

A class X issaid to satisfy the closure condition associated with the closure predicate
P=P( 00D, or, X isclosed under P, oragan, X is P-closed, if

foral x,
P(x,X) = x0OX.

The main fact is that, for a closure-predicate P,

the intersection of any number of classes closed under P isagain closed under P ; if
Q X) isapredicate on classes, and
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OX(Q X) — X is P-closed) = {x: OX(Q X) —>x0X) } is P-closed}.
The proof of thisis easy, but very important; it is left as an exercise. (At this point, | mention
that the present formulation of the notion of "closure predicate”, with the last-stated property,
was given by Peter Green.)

In particular, the intersection of all P-closed classesis P-closed.

Let us note the easily seen fact that if P1 and P2 are closure-predicates, then P( x, X)
defined as P(x, X) = Pl(x, X) & P2(x, X) isagan aclosure-predicate.

Now, let us define

PAE(x, X) = x=0

Paps(X: X) = LyOX [zOX x={y, z}
PAUS(X’ X) = [VDX X= U y

PAS( X, X) = [yOX x0Oy

Papos(X: X) = LyOX x=My)
PAR( X, X) [F. (F isaFunction & Don{ F) X & x=Range(F))
PAI (x, X) X=IN .

Inspection shows that each of these predicates is a closure-predicate.
We have

IS PAES-C|O%d — [00OX;
is PAPS-CIO%d = Uy.0z(y,zOX — {y, z} OX) ;
is PAUS-cIomd = Oy(yIX — JyOXx) ;
is PAS-CIO%d — [Uy. x((yOX&xly) — x0OX) ;
is PAPOs-cIO%d — [y(yX — Py)0OX) ;
IS PAR-cIomd =

OF( F isaFunction & Dom F) OX —— Range( F) OX) ;
X is Paj -closed <—— NIX.

X X X X X X

Above, we saw that, for any transitive class A, being P AES—cIosed is equivalent to
SC( A) EAES ; smilarly for the axioms APS, AUS and AS, in relation with the

130



closure-predicates PAPS' PAUS and PAS , respectively. The situation with APoSis
different; the conditionon X is

Oy(yOX — Py)nXOX)

is not a closure condition (exer cise). However, we saw that, under the condition that A is
PAS-cIosed, SC(A) EAPS iff A is PAPS-CI 0sed.

The rest of the axioms are similarly clarified in terms of closure conditions. Always assuming
that A istrangitive, we have that

If Ais PAPS-cIosed, then SC(A) EAR iff A is PAR-cIosed;

if Ais PAES' and PAPS-cIosed, then SC(A) EAI iff A is PAI - closed.
Note being transitive is also a closure condition:

X istranstive < X is PTR-cIosed
where

PTR(X,X) = [y(yOX&x0Oy) .
L et us denote the conjunction of the eight closure-predicates

PR Paes’ Paps' Paus Pas® Papos® Par @9 Py

by PSE , for "Set Existence" ( PTR Is taken as a conjunct in PSE too); PSE isthe
set-existence closure predicate.

We conclude the following
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Proposition. For any class A, SC(A) isatranstive model of Morse-Kelly class-set
theory if and only if A isclosed under (the) set-existence (closure-predicate PSE ).

It is worth remembering that, on the basis of our analyses, we have similar statements for a
variety of combinations of the axioms of set theory.
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813 Inaccessible cardinals

In the last section, we characrerized the classes A that giverise to amodel SC(A) of
Morse-Kelley class-set theory by closure under the combined set-existence predicate PSE .
Our first main goal in this section is to relate the same condition to the notion of inaccessible
cardinal.

Q) Theorem For any class A, SC(A) isamodel of all axioms of MK class-set
theory if and only if either A=V or A:V‘9 for an inaccessible cardinal 6 .

By the last section, an equivalent statement is this:

(1) Theorem For any class A, A isclosed under PSE if and only if either A=V or
A=V9 for an inaccessible cardinal 6 .

To establish the Theorem in its second form, we prove some preliminary facts.

2 Lemma. Suppose that o isan ordinal, and for each fB<a, BB is a set such that
BB B,h <IBg | f | B<pB <a. Th
g8 and | BI | B | foral B<f <a en

| JBgl = lub IBpl . )

B<a B<a

Proof. We prove the assertion by transfinite induction on the ordinal o . Suppose that
adOrd, andforal o <a, theassertionwith o’ replacing a holds.

If a=0, then both sides of the equation are equal to O .

Assumethat a=a’ +1 . Thiscaseisalso trivial; on both sides, we have "maxima’. In more

detail: 1ub |IB, = IB_., | ; on the other hand, B,=B_. ; and so
B<a B a AEZ B a
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| Bol =B, I=lub [Bj,l .
Bya B a B<a B

For the rest of the proof, let a be alimit ordinal; let EBBDB<O{ be a system of sets as stated

in the hypotheses of the Lemma. Let KB: \BB\ ( B<a) . We have KB<KB, for

B<p <a.

Let us define the sets CB daf \<j B A for each B<a . Note that CO:D and CB+1:BB for

B y
al pB<a ( p<a impliesthat B+1<a). Clearly, we have

OC, f <@ <qa. 4'
CB CB or B<f <a 4)
Another fact isthat for alimit ordinal B<a (if thereis any such) , we have that

c

= U C
y<B ¥ y+I<p

= B = B. =Cpg,; 4
y+1 y+\1j<B y y<B y B ()

For (4') and (4), we say that the system ECB Dﬁ < IS continuous.

Now, let B any ordina <a, and let AB daf ICBI . When B=y+1, then

)\B: \Byl :Ky. Now, let B<a be limit. Since the restriction of the original system
EByDy<a to ordinals y<pB, the system EBVDV<B’ satisfies the same assumptions as the
original, by the induction hypothesis applies and we can conclude that, for a limit ordinal
B<a,

A.= IC - C =] ub = = = A . (5
BT BT sy TV T YT v T gty ©

On the cardinals )\B now we have the inequalities /\B</\B, for B<p <a, and aso the
continuity relation (5). Finally, note that

pa P p<a BT pg B

and

Co= \JCpps =
Azg B Azg pri AngB
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Therefore, if we can show that

?: \UCB\=Iub)\B, (6)

B<a B<a

the desired equality (3) will follow. What we have done so far was to reduce the general case
of the lemmafor a alimit ordinal to the case when the system of sets involved is continuous.

Let us extend the definition of the sets CB and the cardinals A B to B=a by

C = UC , and /\ =1 ub /\B U/\ . Thus, (4) and (5) hold for B=a too.
B<a B<a B<a

By recursion on (<a, we define a bijection fB: AB%CB, such that, in addition, we

also have that for B<f <a, fBDf B (that is, fB( ) :fB’ (& for EDdon(fB) ).

U

The fact that )‘O = \COI gives a bijection fo: )‘O —eco. (In fact, fO:D )

Suppose that we have defined fB’ and B+1<a; we define fB+1 . | claim that

)\B+/J=\CB\+\CB+1- CB B+1| B+1

But thisis possible only if u:/\B+1: if we had us)\B, then we would have
)\B+u )\B B+l ; and if uzAB, then )\B+1:)\B+u:u; this shows that the claim is valid.

By an identical argument, I/\B+1- /\BI :/\B+1

Therefore, we have that the sets CB 1 CB and A B +1-)\ B are equinumerous, and thus we
can find abijection g: (Ag,;-2p) i»(cﬁﬂ- Cp) - Findlly, put f g, =f g ; that
is, for ED)\B, fB+1( &) =f B( &) , andfor xD)\B- )\B+1’ fB+1( &) =g( &) . Clearly,

: N
fEE}L.l)\BHeCBH, and fB B+1 and as a consequence, fVDf B+1 for all
y :

When B<a isalimit ordinal, we define f ,= | /f . Since wehavethat f [f for all
By Y y= v

y<y <B, and each of the f v is a 1-1 function, we have that fB isa1-1 function. The
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domain of fB is \<j don( f y): \<j )\y:)\B (see (5)). The range of fB is

y\<jﬁr an(f y) :y\<j Cy:CB (see (4)). Therefore, fB is abijection,

U

fB: )\B eCB.

The construction of f 3 also ensures that f ny B foral y<pg.

This completes the recursive construction of the functions f B for all B<a with the stated

properties. Since we have f a A a% Ca , Wwe have proved (6) as desired.

(7) Coroallary. | a' =betha for dl alOr d.

Voor

This follows from the lemma, by an easy transfinite induction (exer cise).

(8 Proposition

(|) For any allOrd ’Va_ is closed under PTR’ PAUS and PAS'

(@iD) For any a>0, Va is closed under PAES'

(ii1) For any a>w, Va is closed under PAI .

(@iv) For any limit ordinal o , Va is closed under PAPS and PAPoS'

(v) Let 6 beastrong limit regular cardinal (an inaccessible cardinal). Then
VG is closed under PAR'
Proof. (OF We have that Vg is transitive, XV, — \J XV, and

yOx DVa = yDVa ; the first of these facts was pointed out before; the other two are left as
easy exer cises (hint: use transfinite induction).

(ii) and (iii): obvious.

(iv): exercise.
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(v): Firgt, let us note that beth9:9. Since O isastrong limit cardinal, 6:betha
for some limit ordinal a ; of course, a<0 . If wehad a<6, then 6 would be singular:
6 = bet ha: | ub bet hB’ with each bet hB<9' Therefore, we must have a=6. Thus,

B<a
bethe—e.
Next, | claim that for all xDVe, we have [x| <6 . From xDVe, it follows that xDVa
for some a<0 ; therefore, xDVa, and [x|< 'Va| sbetha by (7), and so
X| <bet heze.

Now, we can show that V isclosed under P, . Let F beaFunction such that
D 43¢ Dom(F) OV, and Range(F) V. Forevery xOD, wehave F(x)[OVy, and

therefore, thereis ax<6 such that F( x) Dva . We have the system of ordinals
X
W @DD’ with each ay lessthan 6, indexed by the set D whose cardinality is |D| <6

(smce DDV ). By the regularlty of 6, we conclude that a 45t | ub a, < 6. Since a,.<a
xD
implies that Va DVa, we get that F( x) DVa for every x0OD. This says that
X

Range(F) DVa, and Range(F) O Va) =V DV‘9 as desired.

o+l

The last proposition implies the "if" part of the Theorem: if A is V or VG for an
inaccessible cardinal 6, then SC( A) isclosed under the said eight closure conditions. But
we also get, for instance, that

9 Proposition Let A:V5 for alimit ordinal 0>w. Then SC(A) satisfiesall
axioms of set theory except possibly the Axiom of Replacement.

(20) Lemma

() allV,, , but allV 'VamOrd =a; BDVa — [<a.

(i) Vg= BU AVp) -

(iii) Define the so-called rank function r: V—->0Ord by
recursion on the well-founded relation 0 as follows:

r(x) = Ilsubr(y).
y X
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We havethat r (x) 0Ord, and r(x) istheleast a such that xDVa.

(iv) xDVa & r(x) <a.
(V) xDVa & r(x) DVa.

Proof: (i), (ii): exercises.

(iii): We prove that for any allOrd , xDVa &= r(x)<a; thiswill suffice. We proceed
by O-induction on x . Thus, we take x , and assume that for any ylx and pOOrd,
yDVB &= r(y)<B. Wehave

xOV, < OyOx.yOV_ < OyOx.yO\ ) PA(Vp)
a T Ba P

(i)

s OyDx. OB<a. yOA VB) s [yOx. OB<a. yDVB
& [Oyx.B<a.r(y)sp < Oylx.r(y)<a

T T
i nd. hyp. def. of r(x)
& lubr(x) <a.
y X
(iv): XV, & XDU?(VB) = DB<a.xD7’(VB) = DB<a.xDVB
<a
& [B<a.r(x)sB < r(x)<a
(i iTi)
(V): xDVa & r(x)<a < r(x) DVa'
T
(iv) (i)

Proof of the " only if" part of (1) Theorem. Assume that SC( A) satisfies the closure
conditions in question. | assert that
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(11) xUOA implies r (x) +10A.

We prove thisby [-induction on x . Suppose xOA, andfor al yOx , we have

r(y)+10A. Wehave r(x)=lsubr(y) =lub (r(y)+1) . Define the Function F to
y X y X

have domain equal to x ( 0A), and to satisfy F(y)=r (y)+1 foreach yOx ; F(y)UA

for al yOx ; thatis, Range(F)UA. Therefore, by A being PAR-C|O%d,

Range(F) OA. Usingthat A is PAUS-C|O%d, we have | / Range(F) OA. But

\J Range(F) = \/ (r(y)+1) =lub (r(y)+1) =r(x) ;
y X y X
thus, r(x) OA. Since A isclosed under pair-sets (under PAPS)' and union-sets (under
PAUS)’ uA implies S(u) DA . Therefore, r ( x) +10A as asserted.

Next, | claim that
(12) aDAnOrd=>VaDA.

Thisisdone by inductionon allOrd . For a=0, theassertionistruesince A is
PAES:closed (OOA). For a asuccessor ordinal, we use that ulJA implies P(u) OA
(closure under PAPoS)’ and for a alimit ordinal, we usethat A is PAR' and
PAUS-cIosed; the details are easy.

| can now demonstrate that

A= UV, (13)
alAnOr d

Suppose first that xUOA . Then, by (11), a 45t r(x)+1 0AOrd. Since xDVa (see
(10) Lemma (iv)), x belongs to the right-hand side.

Suppose x belongs to the right-hand side: thereis alJANOr d such that xDVa. By
(10) Lemma (iv), r(x) +1<a. By A beingtransitive, r (x) +10A. By (12),

UA, hence V OA (A istrangtive). Since xOV xUA follows.

Vi (x) +1 F(x)+1 F(x)+1"

Congder the class 6=AnOrd . Since A istranditive, 0 isatransitive class of ordinals.
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Either 6=Ord, orthereissome allOrd- 6. Butinthe latter case, for al [>a ,

pUOOr d- 6, by the trangitivity of 0 ; therefore, Ord- 60Ord- o, and 60a ; thus, 6 isa
set, atrangitive set of ordinals, hence, 6 isan ordinal. We see that either 6=Ord , or
00Ord . Let usaso notethat, incase 60Ord, 6 isalimitordinal. Thisis because

<6 =— PUA=— [+10A=— [+1<0.

By (13), A= UVa' When 6=Ord, A=V. Otherwise, since 6 isalimit ordinal,

allo
A=V9. We show that, in thiscase, 6 isastrong limit regular cardinal. Recall that k isa

strong limit cardinal means that k=bet h5 for alimit ordinal o . Thisisthe same as K>DO

andforal A, A<k, A acardina implies 2<k .

First, for the regularity of 6, in the "purely ordinal” formulation (') in 811. 6 isalimit
ordinal. Suppose (<6, and al<9 for each 1<fB. By the definitionof 6 as AnOrd, we
have BOA, and alDA for 1<fB . Consider the function F whose domainis BUA, and for
which F( 1):alDA. By A being PAR-cIosed, r ange(F) :{al: 1 06} DA ; thus,

|ll5%(1’ = \Jrange(F) OA by A being PAUS-cIosed. IIE%GI 0 A implies that
| ub a, < 0 asdesred.

10g

Finally, for 6 being a strong limit cardinal. 6>DO follows from NOA (A is PAI -closed).
Suppose k<O, Kk acardina. Then kOA, and P(K) A (A is PAPS-cIosed). Let

A= 1P(K) | ; wehave some f: P(K) Q)\ . Wewant to seethat ALA, or equivalently,

that A<6. Suppose otherwise; 6<A . But then, we can let
P P | : :
X=f [0 =f “(a):a<60PK) ;

by A being PAS-cIosed, XOA. Wehave f 'X XQB, dom(f I'X) =XOA, and
range(f 'X) =60A; from which by A being PAR-cIosed, it follows that B0ANOr d=0

contradiction. Therefore, we must have A<6. The proof is complete.

Theorem (1') says that for a class being closed under set-existence is equivalent to being the
same as VG , the 6th stage in the cumulative hierarchy, for 6 a strongly inaccessible
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cardinal, or 6=Or d , where, by convention, VOr d- V.

Given any closure predicate, it is natural consider the least class closed under it. Let U denote
the least class closed under PSE . What do we know about U ? Either, U equals V (in
particular, U isa proper class), and there is no inaccessible cardina (if thereissuch 6,

VG g V, V(9 is PSE-cIosed, contradicting U being least such); or else, U isaset, in fact,
Uis V‘9 for the least inaccessible cardinal 6 (there cannot be any inaccessible 6 <0,
since then VG’ gve, VG’ is PSE-C|O%d (by (1Y), and V6 is not least among such
classes). Let us write 60 for the least inaccessible cardinal if any. We have

(14) Either thereis no inaccessible cardinal, and U is V (first alternative)

or there is at least one inaccessible cardinal, and U is V6 , for 60 the least
0
inaccessible (second alternative).

Which one of the two alternatives is the case? Whatever the answer, we can prove that

(15) Proposition SC(U) E "there is no inaccessible cardinal”.

To establish this, we need

(16) Lemma Let A be aclass closed under set-existence. For any allA, a isan
inaccessible cardinal in the sense of the model SC(A) if anonlyif a isaninaccessible
cardinal (in the sense of the universe).

Proof of (15) from (16). Suppose SC(U) E "thereis at least one inaccessible cardinal”. This
means that thereis alJU which is an inaccessible cardinal in the sense of the model
SC(U) . By (16), a isaninaccessible cardinal. This excludes the first alternative in (14).

But under the second alternative, we have U = V(9 , and then aDVe implies that a< 90
0 0
(see (10)(i)), which contradicts 60 being the least inaccessible. We have reached a

contradiction, which completes the proof.
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Outline of the proof of (16). We have that
a isaninaccessible cardina <

Ord(a) & aislimitordina & a>w (a7
8 OF( (Function(F) &DomF)Ja & Range(F) Da) = | J Range(F) 0a) (18)
8§ OyHzOE (yHa & Ord(z) &Function(Q &Don(g)=Ay)

1

& Range( G =z & Gisabhijection) = z[a) (19)
1

Line (18) expresses condition (1') in 811. Line (19) expresses that for all cardinals k<a , we

have 2X<a . To be sure, what it says directly isthat for all ordinals y , z ,if Ay) ~z,
then z<a -- but thisis an equivalent statement of the above, giventhat a isa cardina by
the previous conditions.

Remember that

Ord(a) = a istrangtive and trichotome
= ObOa. Oclb. cOa & ObOa. OcOa( bOc or b=c or cb) .
a islimit &= [Ib0a. [(cOa( bOa)

Aswe saw in the discussion of AR in 812, the fact that these expressions contain only
bounded quantifiers, ensure, on the basisthat A istransitive, that the predicates in question
are absolute: for allA,

adP(a) — od(a):

(a islimity(A —s a islimit

Further, we saw in loc. cit. that, for reasons identical to the ones just cited, the predicate
Functi on(F) isabsolute, and Dom(A)(F) =Dom F) ,
Range(A)(F) = Dom(A)(F) , U (A)Fz \J F for FOA. Being abijection isaso
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absolute.

Assume that a isaninaccessiblein the sense of SC(A) . Thus, allA, and the
relativizationto A of lines (17), (18) and (19) hold true. By what we said above, the
relativization does not change (17) at all (note that wA ); in (18), the quantifier 0OF at the
front isreplaced by OFUA ; andin (19), the quantifiers 0y , 0z , UG are replaced,
respectively, by OyUA, OzUOA and OGIA; otherwise, there is no change in the expressions
(weasousethat A is P APO S—closed). We have to prove that from the assumed relativized
statement, the unrelativized version follows. As for line (18), now we have to show something
for something for all classes F, and not just for subclasses F of A . But the assumption for
F isthat

Functi on(F) &Don( F) Ua & Range(F) Da

holds; and thisimpliesthat FOA since FODon( F) xRange(F) , and XUOA, YOA imply,
by A being PAPS-cIosed, that XxYOA . Thistakes care of line (18).

For a similar treatment of line (19), we now have y, z and G satisfyingthe (...) . It
1 1
immediately follows that yOA. But it aso followsthat z=Range( G UOA, by A being

P AR—cI osed. JA follows as before.

This completes our somewhat sketchy verification of (16).

Using the axioms, we prove theorems of set theory. The methods of proof are clear to usin
practice, but they have not yet been clarified explicitly: thiswill be the task of logic. In any
case, proving a theorem from the axioms takes the form of some kind of deduction; a
statement @ is provable from certain axioms A if a deduction "obeying the rules of logic" of
the statement from the axioms exists. Now, a fundamental intuition that we have about
provability isthat it is sound with respect to states of affairs concerning the truth of the
statements involved. In particular, we should, and in fact, we will have that
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(Soundness of Provability) If ¢ isprovablefrom A, then every model of A will
also satisfy @ .

Granting Soundness, we now draw some conclusions from what we saw above.

Let us return to (9) Proposition. Let us consider the set A:Vw+ w:VwD? . According to (9),
SC(A) satisfies all axioms of set theory, except perhaps AR , the Axiom of Replacement. We
now point out that in fact, SC( A) does not satisfy AR. Although this follows from

(1) Theorem , since w[2 is not regular (exercise), we point out a direct argument. Consider
the Function F whose domainis Donm( F) =w, and for which F( n) :Vw+n ( ndw) .
Since wDVw, WX Vw) :leDva?:A, and anDA for all nJw, we have that
Don( F) DA and Range(F)UA. If SC(A) satisfied AR, we would have

Range(F) ={ Vw+n: ndw} OA; but SC(A) FAUS, A is PAUS-CIosed, thus,

A:Vw+ o \J {an: nOw} DA would follow; contradiction. We have shown

(20) SC( VwD?) satisfies all axioms of MK class-set theory, except the Axiom of
Replacement, which it does not satisfy.

As a consequence, by Soundness of Provability, we conclude

(21) Metatheorem The Axiom of Replacement is not provable from the remaining
axioms.

Remember ((1) Theorem) that every PSE-cIosed class, in particular U, will giveriseto a
model SC(U) of al of MK. Therefore, by (15), we similarly conclude

(22) Metatheorem The assertion "there is an inaccessible cardinal” is not provable
from the axioms of MK.

Now, recall the aternatives of (14). We have that
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(23) The statements

(1) "There is an inaccessible cardinal"

and

(i)  "Theleast class U closed under set existence is a set"

are equivalent within MK.

It is generally accepted that either (23)(i) or (23)(ii) is a reasonable additional axiom of set

theory.

In fact, we have

(24) The statements

(1) "For every ordina a , there is an inaccessible cardinal greater than o "

and

(@iD) "For every set x , thereisaset U closed under set existence for which x0OU ."

are equivalent within MK.

Exercise. Convince yourself of the truth of (24).

Alexander Grothendieck made the equivalent statements (24)(i), (24(ii) axiomsin his
set-theory, because he needed them in the Theory of Categories. A set closed under
set-existence is also called a Grothendieck universe.

145



814 The Boole/Stone algebra of sets

14.1. L attices and Boolean algebras.

Given aset A, the subsets of A admit the following smple and familiar operations on them:
n (intersection), O (union) and - (complementation). If X, YOA, then XnY, XOY are
also subsets of A . With A fixed (and suppressed in the notation), we write - X=A- X for
any XOA; of course, - X A again. Intersection and union are binary operations on
P(A) ,- isaunary operationon P(A) :
n: A xPAA —— A ,
O: A xPA — AA ,
- A —— PA) .
Of course, intersection and union are defined for any number of arguments; using the binary
versions repeatedly, we can reproduce finite intersections and union, except the empty
intersection and the empty union. For the empty intersection, we take the set A itself; for the
empty union, the empty set.
What is the justification? For any family F 0 P(A) of subsets of A, we have
M\ F={xOA: foradl XOF,xOX}
and
\J F={xOA: forsome XOF, xOX} .
Note that the expression for [\ F isthe same as that in Section 3, page 35 except for the

clause " A" ; the expression for | / F has a similar difference to the earlier expression on
p. 30.
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For the union, there is no actual difference in meaning; the old and the new expressions give
the same set. For the intersection, the same is true except for the empty family 7 ; the old
expression gives V, a non-set; the new expression gives A itself. Of course, the union of the
empty family, according to the general formula, is the empty set. It goes without saying that

XnY= NA{X Y}, XOY= J{X Y} .

The composite object
(P”(A);n v, -, A0 (1)

is an example of what we call an algebra: a set (in thiscase P( A) ), caled the underlying set
of the algebra, with certain particular operations on it (in this case, the binary operations n ,
0, the unary operation -, and the O-ary operations A, O : O-ary operations are
distinguished elements of the underlying set). Any object of the form

(B; A, v,,1,0)

with B aset, A, v both BxB—B, -:B—B, and 1, 0 0B, isan algebrasmilar to
(2). Speaking in very general terms, we will seek, and at least partly find, properties of
algebras of the form (1) that distinguish them among all the algebras similar to them; the result
will be the notion of Boolean algebra.

For future reference, let's say that when we denote an algebra by a single letter, say B, | B |
denotes the underlying set of B . This, of course, conflicts with the notation for "cardinality”;
itisadvisable to use #A for the cardinality of the set A when the underlying set of an
algebra is also to be used.

Let usfirst look at the basic operations from another point of view, namely the context of the
poset (P(A), ) .Wehave, forany F 0O P(A) ,that

[\ F isthelargest subset Y of A forwhich YOX foral XOZF:
A\ FOX foral XOF, and
if YOX foral XOF,then YO N\ F;

and smilarly,
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\ J F istheleast subset Y of A forwhich XOY forall XOZF:
X0 \JF foral XOF,and
if XOY foral XOF,then \JFOY.

(verify this statement).

In general, in any poset (B, <) , and for any family F 0 B of elements of B, alower bound
of Fisany y[OB suchthat y <x for al xOF ; the greatest lower bound (g.l.b), or infimum
(inf) of F (if it exists!) is the maximum element of the set L of all lower bounds of F :

Yo OL suchthat y < Yo for al y OL . (Notethat the requirement is more than to say that
Yo be amaximal element of L !). Theg.l.b. of 7 isdenotedby /\ F; /\ F doesnot
necessarily exist (in an arbitrary poset ( B, <) ), but if it does, it is uniquely determined by
the definition. The notions of upper bound, least upper bound (I.u.b., supremum, sup), with the
notation \/ F, are defined similarly ("dually"). [In the context of ordinals and
well-orderings, we have already used |ub's extensively.]

Now, notice that what we said above about intersections and unions amounts to this that in the
poset (P(A), D), N\F, \/F existforal FOPA),andinfact \/ F= N\ F,
NF=\UF.

It is worth remarking that the definitions of inf (sup) can be put in the following form:

y < NF & y < x fordl xOF;

\/F <y = x <y foral xOF;
y ranges over al the elements of the poset.
Note also that /\ O isthe maximum element of the poset (if such exists); \/ O isthe
minimum element (if exists). We write 1 for the maximum element, O for the minimum
element (if they exist).
A poset (B, <) iscaledalatticeif /\ F, \/ F exist for dl finitesets OB . Thus, ina

lattice (B, <) , there always are a maximum element 1 , a minimum element O ; moreover,

forany x,y OB, xay = A{Xx,y}, xvy = \/{x,y} awaysexist. The
def def

148



poset (P(A), ) isalattice; infact, it iswhat is called a complete lattice, meaning that
/ANF, \/F existforal FOB=P(A) .

Note the following laws that always hold in any lattice:
XAY=YAX , XVvYy=YyvXx (commutative laws)

(XxAy) aAz=xa(ynanz) , (xvy)vz=xv(yvz)
(associative laws)

XAX=X, XvXx=x (idempotent laws)
XA(XvYy) =x, xv(xay) =x (absorptionlaws)

XAal=x, xvli=1, xA0=0, xv0=x.

Exercises. (i) Verify that the above hold in any lattice.

(it) Assume an algebra ( B, A, v, 1, 0) satisfying the above laws. Show that there is a
unique partial ordering < on B that makes ( B, <) alattice in such away that the given
A, v, 1, 0 become the lattice operations.

(iii) Suppose that in aposet, /\ F existsfor all sets of elements of the poset. Show
that thenalso \/ F aways exists. Show that if, in this assertion, we restrict 7 to be afinite
set in both occurrences, then the resulting statement is not always true any more.

Exercises (i) and (ii) say that the concept of lattice can be given a purely "operational”
("agebraic") formulation.

The set-theoretic complement - X = A- X also can be given a "lattice”" description. The set
Y = - X isdistinguished among all the subsets of A by the following two properties:

YOX=Aad YnX=0,
(verify!). Inalattice, y isacomplementof x if y vx=1 and y Ax =0.Inagenera
lattice, the complement of an element may not exist, and it is also possible that there are two

different complements of the same element.
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A particular property of (P(A), ) asalatticeisthat it isdistributive. A lattice (B, <)
distributive if

(xvy) Az = (xnaz) v(yaAz)

foral x,y,z0OB.

Indeed, the distributive law is familiar for ( 2(A), ) (see Assignment 1).

Exercises. (iv) Show that in a distributive lattice, the dual of the distributive law, that is

(xAy) vz = (xvz) a(yvz)

holds too.
(v) Show that in a distributive lattice, every element has at most one complement.
(vi) Show that any linear ordering with a minimal and a maximal element is a
distributive lattice.

A Boolean algebra is a distributive lattice in which every element has a complement. Of
course, (P(A), ) isaBoolean algebra

One particular Boolean algebra, (P(1), ) , plays acentral role in our theory. This one has
two elements: O and 1 (right?) ; notethat P(1) = 2 . The binary Boolean operations are

tabulated as follows:

Al 0 1 v] 0 1
o] o o o| o 1
1| 0o 1 1| 1 1

In addition, we have -(1) =0, -(0) =1 .Wecal this algebra the two-element Boolean

algebra, and denote it by 2.

Let us point out that 2 isalso considered to be the algebra of truth values t =t r ue and
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f=fal se; t isidentifiedwith 1, f with O . Under thisidentification, the above
operations A, v and - become the logical operations of conjunction ("and"), digunction
("or"), and negation ("not").

With any poset B=( |Bl, <) , we have its opposite, B° . The underlying set of B® isthe

same, |Bl ,asof B ; theorderingin B° isthe opposite of that in B: x< oY & ysXx.
B~ def

It is clear that B° so defined is a poset too. Moreover, it is also clear that the inf of aset 7

in the sense of B isthe same as the sup of F inthesense of B, and vice versa. Thus, of
B isalattice, sois BC . Moreover, as exercise (iv) above shows, if B isadistributive lattice,
then B® is distributive too. Also, the definition of complement shows that the notions of

complement in B and B° are the same. Briefly put, the notion of "lattice”, "distributive
lattice", and "Boolean algebra" are each self-dual concepts: if a poset fallsin any of these
categories, so does its opposite.

14.2. Some algebraic ideas.

Note that the notion of Boolean algebra is defined in terms of the operations A, v, =, 1
and O by identities : the laws describing lattices, the distributive law, and the laws defining
the complement. In general, an identity, for any kind of algebra, is an equality of two terms

built up of the basic operations of the algebra, required to hold for all values of the variables
involved. In the definition of Boolean algebra, we have found some particular identities that
hold in the set-algebra ( 2(A), A, v, 7, 1, 0) ; have we found them all?

Asit is, this question is not very intelligent since, e.g., 1 A X = x isan identity not listed
above that obviously holds in the set-algebra, and in fact, in al lattices, as a consequence of

two of the axioms (why?). However, we may ask:

(*) isit the case that al identities that hold in the set-algebras are consequences of the
Boolean axioms, that is, are true in all Boolean algebras?
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Put this way, the question amounts to asking whether we have found, in the Boolean axioms, a
sufficient basis to deduce all identities formulated interms n, v, -, 1, O that aretrue
for sets; if the answer is "no", then there is another, still undiscovered, essentially new identity
concerning these set-operations.

We will give an affirmative answer to the question just asked, by deducing it from a more
abstract theorem to be stated soon.

Example. The so-called De-Morgan law: -~ (xay) = (=X) v(~y) holdsin set-algebras; in
fact, it holds, in all Boolean algebras (exercise (vii)).

A homomorphism of lattices L and M, in notation f: L-— M, isamapping
f: [LI— M between the underlying sets that preserves the lattice operations:

F(xay) =1(x)af(y) .

F(xvy) =f(x)vi(y) .

f(1) =1,

f(0) =0.

These equalities are required to hold for all x, y O [L| ; of course, on the left sides, A, v,
1, O refer to the lattice operations of L , on the right to those of M.

An embedding of lattices is a 1-1 homomorphism; an isomorphismis a bijective
homomorphism.
Exercises. (viii) A lattice homomorphism f between Boolean algebras is a Boolean

homomorphism in the sense that it also preserves complements. f (-x) =-f (x) .

(ix) Find a Boolean embedding of (P(2), <) into (P(3), <

152



(x) Any lattice homomorphism preserves the partial ordering relation:
x<y = fx<fy.If L, Marelattices, and f isaposet isomorphism

fr(ILI,<) —(IM,<) (ie, f isabijection f: IL| = M ,and x <y <

fx<fy (x,yOILl) ), then f isalatticeisomorphism aswell. However, a
poset-homomorphism between lattices (map preserving the order) is not necessarily a lattice
homomorphism.

There are the following points to be made about homomorphisms and embeddings:

(1) given a (Boolean) homomorphism f: B-—>C, and a Boolean term t (X) built up
of variables and the symbols for the Boolean operations, then for any values B from B for

the variables X we have
F(tB(B)) =t <(1B) ;

that is, if we first evaluate t at B in B, then apply f , we obtain the same value as when

we first apply f to each of thevaluesin B, and then evaluate t in C at those arguments;

and

(2) if anidentity s(X) =t (X) holdsin C (for al valuesin |Cl ), and
f : B-———>C is an embedding, then the same identity also holdsin B.

(1) is a consequence of the definition of "homomorphism™; note that the "homomorphism"” is
defined in such a way that the assertion hold in case t isasmple term (hasjust one
operation mentioned in it); the general statement is proved by "induction”. (2) is a consequence

of (1) as follows. Suppose s(X) =t (X) holdsin C, and f: B—>C isan embedding. To
show that the same identity holdsin B, let B be arbitrary elements to evaluate the variables

X . Then

f(sB(B)) =s“(1B)
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and
f(tBB)) =t SfB) .

Sincewe have s<(fB) =t S(fB) by the assumption that the identity holdsin C, we get

that f(sB(B)) =f(tB(B)) . Since f is1-1, it followsthat s5(B) =t 5(B) as
desired.

Put briefly, (2) says that any identity that holds in an algebra holds in any other that can be
embedded into the given one.

Exercise. (xi) Suppose the lattice L can be embedded into a distributive lattice. Then L
itself is distributive.

Given afamily EI_i EiDI of posets, their Cartesian product, ]| Li , iIsthe poset L whose
i di
underlying setis [L| = x ILi\ , and for which
i dl

f<g e f(i)<g(i) foral i OI .

Here, f and g are arbitrary elementsof  x “‘i' (remember that the latter is the set of
i Ol
certain functions with domain | ); on the left side, < isthe ordering of T[] Li to be
i Ol
defined; on theright, < refersto the ordering given in (each) Li .

Exercise. (xii) Verify that [] Li isindeed a poset; if each Li isalattice, then so is
i Ol
[]L; ;ifeach L, isadistributive lattice, or a Boolean algebra, then sois [] L;
i Ol i Ol
the lattice (Boolean) operationson ] Li are defined pointwise: e.g.,

i Ol
(fArg)(i) =1(i) ~g(i) .

. In fact,
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(xiii) The projection mapping

rﬁ : iQILi%Lj

fl—>1f(j)

one for each j O , isalattice homomorphism.

(xiv) Turning to Cartesian products of sets, let us note the following "mapping
property" of Cartesian products. for any sets AI for i O1 ,andany further set B :

themaps f: B— x AI are in a one-to-one correspondence with families of the
i Ol
form [fi : B%Ai q O - Indeed, the correspondence, in one direction, associates with f
the family where fi =T of (with Y defined asin (xiii) ).

(xv) Now, if the AI and B are lattices (say), then the correspondence of (iii) gives a

one-to-one correspondence between homomorphisms f: B—— [] A and families of
i Ol
homomorphisms of the form [ i - B%Ai q K Put in another way, to give a

homomorphism f: B-—— [] AI is the same as to give a family of homomorphisms

i Ol
0i:B—A L -

! for the

When in the product ] AI al the algebras AI are the same, say A, we write A
i Ol
h

! Is a power (the 't

product [] A; A

I [l
algebra AI , 1A
IS used.

power) of A . Note that the underlying set of the

| ,isthesameas = |A

, Where in the latter the notation of Section 3, p.36

The reason why we talk about products of algebras is because the power-set algebras
(PA), O) areal, essentially, powers of 2, the two-element algebra, and this turns out to
be a useful way of looking at power-set algebras. Recall the bijection
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nan —2 A
X | char X. (1)

Now, P(A) and "2 are the respective underlying sets of the algebras ( P(A), 0) and
2A . We have that

the mapping in (1) is an isomorphism ( P2(A), 0) QZA.

Exercise (xvi): verify this important fact.

Combining the last fact with what we learned above about mappings into a product-algebra,
we obtain

for any lattice L , and any set A, the lattice homomorphisms f: L——( P(A), 0)
are in a one-to-one correspondence with families of homomorphisms of the form
f a L—2 DaD A

Moreover, in this correspondence,

f isan embedding (1-1) if and only if, for every pair ( x, y) of distinct elements
x #y of L,thereis a A such that fa(x) ¢fa(y) .

Exercise (xvii). Verify the last two displayed assertions.

Stone representation theorem for distributive lattices (and Boolean algebras).

Any distributive lattice (hence, any Boolean algebra) has an embedding into a
power-set algebra.

Equivalently, if L adistributive lattice, and x #y are arbitrary elementsof L , then
thereisa 2-valued homomorphism f:L-—2 suchthat f(x) #f(y) .
The proof of the Stone representation theorem is the subject of the next subsection.
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Exercise (xviii). Verify that the two version of the theorem are indeed equivalent. Note that the
distributivity condition on the lattice is necessary. Note that the question asked under (*) (at
the beginning of the present subsection 14.2) has, as a consequence of the Stone representation
theorem, an affirmative answer.

14.3. Primefilters and ultrafilters

We now set out to prove the Stone representation theorem. First, we investigate the notion of a
2-valued lattice homomorphism f: L-—2.Any such f isgivenbytheset F={x[L :

f (x) =1} ; namely, f isthen the characteristic functionof X, f =char F: |L|-—2.
The question is what properties F must have in order for char F to be alattice
homomorphism. We introduce some standard terminology.

Let L bealatticee FO IL| isafilteron L if (i)F 1L DF,(ii)F F isclosed upward: x
OF, x<y = y0OF (x,y0lLl) [asaconseguence, in (i)F’ it would have been enough
to require that F be non-empty], and (iii)Fif x and y both belong to F, then so does
xay (x,yOdiILl) .

Exercise (xix). Verify that FO L| isafilter iff char F isan order-preserving map
L-—2,andit also preserves A and 1 [for this, we say that f isa meet-semilattice

homomor phism].

A filter F on L isprimeif (iv)PF OL OF [equivalently, F# LI ;wesaythat F isa
proper filter] and (v)PF whenever xvy OF ,theneither x OF, or yOF (x,yd/L1) .

Exercises. (xx) The prime filterson alattice L are in a one-to-one correspondence with the
homomorphisms L-—2.

(xxi) Let F be afilter on the Boolean algebra B . Then F isaprimefilter on B iff
forany x 0 Bl , exactly oneof x, -x belongsto F.
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In the case of a Boolean algebra, we may say "ultrafilter” to mean "prime filter".

In view of the reformulation of the notion of 2-valued homomorphism as prime filter, and in
view of second form of the Stone representation theorem (at the end of the second section), we
now see that the Stone representation theorem is equivalent to the following statement:

For any distributive lattice L , and any pair of distinct elements xzy of [L| , there
isaprimefilter P of L for whichoneof x,y belongsto P, and the other of x,y does
not belongto P.

We are going to show a stronger statement, which is also more specific concerning which of
the two given elements can be made to belong, and which not to belong, to the prime filter.
The stronger version can then be used to obtain other interesting consequences. The main
feature of the stronger version is a certain symmetry with respect to "dualizing", that is, taking
the opposite of the lattice in question.

Consider alattice L . Anideal of L is, by definition, the same thing as afilter in LO .
Unraveling this, we obtain that an ideal isasubset | of [L| such that (i)I OLDI , (ii)I I
isclosed downward: x0OI , y<x = y0O (x,y0OILl) ,and (iii)I if both x and vy

belongto | ,thensodoes xvy (x,yO L) . A primeideal of L isaprime filter of LO,
that is, anideal | for which (iv)PI 1LDI , and (v)PI whenever x Ayl , then either x0I
or yll .

Prime Filter Existence Theorem (PFET). Given any filter FO and any ideal | o on the
distributive lattice L such that F0 and IO are digoint: FOnI 0° 0, thereisat least one
prime filter P on L which contains F0 as a subset and which is digoint from IO:

F

P, I AonP=10.

0 0

Before we turn to the proof of the PFET, let us see how the latest formulation of the Stone
representation theorem follows from it. Suppose x, yO IL| , and x#y . Then either x<y ,
or y£x (or both). Say, we have x<y . Now, consider the sets

Fo = T 43¢ {ubLl: uxx} ,and | 0~ Ly d5f {vOILl: vy} . Weimmediately see
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that Tx isafilter,and |y isanideal (exercise). Also, they are digoint: if we had

ud?x n Ly, then x<u and u<y, andthus x<y would be the case. The PFET gives a
prime filter P with ™x OP and [y n P=0. Then, since xO7x and yOly , we have
that xOP and y[OP asdesred.

The proof of the PFET is an application of Zorn's lemma. To emphasize the character of this
proof, we isolate a part of it as a separate statement.

Criterion for a primefilter. Let FO be afilter, | o ideal on the distributive lattice L .
Then any filter on L which is maximal among those filters that contain FO and digoint from
I 0 IS prime.

Proof of the PFET from the Criterion. Assuming the truth of the Criterion, we proceed as
expected. Consider the set 7 of all filterson L that contain F0 as a subset and are digoint
from | 0 partially ordered by inclusion, O . We apply Zorn's lemmato the poset (7, [) .
We claim that if C isany non-empty chainin F,then | /COZF . Indeed, itisclear that
condition (i)Ffor filters holds, because C is non-empty; (ii)F isalso clear. Tosee(iii)F ,If
x,y O \C, thenthereare F, FF OC with xOF , yOF ; since C isachain, either
FOF ,or F OF ; we conclude that both x and y belong eitherto F orto F' , hence,
sodoes xay (since F, F arefiltersl); but F, F areboth subsetsof | / C, thus xay
belongsto | / C aswasto be shown. Asto | 4n |\ J C, if all ; belongedto |/ C, then
it would belong to an FOC , contradicting FOF and the definition of F. The claimis
verified.

The condition of Zorn's lemma, namely that each chain have an upper bound is almost
verified: for each non-empty chain 7, |\ / F issuch an upper bound. For the empty chain,
take F0 0 F asan upper bound.

By Zorn's lemma, thereisamaximal element P of (7, 0) . By the Criterion, any such
maximal element, that is, any filter maximal among those filters that contain FO and digoint

from | 0 is prime. This completes the proof.

Proof of the Criterion. Let P be any filter maximal among those filters that contain FO
and digoint from | 0 . We verify the conditions (iv)PF and (v)PF for P.Since | 0 isan
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ideal, OLDI 0" Since IOnP: 0, it follows that OLDP; thisis(iv)PF.

To see (V)PF , assume xvy [P, and assume, contrary to what we want, that x 0 P and
y O P . We now construct afilter P[ x] containing PO{ x} asa subset; we put

P[x] ={ullL : u=sax forsome s 0P} .

Indeed, P[ x] isafilter: conditions(i)F and (ii)F are clear; and if u, v both belong to
P[ x] , thenthereare s, t 0P with

u=sax and vt AXx;
it follows that, for r = sat , we have
u=r aAx and v=r aAx,
and hence, u Av 2r A X (why?); thisshowsthat uav O P[ X] .

Since xOP, wehave PO P[ x] . By the maximality of P among those filters that contain
#

FO and are digoint from IO, and since clearly FODP[ x] (because FODP), it must be
that P[ x] isnot digoint from Io;thereis aul OmP[ x] . The definition of P[ x] gives
that thereis s O P such that

SAX £ a .
Doing the same with y aswith x , we get bl 0 and t OP such that

t Ay <b.
Let c =avb and r =sat . Then, of course,

rax <c ad r Ay £c,

(why?); also, cll 0 and r 0P, since Io iIsanideal and P isafilter. Now [and thisis the
one point where we use that L isdistributive!],
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ra(xvy) =(r Ax) v(ray) £ c
distributive | aw v means "sup"

Since we assumed that xvy O P, and P isafilter, it followsthat ¢ O P, in contradiction
to the fact that Pnl 0° 0 . This contradiction shows that, indeed, xvy 0O P implies that
either xOP, yOP, showingthat P isa prime filter.

This completes the proof of the PFET.

Exercise. (xxii) A principal filter is one of the form 7x (for the latter notation, see above).
Show that the principal ultrafiltersof (P(A), ) arein aone-to-one correspondence with
the elements of the set A.

(xxiii) The set | rat - {g: 0<g<1 and q isrationa} , with the standard ordering of
the rational (real) numbers is a distributive lattice. Give a description in familiar terms of the
non-principal filtersof (| rat’ <) .

(xxiv) What can we say about prime filters of a total ordering with 0 and 1 asadistributive
lattice?

(xxv) If U and V are prime filters (ultrafilters) in a Boolean algebra, then UV implies U
=V.

(xxvi)* Conversely, if in adistributive lattice L , we havethat PO Q impliesthat P=Q
whenever P, Q are primefilters, then L isaBoolean algebra

(xxvii) Apply the PFET to show the following. Let A be any non-empty set, and assume that
F isafamily of subsets of A with the property that the intersection of any finitely many sets

in F isnon-empty. Show that there is an ultrafilter of ( 2(A), ) which contains F .

(xxviii) The set A isfiniteif and only if al ultrafiltersof ( P2(A), ) are principal.
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